WorldWideScience

Sample records for analytes adsorption due

  1. Quantitative determination of BAF312, a S1P-R modulator, in human urine by LC-MS/MS: prevention and recovery of lost analyte due to container surface adsorption.

    Science.gov (United States)

    Li, Wenkui; Luo, Suyi; Smith, Harold T; Tse, Francis L S

    2010-02-15

    Analyte loss due to non-specific binding, especially container surface adsorption, is not uncommon in the quantitative analysis of urine samples. In developing a sensitive LC-MS/MS method for the determination of a drug candidate, BAF312, in human urine, a simple procedure was outlined for identification, confirmation and prevention of analyte non-specific binding to a container surface and to recover the 'non-specific loss' of an analyte, if no transfer has occurred to the original urine samples. Non-specific binding or container surface adsorption can be quickly identified by using freshly spiked urine calibration standards and pre-pooled QC samples during a LC-MS/MS feasibility run. The resulting low recovery of an analyte in urine samples can be prevented through the use of additives, such as the non-ionic surfactant Tween-80, CHAPS and others, to the container prior to urine sample collection. If the urine samples have not been transferred from the bulk container, the 'non-specific binding' of an analyte to the container surface can be reversed by the addition of a specified amount of CHAPS, Tween-80 or bovine serum albumin, followed by appropriate mixing. Among the above agents, Tween-80 is the most cost-effective. beta-cyclodextrin may be suitable in stabilizing the analyte of interest in urine via pre-treating the matrix with the agent. However, post-addition of beta-cyclodextrin to untreated urine samples does not recover the 'lost' analyte due to non-specific binding or container surface adsorption. In the case of BAF312, a dynamic range of 0.0200-20.0 ng/ml in human urine was validated with an overall accuracy and precision for QC sample results ranging from -3.2 to 5.1% (bias) and 3.9 to 10.2% (CV), respectively. Pre- and post-addition of 0.5% (v/v) Tween-80 to the container provided excellent overall analyte recovery and minimal MS signal suppression when a liquid-liquid extraction in combination with an isocratic LC separation was employed. The

  2. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  3. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  4. A new analytical potential energy surface for the adsorption systemk CO/Cu(100)

    NARCIS (Netherlands)

    Marquardt, R.; Cuvelier, F.; Olsen, R.A.; Baerends, E.J.; Tremblay, J.C.; Saalfrank, P.

    2010-01-01

    Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M.

  5. Negative adsorption due to electrostatic exclusion of micelles.

    Science.gov (United States)

    Somasundaran, P; Ananthapadmanabhan, K P; Deo, Puspendu

    2005-10-15

    Interactions of surfactants with solid substrates are important in the controlling of processes such as flotation, coating, flocculation and sedimentation. These interactions usually lead to adsorption on solids, but can also result in an exclusion of the reagents with dire consequences. In this work electrostatic exclusion of negatively charged dodecylbenzene sulfonate micelles from quartz/water, Bio-Sil/water and alumina/water interfaces has been investigated as a function of pH and ionic strength. Measurable negative adsorption of these surfactants from similarly charged solid/liquid interface was observed in the micellar region. In the case of porous samples with large surface area, comparison of pore size with the micelle size is necessary to avoid any erroneous conclusions regarding the role of electrostatic exclusion in a given system. A theoretical model for the electrostatic exclusion of micelles is developed and used to calculate the adsorption of negatively charged dodecylbenzene sulfonate on negatively charged quartz (pH 7), silica (Bio-Sil A, pH 3) and alumina (pH 11) in the micellar concentration region. The micellar exclusion values calculated using the model are in excellent agreement with the experimental results.

  6. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  7. Comparison of Analytical and Numerical Model of Adsorber/desorber of Silica Gel-Water Adsorption Heat Pump

    Directory of Open Access Journals (Sweden)

    Katarzyna Zwarycz-Makles

    2017-03-01

    Full Text Available In the paper comparison of an analytical and a numerical model of silica gel/water adsorber/desorber was presented. Adsorber/desorber as a part of the two–bed single–stage adsorption heat pump was discussed. The adsorption heat pump under consideration consists of an evaporator, two adsorber/desorber columns and a condenser. During operation of assumed adsorption heat pump only heat and mass transfer was taken into account. The both presented mathematical models were created to describe the temperature, heat and concentration changes in the adsorber/desorber and consequently to describe the performance of the adsorption heat pump. Adsorption equilibrium was described by the Dubinin-Astachov model. Adsorption and desorption process dynamics was described by application of the linear driving force model (LDF. In the analysis temperatures of evaporation and condensation were constant.

  8. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-05

    Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review

    Science.gov (United States)

    Bhakta, Samir A.; Evans, Elizabeth; Benavidez, Tomás E.; Garcia, Carlos D.

    2014-01-01

    An important consideration for the development of biosensors is the adsorption of the bio recognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the bio sensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned for interaction with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow. PMID:25892065

  10. SIMULATION OF ANALYTICAL TRANSIENT WAVE DUE TO DOWNWARD BOTTOM THRUST

    Directory of Open Access Journals (Sweden)

    Sugih Sudharma Tjandra

    2015-11-01

    Full Text Available Generation process is an important part of understanding waves, especially tsunami. Large earthquake under the sea is one major cause of tsunamis. The sea surface deforms as a response from the sea bottom motion caused by the earthquake. Analytical description of surface wave generated by bottom motion can be obtained from the linearized dispersive model. For a bottom motion in the form of a downward motion, the result is expressed in terms of improper integral. Here, we focus on analyzing the convergence of this integral, and then the improper integral is approximated into a finite integral so that the integral can be evaluated numerically. Further, we simulate free surface elevation for three different type of bottom motions, classified as impulsive, intermediate, and slow  movements. We demonstrate that the wave propagating to the right, with a depression as the leading wave, followed with subsequent wave crests. This phenomena is often observed in most tsunami events.

  11. Alterations in ambipolar characteristic of graphene due to adsorption of Escherichia coli bacteria

    Science.gov (United States)

    Mulyana, Yana; Uenuma, Mutsunori; Okamoto, Naofumi; Ishikawa, Yasuaki; Yamashita, Ichiro; Uraoka, Yukiharu

    2018-03-01

    In order to evaluate the interaction between biomaterials and graphene from the perspective of its ambipolar characteristic, we have investigated the alteration in ambipolarity of graphene-based field effect transistors (G-FET) after the adsorption of Escherichia coli (E. coli) bacteria onto its graphene layer. We confirmed a positive shift in the ambipolar curve of the G-FETs after the adsorption of E. coli, presumably due to the negative charge of the adsorbed E. coli. However, we did not observe any decrease in the electron mobility or conductivity of the G-FETs, which implied that E. coli did not chemically react with the carbon atoms of graphene, nor introduce any damage on the graphene lattice, but were only physically adsorbed onto the graphene surface. These findings may extend the prominence of graphene as a stable yet sensitive material to be fully utilized in future biosensing applications. These results were then compared to those of ferritin adsorption, which is a protein shell and biomaterial like E. coli, and radical oxygen doping onto the graphene surface.

  12. Analytical modeling of pipeline failure in multiphase flow due to ...

    African Journals Online (AJOL)

    Pipeline could be said to be the safest and the most economical means of transportation of hydrocarbon fluids. Pipelines carrying oil and gas may suffer from internal corrosion when water is present. The corrosivity varies due to several factors such as; temperature, total pressure, CO2 and H2S content in the gas, pH of the ...

  13. AN ANALYTICAL STUDY OF DEATHS DUE TO POISONING IN VISAKHAPATNAM

    Directory of Open Access Journals (Sweden)

    V. Chandrasekhar

    2017-11-01

    Full Text Available BACKGROUND The aim of this study was to determine and classify the various types of poisoning deaths as seen at Andhra Medical College Mortuary, Visakhapatnam city. MATERIALS AND METHODS This is a retrospective study of all the deaths due to poisoning seen in the Department of Forensic Medicine & Toxicology, Andhra Medical College, Visakhapatnam City over a 15 year period (January 2001‐December 2015 as recorded in the autopsy registers and postmortem reports of the department. RESULTS Poisoning is one of the commonest methods of committing suicide especially in developing countries like India. A total of 22475 autopsies were done during the period. Two thousand seventy four cases representing 9.23% of all bodies received by the mortuary were deaths due to poisoning. Organophosphate compounds were the most commonly 78.98% abused substance. The common motive of poisoning was suicidal 93.43%with male to female ratio 6.69:1.Peak incidence was observed in the age group 21-40 years. Type of poison consumed, socioeconomic status and place of household are also ascertained. CONCLUSION This study shows the pattern of poisoning deaths in Visakhapatnam and this preliminary data will provide a baseline for future research and help in formulating policies to prevent deaths due to poisoning.

  14. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    Science.gov (United States)

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  16. The Analytical Pragmatic Structure of Procedural Due Process: A Framework for Inquiry in Administrative Decision Making.

    Science.gov (United States)

    Fisher, James E.; Sealey, Ronald W.

    The study describes the analytical pragmatic structure of concepts and applies this structure to the legal concept of procedural due process. This structure consists of form, purpose, content, and function. The study conclusions indicate that the structure of the concept of procedural due process, or any legal concept, is not the same as the…

  17. Structural evolution due to Zn and Te adsorption on As-exposed Si(211): density functional calculation

    International Nuclear Information System (INIS)

    Gupta, Bikash C; Konar, Shyamal; Grein, C H; Sivananthan, S

    2009-01-01

    Systematic theoretical investigations are carried out under the density functional formalism in an effort to understand the initial structural evolution due to the adsorption of ZnTe on As-exposed Si(211). Our calculations indicate that after the adsorption of Zn and Te on the As-exposed Si(211), the stable atomic structure qualitatively follows the ideal atomic structure of Si(211) with alteration of various bond lengths. Since the basic symmetry of the Si(211) is preserved after the adsorption of ZnTe, the deposition of ZnTe on the As terminated Si(211) prior to the deposition of CdTe and HgCdTe is useful for obtaining an ultimate quality layer of HgCdTe on Si(211). Some of our results are compared with the available experimental results, and they are found to agree with each other qualitatively.

  18. Adsorption behavior of ractopamine on carbon nanoparticle modified electrode and its analytical application

    International Nuclear Information System (INIS)

    Yao Su; Hu Yufei; Li Gongke; Zhang Yukui

    2012-01-01

    Graphical abstract: - Abstract: In this paper, carbon nanoparticle (CNP) with abundant oxygen-containing groups was prepared. The adsorption behavior of ractopamine on the CNP surface was investigated by electrochemical study. Two oxidative peaks of ractopamine were observed at 0.60 and 0.82 V. The oxidative peaks were distinctly enhanced on the CNP surface and the enhancements were result from the adsorption. The adsorption mechanism was discussed in detail and deduced to be via π–π interaction and salt linkage. The salt linkage between the secondary amide of ractopamine and the carboxyl group on CNP surfaces was confirmed. It provided a novel electron transfer channel for the electrochemical oxidation of phenolic groups. A sensitive differential pulse voltammetry method based on the adsorption was proposed for the determination of ractopamine with the detection limit of 2.0 × 10 −10 mol L −1 . This method was successfully applied to the analysis of ractopamine in urine sample.

  19. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental

    DEFF Research Database (Denmark)

    Taeusch, H William; de la Serna, Jorge Bernardino; Perez-Gil, Jesus

    2005-01-01

    adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min....... The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid...... increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum...

  20. Characterization of humic acid reactivity modifications due to adsorption onto α-Al 2O 3

    KAUST Repository

    Janot, Noémie

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al 2O 3 is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m 2 of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m 2 of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA 254, ratio of absorbance values E 2/E 3 and width of the electron-transfer absorbance band Δ ET are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R≥20mgPAHA/gα-Al2O3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty

  1. The analytical evolution of NLS solitons due to the numerical discretization error

    Science.gov (United States)

    Hoseini, S. M.; Marchant, T. R.

    2011-12-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.

  2. The analytical evolution of NLS solitons due to the numerical discretization error

    International Nuclear Information System (INIS)

    Hoseini, S M; Marchant, T R

    2011-01-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)

  3. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    Science.gov (United States)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  4. Analytical model for time to cover cracking in RC structures due to rebar corrosion

    International Nuclear Information System (INIS)

    Bhargava, Kapilesh; Ghosh, A.K.; Mori, Yasuhiro; Ramanujam, S.

    2006-01-01

    The structural degradation of concrete structures due to reinforcement corrosion is a major worldwide problem. Reinforcement corrosion causes a volume increase due to the oxidation of metallic iron, which is mainly responsible for exerting the expansive radial pressure at the steel-concrete interface and development of hoop tensile stresses in the surrounding concrete. Cracking occurs, once the maximum hoop tensile stress exceeds the tensile strength of the concrete. The cracking begins at the steel-concrete interface and propagates outwards and eventually results in the thorough cracking of the cover concrete and this would indicate the loss of service life for the corrosion affected structures. An analytical model is proposed to predict the time required for cover cracking and the weight loss of reinforcing bar in corrosion affected reinforced concrete structures. The modelling aspects of the residual strength of cracked concrete and the stiffness contribution from the combination of reinforcement and expansive corrosion products have also been incorporated in the model. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple two-zone model for the cover concrete, viz. cracked or uncracked. Reasonable estimation of the various parameters in the model related to the composition and properties of expansive corrosion products based on the available published experimental data has also been discussed. The performance of the proposed corrosion cracking model is then investigated through its ability to reproduce available experimental trends. Reasonably good agreement between experimental results and the analytical predictions has been obtained. It has also been found that tensile strength and initial tangent modulus of cover concrete, annual mean corrosion rate and modulus of elasticity of reinforcement plus corrosion products combined

  5. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    Science.gov (United States)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  6. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  7. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-01-01

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10 −6 M of heavy metal ions at a flow rate of 5.0 mL min −1 . Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu 2+ , Zn 2+ , and Pb 2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu 2+ (5.0 × 10 −8 M) and Zn 2+ (5.7 × 10 −8 M) in a river water sample and Pb 2+ (3.8 × 10 −9 M) in a ground water sample

  8. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    Science.gov (United States)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  9. Analytical Expressions for Harmonic Distortion at Low Frequencies due to Device Mismatch in CMOS Current Mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    One of the origins of harmonic distortion in current mirrors is the inevitable mismatch between the mirror transistors. In this brief we examine both single current mirrors and complementary class AB current mirrors and develop analytical expressions for the mismatch induced harmonic distortion. ...

  10. Effect on hydrogen adsorption due to a lonely or a pair of carbon vacancies on the graphene layer

    International Nuclear Information System (INIS)

    Arellano, J S

    2017-01-01

    The influence on the hydrogen molecule adsorption on a pristine and a defective graphene layer is compared. The different lengths for the C-C bonds on the graphene layer with one vacancy are visualized and compared respect to pristine graphene. The energy of formation of one vacancy is calculated and a comparison of the binding energy for the hydrogen molecule is presented when the molecule is adsorbed on pristine graphene or on the defective graphene layer. The adsorption is studied for a single vacancy and at least for two different pairs of carbon vacancies. The qualitative general result, and contrary to the expected effect of the carbon vacancies on the hydrogen adsorption is that the rearrangement of the carbon atoms on the defective graphene layer allows only a relatively small increase in the magnitude of the binding energy for the hydrogen molecule. (paper)

  11. Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass

    KAUST Repository

    Bouchaala, Adam M.

    2016-03-18

    We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes. © 2016 Springer Science+Business Media Dordrecht

  12. Analytical calculation of dE/dx cluster-charge loss due to threshold effects

    International Nuclear Information System (INIS)

    Brady, F.P.; Dunn, J.

    1997-01-01

    This letter presents a simple analytical approximation which allows one to estimate the effect of ADC threshold on the measured cluster-charge size as used for dE/dx determinations. The idea is to gain some intuitive understanding of the cluster-charge loss and not to replace more accurate simulations. The method is applied to the multiple sampling measurements of energy loss in the main time projection chambers (TPCs) of the NA49 experiment at CERN SPS. The calculations are in reasonable agreement with data. (orig.)

  13. Bringing Benefits and Warding off Blights in Due Commandment (Analytic Study Compared with the Jordanian Law)

    Science.gov (United States)

    Al Etoum, Niebal Mohd Ibrahim; Mowafi, Hanan Sami Mohammad; Al Zubaidi, Faraj Hamad Salem

    2016-01-01

    The study aims to highlight the benefits and blights of the due commandment (intestate law) under Jordanian law for the year (2010) in the article (279). The study came in two sections, the first one dealt with the concept of due commandment, its legitimacy, verdict and terms; in the second section, I've dealt with the persons entitled to due…

  14. An analytical examination of distortions in power spectra due to sampling errors

    International Nuclear Information System (INIS)

    Njau, E.C.

    1982-06-01

    Distortions introduced into spectral energy densities of sinusoid signals as well as those of more complex signals through different forms of errors in signal sampling are developed and shown analytically. The approach we have adopted in doing this involves, firstly, developing for each type of signal and for the corresponding form of sampling errors an analytical expression that gives the faulty digitization process involved in terms of the features of the particular signal. Secondly, we take advantage of a method described elsewhere [IC/82/44] to relate, as much as possible, the true spectral energy density of the signal and the corresponding spectral energy density of the faulty digitization process. Thirdly, we then develop expressions which reveal the distortions that are formed in the directly computed spectral energy density of the digitized signal. It is evident from the formulations developed herein that the types of sampling errors taken into consideration may create false peaks and other distortions that are of non-negligible concern in computed power spectra. (author)

  15. Uncertainty in soil-structure interaction analysis of a nuclear power plant due to different analytical techniques

    International Nuclear Information System (INIS)

    Chen, J.C.; Chun, R.C.; Goudreau, G.L.; Maslenikov, O.R.; Johnson, J.J.

    1984-01-01

    This paper summarizes the results of the dynamic response analysis of the Zion reactor containment building using three different soil-structure interaction (SSI) analytical procedures: the substructure method, CLASSI; the equivalent linear finite element approach, ALUSH and the nonlinear finite element procedure, DYNA3D. Uncertainties in analyzing a soil-structure system due to SSI analysis procedures were investigated. Responses at selected locations in the structure were compared: peak accelerations and response spectra

  16. Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ions.

    Science.gov (United States)

    Zgłobicka, Izabela; Chlanda, Adrian; Woźniak, Michał; Łojkowski, Maciej; Szoszkiewicz, Robert; Mazurkiewicz-Pawlicka, Marta; Święszkowski, Wojciech; Wyroba, Elżbieta; Kurzydłowski, Krzysztof J

    2017-08-01

    We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross-sections have shown three distinct layers and an additional thin extra coat on the external layer (called "EL"). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions. © 2017 Phycological Society of America.

  17. Analytic calculation of depolarization due to large energy spread in high-energy electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1989-08-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA, TRISTAN, and LEP at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  18. Changes in work function due to NO2 adsorption on monolayer and bilayer epitaxial graphene on SiC(0001)

    Science.gov (United States)

    Caffrey, Nuala M.; Armiento, Rickard; Yakimova, Rositsa; Abrikosov, Igor A.

    2016-11-01

    The electronic properties of monolayer graphene grown epitaxially on SiC(0001) are known to be highly sensitive to the presence of NO2 molecules. The presence of small areas of bilayer graphene, on the other hand, considerably reduces the overall sensitivity of the surface. We investigate how NO2 molecules interact with monolayer and bilayer graphene, both free-standing and on a SiC(0001) substrate. We show that it is necessary to explicitly include the effect of the substrate in order to reproduce the experimental results. When monolayer graphene is present on SiC, there is a large charge transfer from the interface between the buffer layer and the SiC substrate to the molecule. As a result, the surface work function increases by 0.9 eV after molecular adsorption. A graphene bilayer is more effective at screening this interfacial charge, and so the charge transfer and change in work function after NO2 adsorption is much smaller.

  19. Predictive Simulation of Gas Adsorption in Fixed-Beds and Limitations due to the Ill-Posed Danckwerts Boundary Condition

    Science.gov (United States)

    Knox, James Clinton

    2016-01-01

    The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.

  20. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  1. Computational analysis of the effect of surface roughness on the deflection of gold coated silicon micro-cantilevers due to molecular adsorption

    Science.gov (United States)

    Hayden, Victor

    In this work numerical simulations were performed in order to study the effects of surface roughness on the deflection of gold coated silicon cantilevers due to molecular adsorption. The cantilever was modeled using a ball and spring system where the spring constants for the Si-Si, Si-Au, and Au-Au bonds were obtained from first principal calculations. The molecular adsorption process was simulated by elongating the natural bond length at available bonding sites chosen randomly on the cantilever. Increasing the bond length created a surface stress on the cantilever causing it to deflect. In all cases the structure refinement was performed by minimizing the energy of the system using a simulated annealing algorithm and a high quality random number generator called Mersenne Twister. The system studied consisted of a 1 micrometer by 1 micrometer portion of a cantilever of various surface roughnesses with variable boundary condition and was processed in parallel on the ACEnet (Atlantic Computational Excellence Network) cluster. The results have indicated that cantilevers with a rougher gold surface deflected more than those with a smoother surface. The increase in deflection is attributed to an increase in stress raisers in the gold film localized around the surface features. The onset of stress raisers increases the differential stress between the top and bottom surfaces and results in an increase in the deflection of the cantilever.

  2. Novel acyclonucleoside analog bearing a 1,2,4-triazole–Schiff base: Synthesis, characterization and analytical studies using square wave-adsorptive stripping voltammetry and HPLC

    Directory of Open Access Journals (Sweden)

    Ali F. Alghamdi

    2017-09-01

    Full Text Available New acyclonucleoside analogs tethered by a 1,2,4-triazole scaffold were synthesized through the condensation of 4-amino-5-(2-phenyleth-1-yl-2,4-dihydro-3H-1,2,4-triazole-3-thione (2 with benzaldehyde followed by the alkylation of the resulting Schiff base (3with 2-bromoethanol, 3-chloropropanol and/or 3-chloropropan-1,2-diol. Voltammetric studies were carried out for the analysis of 1 × 10−6 mol L−1 of the newly synthesized acyclonucleoside analogs (4–6 using square wave-adsorptive stripping voltammetry (SW-AdSV. The sharp voltammetric peak and high reduction current were recorded using a Britton–Robinson B–R pH 10 buffer at Ep = −1250 mV on the hanging mercury drop surface (HMDE and Ag/AgCl reference electrode. Several experimental conditions were studied, such as the supporting electrolytes, the pH, and the accumulation time, as well as the potential, the scan rate, the frequency and the step potential for 4-benzylideneamino-5-(2-phenyleth-1-yl-3-[(2,3-dihydroxyprop-1-ylthio]-1,2,4-triazole (6. The analytical performance of the voltammetric technique was investigated through the analysis of the calibration curve, the detection limit, the recovery and the stability. The voltammetric analytical applications were evaluated by the recovery of compound (6 in the urine and plasma samples. The HPLC technique was also applied for the separation of compound (6 from interference using a C-18 (5 μm column with UV detection at 254 nm.

  3. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  4. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume.

    Science.gov (United States)

    Liu, Han-Bing; Yang, Bing; Xue, Nan-Dong

    2016-11-15

    A series of hydrophobic-modified (polydimethylsiloxane (PDMS) coating) activated carbons (ACs) were developed to answer a fundamental question: what are the determinants that dominate the adsorption on ACs under humid conditions? Using column experiments, an inter-comparison among bare-AC and PDMS-coated ACs was conducted regarding the association of surface characteristics and adsorption capacity. Primary outcomes occurred in two dominating markers, hydrophobicity and total micropore volume, which played a key role in water adsorption on ACs. However, their contributions to water adsorption on ACs substantially differed under different Pwater/Pair conditions. Hydrophobicity was the only contributor in Pwater/Pair=0.1-0.6, while the two markers contributed equally in Pwater/Pair=0.7-1.0. Furthermore, PDMS-coated AC had a significant increase in benzene adsorption capacities compared to bare-AC at 0-90% relative humidity, while these differences were not significant among PDMS-coated ACs. It is thus presumed that the balance between the two markers can be shifted to favor almost unchanged benzene adsorption capacities among PDMS-coated ACs over a large range of relative humidity. These findings suggest potential benefits of PDMS coating onto ACs in enhancing selective adsorption of hydrophobic volatile organic compounds under high humid conditions. To develop new porous materials with both high total micropore volume and hydrophobicity should thus be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analytical predictions for vibration phase shifts along fluid-conveying pipes due to Coriolis forces and imperfections

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Dahl, Jonas

    2010-01-01

    -shift measuring devices such as Coriolis mass flowmeters in particular. Small imperfections related to elastic and dissipative support conditions are specifically addressed, but the suggested approach is readily applicable to other kinds of imperfection, e.g. non-uniform stiffness or mass, non......-proportional damping, weak nonlinearity, and flow pulsation. A multiple time scaling perturbation analysis is employed for a simple model of an imperfect fluid-conveying pipe. This leads to simple analytical expressions for the approximate prediction of phase shift, providing direct insight into which imperfections...... the symmetric part of damping as well as non-uniformity in mass or stiffness do not affect phase shift. The validity of such hypotheses can be tested using detailed fluid-structure interaction computer models or laboratory experiments....

  6. Dark matter as a dynamic effect due to a non-minimal gravitational coupling with matter (I): Analytical results

    International Nuclear Information System (INIS)

    Bertolami, O; Paramos, J

    2010-01-01

    In this work the phenomenology of models possessing a non-minimal coupling between matter and geometry is discussed, with a particular focus on the possibility of describing the flattening of the galactic rotation curves as a dynamically generated effect derived from this modification to General Relativity. Two possibilities are discussed: firstly, that the observed discrepancy between the measured rotation velocity and the classical prediction is due to a deviation from geodesic motion, due to a non-(covariant) conservation of the energy-momentum tensor; secondly, that even if the principle of energy conservation holds, the dynamical effects arising due to the non-trivial terms in the Einstein equations of motion can give rise to an extra density contribution that may be interpreted as dark matter. In this work, The mechanism of the latter alternative is detailed; a numerical session ascertaining the order of magnitude of the relevant parameters is undertaken in another contribution to this volume, with possible cosmological implications discussed.

  7. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  8. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  9. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica-Effect of Pore-Level Anisotropy.

    Science.gov (United States)

    Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V

    2017-06-06

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

  10. New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach-Application for the determination of antidepressant pharmaceuticals in biological fluids.

    Science.gov (United States)

    Ide, A H; Nogueira, J M F

    2018-05-10

    The present contribution aims to design new-generation bar adsorptive microextraction (BAμE) devices that promote an innovative and much better user-friendly analytical approach. The novel BAμE devices were lab-made prepared having smaller dimensions by using flexible nylon-based supports (7.5 × 1.0 mm) coated with convenient sorbents (≈ 0.5 mg). This novel advance allows effective microextraction and back-extraction ('only single liquid desorption step') stages as well as interfacing enhancement with the instrumental systems dedicated for routine analysis. To evaluate the achievements of these improvements, four antidepressant agents (bupropion, citalopram, amitriptyline and trazodone) were used as model compounds in aqueous media combined with liquid chromatography (LC) systems. By using an N-vinylpyrrolidone based-polymer phase good selectivity and efficiency were obtained. Assays performed on 25 mL spiked aqueous samples, yielded average recoveries in between 67.8 ± 12.4% (bupropion) and 88.3 ± 12.1% (citalopram), under optimized experimental conditions. The analytical performance also showed convenient precision (RSD  0.9820). The application of the proposed analytical approach on biological fluids showed negligible matrix effects by using the standard addition methodology. From the data obtained, the new-generation BAμE devices presented herein provide an innovative and robust analytical cycle, are simple to prepare, cost-effective, user-friendly and compatible with the current LC autosampler systems. Furthermore, the novel devices were designed to be disposable and used together with negligible amounts of organic solvents (100 μL) during back-extraction, in compliance with the green analytical chemistry principles. In short, the new-generation BAμE devices showed to be an eco-user-friendly approach for trace analysis of priority compounds in biological fluids and a versatile alternative over other well-stablished sorption

  11. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  12. Diffusion Influenced Adsorption Kinetics.

    Science.gov (United States)

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  13. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  14. Effect of soil contamination due to wastewater irrigation on total cesium as determined by destructive and nondestructive analytical techniques in some soils of egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Abdel-Lattif, A.

    2005-01-01

    Fifteen soil samples were chosen from different locations to represent different soils irrigated with different sources of contaminated wastewater (sewage and industrial effluent). Sequential extraction experiment was carried out to determine different forms of Cs in soils. Moreover, Soil samples were analyzed for total Cs using two analytical methods i.e. destructive wet digestion technique (Atomic Absorption Spectrometry, AAS or by summation of all sequential extracted fractions, SUM) and non-destructive technique (Neutron Activation Analysis, NAA). The aim of this study was to evaluate soil total Cs-forms (especially, bio-available fraction) as affected by soil pollution. Cesium was mostly concentrated in the residual fraction, and its values ranged from 57.4% to 82.9 % of total Cs in sandy soils and from 31.5% to 64.5 % of total Cs in tested clayey soil. Then organically bound Cs- fraction followed by Cs-occluded in Fe-Mn fraction, carbonate, exchangeable and water soluble fractions. Results suggested that, Cs level is affected by soil organic matter content, Fe-Mn oxides and clay content. The mobile Cs fraction (the sum of soluble and exchangeable fractions) ranged from 2% up to 9.9 % of total Cs in sandy soils. However, a higher value (9.82% to 15.31 %) could be observed in case of the tested clayey soils. Soils D and E were more contaminated than other tested soils. Data show obviously, that soil contaminated due to the irrigation with either sewage effluent or industrial wastewater has resulted in a drastic increase in both metal-organic and occluded in Fe and Mn oxide fractions followed by the carbonate fraction

  15. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J [Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do (Korea, Republic of); Kim, J; Kim, H [Pusan National University, Busan (Korea, Republic of); Cho, M; Yun, S [Samsung electronics Co., Suwon, Gyeonggi-do (Korea, Republic of); Park, D; Kim, W; Ki, Y; Kim, D [Pusan National University Hospital, Busan (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  16. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    International Nuclear Information System (INIS)

    Youn, H; Jeon, H; Nam, J; Lee, J; Lee, J; Kim, J; Kim, H; Cho, M; Yun, S; Park, D; Kim, W; Ki, Y; Kim, D

    2016-01-01

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law. In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.

  17. Volatile organic compound adsorption in a gas-solid fluidized bed.

    Science.gov (United States)

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas

  18. Effect Of Soil Contamination Due To Wastewater Irrigation On Total Co As Determined By Neutron Activation And Other Conventional Analytical Techniques In Some Soils Of Egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M. F.; Al-Salama, Y. J.

    2004-01-01

    Fifteen soil samples were chosen from different locations (five different locations at north greater Cairo, Egypt) to represent different soils (alluvial and sandy) as well as different sources of contaminated wastewater (sewage and industrial effluent). Using sequential extraction technique (extracting the soil with different solutions, which is designed to separate metal fractions), Co was separated into six operationally defined fractions: water soluble, exchangeable, carbonate bound, Fe-Mn oxides bound, organic bound and residual fractions. Moreover, total-Co in soils as determined by three analytical methods (sum of sequential extracting, Atomic Absorption Spectrometry (AAS) and neutron activation analysis (NAA) techniques) were compared. Cobalt distribution between different extractants shows that the greatest amounts are found in the residual and Occluded in Fe and Mn-Oxides fractions followed by carbonate or organic fractions. In most cases the proportion of all tested Co-forms has increased in contaminated soil layers with higher enrichment in organically bound Co, occluded in Fe and Mn oxides, carbonate exchangeable and soluble fractions. Results indicate that soil properties have a significant role on Co fractions in soil. In the mean time, soil properties are affected by pollution factors such as source of pollution and load of pollution on the studied soil. Data showed that values of total Co determined by NAA method were always higher than the relevant values determined by AAS or those calculated after the sequential extraction method. (Authors)

  19. Adsorption induced losses in interfacial cohesion

    International Nuclear Information System (INIS)

    Asaro, R.J.

    1977-07-01

    A model for interfacial cohesion is developed which describes the loss in the strength of an interface due to the segregation and adsorption of impurities on it. Distinctions are made between interface separations that occur too rapidly for any significant redistribution of adsorbing matter to take place and separations that are slow enough to allow full adsorption equilibrium. Expressions for the total work of complete decohesion are presented for both cases. The results are applied to well-known model adsorption isotherms and some experimental data for grain boundary adsorption of phosphorus in iron is analyzed with respect to the losses in intergranular cohesion

  20. Cadmium Adsorption on HDTMA Modified Montmorillionite

    Directory of Open Access Journals (Sweden)

    Mohd. Elmuntasir I. Ahmed

    2009-06-01

    Full Text Available In this paper the possibility of cadmium removal from aqueous solutions by adsorption onto modified montmorillonite clay is investigated. Batch adsorption experiments performed revealed an enhanced removal of cadmium using HDTMA modified montmorillonite to 100% of its exchange capacity. Modified montmorillonite adsorption capacity increases at higher pHs suggesting adsorption occurs as a result of surface precipitation and HDTMA complex formation due to the fact that the original negatively charged montmorillonite is now covered by a cationic layer of HDTMA. Adsorption isotherms generated followed a Langmuir isotherm equation possibly indicating a monolayer coverage. Adsorption capacities of up to 49 mg/g and removals greater than 90% were achieved. Anionic selectivity of the HDTMA modified monmorillonite is particularly advantageous in water treatment applications where high concentrations of less adsorbable species are present, and the lack of organoclay affinity for these species may allow the available capacity to be utilized selectively by the targeted species.

  1. Effects of nonequilibrium adsorption on nuclide transport in a porous rock

    International Nuclear Information System (INIS)

    Shi-Ping Teng; Ching-Hor Lee

    1994-01-01

    An analytical solution covering the entire range of adsorption properties of rock has been derived for the migration of radionuclide in a porous rock matrix. The analysis takes into account the advective transport, hydrodynamic dispersion, adsorption between solid phase and liquid phase, and the radioactive decay. For adsorption of nuclide within the rock, the effects of no adsorption, linear nonequilibrium adsorption, and linear equilibrium adsorption are integrated into a generic transient analytical solution. The results indicate that the assumption of equilibrium adsorption can result in underestimation of the concentration profile in the early stages of migration. However, both the equilibrium and nonequilibrium profiles eventually approach the same value. It is also noted that for the case of nonequilibrium adsorption, plateaus appear in the concentration profile of the breakthrough curves. The effects of different adsorption rates are also analyzed

  2. Adsorption of gas mixtures on heterogeneous solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jaroniec, M; Rudzinski, W

    1977-01-01

    A review of theoretical studies on the physical adsorption from gas mixtures on heterogeneous solid surfaces, mainly by Jaroniec and coworkers, covers the vector notation used in the calculations; adsorption isotherms for multicomponent gases; the generalized integral equation for adsorption of gas mixtures, its numerical and analytical solutions, applied, (e.g., to interpret the experimental adsorption isotherms of ethane/ethylene on Nuxit-AL); thermodynamic relations, applied, (e.g., to calculating isosteric adsorption heats from experimental parameters for the adsorption of propylene from propane/propylene mixtures on Nuxit-AL); and the derivation and use of a simplified integral equation for describing the adsorption from gas mixtures on heterogeneous surfaces. 75 references.

  3. Random and cooperative sequential adsorption

    Science.gov (United States)

    Evans, J. W.

    1993-10-01

    Irreversible random sequential adsorption (RSA) on lattices, and continuum "car parking" analogues, have long received attention as models for reactions on polymer chains, chemisorption on single-crystal surfaces, adsorption in colloidal systems, and solid state transformations. Cooperative generalizations of these models (CSA) are sometimes more appropriate, and can exhibit richer kinetics and spatial structure, e.g., autocatalysis and clustering. The distribution of filled or transformed sites in RSA and CSA is not described by an equilibrium Gibbs measure. This is the case even for the saturation "jammed" state of models where the lattice or space cannot fill completely. However exact analysis is often possible in one dimension, and a variety of powerful analytic methods have been developed for higher dimensional models. Here we review the detailed understanding of asymptotic kinetics, spatial correlations, percolative structure, etc., which is emerging for these far-from-equilibrium processes.

  4. Kinetics of a gas adsorption compressor

    International Nuclear Information System (INIS)

    Chan, C.K.; Elleman, D.D.; Tward, E.

    1984-01-01

    This chapter uses a two-phase model to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The theories and techniques that have been developed for a two-phase system are used to predict the pressure, the temperature and the mass flow transients in a gas sorption compressor. The analytical solutions are then compared with the performance of a laboratory gas adsorption compressor. A computer code was written to solve the governing equations, using a standard forward marching predictor-corrector method. It is found that while the analytical model overpredicts the pressure and the temperature transient, it predicts the general trend of the transient profile and the existence of the turning point

  5. Web Analytics

    Science.gov (United States)

    EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.

  6. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures....... Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation...

  7. Adsorption of Phthalates on Municipal Activated Sludge

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-01-01

    Full Text Available Phthalates (PAEs are commonly detected in discharge of municipal wastewater treatment plants. This study investigated the removal of six typical PAEs with activated sludge and the results revealed that concentrations of aqueous PAEs decreased rapidly during the beginning 15 min and reached equilibrium within 2 hours due to the adsorption of activated sludge. The process followed first-order kinetic equation, except for dioctyl phthalate (DOP. The factors influencing the adsorption were also evaluated and it was found that higher initial concentrations of PAEs enhanced the removal but affected little the adsorption equilibrium time. The adsorption of PAEs favored lower operating temperature (the optimum temperature was approximately 25°C in this research, which could be an exothermic process. Additionally, lower aqueous pH could also benefit the adsorption.

  8. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent

    2013-01-01

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  10. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  11. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  12. New method for evaluating irreversible adsorption and stationary phase bleed in gas chromatographic capillary columns.

    Science.gov (United States)

    Wright, Bob W; Wright, Cherylyn W

    2012-10-26

    A novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool. The test compounds were selected due to their ease of adsorption and their importance in the specific trace analytical detection methodology being developed. Replicate chromatographic columns with 5% phenylmethylpolysiloxane (PMS), polyethylene glycol (wax), trifluoropropylpolysiloxane (TFP), or 78% cyanopropylpolysiloxane stationary phases from a variety of vendors were evaluated. As expected, the results demonstrate that the different chromatographic phases exhibit differing degrees of irreversible adsorption behavior. The results also indicate that all manufacturers do not produce equally inert columns nor are columns from a given manufacturer identical. The wax-coated columns for the test probes used were more inert as a group than 5% PMS coated columns, and they were more reproducibly manufactured. Both TFP and 78% cyanopropylpolysiloxane columns displayed superior inertness to the test compounds compared to either 5% PMS- or wax-coated columns. Irreversible adsorption behavior was characterized for a limited range of stationary phase film thicknesses. In addition, the method was shown effective for characterizing column bleed and methods to remove bleed components. This method is useful in screening columns for demanding applications and to obtain diagnostic information related to improved preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Adsorption. What else?

    OpenAIRE

    Rodrigues, Alirio E.

    2012-01-01

    [EN] Chemical Engineering today combines Molecular and Materials Engineerig and Process and Product Engineering (ChE=M2P2). Cyclic adsorptive processes (Simulated Moving Bed –SMB and Pressure Swing Adsorption-PSA) will be discussed for “old” and “new” applications making use of “old” and “new” (MOFs) adsorbent materials. After revisiting my memory as PhD student and the First Brazilian Adsorption meeting I will review the basic concepts involved in adsorption processes and then...

  14. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    Science.gov (United States)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Competitive adsorption of a two-component gas on a deformable adsorbent

    International Nuclear Information System (INIS)

    Usenko, A S

    2014-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas is obtained, taking into account variations in the adsorption properties of the adsorbent in adsorption. We establish bistability and tristability of the system caused by variations in adsorption properties of the adsorbent in competitive adsorption of gas particles on it. We derive conditions under which adsorption isotherms of a binary gas mixture have two stable asymptotes. It is shown that the specific features of the behavior of the system under study can be described in terms of a potential of the known explicit form. (paper)

  16. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  18. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  19. Lithium Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    OpenAIRE

    Krepel, Dana; Hod, Oded

    2013-01-01

    The anchoring of benzene molecules on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects of adsorbate densities, specific adsorption locations, and spin states on the structural stability and electronic properties of the underlying graphene derivatives are revealed. At sufficiently high densities, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half-metallic due to charge transfer from th...

  20. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  1. General framework for adsorption processes on dynamic interfaces

    International Nuclear Information System (INIS)

    Schmuck, Markus; Kalliadasis, Serafim

    2016-01-01

    We propose a novel and general variational framework modelling particle adsorption mechanisms on evolving immiscible fluid interfaces. A by-product of our thermodynamic approach is that we systematically obtain analytic adsorption isotherms for given equilibrium interfacial geometries. We validate computationally our mathematical methodology by demonstrating the fundamental properties of decreasing interfacial free energies by increasing interfacial particle densities and of decreasing surface pressure with increasing surface area. (paper)

  2. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock....... To estimate the amount of the dispersed liquid condensate, analytical methods based on the generalization of the Kelvin equation and on the potential theory of adsorption have been developed. Sample calculations show significant role of adsorption, especially, in the neighborhood of the critical point...

  3. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  4. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  5. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  6. adsorption, eosin, humic, peat

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  7. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  8. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    of these problems could be due to the fact that the original MPTA assumes that a given adsorbent has the same adsorption capacity (for example, porous volume) for all the adsorbed substances and is adjusted simultaneously to many data. This is a simplified picture, as experimental data indicate that the adsorption......-Radushkevich-Astakhov potentials and the potentials directly restored from experimental data by solving the inverse problem. Application of the latter potentials Clearly demonstrates the importance of the difference in adsorption capacities. However, the quality of prediction of binary adsorption is similar for both potentials...

  9. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye

    International Nuclear Information System (INIS)

    Tan, K.B.; Salamatinia, B.

    2016-01-01

    The adsorption mechanism of pure cellulose is yet to be explored. Thus, in this study, the adsorption mechanism of Microcrystalline Cellulose (MCC), a polysaccharide which is renewable, low cost and non-toxic, was studied on the adsorption of model dye Methylene blue (MB). It was found that the main adsorption mechanism of MB on MCC was due to the electrostatic attraction between the positively charged MB dye and negatively charged MCC. Thus, physical adsorption was the dominant effect, since electrostatic attraction is categorized as physical adsorption. This was verified by Dubinin-Radushkevich isotherm, whereby mean free energy adsorption value was found to be less than 8 kJ/mol. The values of Gibbs free energy for thermodynamics studies were found to be within the range of -20 kJ/mol and 0 kJ/mol, which also indicated physical adsorption. It was due to the electrostatic attraction as adsorption mechanism of this adsorption process which resulted rapid adsorption of MB dye. It was found that equilibrium dye concentration was achieved between 1-3 minutes, depending on the adsorption temperature. The rapid adsorption, as compared to a lot of materials, showed the potential of MCC as the future of green adsorbent. The adsorption of Methylene Blue on MCC fitted well in Langmuir Isotherm, with R2 values of higher than 0.99, while fitted moderately in Freundlich Isotherm, with R2 values between 0.9224 and 0.9223. Comparatively, the adsorption of MB on MCC fitted best Langmuir Isotherm as compared to Freundlich Isotherm which monolayer adsorption occurred at the homogenous surface of MCC. This also indicated adsorbed MB molecules do not interact with each other at neighboring adsorption sites. The maximum adsorption capacity calculated from Langmuir Isotherm was found to be 4.95 mg/g. Despite the potential of MCC as green adsorbent, the challenge of low adsorption capacity has to be addressed in the future. (author)

  10. Adsorptive stripping voltammetry in lipophilic vitamins determination

    Directory of Open Access Journals (Sweden)

    Milan Sýs

    2016-06-01

    Full Text Available The aim of this contribution was to check if adsorptive stripping differential pulse voltammetry (AdSDPV is suitable tool for sensitive simultenous electrochemical detection of lipophilic vitamins. Retinol (vitamin A1, cholecalciferol (vitamin D3, α-tocopherol (vitamin E and phylloquinone (vitamin K1 were selected as representatives. All electrochemical measurements were performed in two separate steps due to the lipophilic character of the analytes. In the first step, an accumulation of lipophilic vitamin on the surface of glassy carbon electrode (GCE was done by immersing working electrode into the aqueous‑acetonitrile solutions (50%, v/v of each vitamin (50.0 µmol.L-1 at 400 rpm for 5 min. In the second one, differential pulse voltammetry of accumulated vitamins was performed in 0.01 mol.L-1 acetate (pH 4.5 buffer at potential step (Estep 5 mV, potential of amplitude (Eampl 25 mV, interval time (t 0.1 s and scan rate (ν 50 mV.s-1. It was observed that electrochemical behaviour of lipophilic vitamins adsorbed on surface of solid GCE in the aqueous electrolyte was very similar to those performed in organic/aqueous electrolyte in literature. Due to reversible electrochemical behaviour of vitamin K1 (phylloquinone/phyllohydroquinone redox couple, it was possible to detect all lipophilic vitamins only in one analysis. Observed values of peak potentials (Ep were sufficiently different for their recognition which was confirmed by the analysis of real sample. The results obtained in this study showed that simultaneous determination of some lipophilic vitamins is possible requiring further optimization study. For this reason, it is necessary to understand this work as an initial step in simultaneous determination of lipophilic vitamins without application of any chromatographic technique.

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  13. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  14. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    Science.gov (United States)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  15. The adsorption characteristics and porous structure of bentonite adsorbents as determined from the adsorption isotherms of benzene vapor

    Directory of Open Access Journals (Sweden)

    LEPA STOJANOVSKA

    2004-02-01

    Full Text Available The adsorption of benzene vapor on natural and acid activated bentonites was treated by the theory of volume filling of micropores. The micropore volume and characteristic values of the free energy of adsorption were determined from the adsorption isotherms. The Dubinin–Radushkevish–Stoeckli and Dubinin–Astakhov equations were used for this purpose. The results showed that natural bentonite has a more homogeneous micropore structure than the acid activated ones. The characteristic values of the free energy of adsorption for the natural bentonite were higher than those of the acid activated bentonite. This is due to differences in its structure and the pore size.

  16. Synthesis, characterization and application of calcium oxides for the adsorption of carbon dioxide

    International Nuclear Information System (INIS)

    Granados P, A.

    2016-01-01

    In this research, calcium oxide (Ca O), nanocrystalline calcium oxide and their Fe and Ni nano composites were synthesized by solution combustion and high-energy ball-milling processes respectively, in order to study their CO_2 adsorption behavior under different pressure and temperature conditions. The obtained materials were characterized by different analytical techniques: XRD, Sem-EDS and N_2 physisorption measurements. CO_2 adsorption experiments on adsorbents at different temperatures and pressures, were carried in a stainless steel Parr type high vacuum reactor. The CO_2 adsorbed on the materials was determined by thermogravimetric analysis and mass spectrophotometry. The results showed that the synthesis methods, solution combustion and high energy ball milling allowed to improve the materials textural and structural properties such as specific surface area, total pore volume, pore size distribution and nano crystallinity, which played an important effect on the CO_2 adsorption behavior. It was found that the Ca O obtained by solution combustion and milled during 2.5 h, showed the maximum CO_2 adsorption capacity per gram of material (9.311 mmol/g) at ambient temperature and pressure, by chemisorption as adsorption mechanism, due CaCO_3 formation, which was confirmed by infrared spectroscopy, X-ray diffraction and X photoelectron spectroscopy studies. In general, the investigation results show the potential benefits of these materials efficient use, based on Ca O obtained by solution combustion and treated by high-energy ball milling, as well as that will mitigate environmental problems posed by global warming and reduce the negative impacts to the environment and living beings. (Author)

  17. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...... structure to the next. We propose a model to explain this behavior, and use it to discuss more generally the origin of structure sensitivity in heterogeneous catalysis....

  18. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  19. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  20. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    International Nuclear Information System (INIS)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman; Denizli, Adil

    2015-01-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  1. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  2. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    highest Qst is observed for the CMS sample having micropores sizes of about 5 Angstroms. The SWNT sample shows a lower Qst due to its relatively wide PSD, and the non-porous carbon black is characterized by the lowest Qst values. The Qst values calculated from H 2 adsorption isotherms measured at cryogenic temperatures below 1 atmosphere can be used to predict/estimate H 2 adsorption at ambient temperatures under high pressures. Fig 3 shows the H 2 adsorption isotherm on the SWNT sample calculated for 298 K from the low pressure and low temperature (77, 87 K) data using the Clausius-Clapeyron equation and assuming the temperature independence of the Qst values. A good agreement with high-pressure experimental data is observed. Predictions using DFT model will also be discussed during presentation. (authors)

  3. RPBE-vdW Description of Benzene Adsorption on Au(111)

    DEFF Research Database (Denmark)

    Pedersen, Jess Wellendorff; Kelkkanen, Kari André; Mortensen, Jens Jørgen

    2010-01-01

    Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange-correlation functionals fail miserably. Particularly those systems where binding is due to van...... der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description...... of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional....

  4. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  5. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  6. Investigation of Microgranular Adsorptive Filtration System

    Science.gov (United States)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  7. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  8. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  9. Adsorption of uranium on halloysite

    International Nuclear Information System (INIS)

    Kilislioglu, A.; Bilgin, B.

    2002-01-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  10. Adsorption of uranium on halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Kilislioglu, A.; Bilgin, B. [Istanbul Univ. (Turkey). Faculty of Engineering

    2002-07-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  11. Adsorption of pesticides onto granular activated carbon in water treatment process

    OpenAIRE

    Kopecká, Ivana

    2010-01-01

    The diploma thesis is aimed at adsorption processes during the removal of pesticides onto granular activated carbon (GAC) in the process of drinking water treatment. Adsorption onto GAC represents an efficient method for pesticides removal. High adsorption efficiency can be significantly reduced due to the occurrence of natural organic matter (NOM) in raw water, which involves AOM (Algal Organic Matter) produced by phytoplankton. Analogous to NOM, AOM probably affects adsorption of pesticides...

  12. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejun; Wu, Zhijun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); He, Mengchang, E-mail: hemc@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Meng, Xiaoguang [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jin, Xin [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Qiu, Nan; Zhang, Jing [Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Antimony adsorption depended on the Sb species, pH, and the type of iron oxides. • Sb(V) adsorption favored at acidic pH, Sb(III) adsorption optimized in wider pH. • Antimony was adsorbed onto the iron oxides by the inner-sphere surface complex. • Bidentate mononuclear ({sup 2}E) was the dominant form of Sb incorporated into HFO. • XAFS and XPS indicated Sb(III) adsorbed was slowly oxidized to Sb(V). - Abstract: Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl{sub 3}, was oxidized into Sb(V) probably due to the involvement of O{sub 2} in the long duration of sample preservation. Only one Sb–Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0–1.9 attributed to bidentate mononuclear edge-sharing ({sup 2}E) between Sb and

  13. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing

    Directory of Open Access Journals (Sweden)

    Fanyongjing Wang

    2015-07-01

    Full Text Available Whispering Gallery Mode (WGM optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol (PEG can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.

  14. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  15. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  16. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  17. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Amy, Gary; Chunggaze, Mohammed; Al-Ghasham, Tawfiq

    2013-01-01

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  18. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  19. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  20. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt

  1. Social Learning Analytics

    Science.gov (United States)

    Buckingham Shum, Simon; Ferguson, Rebecca

    2012-01-01

    We propose that the design and implementation of effective "Social Learning Analytics (SLA)" present significant challenges and opportunities for both research and enterprise, in three important respects. The first is that the learning landscape is extraordinarily turbulent at present, in no small part due to technological drivers.…

  2. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  3. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  4. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  5. Due diligence

    International Nuclear Information System (INIS)

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  6. Social network data analytics

    CERN Document Server

    Aggarwal, Charu C

    2011-01-01

    Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Pr

  7. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  8. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  9. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  10. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  11. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  12. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  13. Adsorption--from theory to practice.

    Science.gov (United States)

    Dabrowski, A

    2001-10-08

    Adsorption at various interfaces has concerned scientists since the beginning of this century. This phenomenon underlies a number of extremely important processes of utilitarian significance. The technological, environmental and biological importance of adsorption can never be in doubt. Its practical applications in industry and environmental protection are of paramount importance. The adsorption of substrates is the first stage in many catalytic processes. The methods for separation of mixtures on a laboratory and on an industrial scale are increasingly based on utilising the change in concentration of components at the interface. Moreover, such vital problems as purification of water, sewages, air and soil are involved here too. On the other hand, many areas in which technological innovation has covered adsorption phenomena have been expanded more through art and craft than through science. A basic understanding of the scientific principles is far behind; in part because the study of interfaces requires extremely careful experimentation if meaningful and reproducible results are to be obtained. In recent years, however, considerable effort has been increasingly directed toward closing the gap between theory and practice. Crucial progress in theoretical description of the adsorption has been achieved, mainly through the development of new theoretical approaches formulated on a molecular level, by means of computer simulation methods and owing to new techniques which examine surface layers or interfacial regions. Moreover, during the last 15 years new classes of solid adsorbents have been developed, such as activated carbon fibres and carbon molecular sieves, fullerenes and heterofullerenes, microporous glasses and nanoporous--both carbonaceous and inorganic--materials. Nanostructured solids are very popular in science and technology and have gained extreme interest due to their sorption, catalytic, magnetic, optical and thermal properties. Although the development

  14. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  15. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  16. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  17. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  18. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, Sundara, E-mail: ramp@iitm.ac.in [Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  20. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  1. Analytical mechanics

    CERN Document Server

    Helrich, Carl S

    2017-01-01

    This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...

  2. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  3. Equilibrium curve determination of HF adsorption by activated carbon

    International Nuclear Information System (INIS)

    Bahrami, H.; Safdari, S. J.; Mousavian, S. M. A.

    2010-01-01

    One of the byproducts of uranium enrichment industry is hydrogen fluoride gas. Due to the toxicity and corrosivity of the molecule, it has adverse effects on the environment and the process. Therefore, it must be removed by adsorption towers. The activated carbon is one of the proposed sorbent for the adsorption. Hydrogen fluoride adsorption equilibrium curve gives important information for designing the adsorption towers. In this article, the hydrogen fluoride adsorption and adsorption factors were determined experimentally, and four different types of carbon have been used. The operating pressure in all tests was less than 30 mbar. Comparison between the obtained experimental equilibrium curves shows that the first, second and fourth types of activated carbon are suitable for the adsorption of hydrogen fluoride. The experimental data were fitted using mathematical models of Langmuir, Freundlich, Toth and Henry. The results show that Toth mathematical model is more suitable than other models. Also, the absolute error were predicted by the model of Toth for the first, second and fourth types of the activated carbon were 12.9, 16.5 and 34 percent, respectively.

  4. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  5. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  6. Adsorption kinetic investigations of low concentrated uranium in aqua media by polymeric adsorban

    International Nuclear Information System (INIS)

    Guerellier, R.

    2004-02-01

    In order to remove the uranium from aqueous media, the solution of polyethylene glycol in acrylonitrile was irradiated using ''6' degree Celsius Co γ-ray source and Interpenetrating Polymer Networks (IPNs) was formed. After IPNs were amidoximated at 65 0 for 3.5 hours, they were kept in 10''-''2 M of uranil nitrate solution at 17, 25, 35, 45 degree Celsius temperatures until to establish the adsorption equilibrium. Adsorption analyses were measured by gamma spectrometer, gravimetry and UV spectrofotometer. Structure analysis of IPN, before and after amidoximation and after the adsorption of uranium, was interpreted by FTIR spectrometer. It was found that as the temperature increased the amount of max adsorption also increased. The amount of max adsorption capacity at 45 degree Celsius was 602 mg U/g IPN. In addition to, it was determined that the uranium adsorption increased a little in shaking media. The reaction was determined as 'zeroth degree' until 240 minutes due to the changing of adsorption capacity by the time at different temperatures. It was observed that as the temperature increased, the adsorption rate also increased and the activation energy was calculated as 34.6 kJ/mol. By using the changing of adsorption equilibrium coefficient by the temperature, thermodynamic quantities of ΔH, ΔS and ΔG were calculated consecutively. Adsorption reaction was determined as endothermic and it was interpreted that the adsorption was controlled by particular diffusion, namely it was a physical adsorption. Adsorption isotherms were found by changing the solution concentrations from 5X10''4 to parallel x parallel O''- 2 M at 20, 25, 35, 45 degree Celsius temperatures. The obtained data from this study was applied to different adsorption isotherms. It was observed that at lower temperatures, the adsorption isotherms were fitted to Giles C type, at higher temperatures, they were fitted to Freundlich type

  7. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    sizes. The highest Qst is observed for the CMS sample having micropores sizes of about 5 A. The SWNT sample shows a lower Qst due to its relatively wide PSD [2], and the non-porous carbon black is characterized by the lowest Qst values. The Qst values calculated from H 2 adsorption isotherms measured at cryogenic temperatures below 1 atmosphere can be used to predict/estimate H 2 adsorption at ambient temperatures under high pressures. Fig 3 shows the H 2 adsorption isotherm on the SWNT sample calculated for 298 K from the low pressure and low temperature (77, 87 K) data using the Clausius-Clapeyron equation and assuming the temperature independence of the Qst values. A good agreement with high-pressure experimental data [3] is observed. Predictions using DFT model will also be discussed during presentation. [1] J. Jagiello, M. Thommes, Carbon 42, 1227, 2004. [2] A. Anson, J. Jagiello, J. B. Parra, M.L. Sanjuan, A. M. Benito, W. K. Maser, M. T. Martinez, J. Phys. Chem. B, 108, 15820, 2004. [3] A. Anson, M. Banham, J. Jagiello, M. A. Callejas, A. M. Benito, W. K. Maser, M. A. Zuttel, P. Sudan, M. T. Martinez, Nanotechnology, 15, 1503, 2004. (authors)

  8. Thyroglobulin assay in fluids from lymph node fine needle-aspiration washout: influence of pre-analytical conditions.

    Science.gov (United States)

    Casson, Florence Boux de; Moal, Valérie; Gauchez, Anne-Sophie; Moineau, Marie-Pierre; Sault, Corinne; Schlageter, Marie-Hélène; Massart, Catherine

    2017-04-01

    The aim of this study was to evaluate the pre-analytical factors contributing to uncertainty in thyroglobulin measurement in fluids from fine-needle aspiration (FNA) washout of cervical lymph nodes. We studied pre-analytical stability, in different conditions, of 41 samples prepared with concentrated solutions of thyroglobulin (FNA washout or certified standard) diluted in physiological saline solution or buffer containing 6% albumin. In this buffer, over time, no changes in thyroglobulin concentrations were observed in all storage conditions tested. In albumin free saline solution, thyroglobulin recovery rates depended on initial sample concentrations and on modalities of their conservation (in conventional storage tubes, recovery mean was 56% after 3 hours-storage at room temperature and 19% after 24 hours-storage for concentrations ranged from 2 to 183 μg/L; recovery was 95%, after 3 hours or 24 hours-storage at room temperature, for a concentration of 5,656 μg/L). We show here that these results are due to non-specific adsorption of thyroglobulin in storage tubes, which depends on sample protein concentrations. We also show that possible contamination of fluids from FNA washout by plasma proteins do not always adequately prevent this adsorption. In conclusion, non-specific adsorption in storage tubes strongly contributes to uncertainty in thyroglobulin measurement in physiological saline solution. It is therefore recommended, for FNA washout, to use a buffer containing proteins provided by the laboratory.

  9. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    Science.gov (United States)

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adsorption of emerging contaminant metformin using graphene oxide.

    Science.gov (United States)

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of agitation speed on adsorption of imidacloprid on activated carbon

    International Nuclear Information System (INIS)

    Zahoor, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on powdered activated carbon were described. The adsorption experiments were carried out as function of time, initial concentration and agitation speed. The equilibrium data fits well to Langmuir adsorption isotherm, while the kinetic data fits well to Pseudo second order kinetic model. The kinetic experiments were carried out at 200, 250, 300 and 350 rpm and it was found that the equilibrium time increases with increase in initial concentration and decreases with increase in agitation speed. This is due to the increased turbulence and as a consequence, the decrease boundary layer thickness around the adsorbent particles as a result of increasing the degree of mixing. At 300 rpm the adsorption capacity was maximum and beyond this there was no significant increase in adsorption capacity. Weber intra particle diffusion model was used to describe the adsorption mechanism. It was found that both the boundary layer and intra particle diffusion for both adsorbents played important role in the adsorption mechanisms of the adsorbate. The effects of temperature and pH on adsorption were also studied. It was found that the adsorption capacity of the adsorbent decreases with increase in temperature. There was no significant change in adsorption from pH 2 to 8, however at high pH a decrease in adsorption of imidacloprid on activated carbon was observed. (author)

  12. Removal of mercury by adsorption: a review.

    Science.gov (United States)

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.

  13. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  14. Enhancing protein adsorption simulations by using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Christian Mücksch

    Full Text Available The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ([Formula: see text][Formula: see text]s and experiment (up to hours, and the accordingly different 'final' adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.

  15. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Vilchis G, J.

    2013-01-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N 2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  16. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  17. New developments for localized adsorption

    International Nuclear Information System (INIS)

    Boudh-hir, M.E.

    1989-02-01

    Using the diagrammatic expansion, new developments for localized adsorption are found. It is proved that the correlations in the system, in the absence of the attractive site potential, and the periodicity of the sites play a fundamental role in the adsorption phenomena. 14 refs, 2 figs, 2 tabs

  18. Characteristics of Alcian-blue Dye Adsorption of Natural Biofilm Matrix

    Science.gov (United States)

    Kurniawan, A.; Yamamoto, T.; Sukandar; Guntur

    2018-01-01

    In this study, natural biofilm matrices formed on stones have been used for the adsorption of Alcian blue dye. Alcian blue is a member of polyvalent basic dyes that largely used from laboratory until industrial dying purposes. The adsorption of the dye onto the biofilm matrix has been carried out at different experimental conditions such as adsorption isotherm and kinetic of adsorption. The electric charge properties of biofilm matrix and its changes related to the adsorption of Alcian blue have been also investigated. Moreover, the results of Alcian blue adsorption to the biofilm were compared to those onto the acidic and neutral resin. The kinetics of adsorption result showed that the adsorption of the Alcian blue dye reached to a maximum adsorption amount within 60 minutes. The adsorption amount of Alcian blue to biofilm increased monotonously, and the maximum adsorption amount was greater compared to the resins. On the contrary, Alcian blue did not attach to the neutral resin having no electric charge. It seems that Alcian blue attached to the acidic resins due to electrostatic attractive force, and the same seems to be the case for adsorption of Alcian blue to biofilm. The adsorption of Alcian blue to the biofilm and acidic resins fitted to Langmuir type indicates that the binding of Alcian blue to the biofilm and acidic resins occurred in a monolayer like form. The maximum adsorption amount of Alcian blue on the biofilm (0.24 mmol/dry-g) was greater than those of acidic resin (0.025 mmol/dry-g). This indicates that the biofilm has many more sites for Alcian blue attachment than acidic resins. According to the result of this study, the biofilm matrix can be a good adsorbent for dye such as Alcian blue or other dyes that causing hazards in nature.

  19. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study

    International Nuclear Information System (INIS)

    Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → The monodisperse and multigram-scale N-MCNPs are fabricated by carbonization of polypyrrole as a carbon precursor. → The synthesized N-MCNPs provide an enhanced adsorption uptake for various heavy metal ions. → The N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. → The iron-impregnated N-MCNPs are reused up to 5 times with no loss of removal efficiency. - Abstract: To clarify the heavy metal adsorption mechanism of nitrogen-doped magnetic carbon nanoparticles (N-MCNPs), adsorption capacity was investigated from the adsorption isotherms, kinetics and thermodynamics points of view. The obtained results showed that the equilibrium adsorption behavior of Cr 3+ ion onto the N-MCNPs can be applied to the Langmuir model and pseudo-second-order kinetics. It indicated that the fabricated N-MCNPs had the homogenous surface for adsorption and all adsorption sites had equal adsorption energies. Furthermore, the adsorption onto N-MCNPs taken place through a chemical process involving the valence forces. According to the thermodynamics, the adsorption process is spontaneous and endothermic in nature which means that the adsorption capacity increases with increasing temperature due to the enhanced mobility of adsorbate molecules. The effects of the solution pH and the species of heavy metal ion on the adsorption uptake were also studied. The synthesized N-MCNPs exhibited an enhanced adsorption capacity for the heavy metal ions due to the high surface area and large amount of nitrogen contents.

  20. Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems

    International Nuclear Information System (INIS)

    Ma, Z.; Whitley, R.D.; Wang, N.H.L.

    1996-01-01

    A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute

  1. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  2. Adsorption of Nanoplastics on Algal Photosynthesis

    Science.gov (United States)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  3. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  4. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    Science.gov (United States)

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  5. DNA adsorption characteristics of hollow spherule allophane nano-particles

    International Nuclear Information System (INIS)

    Matsuura, Yoko; Iyoda, Fumitoshi; Arakawa, Shuichi; John, Baiju; Okamoto, Masami; Hayashi, Hidetomo

    2013-01-01

    To understand the propensity of natural allophane to adsorb the DNA molecules, the adsorption characteristics were assessed against natural allophane (AK70), using single-stranded DNA (ss-DNA) and adenosine 5′-monophosphate (5′-AMP) as a reference molecule. The adsorption capacity of ss-DNA on AK70 exhibited one order of magnitude lower value as compared with that of 5′-AMP. The adsorption capacity of ss-DNA decreased with increasing pH due to the interaction generated between phosphate groups of ss-DNA and functional Al–OH groups on the wall perforations through deprotonating, associated with higher energy barrier for the adsorption of ss-DNA. The adsorption morphologies consisting of the individual ss-DNA with mono-layer coverage of the clustered allophane particle were observed successfully through transmission electron microscopy analysis. - Highlights: • The interaction between phosphate groups of ss-DNA and Al–OH groups • Higher energy barrier for the adsorption of ss-DNA • The individual ss-DNA with mono-layer coverage of the allophane clustered particle

  6. Adsorption of gold onto γ-aminopropyltriethoxysilane grafted coconut pith

    International Nuclear Information System (INIS)

    Usman, M.; Akhtar, J.

    2017-01-01

    This study was carried out to investigate adsorption kinetic and adsorption thermodynamics of Au(III) ions onto γ-aminopropyltriethoxysilane grafted coconut pith. The results from equilibrium adsorption were fitted in various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the best fit for the experimental data was Langmuir isotherm. The maximum adsorption capacity for virgin coconut pith (VCP) and the grafted coconut pith (GCP) were 256.41 and 285.59 mg/g, respectively. The kinetic data was verified using pseudo-first-order, pseudo-second-order, elovich equation and intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model fits the experimental data well. A thermodynamic study revealed the endothermic nature of reaction due to positive enthalpy (?Ho) values and negative values of Gibbs free energy (?Go) describes the spontaneity of adsorption process. The regenerability of VCP and GCP adsorbents were investigated with NaOH (1.0 M).

  7. Adsorptive removal of cesium using bio fuel extraction microalgal waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi, E-mail: inoue@elechem.chem.saga-u.ac.jp [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Gurung, Manju [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Adhikari, Birendra Babu; Alam, Shafiq [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Kawakita, Hidetaka; Ohto, Keisuke [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Kurata, Minoru [Research Laboratories, DENSO CORPORATION, Minamiyama 500-1, Komenoki, Nisshin, Aichi 470-0111 (Japan); Atsumi, Kinya [New Business Promotion Dept., DENSO CORPORATION, Showa-cho 1-1, Kariya, Aichi 448-8661 (Japan)

    2014-04-01

    Highlights: • A novel biosorbent was prepared from the microalgal waste after biofuel extraction. • Higher selectivity and adsorption efficiency of the adsorbent for Cs{sup +} over Na{sup +} ions from aqueous solutions. • Potential candidate and eco-friendly alternative to the commercial resins such as zeolite. - Abstract: An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs{sup +} over Na{sup +} from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs{sup +} calculated from Langmuir model was found to be 1.36 mol kg{sup −1}. Trace concentration of Cs{sup +} ions present in aqueous streams was successfully separated from Na{sup +} ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs{sup +} in column operation was 0.13 mol kg{sup −1}. Although the adsorbed Cs{sup +} ions were easily eluted using 1 M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs{sup +} ions due to the combustible characteristics of this adsorbent.

  8. Adsorption of DDT and PCB by Nanomaterials from Residual Soil

    Science.gov (United States)

    Taha, Mohd Raihan; Mobasser, Shariat

    2015-01-01

    This paper presents the findings of a study on adsorption of dichlorodiphenythreechloroethen (DDT) and polychlorinated biphenyls (PCBs) on three nanomaterials including Multi walled Carbon Nanotube (MWNT), nano-clay and nano-alumina. DDT and PCBs are of significant concern due their high toxicity and long environmental half-lives. Experiments were conducted using batch adsorption procedures at different DDT and PCBs concentrations, from 10 to 60 mg/L. The amounts of MWNT, nano-clay and Nano-alumina used were 0.25%, 0.50%, 0.75%, 1%, 2% and 10%. The adsorption of PCBs solution onto the MWNT, nano-clay and nano-alumina was characterized by an initial rapid adsorption which eventually became constant within 22, 20, and 17 hours, respectively. The adsorption of DDT solution onto the MWNT, nano-clay and nano-alumina was also characterized by an initial rapid adsorption which gradually became constant within 22, 22 and 16 hours, respectively. Results of this study indicated that MWNT was a better adsorbent material compared to nano-clay and nano-alumina for both contaminants in this study. While at 10% of MWNT 88.9% and 77% of DDT and PCB were removed by MWNT, respectively. The effect of pH and temperature were also investigated. PMID:26659225

  9. Adsorption facility and adsorption vessel for radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Harashina, Heihachi; Miwa, Keiichi; Kobayashi, Takeo.

    1992-01-01

    If 14 CO 2 gas-containing gases to be adsorbed are pressurized and sent to a packaging adsorption means, CO 2 ingredient in the gases to be adsorbed is adsorbed or absorbed, and remaining gases are passed through and sent out to downstream. CO 2 adsorption or absorption of the packaging adsorption means is judged by monitoring the state of the remaining gases, and if it is normal, remaining gases are sent further to downstream and processed. If abnormality is found, a gas feedback system is operated, and CO 2 removing gas is sent again to the packaging adsorption means, in which CO 2 gases are adsorbed or absorbed again repeatingly. With such procedures, in a case where C 14 nuclides having a long half decay time are supplied in the form of 14 CO 2 gas, they are efficiently adsorbed or absorbed in the packaging system to improve removing and storing property of 14 C nuclides. (T.M.)

  10. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  11. Hydrogen purification by periodic adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Barg, Christian; Secchi, Argimiro R.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: cbarg@enq.ufrgs.br; arge@enq.ufrgs.br; jorge@enq.ufrgs.br

    2000-07-01

    The periodic adsorption processes have been widely used for industrial applications, mainly because it spends less energy than the usual gas separation processes, like the cryogenic distillation. The largest commercial application of periodic adsorption processes is the pressure swing adsorption (PSA) applied to hydrogen purification. Although its wide use in the chemical and petrochemical industry, there are no reports in the open literature about complete modeling studies of a complex commercial unit, with multiple adsorbents and multiple beds and several feed components. This study has as objective the modeling, optimization and dynamical analysis of an industrial PSA unit for hydrogen purification. (author)

  12. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  13. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  14. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Ahmed A. [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Nuclear and Radiation Engineering, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Fadlallah, Mohamed M. [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Department of Physics, Faculty of Science, Benha University, Benha (Egypt); Badawi, Ashraf [Center for Nanotechnology, Zewail City of Science and Technology, Giza 12588 (Egypt); Maarouf, Ahmed A., E-mail: ahmed.maarouf@egnc.gov.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza 12588 (Egypt); Egypt Nanotechnology Center & Department of Physics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2016-07-30

    Highlights: • Doping boron nitride sheets with aluminum or gallium atoms significantly enhances their molecular adsorption properties. • Adsorption of glucose or glucosamine on Al- and Ga-doped boron nitride sheets changes the band gap. • Doping concentration changes the bad gap, but has a minor effect on the adsorption energy. - Abstract: Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  15. Effect of Micellization on the Adsorption Kinetics of Polymeric Surfactants to the Solid/Water Interface

    Science.gov (United States)

    Toomey, Ryan; Tirrell, Matthew

    2002-03-01

    We have studied the adsorption kinetics of two classes of hydrophobic/ionic diblock copolymer surfactants in aqueous environments to understand the role that micellization plays in the adsorption process. The two systems studied were poly(t-butyl styrene)-block-poly(styrene sulfonate) (PtBS-b-PSS) and polystyrene-block-poly(acrylic acid) (PS-b-PAA). It is found that by changing the hydrophobicity of the adsorbing surface, micelle adsorption can be turned on or off. When micelle adsorption occurs, the initial adsorption rate is always slower than the supply rate of micelles to the surface, indicating “reaction-limited” adsorption. Since these micelles have essentially frozen cores, the adsorption cannot be explained by the release of unimers from the micelles. Rather, micelles directly adsorb, and they have to overcome the potential barrier imposed by their corona. Due to micellization, the adsorption rate can also be a complex function of ionic strength. A regime was found where the initial adsorption rate decreased with increasing ionic strength. This anomaly can be explained by the onset of micellization. As the salt concentration is increased, more micelles are formed. However micelles adsorb roughly an order of magnitude slower than free chains. Therefore, if increasing the ionic strength produces more micelles, the adsorption rate will simultaneously decrease.

  16. [Effect of concomitant substances and addition order on the adsorption of Tween 80 on sand].

    Science.gov (United States)

    Xu, Wei; Zhao, Yong-sheng; Li, Sui; Dai, Ning

    2008-08-01

    Adsorption of Tween 80 on sand was investigated, and the effect of inorganic salts (CaCl2), anionic surfactant (SDS) and lignosulphonates (sodium lignosulphonate or ammonium lignosulphonate) on the adsorption of Tween 80 on sand were evaluated at 25 degrees C. The results show that saturated adsorption amount of Tween 80 on sand enhance when CaCl2 or SDS is added into flushing solution of Tween 80. And the adsorption of Tween 80 on sand increase with the increase of molar fraction of CaCl2 or SDS in mixed flushing solution. And adsorption amount of Tween 80 on sand also enhance when SDS is added into sand firstly. The effects of mixing ratios and addition order of lignosulphonates on adsorption of Tween 80 were considered. The results show that with the increase of molar fraction of lignosulphonates in mixing flushing solution, adsorption amount of Tween 80 on sand decrease. The adsorption amount of Tween 80 reduce 20%-75% due to the exist of ammonium lignosulphonate is superior to sodium lignosulphonate (10%-60%) when mix the lignosulphonates-Tween 80 at the total mass ratios of 1:10, while the adsorption amount of Tween 80 reduce 70%-90% at the total mass ratios of 1:2. Lignosulphonates added into sand firstly is more efficient than that together. Therefore,use of lignosulphonates as a preflush can reduce the adsorption of surfactants on sand and is a better method to applied in in situ flushing.

  17. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL -1 NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg -1 , respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO 4 3- significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil

    International Nuclear Information System (INIS)

    Pei, Zhiguo; Yang, Shuang; Li, Lingyun; Li, Chunmei; Zhang, Shuzhen; Shan, Xiao-quan; Wen, Bei; Guo, Baoyuan

    2014-01-01

    Effects of copper (Cu) and aluminum (Al) on the adsorption of sulfathiazole (STZ) and tylosin (T) to peat and soil were investigated using a batch equilibration method. Results show that Cu suppressed STZ adsorption onto peat and soil at pH 5.0 due to the formation of STZ–Cu complexes and/or Cu bridge. In contrast, Al only decreased STZ adsorption at pH 6.0. As for T, both Cu and Al suppressed its adsorption over the entire pH range owing to three reasons: 1) electrostatic competition between Cu/Al and T + ; 2) Cu/Al adsorption made the soil and peat surface less negatively charged, which was unfavorable for T + adsorption; 3) the shrunken pore size of peat and soil retarded the diffusion of large-sized T into these pores. -- Highlights: • Cu decreases STZ adsorption at pH 5.0. • Al decreases STZ adsorption at pH 6.0. • Cu and Al suppress T adsorption. • Cu and Al change partial properties of peat and soil. -- Cu and Al changed the adsorption behavior of STZ and T in soil and peat via complexation and/or change in partial properties of peat and soil

  19. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  20. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peifu; Hu, Yun Hang

    2016-01-01

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C_2H_2 adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C_2H_2 adsorption on MOFs are consistent with BET surface areas from N_2 adsorption. • C_2H_2 on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C_2H_2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C_2H_2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C_2H_2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C_2H_2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C_2H_2 adsorption on those MOFs.

  1. Adsorption Behavior of Vanadium in Presence of alumina with Emphasize on Triple Layer Model Simulation

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2006-01-01

    Adsorption behavior of vanadium in alumina colloidal solution as simulation for soil-water and/or sediment - water system was investigated. factors affecting this behavior including Ph, humic acid and alumina concentrations were studied. Three stages of vanadium adsorption on alumina were approved due to Ph changes. The first is increasing adsorption with increasing Ph, in the range 1-3. the second is decreasing adsorption with increasing Ph in the range 6-10. the third is constant adsorption at 100% adsorption in Ph range 3-8 at 10 g/l concentration of alumina. However, at 0.2 g/l, the maximum adsorption of vanadium became less than 100%.The effect of humic acid on the adsorption behavior of vanadium (V) was studied and compared with that of vanadium (IV) . Adsorption behaviors were studied at concentration 4.1 E-4 M for vanadium at 0.1 M ionic strength. Triple layer model was used for simulation of vanadium adsorption behavior in presence of alumina under the same working conditions. the results showed good validation and verification to the data practically found. speciation of vanadium in both homogenous and heterogeneous systems was also studied theoretically so as to verify the most abundant elemental species and its impact on the environment

  2. Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking

    Science.gov (United States)

    Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.

    2017-09-01

    We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eliminates the torsion between rings thus increasing symmetry. There is spontaneous symmetry breaking in poly-p-phenylenes due to double adsorption of lithium atoms on alternating rings.

  3. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  4. Prevention of adsorption losses during radioimmunoassay of polypeptide hormones: effectiveness of albumins, gelatin, caseins, Tween 20 and plasma

    International Nuclear Information System (INIS)

    Livesey, J.H.; Donald, R.A.

    1982-01-01

    It is well known that polypeptide hormones adsorb to glass and plastic surfaces and that this adsorption may be reduced by adding a relatively large quantity of another protein. Consequently proteins (or sometimes detergents) are added almost universally to peptide hormone radioimmunassays to minimise loss of analyte by adsorption. This study was undertaken because there are few reports of the relative effectiveness of the proteins so used. The results suggest that moderate concentrations of the widely used albumins of Tween 20 do not always adequately prevent the adsorption of hormonal polypeptides to surfaces. Casein and alkali-treated casein appear to be more effective than the adsorption inhibitors in general use in radioimmunoassay for the range of hormones and adsorptive surfaces tested. They were also found to be very effective for preventing the adsorption of radio-labelled human luteinizing hormone, human growth hormone and Tyr-somatostatin. (Auth.)

  5. Adsorption of ions on hematite (α-Fe2O3) : a colloid-chemical study

    NARCIS (Netherlands)

    Breeuwsma, A.

    1973-01-01

    This study is primarily intended to provide a better understanding of the adsorption of ions on hematite (α-Fe 2 O 3 ). In addition, due attention is given to the relation between the ionic adsorption and the colloidal stability of hematite sols.

    Chapter 1. is concerned

  6. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Due to the extensive use of chromium in various industries and regulatory requirements related to workplace health and safety, Cr emission control in the occupational environment is essential. The adsorption process is one of the controlling measures of chromium emissions. The results indicated that natural zeolite has a high efficiency in Cr (VI adsorption.

  7. Effect of competing ions and causticization on the ammonia adsorption by a novel poly ligand exchanger (PLE) ammonia adsorption reagent.

    Science.gov (United States)

    Chen, Quanzhou; Zhou, Kanggen; Hu, Yuanjuan; Liu, Fang; Wang, Aihe

    2017-03-01

    In this paper, a poly ligand exchanger, Cu(II)-loaded chelating resin named ammonia adsorption reagent (AMAR), bearing the functional group of weak iminodiacetate acid, was prepared to efficiently remove ammonia from solutions. Batch adsorption equilibrium experiments were conducted under a range of conditions. The effects of pH on the removal of ammonia by AMAR were investigated at 25 °C. The copper loaded on the resin forms a complex with NH 3 in solution under alkaline condition. The effect of alkaline dosage (AD) on the ammonia adsorption was investigated. The maximum breakthrough bed volumes were obtained when the AD was set as 0.75 mmol OH - /mL. The higher AD did not guarantee the better ammonia removal efficiency due to the forming of Cu(OH) 2 precipitate between OH - in solutions and Cu(II) on the resin. The effect of competing ions on the adsorption breakthrough curve of virgin AMAR and causticized AMAR was also investigated. The results demonstrated that the existence of competing ions had a negative impact on the adsorption capacity for both virgin AMAR and causticized AMAR. After causticization, the AMAR was more resistant to the competing ions comparing with virgin AMAR. The bivalent Ca 2+ affects the ammonia adsorption more than does the monovalent Na + .

  8. Water-induced adsorption of carbon monoxide and oxygen on the gold dimer cation.

    Science.gov (United States)

    Ito, Tomonori; Patwari, G Naresh; Arakawa, Masashi; Terasaki, Akira

    2014-09-18

    It is demonstrated, using tandem mass spectrometry and ion trap, that preadsorption of a H2O molecule on the gold dimer cation, Au2(+), enhances adsorption of CO and O2 molecules, which is otherwise inert toward these molecules. The rate of adsorption of CO on Au2(H2O)(+) was found to be higher by 2 orders of magnitude relative to bare Au2(+). The enhancement of the CO adsorption rate is due to the presence of a reaction channel, which cleaves the Au-Au bond, leading to the formation of Au(H2O)(CO)(+). Such an observation can be attributed to weakening of the Au-Au bond upon adsorption of a water molecule. Further, it was also observed that preadsorption of H2O leads to dramatic enhancement of O2 adsorption on the Au2(+) ion, which can be attributed to the changes in the electron density following water adsorption.

  9. Thermodynamic characteristics of the adsorption of organic molecules on modified MCM-41 adsorbents

    Science.gov (United States)

    Gus'kov, V. Yu.; Sukhareva, D. A.; Salikhova, G. R.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2017-07-01

    The adsorption of a number of organic molecules on samples of MCM-41 adsorbent modified with dichloromethylphenylsilane and subsequently treated with sulfuric acid (MDCS) and N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride (MNM) is studied. Specific retention volumes equal to the Henry constant are determined by means of inverse gas chromatography at infinite dilution. The thermodynamic characteristics of adsorption, the dispersive and specific components of the Helmholtz energy of adsorption, and the increment of the methyl group to the heat of adsorption are calculated. It is shown that the grafting of aminosilane and phenylsilane groups enhances the forces of dispersion and reduces specific interactions. A greater drop in polarity is observed for MDCS than for MNM, due to the stronger polarity of amoinosilane; the enthalpy factor makes the main contribution to the adsorption of organic compounds on the investigated adsorbents. It is found that the MNM sample is capable of the irreversible adsorption of alcohols.

  10. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  11. Ultra Low Concentration Adsorption Equilibria

    National Research Council Canada - National Science Library

    Mahle, John J; Buettner, Leonard C; LeVan, M. D; Schindler, Bryan J

    2006-01-01

    .... Specifically this work focuses on novel experimental and modeling methods to characterize and predict at ultra-low chemical vapor concentrations the protection afforded by adsorption-based vapor filtration systems...

  12. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  13. Adsorption kinetics of surfactants on activated carbon

    Science.gov (United States)

    Arnelli; Aditama, WP; Fikriani, Z.; Astuti, Y.

    2018-04-01

    A study on the adsorption of both cationic and anionic surfactants using activated carbon as well as the investigation of the adsorption isotherms and adsorption kinetics has been conducted. The results showed that the adsorption of sodium lauryl sulfate (SLS) by activated carbon was Langmuir’s adsorption isotherm while its adsorption kinetics showed pseudo-second order with an adsorption rate constant of 2.23 x 103 g mg-1 hour-1. Meanwhile, the adsorption of HDTMA-Br by activated carbon showed that the isotherm adsorption tended to follow Freundlich’s isotherm and was pseudo-second order with an adsorption rate constant of 89.39 g mg-1 hour-1.

  14. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface......-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage. The static adsorption is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms the maximum static permeability drops...... and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75 % and the maximum static adsorption resistance is 0.014 m2hbar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23...

  15. Synthesis, characterization and application of calcium oxides for the adsorption of carbon dioxide; Sintesis, caracterizacion y aplicacion de oxidos de calcio para la adsorcion de dioxido de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Granados P, A.

    2016-07-01

    In this research, calcium oxide (Ca O), nanocrystalline calcium oxide and their Fe and Ni nano composites were synthesized by solution combustion and high-energy ball-milling processes respectively, in order to study their CO{sub 2} adsorption behavior under different pressure and temperature conditions. The obtained materials were characterized by different analytical techniques: XRD, Sem-EDS and N{sub 2} physisorption measurements. CO{sub 2} adsorption experiments on adsorbents at different temperatures and pressures, were carried in a stainless steel Parr type high vacuum reactor. The CO{sub 2} adsorbed on the materials was determined by thermogravimetric analysis and mass spectrophotometry. The results showed that the synthesis methods, solution combustion and high energy ball milling allowed to improve the materials textural and structural properties such as specific surface area, total pore volume, pore size distribution and nano crystallinity, which played an important effect on the CO{sub 2} adsorption behavior. It was found that the Ca O obtained by solution combustion and milled during 2.5 h, showed the maximum CO{sub 2} adsorption capacity per gram of material (9.311 mmol/g) at ambient temperature and pressure, by chemisorption as adsorption mechanism, due CaCO{sub 3} formation, which was confirmed by infrared spectroscopy, X-ray diffraction and X photoelectron spectroscopy studies. In general, the investigation results show the potential benefits of these materials efficient use, based on Ca O obtained by solution combustion and treated by high-energy ball milling, as well as that will mitigate environmental problems posed by global warming and reduce the negative impacts to the environment and living beings. (Author)

  16. Adsorption of antibiotics on microplastics.

    Science.gov (United States)

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  18. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Qinxue [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Chen, Zhiqiang, E-mail: czq0521@tom.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer We synthesized a novel adsorbent-lipoid adsorption material (LAM). Black-Right-Pointing-Pointer We investigate the adsorption behavior isotherms of nitrobenzene on LAM. Black-Right-Pointing-Pointer We investigate the adsorption kinetics of nitrobenzene on LAM. Black-Right-Pointing-Pointer We proved that the reaction is spontaneous and is an exothermic reaction. Black-Right-Pointing-Pointer The removal efficiency of LAM was higher than that of GAC. - Abstract: In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent

  19. Removal of nitrobenzene from aqueous solution by a novel lipoid adsorption material (LAM)

    International Nuclear Information System (INIS)

    Wen, Qinxue; Chen, Zhiqiang; Lian, Jiaxiang; Feng, Yujie; Ren, Nanqi

    2012-01-01

    Highlights: ► We synthesized a novel adsorbent-lipoid adsorption material (LAM). ► We investigate the adsorption behavior isotherms of nitrobenzene on LAM. ► We investigate the adsorption kinetics of nitrobenzene on LAM. ► We proved that the reaction is spontaneous and is an exothermic reaction. ► The removal efficiency of LAM was higher than that of GAC. - Abstract: In this study, a novel adsorbent referred to as a lipoid adsorption material (LAM) was synthesized with a hydrophobic nucleolus (triolein) and hydrophilic membrane structure (polyamide). The LAM was applied to the adsorption and removal of nitrobenzene from aqueous systems. Experiments were carried out to investigate the adsorption behavior of nitrobenzene on LAM, including the development of adsorption isotherms, the determination of adsorption kinetics, and to explore the influence of adsorbent dosage, contact time, temperature and the initial concentration of nitrobenzene on adsorption. The performance of LAM was compared with equal amounts of granular activated carbon (GAC) for adsorption. The adsorption isotherms for LAM were found to be described by the Linear equation, while the adsorption isotherms for granular activated carbon (GAC) were described by the Freundlich equation. Results indicated that the adsorption of nitrobenzene by LAM occurred mainly due to the partition function caused by the triolein nucleolus. Two kinetics models, pseudo-first-order and pseudo-second-order models were used to fit the experimental data for LAM adsorption. By comparing the correlation coefficients, it was found that the pseudo-first-order model was most suitable to describe the adsorption of nitrobenzene on LAM. The results also indicated that the factors that affect the adsorption rate would be either the nitrobenzene concentration or the character of the adsorbent. Thermodynamic calculations indicated that the adsorption of nitrobenzene on LAM was spontaneous and was an exothermic reaction. With

  20. Adsorption of hexavalent chromium by graphite–chitosan binary

    Indian Academy of Sciences (India)

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m 2 g − 1 and absorptive functionalities of GCB was due to 20% (w/w) graphite support on ...

  1. THERMODYNAMIC STUDIES ON THE ADSORPTION OF Cu2+ ...

    African Journals Online (AJOL)

    KEY WORDS: Amine-modified bentonite, TEPA, Heavy metal ions, Adsorption ..... charged due to the isomorphous substitutions within the layers of Al3+ for Si4+ in ... temperature, high temperature was advantageous for Cu2+, Ni2+ and Cd2+ ...

  2. Phosphorus adsorption pattern in selected cocoa growing soils in ...

    African Journals Online (AJOL)

    Application of phosphate fertilizer for the correction of P deficiency in soil is ideal in agricultural practices. Unfortunately, only a small fraction of applied P fertilizer is available for plant uptake due to fertilizer-soil interactions which leads to fixation of P. phosphorus adsorption isotherm and buffering capacity are strong tools ...

  3. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory

    NARCIS (Netherlands)

    Heinen, J.; Burtch, N.; Walton, K.; Fonseca Guerra, C.; Dubbeldam, D.

    2016-01-01

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor–acceptor interactions. Using a

  4. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    L Balan; L Duclaux; S Los

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7-8]. Presently, the best performance of hydrogen adsorption was found in super-activated microporous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physi-sorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field at the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  5. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    Balan, L.; Duchaux, L.; Los, S.

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7- 8]. Presently, the best performance of hydrogen adsorption was found in super-activated micro-porous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physisorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field al the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  6. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Takacs, E.; Wojnarovits, L.; Borsa, J.

    2011-01-01

    Complete text of publication follows. Sustainable development needs renewable raw materials applied wherever possible. Cellulose is the most abundant biopolymer on earth; various modifications of its properties for special uses are important issues of the research. Some contaminations in wastewaters, e.g. pesticides, are hydrophobic materials; their adsorption on hydrophilic cellulose substrates is very limited. Cotton cellulose was grafted by glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. As the figure shows on untreated sample even negative 2,4-D adsorption occurred, due to the selective adsorption of water from the solution; the adsorption did not approach its saturation value even in a 30 hours time period investigated. Saturation of phenol adsorption was achieved after 5-6 hours; adsorption equilibrium data of phenol fitted the Langmuir isotherm.

  7. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Shokuhi Rad, Ali, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Sani, Emad; Binaeian, Ehsan [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid; Jahanshahi, Mohsen [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  8. DFT study on the adsorption of diethyl, ethyl methyl, and dimethyl ethers on the surface of gallium doped graphene

    International Nuclear Information System (INIS)

    Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen

    2017-01-01

    Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.

  9. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO{sub 3}/g-C{sub 3}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Jin, Ailing; Jia, Yushuai, E-mail: ysjia@jxnu.edu.cn; Xia, Tonglin; Deng, Chenxin; Zhu, Meihua; Chen, Changfeng; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn

    2017-05-31

    Highlights: • We designed and fabricated a novel WO{sub 3}/g-C{sub 3}N{sub 4} bifunctional Z-scheme photocatalyst. • Synergistic effect between adsorption and photocatalytic elimination for MB. • The integrated removal efficiency is governed by WO{sub 3} content in the composite. • Adsorption kinetics and isotherm for MB over the photocatalyst were investigated. • A novel Z-scheme photocatalytic mechanism is proposed. - Abstract: A novel bifunctional Z-scheme heterojunction possessing high adsorption and photocatalytic activity, WO{sub 3}/g-C{sub 3}N{sub 4} with well-defined morphology has been successfully synthesized by in-situ liquid phase process and characterized by various analytical techniques. The degradation experiments demonstrate that the Z-scheme photocatalyst shows a synergistic effect between adsorption and photocatalysis for the removal of methylene blue (MB) under visible-light irradiation, with the optimum adsorption and photocatalytic activity both found at 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4}. Under illumination, the photodegradation performance of 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4} is improved to 2.5 and 2.7 times that of pure g-C{sub 3}N{sub 4} and pure WO{sub 3}, respectively. The possible mechanism for the photocatalytic activity enhancement could be attributed to the formation of a Z-scheme heterojunction system based on the active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process can be well described by pseudo-second-order kinetic model, and the adsorption capacity of 30 wt% WO{sub 3}/g-C{sub 3}N{sub 4} is enhanced to 4 times that of pure WO{sub 3}, with a maximum of 97.00 mg g{sup −1} determined by Langmuir isotherm. As evidenced by N{sub 2} physisorption, zeta potential and time-resolved photoluminescence measurements, the significant enhancement of the integrated adsorption and photocatalytic degradation efficiency is mainly due to the

  10. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    Science.gov (United States)

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  11. SeO{sub 2} adsorption on CaO surface: DFT study on the adsorption of a single SeO{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Li, Liangliang [Key Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Adsorption mechanisms of SeO{sub 2} on CaO surface under O{sub 2} were firstly studied by DFT. • The adsorption energies, bond length and electron density maps were calculated. • The electronic structure changes upon adsorption were studied. - Abstract: Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO{sub 2} in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO{sub 2} due to its low cost. In this paper, the adsorption mechanisms of single SeO{sub 2} on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO{sub 2} on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O{sub 2} atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO{sub 2} and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  12. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  13. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  14. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Science.gov (United States)

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  15. Adsorption and separation of n/iso-pentane on zeolites: A GCMC study.

    Science.gov (United States)

    Fu, Hui; Qin, Hansong; Wang, Yajun; Liu, Yibin; Yang, Chaohe; Shan, Honghong

    2018-03-01

    Separation of branched chain hydrocarbons and straight chain hydrocarbons is very important in the isomerization process. Grand canonical ensemble Monte Carlo simulations were used to investigate the adsorption and separation of iso-pentane and n-pentane in four types of zeolites: MWW, BOG, MFI, and LTA. The computation of the pure components indicates that the adsorption capacity is affected by physical properties of zeolite, like pore size and structures, and isosteric heat. In BOG, MFI and LTA, the amount of adsorption of n-pentane is higher than iso-pentane, while the phenomenon is contrary in MWW. For a given zeolite, a stronger adsorption heat corresponds to a higher loading. In the binary mixture simulations, the separation capacity of n-and iso-pentane increases with the elevated pressure and the increasing iso-pentane composition. The adsorption mechanism and competition process have been examined. Preferential adsorption contributions prevail at low pressure, however, the size effect becomes important with the increasing pressure, and the relatively smaller n-pentane gradually competes successfully in binary adsorption. Among these zeolites, MFI has the best separation performance due to its high shape selectivity. This work helps to better understand the adsorption and separation performance of n- and iso-pentane in different zeolites and explain the relationship between zeolite structures and adsorption performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  17. A biological oil adsorption filter

    International Nuclear Information System (INIS)

    Pasila, A.

    2005-01-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  18. Let's Talk... Analytics

    Science.gov (United States)

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  19. Analytics for Education

    Science.gov (United States)

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  20. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  1. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    Science.gov (United States)

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  2. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  3. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  4. Modified silicates applied in adsorption of heavy metal

    International Nuclear Information System (INIS)

    Farias, M.C.M. de; Raposo, C.M.O.

    2010-01-01

    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  5. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    Science.gov (United States)

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pHpH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Adsorption of charged albumin subdomains on a graphite surface.

    Science.gov (United States)

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2006-03-01

    We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.

  7. Adsorption studies on Pt(111)

    International Nuclear Information System (INIS)

    Hopster, H.

    1977-06-01

    The adsorption of O 2 , CO, and C 2 H 2 as well as the CO oxidation on Pt(111) were studied by high-resolution electron spectroscopy. Using a platinum monocrystal sample with a contonuous stage density, the adhesion coefficient for O 2 and the reaction probability for CO were determined as a function of stage density and oxygen cover by measuring the oxygen cover and its time behaviour. The study of vibrations of adsorbed CO showed that CO is bound in linear form on two different adsorption sites. The adsorption of acetylene was studied at 140 K and 300 K. The frequencies of the C-H stretching and flexural vibrations as well as the C-C-H bonding angle were determined. (orig./GSC) [de

  8. MOLECULAR VALIDATED MODEL FOR ADSORPTION OF PROTONATED DYE ON LDH

    Directory of Open Access Journals (Sweden)

    B. M. Braga

    Full Text Available Abstract Hydrotalcite-like compounds are anionic clays of scientific and technological interest for their use as ion exchange materials, catalysts and modified electrodes. Surface phenomenon are important for all these applications. Although conventional analytical methods have enabled progress in understanding the behavior of anionic clays in solution, an evaluation at the atomic scale of the dynamics of their ionic interactions has never been performed. Molecular simulation has become an extremely useful tool to provide this perspective. Our purpose is to validate a simplified model for the adsorption of 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (MBSA, a prototype molecule of anionic dyes, onto a hydrotalcite surface. Monte Carlo simulations were performed in the canonical ensemble with MBSA ions and a pore model of hydrotalcite using UFF and ClayFF force fields. The proposed molecular model has allowed us to reproduce experimental data of atomic force microscopy. Influences of protonation during the adsorption process are also presented.

  9. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  10. Investigation of the adsorption of amino acids on Pd(1 1 1): A density functional theory study

    International Nuclear Information System (INIS)

    James, Joanna N.; Han, Jeong Woo; Sholl, David S.

    2014-01-01

    Graphical abstract: - Highlights: • Density functional theory calculations have been performed to study the adsorption of glycine, alanine, norvaline, valine, proline, cysteine, and serine on Pd(1 1 1). • The common structural framework for the adsorption of most amino acids onto Pd(1 1 1) is in a tridentate fashion via a nitrogen atom and two oxygen atoms. • The shifts in vibrational frequencies associated with NHH and COO support the adsorption patterns of amino acids we examined. • The adsorption strength of amino acids depends on how much the molecules deform during the adsorption process. - Abstract: Density functional theory calculations have been used to study the adsorption of glycine, alanine, norvaline, valine, proline, cysteine, and serine on Pd(1 1 1). Most amino acids except cysteine adsorb onto the surface in a tridentate fashion through a nitrogen atom and both oxygen atoms. For cysteine, an additional bond is formed with the surface due to the strong affinity of the sulfur atom, resulting in a significantly larger adsorption energy. The adsorption patterns of amino acids we examined are supported by the shifts in vibrational frequencies associated with NHH and COO. The adsorption strength of amino acids depends on how much the molecules deform during the adsorption process. Understanding the adsorption of amino acids on Pd(1 1 1) provides fundamental information for future consideration of the interactions between their derivatives or more complicated biomolecules and metal surfaces

  11. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates

    International Nuclear Information System (INIS)

    Haque, Enamul; Lee, Ji Eun; Jang, In Tae; Hwang, Young Kyu; Chang, Jong-San; Jegal, Jonggeon; Jhung, Sung Hwa

    2010-01-01

    Two typical highly porous metal-organic framework (MOF) materials based on chromium-benzenedicarboxylates (Cr-BDC) obtained from Material of Institute Lavoisier with special structure of MIL-101 and MIL-53 have been used for the adsorptive removal of methyl orange (MO), a harmful anionic dye, from aqueous solutions. The adsorption capacity and adsorption kinetic constant of MIL-101 are greater than those of MIL-53, showing the importance of porosity and pore size for the adsorption. The performance of MIL-101 improves with modification: the adsorption capacity and kinetic constant are in the order of MIL-101 < ethylenediamine-grafted MIL-101 < protonated ethylenediamine-grafted MIL-101 (even though the porosity and pore size are slightly decreased with grafting and further protonation). The adsorption capacity of protonated ethylenediamine-grafted MIL-101 decreases with increasing the pH of an aqueous MO solution. These results suggest that the adsorption of MO on the MOF is at least partly due to the electrostatic interaction between anionic MO and a cationic adsorbent. Adsorption of MO at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with MO adsorption. The adsorbent MIL-101s are re-usable after sonification in water. Based on this study, MOFs can be suggested as potential re-usable adsorbents to remove anionic dyes because of their high porosity, facile modification and ready re-activation.

  12. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  13. Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals.

    Science.gov (United States)

    Qiu, Shan; Ma, Fang; Huang, Xu; Xu, Shanwen

    2014-01-01

    In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La(3+) > Cu(2+) > Mg(2+) > Na(+).

  14. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  15. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh; Leong, Kai Choong; Thu, Kyaw; Saha, Bidyut Baran; Ng, Kim Choon

    2011-01-01

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  16. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... and high degree of predictability of the theory developed....... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  17. Fast gas adsorption measurements for complicated adsorption mechanisms

    NARCIS (Netherlands)

    Robens, E.; Poulis, J.A.; Massen, C.H.

    2000-01-01

    Jäntti introduced a method to reduce the time required for the stepwise measurement of adsorption isotherms. After each pressure change he measured the adsorbed mass three times and calculated its equilibrium value at the new pressure. In the present paper, we discuss the applicability of this

  18. Determination of uranium in ground water using different analytical techniques

    International Nuclear Information System (INIS)

    Sahu, S.K.; Maity, Sukanta; Bhangare, R.C.; Pandit, G.G.; Sharma, D.N.

    2014-10-01

    The concern over presence of natural radionuclides like uranium in drinking water is growing recently. The contamination of aquifers with radionuclides depends on number of factors. The geology of an area is the most important factor along with anthropogenic activities like mining, coal ash disposal from thermal power plants, use of phosphate fertilizers etc. Whatever may be the source, the presence of uranium in drinking waters is a matter of great concern for public health. Studies show that uranium is a chemo-toxic and nephrotoxic heavy metal. This chemotoxicity affects the kidneys and bones in particular. Seeing the potential health hazards from natural radionuclides in drinking water, many countries worldwide have adopted the guideline activity concentration for drinking water quality recommended by the WHO (2011). For uranium, WHO has set a limit of 30μgL-1 in drinking water. The geological distribution of uranium and its migration in environment is of interest because the element is having environmental and exposure concerns. It is of great interest to use an analytical technique for uranium analysis in water which is highly sensitive especially at trace levels, specific and precise in presence of other naturally occurring major and trace metals and needs small amount of sample. Various analytical methods based on the use of different techniques have been developed in the past for the determination of uranium in the geological samples. The determination of uranium requires high selectivity due to its strong association with other elements. Several trace level wet chemistry analytical techniques have been reported for uranium determination, but most of these involve tedious and pain staking procedures, high detection limits, interferences etc. Each analytical technique has its own merits and demerits. Comparative assessment by different techniques can provide better quality control and assurance. In present study, uranium was analysed in ground water samples

  19. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2015-01-01

    , that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membraneactive peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show...

  20. Future analytical provision - Relocation of Sellafield Ltd Analytical Services Laboratory

    International Nuclear Information System (INIS)

    Newell, B.

    2015-01-01

    Sellafield Ltd Analytical Services provide an essential view on the environmental, safety, process and high hazard risk reduction performances by analysis of samples. It is the largest and most complex analytical services laboratory in Europe, with 150 laboratories (55 operational) and 350 staff (including 180 analysts). Sellafield Ltd Analytical Services Main Laboratory is in need of replacement. This is due to the age of the facility and changes to work streams. This relocation is an opportunity to -) design and commission bespoke MA (Medium-Active) cells, -) modify HA (High-Active) cell design to facilitate an in-cell laboratory, -) develop non-destructive techniques, -) open light building for better worker morale. The option chosen was to move the activities to the NNL Central laboratory (NNLCL) that is based at Sellafield and is the UK's flagship nuclear research and development facility. This poster gives a time schedule

  1. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation.

    Science.gov (United States)

    Sheng, Guodong; Huang, Chengcai; Chen, Guohe; Sheng, Jiang; Ren, Xuemei; Hu, Baowei; Ma, Jingyuan; Wang, Xiangke; Huang, Yuying; Alsaedi, Ahmed; Hayat, Tasawar

    2018-02-01

    Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation-π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at R Ni-Fe ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at R Ni-C ∼2.49 Å and R Ni-Fe ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    Science.gov (United States)

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  3. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    International Nuclear Information System (INIS)

    Gubala, Vladimir; Siegrist, Jonathan; Monaghan, Ruairi; O’Reilly, Brian; Gandhiraman, Ram Prasad; Daniels, Stephen; Williams, David E.; Ducrée, Jens

    2013-01-01

    Highlights: ► A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. ► Development for dilution by surface-adsorption based depletion of protein samples. ► It can easily be done using a readily available apparatus like a spin-coater. ► The assessment tool is facile and quantitative. ► Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor ® ) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor ® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor ® , and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real

  4. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gubala, Vladimir, E-mail: V.Gubala@kent.ac.uk [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Medway School of Pharmacy, University of Kent, Central Avenue, Anson 120, Chatham Maritime, Kent ME4 4TB (United Kingdom); Siegrist, Jonathan; Monaghan, Ruairi; O' Reilly, Brian; Gandhiraman, Ram Prasad [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Daniels, Stephen [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology (NCPST), Dublin City University, Dublin 9 (Ireland); Williams, David E. [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Ducree, Jens [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. Black-Right-Pointing-Pointer Development for dilution by surface-adsorption based depletion of protein samples. Black-Right-Pointing-Pointer It can easily be done using a readily available apparatus like a spin-coater. Black-Right-Pointing-Pointer The assessment tool is facile and quantitative. Black-Right-Pointing-Pointer Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor{sup Registered-Sign }) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor{sup Registered-Sign} substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor{sup Registered-Sign }, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and

  5. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    OpenAIRE

    Eko Ariyanto

    2012-01-01

    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  6. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  7. Selective adsorption resonances: Quantum and stochastic approaches

    International Nuclear Information System (INIS)

    Sanz, A.S.; Miret-Artes, S.

    2007-01-01

    In this review we cover recent advances in the theory of the selective adsorption phenomenon that appears in light atom/molecule scattering off solid surfaces. Due to the universal van der Waals attractive interaction incoming gas particles can get trapped by the surface, this giving rise to the formation of quasi-bound states or resonances. The knowledge of the position and width of these resonances provides relevant direct information about the nature of the gas-surface interaction as well as about the evaporation and desorption mechanisms. This information can be obtained by means of a plethora of theoretical methods developed in both the energy and time domains, which we analyze and discuss here in detail. In particular, special emphasis is given to close-coupling, wave-packet, and trajectory-based formalisms. Furthermore, a novel description of selective adsorption resonances from a stochastic quantum perspective within the density matrix and Langevin formalisms, when correlations and fluctuations of the surface (considered as a thermal bath) are taken into account, is also proposed and discussed

  8. A programmable air sampler with adsorption tubes

    International Nuclear Information System (INIS)

    Riesing, J.; Roetzer, H.; Hick, H.

    1997-01-01

    The Air Sampler AS3 was utilized for the European Tracer Experiment (ETEX) to measure the concentrations of the perfluorocarbon tracers. At thirty-two sampling points these devices were placed to collect the tracer substances in adsorption tubes for subsequent laboratory analysis in the Environment Institute of the JRC Ispra. The Air Sampler is also suitable for monitoring the environment, particularly of industrial emitters or landfills, by sampling of volatile substances. The Air Sampler AS3 is a portable, user-friendly instrument due to light weight, ruggedness and reliable operation. It is capable of fully automatic sampling of air and gas with 24 adsorption tubes and program-controlled gas flow. Collection times can be programmed freely between 1 sec and 8 days and waiting times between 1 sec and 30 days. Programming is possible via keyboard, memory card or serial interface. A protocol of sampling control data is stored on a memory card giving documentation of sampling conditions. On the memory card there is space for the storage of 10 sampling programs and 10 sets of sampling control data. Before the start of ETEX the AS3 was used in a measurement campaign to measure the background concentrations of the perfluorocarbon tracers in Austria. In the provinces of Upper Austria and Salzburg the Air Sampler is used by the departments for environmental protection for the monitoring of BTX-concentrations in air. (author)

  9. Adsorption of polymer chains at penetrable interfaces

    International Nuclear Information System (INIS)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-01-01

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  10. Thermodynamic features of dioxins’ adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)

    2017-02-15

    Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  11. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  12. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  13. Immunoglobulin adsorption on modified surfaces

    NARCIS (Netherlands)

    Bremer, M.G.E.G.

    2001-01-01

    Preservation of biological functioning of proteins during immobilisation is of special interest in various biomedical and biotechnical applications. In industry physical adsorption of immunoglobulins (IgGs) onto solid surfaces is still the predominant immobilisation procedure because it is

  14. Thermodynamic Properties of Chromium Adsorption by Sediments ...

    African Journals Online (AJOL)

    The adsorption of Chromium from aqueous solution using river Watari sediment as an adsorbent was modeled. The influence of initial pH, solution temperature, adsorbent and adsorbate concentrations on the adsorption efficiency was investigated using batch equilibrium assays. From the results obtained for the adsorption ...

  15. Competitive Adsorption of Chloroform and Bromoform Using ...

    African Journals Online (AJOL)

    The results obtained were checked with Freundlich adsorption isotherm model. This model expresses well adsorption of one THM species in the presence of another with R2 > 0.95. Based on the model, adsorption capacity of Calgon F200 and Norit GCN1240 were found higher for bromoform than chloroform. Calgon F200 ...

  16. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  17. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yunlong [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China)]. E-mail: ylyu@zju.edu.cn; Wu Xiaomao [Department of Plant Protection, College of Agriculture, Guizhou University, Guiyang 550025 (China); Li Shaonan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Fang Hua [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Zhan Haiyan [Department of Plant Protection, Zhejiang University, Kaixuan Road 268, Hangzhou, Zhejiang 310029 (China); Yu Jingquan [Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2006-06-15

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K {sub ow}), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K {sub af} and K {sub df}. However, only a slightly positive correlation between bioconcentration and K {sub af} and K {sub df} was observed for chlorpyrifos due to its high affinity onto soil. - Bioavailability of pesticides in soil to earthworm is governed by adsorption characteristics.

  18. Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.

    Science.gov (United States)

    Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H

    2018-07-15

    Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    Science.gov (United States)

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  20. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    Science.gov (United States)

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  1. Adsorption configuration of magnesium on wurtzite gallium nitride surface using first-principles calculations

    International Nuclear Information System (INIS)

    Yan Han; Gan Zhiyin; Song Xiaohui; Chen Zhaohui; Xu Jingping; Liu Sheng

    2009-01-01

    First-principles calculations of magnesium adsorption at the Ga-terminated and N-terminated {0 0 0 1} basal plane wurtzite gallium nitride surfaces have been carried out to explain the atomic-scale insight into the initial adsorption processes of magnesium doping in gallium nitride. The results reveal that magnesium adsorption on N-terminated surfaces is preferred than that on Ga-terminated surfaces. Furthermore, the surface diffusivity of magnesium atom on the N-terminated surface is much lower than that on the Ga-terminated surface, which is due to both the larger average adsorption energies and the lower adsorption distance on N-terminated surface than that on Ga-terminated surface. The results indicate that the p-type doping on the Ga-terminated surface will be better distributed than that on the N-terminated surface.

  2. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm

    International Nuclear Information System (INIS)

    Yu Yunlong; Wu Xiaomao; Li Shaonan; Fang Hua; Zhan Haiyan; Yu Jingquan

    2006-01-01

    A study was conducted to determine the adsorption/desorption of butachlor, myclobutanil and chlorpyrifos on five soils using a batch equilibration technique and to study the relationship between bioavailability to Allolobophora caliginosa and the adsorption/desorption of these three pesticides. The results showed that the adsorption/desorption processes of the tested compounds were mainly controlled by soil organic matter content (OM) and octanol/water-partitioning coefficient (K ow ), and that the bioavailability of the pesticides was dependent on characteristics of pesticides, properties of soils, and uptake routes of earthworms. Bioconcentration of butachlor and myclobutanil was negatively correlated with Freundlich adsorption constant K af and K df . However, only a slightly positive correlation between bioconcentration and K af and K df was observed for chlorpyrifos due to its high affinity onto soil. - Bioavailability of pesticides in soil to earthworm is governed by adsorption characteristics

  3. Adsorption of Water and Ethanol in MFI-Type Zeolites

    KAUST Repository

    Zhang, Ke

    2012-06-12

    Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH -) and fluoride (F -) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F -) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH -), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircar\\'s model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions. © 2012

  4. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

    International Nuclear Information System (INIS)

    Gibson, Natalie M.; Luo, Tzy-Jiun Mark; Shenderova, Olga; Koscheev, Alexey P.; Brenner, Donald W.

    2012-01-01

    Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp 2 carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet–visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF–SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to π bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.

  5. Electrostatically mediated adsorption by nanodiamond and nanocarbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Natalie M.; Luo, Tzy-Jiun Mark, E-mail: tluo@ncsu.edu; Shenderova, Olga [North Carolina State University, Department of Materials Science and Engineering (United States); Koscheev, Alexey P. [Karpov Institute of Physical Chemistry, State Scientific Center of Russian Federation (Russian Federation); Brenner, Donald W. [North Carolina State University, Department of Materials Science and Engineering (United States)

    2012-03-15

    Nanodiamond (ND) and other nanocarbon particles are popular platforms for the immobilization of molecular species. In the present research, factors affecting adsorption and desorption of propidium iodide (PI) dye, chosen as a charged molecule model, on ND and sp{sup 2} carbon nanoparticles were studied, with a size ranging from 75 to 4,305 nm. It was found that adsorption of PI molecules, as characterized by ultraviolet-visible spectroscopy, on ND particles is strongly influenced by sorbent-sorbate electrostatic interactions. Different types of NDs with a negative zeta potential were found to adsorb positively charged PI molecules, while no PI adsorption was observed for NDs with a positive zeta potential. The type and density of surface groups of negatively charged NDs greatly influenced the degree and capacity of the PI adsorbed. Ozone-purified NDs had the highest capacity for PI adsorption, due to its greater density of oxygen containing groups, i.e., acid anhydrides and carboxyls, as assessed by TDMS and TOF-SIMS. Single wall nanohorns and carbon onion particles were found to adsorb PI regardless of their zeta potential; this is likely due to {pi} bonding between the aromatic rings of PI and the graphitic surface of the materials and the internal cavity of the horns.

  6. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions

    International Nuclear Information System (INIS)

    Xie, Mengxing; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang

    2014-01-01

    The main objective of this study was to understand the key factors and mechanisms controlling adsorption of sulfonamides to biochars. Batch adsorption experiments were performed for sulfamethoxazole and sulfapyridine to three pine-wood biochars prepared under different thermochemical conditions: pyrolysis at 400 °C (C400) and 500 °C (C500), and pyrolysis at 500 °C followed with hydrogenation (C500-H). For both sulfonamides, the adsorbent surface area-normalized adsorption was stronger to C500 than to C400. This is attributable to the enhanced π–π electron-donor–acceptor interaction with the carbon surface of C500 due to the higher degree of graphitization. Despite the relatively large difference in surface O-functionality content between C500 (12.2%) and C500-H (6.6%), the two biochars exhibited nearly identical adsorbent surface area-normalized adsorption, indicating negligible role of surface O-functionalities in the adsorption to these adsorbents. Effects of solution chemistry conditions (pH, Cu 2+ , and dissolved soil humic acid) on adsorption were examined. -- Highlights: • Adsorption to biochars is dominated by π–π electron-donor–acceptor (EDA) interaction. • Graphitic surfaces of biochars are predominant adsorption sites. • Surface O-functionalities of biochars play minor roles in adsorption. • Adsorption affinities are markedly affected by Cu ions and humic acids. -- Adsorption of sulfonamides to biochars is dominated by π–π electron-donor–acceptor (EDA) interaction with the graphitic surface

  7. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    Science.gov (United States)

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    Science.gov (United States)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 Å and majority of its micropores are blow 15.8 Å, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/graphene.

  9. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  10. Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory

    KAUST Repository

    Savizi, Iman Shahidi Pour

    2011-04-01

    Specific adsorption of anions to electrode surfaces may alter the rates of electrocatalytic reactions. Density functional theory (DFT) methods are used to predict the adsorption free energy of acetate and phosphate anions as a function of Pt(1 1 1) electrode potential. Four models of the electrode potential are used including a simple vacuum slab model, an applied electric field model with and without the inclusion of a solvating water bi-layer, and the double reference model. The linear sweep voltammogram (LSV) due to anion adsorption is simulated using the DFT results. The inclusion of solvation at the electrochemical interface is necessary for accurately predicting the adsorption peak position. The Langmuir model is sufficient for predicting the adsorption peak shape, indicating coverage effects are minor in altering the LSV for acetate and phosphate adsorption. Anion adsorption peak positions are determined for solution phase anion concentrations present in microbial fuel cells and microbial electrolysis cells and discussion is provided as to the impact of anion adsorption on oxygen reduction and hydrogen evolution reaction rates in these devices. © 2011 Elsevier Ltd. All rights reserved.

  11. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    Science.gov (United States)

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  12. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    Science.gov (United States)

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  13. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    Science.gov (United States)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  14. Analyticity without Differentiability

    Science.gov (United States)

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  15. Understanding Business Analytics

    Science.gov (United States)

    2015-01-05

    analytics have been used in organizations for a variety of reasons for quite some time; ranging from the simple (generating and understanding business analytics...process. understanding business analytics 3 How well these two components are orchestrated will determine the level of success an organization has in

  16. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    Science.gov (United States)

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  17. From aggregative adsorption to surface depletion

    DEFF Research Database (Denmark)

    Rother, Gernot; Müter, Dirk; Bock, Henry

    2017-01-01

    Adsorption of a short-chain nonionic amphiphile (C6E3) at the surface of mesoporous silica glass (CPG) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C6E3 + water system show that no adsorption...... occurs up to the critical micelle concentration, at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes...

  18. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  19. Fibrinogen adsorption on blocked surface of albumin

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2011-01-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption...... of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle...... energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer...

  20. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature.

    Science.gov (United States)

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Li, Kun; Liu, Jingjing; Lu, Bianhe; Tian, Xin

    2017-09-01

    Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol -1 , respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol -1  K -1 , respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phospholipid Adsorption Polymeric Materials for Detection of Xylazine and Metabolite in Blood and Urine

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-01-01

    Full Text Available Polymers have been used in different areas. Recently, polymeric material is favored in analytical area due to its high performance and high consistency, which was used in sample pretreatment in this study. Xylazine poisoning is often seen in body fluid samples obtained from various accidents or suicides. However, the content of xylazine is difficult to detect precisely due to matrix effect in testing practices. In this paper, a method application for phospholipid adsorption polymeric materials to determine xylazine in blood and urine samples was proposed, developed, and validated. Compared with existing method, this method using polymeric pretreatment has a wider linear range of 2.0–2000.0 ng/mL for xylazine and its metabolite 2,6-dimethylaniline in both blood and urine and lower detection limits of 0.3 ng/mL for 2,6-dimethylaniline and xylazine in blood and 0.2 ng/mL for 2,6-dimethylaniline and xylazine in urine. Therefore, this method is suggested to be applied in testing practices by academic groups and commercial organizations.

  2. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  3. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    Science.gov (United States)

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8

    Directory of Open Access Journals (Sweden)

    Canlan Jiang

    2016-10-01

    Full Text Available Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8, was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g−1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn−OH on ZIF-8 -and −SO3 or –N=N– sites in CR molecule, and the π–π interaction.

  5. Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments.

    Science.gov (United States)

    Wang, Peng; Zhang, Di; Zhang, Huang; Li, Hao; Ghosh, Saikat; Pan, Bo

    2017-05-01

    Antibiotics are used widely in human and veterinary medicine and are ubiquitous in environmental matrices worldwide. The influence of the concentration of antibiotics on adsorption kinetics is still unclear. This study used sulfamethoxazole (SMX) and ofloxacin (OFL) as adsorbates to investigate the adsorption kinetics on sediment affected by varying concentrations of antibiotics adsorbable species. At the experimental pH values, the major adsorbed species of SMX and OFL on sediment were SMX 0 and OFL + by hydrophobic interaction and electrostatic attraction, respectively. The apparent adsorption rate of SMX was not affected by the initial concentration and the pH values because the hydrophobic interactions were concentration-independent and charge-independent. However, the apparent adsorption rate of OFL significantly slowed down as the initial concentration increased. The adsorbed OFL + effectively neutralized the negative charges of the sediment, leading to a reduced adsorption rate of subsequent OFL + . The neutralization effect was greatly enhanced due to the increased OFL + with the increasing OFL concentration. Additionally, the apparent adsorption rate of OFL significantly increased at higher pH due to the reduced neutralization effect that resulted from the decreased OFL + and increased negative charges of the sediment surface. This study implied that the adsorption kinetics of antibiotics was greatly dominated by the concentration of adsorbable species rather than apparent overall concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes.

    Science.gov (United States)

    Puthusseri, Divya; Babu, Deepu J; Okeil, Sherif; Schneider, Jörg J

    2017-10-04

    Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO 2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO 2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

  7. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  8. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  9. Hydrogen Adsorption on Nanoporous Biocarbon

    Science.gov (United States)

    Wood, M. B.; Burress, J. W.; Lapilli, C. M.; Pfeifer, P.; Shah, P. S.; Suppes, G. J.; Dillon, A. C.; Parilla, P. A.

    2007-03-01

    As a part of the Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) we study activated carbons made from corncob, optimized for storing methane and hydrogen (H2) by physisorption at low pressure. We report here: (a) storage capacities of 73-91 g H2/kg carbon at 77 K and 47 bar, validated in three different laboratories (the 2010 DOE target is 60 g H2/kg system); (b) binding energies from H2 adsorption isotherms (c) temperature-programmed desorption data; (d) degree of graphitization of the carbon surface from Raman spectra; (e) pore structure of carbon from nitrogen and methane adsorption isotherms, and small-angle x-ray scattering. The structural analysis shows that the carbon is highly microporous and that the pore space is highly correlated (micropores do not scatter independently).

  10. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  11. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  12. Random sequential adsorption of cubes

    Science.gov (United States)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  13. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  14. Decolorization of a textile vat dye by adsorption on waste ash

    Directory of Open Access Journals (Sweden)

    MIODRAG ŠMELCEROVIĆ

    2010-06-01

    Full Text Available An adsorption process using cheap adsorbents could be described as a simple, selective and low cost alternative for the treatment of colored waste water compared to conventional physical and chemical processes. In this study the use of a natural waste adsorbent–ash was investigated for the removal of a textile vat dye Ostanthren blue GCD remaining after the dyeing of cotton textile. The ash obtained as a waste material during the burning of brown coal in the heating station of Leskovac (Serbia was used for the treatment of waste waters from the textile industry, i.e., waste water after the dyeing process. The effect of ash quantity, initial dye concentration, pH and agitation time on adsorption was studied. The Langmuir model was used to describe the adsorption isotherm. Based on the analytical expression of the Langmuir model, the adsorption constants, such as adsorption capacity and adsorption energy, were found. Pseudo first and second order kinetic models were studied to evaluate the kinetic data.

  15. Selective Adsorption on Fluorinated Plastic Enables the Optical Detection of Molecular Pollutants in Water

    Science.gov (United States)

    Lanfranco, R.; Giavazzi, F.; Salina, M.; Tagliabue, G.; Di Nicolò, E.; Bellini, T.; Buscaglia, M.

    2016-05-01

    Amorphous fluorinated plastic can be produced with a refractive index similar to that of water, a condition that makes it essentially invisible when immersed in aqueous solutions. Because of this property, even a small amount of adsorbed molecules on the plastic-water interface provides a detectable optical signal. We investigate two distinct substrates made of this material, characterized by different interface areas: a prism and a microporous membrane. We demonstrate that both substrates enable the label-free detection of molecular compounds in water even without any surface functionalization. The adsorption of molecules on the planar surface of the prism provides an increase of optical reflectivity, whereas the adsorption on the internal surface of the microporous membrane yields an increase of scattered light. Despite the different mechanisms, we find a similar optical response upon adsorption. We confirm this result by a theoretical model accounting for both reflection and scattering. We investigate the spontaneous adsorption process for different kinds of molecules: surfactants with different charges, a protein (lysozyme), and a constituent of gasoline (hexane). The measured equilibrium and kinetic constants for adsorption differ by orders of magnitudes among the different classes of molecules. By suitable analytical models, accounting for the effects of mass limitation and transport, we find a simple and general scaling of the adsorption parameters with the molecular size.

  16. Soil adsorption of various chemical forms of radioiodine

    International Nuclear Information System (INIS)

    Szabova, T.; Palagyi, S.

    1976-01-01

    The adsorption was studied of radioiodate and radioiodide by the soil in an experiment aimed at testing the behaviour of these two chemical forms of radioiodine. 131 IO 3 - was used in the experiment, prepared by the oxidation of carrier-free Na 131 I with NaClO in an acid medium. Thin-layer chromatography showed that the stability of radioiodate depended on the solution pH value. The highest stability was found at pH 7 to 11. When pH=7 was maintained, only a slow reduction was found of radioiodate to radioiodide. A significant difference was found in the adsorption of radioiodate and radioiodide. The iodide was sorbed faster and to a higher degree, especially by chernozem (due to the high content of organic mass in the soil) as against retzina. It is believed that soil contamination is primarily due to radioiodide. (L.O.)

  17. Urea adsorption by activated carbon prepared from palm kernel shell

    Science.gov (United States)

    Ooi, Chee-Heong; Sim, Yoke-Leng; Yeoh, Fei-Yee

    2017-07-01

    Dialysis treatment is crucial for patients suffer from renal failure. The dialysis system removes the uremic toxin to a safe level in a patient's body. One of the major limitations of the current hemodialysis system is the capability to efficiently remove uremic toxins from patient's body. Nanoporous materials can be applied to improve the treatment. Palm kernel shell (PKS) biomass generated from palm oil mills can be utilized to prepare high quality nanoporous activated carbon (AC) and applied for urea adsorption in the dialysis system. In this study, AC was prepared from PKS via different carbonization temperatures and followed by carbon dioxide gas activation processes. The physical and chemical properties of the samples were studied. The results show that the porous AC with BET surface areas ranging from 541 to 622 m2g-1 and with total pore volumes varying from 0.254 to 0.297 cm3g-1, are formed with different carbonization temperatures. The equilibrium constant for urea adsorption by AC samples carbonized at 400, 500 and 600 °C are 0.091, 0.287 and 0.334, respectively. The increase of carbonization temperatures from 400 to 600 °C resulted in the increase in urea adsorption by AC predominantly due to increase in surface area. The present study reveals the feasibility of preparing AC with good porosity from PKS and potentially applied in urea adsorption application.

  18. Adsorption of anionic surfactants in limestone medium during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Canbolat, Serhat; Bagci, Suat [Middle East Technical Univ., Dept. of Petroleum and Natural Gas Engineering, Ankara (Turkey)

    2004-07-15

    Foam-forming surfactant performance was evaluated by several experimental methods (interfacial tension, foam stability, corefloods) using commercial surfactants. There is considerable interest in the use of foam-forming surfactants for mobility control in water flood. To provide effective mobility control, the injected surfactant must propagate from the injection well toward the production well. One of the important parameters affecting propagation of foam-forming surfactant through the reservoir is the retention of surfactant due to its adsorption on reservoir rock. The determination of the adsorption of foam-forming surfactants in limestone reservoirs is important for the residual oil recovery efficiency. Adsorption measurements, recovery efficiencies, and surfactant and alkaline flooding experiments carried out with the representative of the selected surfactants alkaline solutions, linear alkyl benzene sulphonic acid (LABSA), sodium lauryl ether sulfate (SLES), and NaOH in a limestone medium. These surfactants were selected with respect to their foaming ability. Calibration curves formed by pH measurements were used to determine the correct adsorption amount of the used surfactants and recovery efficiency of these surfactants compared with base waterflooding. The results showed that LABSA adsorbed more than SLES in limestone reservoirs. The recovery efficiency of SLES was higher than the recovery efficiency of LABSA, and they decreased the recovery efficiency with respect to only the water injection case. (Author)

  19. Adsorption of metalorganic molecules on metal-semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Christian; Schmeidel, Jedrzej; Chen, Wei; Tegenkamp, Christoph; Pfnuer, Herbert [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany)

    2011-07-01

    The controlled implementation of single molecules in appropriate contact assemblies is the ultimate realization of an ultra-small device structure. Besides extremely high integration densities the functionalities of the devices are adjustable by chemical synthesis. However, the interaction of the molecule with its environment is decisive. The adsorption of ferrocene-1,1'-dithiol (FDT) on Ag-{radical}(3) reconstructions on nominally flat and vicinal Si(111) substrates has been studied. The FDT was chosen because of its large conductance and high structural flexibility with respect to rotation of the two cyclopentadienyl (Cp) rings. The reconstruction is a prototype of a highly conductive low dimensional electron gas on a technologically relevant substrate. The adsorption of intact molecules takes place predominantly at defect sites, e.g. vacancy and step structures. Submolecular resolution showing the Cp-ring structure was obtained at perfect terrace sites. Due to chemisorption of the S-atoms at hollow sites the molecule axis is oriented parallel to the substrate. The initial rotational flexibility is frozen and only tow different rotated configurations were found. The adsorption geometry is confirmed by VASP calculations. Recently, Ag reconstructions on Si(557) substrates have been used. The effect of the uniaxial step configuration towards the adsorption of the FDT molecules is discussed.

  20. Enhanced adsorption of hydroxyl contained/anionic dyes on non functionalized Ni@SiO{sub 2} core–shell nanoparticles: Kinetic and thermodynamic profile

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhifeng, E-mail: ntjiangzf@sina.com; Xie, Jimin, E-mail: xiejm391@sohu.com; Jiang, Deli, E-mail: jiangdeli100@yahoo.com; Yan, Zaoxue, E-mail: yanzaoxue@163.com; Jing, Junjie, E-mail: jingjj1975@163.com; Liu, Dong, E-mail: 919457966@qq.com

    2014-02-15

    A green and low-cost adsorbent with both magnetic property and high adsorption capacity was prepared on the basis of nickel magnetic core with silica shell. The surface of the prepared Ni@SiO{sub 2} composite was not modified. The influence of different functional groups and different charged of the dyes on the adsorption process on the non functionalized Ni@SiO{sub 2} have been studied. The results indicated that synthesized adsorbent exhibited higher adsorption capacity for dyes with negative charge/hydroxyl groups as compared to dyes with positive charge/without hydroxyl groups due to the hydrogen bonding interaction and electrostatic interaction between the adsorbent and dyes. Adsorption kinetics and isotherms experiments were carried out and the results indicated that the adsorption process was fitted by pseudo second order kinetics and Freundlich model. The binding of these dyes with magnetic adsorbent surface mainly involves physical adsorption according to D–R model. Furthermore, the adsorption process is spontaneous and endothermic as studied from adsorption thermodynamics. The value of ΔH° and mean free energy further confirmed that physical adsorption is the major adsorption process. After regeneration, the adsorbent still shows high adsorption capacity even for 4 cycles of desorption–adsorption.

  1. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study.

    Science.gov (United States)

    Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu

    2017-09-01

    Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adsorption of NH4+-N on Chinese loess: Non-equilibrium and equilibrium investigations.

    Science.gov (United States)

    Xie, Haijian; Wang, Shaoyi; Qiu, Zhanhong; Jiang, Jianqun

    2017-11-01

    NH 4 + -N is a crucial pollutant in landfill leachate and can be in high concentrations for a long period of time due to anaerobic condition of landfills. The adsorption properties of NH 4 + -N on the Chinese loess were investigated using Batch test. The influences of ammonium concentration, temperature, reaction time, slurry concentration, and pH on the adsorption process are evaluated. Adsorption kinetics and isotherm behaviors were studied by applying different models to the test data to determine the adsorption parameters. The equilibrating duration was shown to be less than 60 min. The data on adsorption kinetics can be well fitted by the pseudo-second-order kinetics model. According to the Langmuir isotherm model, the adsorption capacity of Chinese loess about NH 4 + -N was predicted to be 72.30 mg g -1 . The uptake of NH 4 + -N by Chinese loess was considered to be the type of physical adsorption on the basis of D-R isotherm analysis. The optimal pH and slurry concentration are 4 and 2 g/50 ml, respectively. According to the calculated values of free energy, enthalpy and entropy change, the adsorption process is determined to be exothermic. The disorder of the system appeared lowest at temperature of 308.15 K. The predicted Gibb's free energies also indicate the adsorption process is endothermic and spontaneous. The FTIR spectrum and EDX analysis showed the adsorption process of NH 4 + involves cation exchange and dissolution of calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peifu; Hu, Yun Hang, E-mail: yunhangh@mtu.edu

    2016-07-30

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C{sub 2}H{sub 2} adsorption on MOFs are consistent with BET surface areas from N{sub 2} adsorption. • C{sub 2}H{sub 2} on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C{sub 2}H{sub 2}) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C{sub 2}H{sub 2} adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C{sub 2}H{sub 2} adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C{sub 2}H{sub 2} adsorption on those MOFs.

  4. Spontaneous symmetry breaking by double lithium adsorption in polyacenes

    International Nuclear Information System (INIS)

    Ortiz, Yenni. P.; Seligman, Thomas H.

    2010-01-01

    We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.

  5. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract

    OpenAIRE

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2017-01-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on t...

  6. Hydrogen adsorption in carbon nanostructures compared

    International Nuclear Information System (INIS)

    Schimmel, H.G.; Nijkamp, G.; Kearley, G.J.; Rivera, A.; Jong, K.P. de; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam 'opened' SWNT are compared and shown to be similar. The storage capacity below 77 K of these materials correlates with the surface area of the material with the activated charcoal having the largest. SWNT and 'opened' SWNT have a relatively low accessible surface area due to bundling of the tubes. Pressure-temperature curves give the interaction potential, which was found to be ∼580 K or 50 meV in all samples, leading to significant adsorption below ∼50 K. Using the inelastic neutron scattering signal associated with rotation of the hydrogen molecule as a sensitive probe for the surroundings of the molecule, no difference was found between the hydrogen molecules adsorbed in the investigated materials. These combined spectroscopic and macroscopic results show that SWNT, nanofibers and activated carbons store molecular hydrogen due to their graphitic nature and not because they possess special morphologies. Results from a density functional theory computer calculation suggest molecular hydrogen bonding to an aromatic C-C bond of graphite, irrespective of the surface morphology farther away

  7. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    Science.gov (United States)

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L -1 ) added as Na 2 SeO 4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L -1 ). Desorption, as well as distribution coefficients (K d ) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of K d and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    International Nuclear Information System (INIS)

    Roque-Malherbe, R.; Lozano, C.; Polanco, R.; Marquez, F.; Lugo, F.; Hernandez-Maldonado, A.; Primera-Pedrozo, J.N.

    2011-01-01

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO 2 isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably due to the confinement of the CO 2 molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO 2 equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO 2 displayed a peak at about 2338 cm -1 that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm -1 evidenced that this molecule interacts with the Cu 2+ , which appears to act as an electron accepting Lewis acid site. The aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide. -- Graphical abstract: The adsorption space of a very well characterized Cu-nitroprusside polymorph, applying carbon dioxide as probe molecule, was studied. Display Omitted Highlights: → Accurate information about the geometry of the adsorption space was provided. → Truthful data about the interactions within the adsorption space was presented. → The structure of the tested Cu-NP polymorph was established. → Was evidenced adsorbed CO 2 molecules in the form of weakly bonded adducts. → Is proposed that adsorbed molecules could change the Cu-NP magnetic properties.

  9. Hanford transuranic analytical capability

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections

  10. Analytic nuclear scattering theories

    International Nuclear Information System (INIS)

    Di Marzio, F.; University of Melbourne, Parkville, VIC

    1999-01-01

    A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed

  11. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  12. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao Jin [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia); Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Wan, Pingyu [Department of Applied Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing (China); Foley, Roy [Department of Environment and Climate Change, Environmental Forensic and Analytical Science Section, New South Wales (Australia)

    2012-11-15

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    International Nuclear Information System (INIS)

    Yang, Xiao Jin; Wan, Pingyu; Foley, Roy

    2012-01-01

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  15. ADSORPTION AND RELEASING PROPERTIES OF BEAD CELLULOSE

    Institute of Scientific and Technical Information of China (English)

    A. Morales; E. Bordallo; V. Leon; J. Rieumont

    2004-01-01

    The adsorption of some dyes on samples of bead cellulose obtained in the Unit of Research-Production "Cuba 9"was studied. Methylene blue, alizarin red and congo red fitted the adsorption isotherm of Langmuir. Adsorption kinetics at pH = 6 was linear with the square root of time indicating the diffusion is the controlling step. At pH = 12 a non-Fickian trend was observed and adsorption was higher for the first two dyes. Experiments carried out to release the methylene blue occluded in the cellulose beads gave a kinetic behavior of zero order. The study of cytochrome C adsorption was included to test a proteinic material. Crosslinking of bead cellulose was performed with epichlorohydrin decreasing its adsorption capacity in acidic or alkaline solution.

  16. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  17. The role of mineral surface chemistry in modified dextrin adsorption.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  18. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges

    Directory of Open Access Journals (Sweden)

    Xingmao Ma

    2016-05-01

    Full Text Available The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  19. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution.

    Science.gov (United States)

    Nam, Seung-Woo; Jung, Chanil; Li, Hang; Yu, Miao; Flora, Joseph R V; Boateng, Linkel K; Her, Namguk; Zoh, Kyung-Duk; Yoon, Yeomin

    2015-10-01

    The adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling. The adsorption behaviors of DCF and SMX were investigated in terms of GO dosage, contact time, and pH. Additionally, the effects of sonication on GO adsorption were examined. GO adsorption involves "oxygen-containing functional groups" (OCFGs) such as COOH, which exhibit negative charges over a wide range of pH values (pH 3-11). DCF (-18.8 kcal mol(-1)) had a more favorable binding energy on the GO surface than SMX (-15.9 kcal mol(-1)). Both DCF and SMX were removed from solution (adsorbed to GO), up to 35% and 12%, respectively, within 6h, and an increase in GO dosage enhanced the removal of DCF. Electrostatic repulsion occurred between dissociated DCF/SMX and the more negatively charged GO at basic pH (>pKa). The sonication of GO significantly improved the removal of DCF (75%) and SMX (30%) due to dispersion of exfoliated GO particles and the reduction of OCFGs on the GO surface. Both DCF and SMX in the adsorption isotherm were explained well by the Freundlich model. The results of this study can be used to maximize the adsorption capacities of micropollutants using GO in water treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    Science.gov (United States)

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-01-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 deg. C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 deg. C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  2. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  3. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Minmin [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Hou, Li-an, E-mail: 11liuminmin@tongji.edu.cn [School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xi, Beidou; Zhao, Ying; Xia, Xunfeng [China Research Academy of Environmental Science, Beijing 200012 (China)

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and {sup 29}Si and {sup 27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  4. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges.

    Science.gov (United States)

    Ma, Xingmao; Agarwal, Sarang

    2016-05-12

    The superior adsorption capacity of carbon nanotubes has been well recognized and there is a wealth of information in the literature concerning the adsorption of unionized organic pollutants on carbon nanotubes. Recently, the adsorption of emerging environmental pollutants, most of which are ionizable, has attracted increasing attention due to the heightened concerns about the accumulation of these emerging contaminants in the environment. These recent studies suggest that the adsorption of emerging ionizable contaminants on carbon nanotubes exhibit different characteristics than unionized ones. For example, a new charge-assisted intermolecular force has been proposed for ionizable compounds because some adsorption phenomenon cannot be easily explained by the conventional force theory. The adsorption of ionizable compounds also displayed much stronger dependence on solution pH and ionic strength than unionized compounds. This article aims to present a brief review on the current understanding of the adsorption of emerging ionizable contaminants to carbon nanotubes and discuss further research needs required to advance the mechanistic understanding of the interactions between ionizable contaminants and carbon nanotubes.

  5. Protein Adsorption to In-Line Filters of Intravenous Administration Sets.

    Science.gov (United States)

    Besheer, Ahmed

    2017-10-01

    Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Adsorptive property of rice husk for uranium

    International Nuclear Information System (INIS)

    Feng Yuan; Yi Facheng

    2011-01-01

    The adsorption experiments were researched by using the rice husk powder as the adsorbent to remove the U(VI) from aqueous solution. The affecting factors on the U(VI) removal rate such as rice husk particle size, pH, initial concentration, adsorption time, temperature and dosage of adsorbent were evaluated, kinetics and adsorption isotherm law were analyzed, and mechanisms for U(VI) removal were discussed by SEM, FT-IR and energy spectrum analysis. The results show that U(VI) removal rate increases with the decrease of the size of adsorbent, and with the increase of adsorbent dosage and temperature. The process of adsorption can be described by an equation of pseudo 2nd-order mode, and the relation coefficient is 1. The process of adsorption also fits to Freundlich isotherm (R 2 =0.995 4). The adsorption of uranium on rice husk changes the surface form of rice husk. Hydroxyl, carboxylic, P-O and Si-O are the main functional groups in the reaction with U(VI). The adsorption mechanism is mixture adsorption, including the physical and chemical adsorption. (authors)

  7. Evaluation of adsorption and Fenton-adsorption processes for landfill leachate treatment

    OpenAIRE

    San Pedro-Cedillo, L.; Méndez-Novelo, R.I.; Rojas-Valencia, M.N.; Barceló-Quintal, M.; Castillo-Borges, E.R.; Sauri-Riancho, M.R.; Marrufo-Gómez, J.M.

    2015-01-01

    The objective of this research was to compare the adsorption and Fenton-adsorption treatments for the removal of contaminants in leachate from landfills and thus determine the most efficient one. The adsorption process with granular activated carbon was tested in two types of samples: raw leachate and leachate treated by Fenton. The results showed color, chemical oxygen demand (COD), total nitrogen and total organic carbon (TOC) removal rates higher than 99% through the Fenton-adsorption proc...

  8. The problems of accountable and analytical procuring of enterprise management

    Directory of Open Access Journals (Sweden)

    Kovalova Tatiana Volodymyrivna

    2016-02-01

    Full Text Available This article investigated main aspects of accountable and analytical procuring of enterprise management. It was found essence of accountable and analytical procuring of enterprise management, purpose, functions and tasks. It was determined main elements and essence of accountable and analytical information taking into consideration needs of modern management. In the article are exposed structural elements of accountable and analytical procuring. It was formed conceptual approaches of building accountable and analytical procuring of enterprise management. It was analyzed main problems of improving accountable and analytical informational procuring of taking managerial decisions with the aim of solving economic problems due to current situation of national economy.

  9. Kinetics of Cs adsorption on soils with different mineralogical composition

    International Nuclear Information System (INIS)

    Nakao, Atsushi; Funakawa, Shinya; Kosaki, Takashi

    2004-01-01

    137 Cs is one of the main radioisotopes released into the environment by nuclear powerstation accidents (e.g. Chernobyl) and nuclear weapons tests. Many studies have shown that Cs tends to remain at surface soils due to the high adsorption selectivity of clay minerals for this element. This behavior of the Cs + ion is, however, assumed to vary significantly depending on the mineralogical composition of the soil. The main objective of this study is to analyze the kinetics of Cs adsorption on soils with different mineralogical composition. Soil samples used in this study were Mollisols (Um) and Alfisols (Ua) from Ukraine, Ultisols (Tu) from Thailand and Spodosols (Js) from Japan. The dominant clay species of these soils are montmorillonite (Um, Ua), kaolinite and mica (Tu) and beidellite (Js). The rates of Cs adsorption and Ca or K desorption were measured using a continuous flow method. Soil samples that were previously saturated with Ca 2+ were leached with a 0.75 mmol/l Cs + solution at a constant rate of 2.0 ml/min. The leachate was collected every 10 minutes and the concentrations of Cs + , Ca 2+ and K + of each aliquot were measured by atomic adsorption spectrophotometry (Cs + , Ca 2+ ) and flame spectrophotometry (K + ). The datasets obtained were simulated using the first order kinetic model: y = a(1 - exp(-kt)), where a is the adsorption (desorption) maximum and k the rate constant. It is here assumed that Ca 2+ is desorbed from cation exchange sites and K + desorbed from the frayed edges of micaceous minerals. The values of a obtained for both Cs adsorption and Ca desorption was in the order Js>Um>Tu>Ua, whereas the values of k were in the order Tu>Ua>Um>Js. This result reflects the values of permanent negative charge of clays which are originated from the substitution of cations in the structure of 2:1 clay minerals. The value of a for K + desorption was, however, highest in Tu, suggesting that the values of Cs + -exchangeable K + correspond to the amount

  10. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA

    Directory of Open Access Journals (Sweden)

    Hoda Fakour

    2014-10-01

    Full Text Available Due to the importance of adsorption kinetics and redox transformation of arsenic (As during the adsorption process, the present study elucidated natural organic matter (NOM effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA, as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions.

  11. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    Science.gov (United States)

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  12. Effect of the degree of oxidation and defects of graphene oxide on adsorption of Cu2+ from aqueous solution

    Science.gov (United States)

    Tan, Ping; Bi, Qi; Hu, Yongyou; Fang, Zheng; Chen, Yuancai; Cheng, Jianhua

    2017-11-01

    Graphene oxide (GO) is a promising adsorbent for heavy metal ions from water. However, the relationship between the degree of oxidation and defects of GO and the adsorption performance has been rarely reported. In this study, a series of GO with different degree of oxidation (GO1, GO5, GO6) and defects (GO1-GO4) were prepared by the improved Hummers method and were employed to explore the relationship between the degree of oxidation and defects of GO and the Cu2+ adsorption. The results showed that the adsorption of Cu2+ on GO was strongly dependent on the degree of oxidation and independent of the defects under various pH levels and ionic strength. The adsorption isotherms of Cu2+ on GO with different degree of oxidation and defects were well described by the Langmuir model and the maximum adsorption capacity of GO for Cu2+ increased with the improvement of the degree of oxidation but was independent of the defects, indicating that the adsorption of Cu2+ on GO was mainly proportional to the degree of oxidation but become insignificant in the structure integrity of aromatic matrixes, which might be due to the shielding effect of oxygen-containing groups. The adsorption of Cu2+ on GO with different degree of oxidation and defects reached an equilibrium state after 50 min, the adsorption kinetics followed the pseudo-second-order model and the adsorption process was controlled by the degree of oxidation.

  13. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  14. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  15. Sour pressure swing adsorption process

    Science.gov (United States)

    Bhadra, Shubhra Jyoti; Wright, Andrew David; Hufton, Jeffrey Raymond; Kloosterman, Jeffrey William; Amy, Fabrice; Weist, Jr., Edward Landis

    2017-11-07

    Methods and apparatuses for separating CO.sub.2 and sulfur-containing compounds from a synthesis gas obtained from gasification of a carbonaceous feedstock. The primary separating steps are performed using a sour pressure swing adsorption (SPSA) system, followed by an acid gas enrichment system and a sulfur removal unit. The SPSA system includes multiple pressure equalization steps and a rinse step using a rinse gas that is supplied from a source other than directly from one of the adsorber beds of the SPSA system.

  16. The Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2007-01-01

    The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....

  17. Signals: Applying Academic Analytics

    Science.gov (United States)

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  18. Analytic Moufang-transformations

    International Nuclear Information System (INIS)

    Paal, Eh.N.

    1988-01-01

    The paper is aimed to be an introduction to the concept of an analytic birepresentation of an analytic Moufang loop. To describe the deviation of (S,T) from associativity, the associators (S,T) are defined and certain constraints for them, called the minimality conditions of (S,T) are established

  19. Quine's "Strictly Vegetarian" Analyticity

    NARCIS (Netherlands)

    Decock, L.B.

    2017-01-01

    I analyze Quine’s later writings on analyticity from a linguistic point of view. In Word and Object Quine made room for a “strictly vegetarian” notion of analyticity. In later years, he developed this notion into two more precise notions, which I have coined “stimulus analyticity” and “behaviorist

  20. Learning analytics dashboard applications

    NARCIS (Netherlands)

    Verbert, K.; Duval, E.; Klerkx, J.; Govaerts, S.; Santos, J.L.

    2013-01-01

    This article introduces learning analytics dashboards that visualize learning traces for learners and teachers. We present a conceptual framework that helps to analyze learning analytics applications for these kinds of users. We then present our own work in this area and compare with 15 related

  1. Learning Analytics Considered Harmful

    Science.gov (United States)

    Dringus, Laurie P.

    2012-01-01

    This essay is written to present a prospective stance on how learning analytics, as a core evaluative approach, must help instructors uncover the important trends and evidence of quality learner data in the online course. A critique is presented of strategic and tactical issues of learning analytics. The approach to the critique is taken through…

  2. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  3. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. A primer of analytical mechanics

    CERN Document Server

    Strocchi, Franco

    2018-01-01

    This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the dynamics, rather than the full set of vectors which describe the forces in Cartesian Newtonian Mechanics; 4) in the Hamiltonian formulation, the corresponding evolution equations are of first order in time and are fully governed by the Hamiltonian function (usually corresponding to the energy); 5) the emergence of the Hami...

  5. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    Science.gov (United States)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  6. Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites

    International Nuclear Information System (INIS)

    Liu, Mengdi; Xu, Jing; Cheng, Bei; Ho, Wingkei; Yu, Jiaguo

    2015-01-01

    Graphical abstract: - Highlights: • Mg(OH) 2 hexagonal nanosheets with various mass of GO were prepared. • Mg(OH) 2 –GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH) 2 hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH) 2 hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH) 2 hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH) 2 . The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g −1 . The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol −1 , suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the strong electrostatic attraction

  7. Synthesis and adsorption performance of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mengdi; Xu, Jing; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-03-30

    Graphical abstract: - Highlights: • Mg(OH){sub 2} hexagonal nanosheets with various mass of GO were prepared. • Mg(OH){sub 2}–GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH){sub 2} hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH){sub 2} hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH){sub 2}. The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g{sup −1}. The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol{sup −1}, suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the

  8. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  9. The flotation and adsorption of mixed collectors on oxide and silicate minerals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua

    2017-12-01

    The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on

  10. Remediation of deltamethrin contaminated cotton fields: residual and adsorption assessment

    Directory of Open Access Journals (Sweden)

    Rafique Uzaira

    2016-01-01

    Full Text Available Pakistan occupies a significant global position in the growing of high quality cotton. The extensive application of pesticides on agricultural products leads to environmental risk due to toxic residues in air, water and soil. This study examined the chemodynamic effect of Deltamethrin on cotton fields. Samples were collected from the cotton fields of D.G. Khan, Pakistan and analyzed for heavy metal speciation patterns. Batch experiments were administered in order to study the adsorption of Deltamethrin in cotton fields. The effect of different factors including pH, adsorbate dose, and adsorbent mass on adsorption were studied. It was observed that in general, adsorption increased with increases in the mass of adsorbate, although the trends were irregular. Residual fractions of deltamethrin in the soil and water of cotton fields were analyzed to assess concentrations of xenobiotics bound to soil particles. Results indicated that such residues are significantly higher in soil samples due to high Koc in comparison to water, indicating the former is an efficient degradation agent. Results from the batch experiment resulted in 95% removal with alkaline pH and an adsorbent-adsorbate ratio of 250:1. These results may be used to environment friendly resource management policies.

  11. Strong adsorption of chlorotetracycline on magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Di; Niu, Hongyun; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-01-01

    Highlights: → Fe 3 O 4 MNPs selectively adsorb CTC through chelation between CTC and Fe atoms. → Fe 3 O 4 MNPs remain high adsorption ability to CTC in environmental water samples. → Fe 3 O 4 MNPs sorbed with CTC are easily collected from water under a magnetic field. → The collected Fe 3 O 4 MNPs are regenerated by treatment with H 2 O 2 or calcination. - Abstract: In this work, environmentally friendly magnetite nanoparticles (Fe 3 O 4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe 3 O 4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe 3 O 4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe 3 O 4 (476 mg g -1 ) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L -1 . But high concentration of HA (>20 mg L -1 ) increased the CTC adsorption on Fe 3 O 4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe 3 O 4 MNPs were regenerated by treatment with H 2 O 2 or calcination at 400 o C in N 2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.

  12. Adsorption and catalysis: The effect of confinement on chemical reactions

    International Nuclear Information System (INIS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, MaIgorzata

    2005-01-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area

  13. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: behavior and mechanism.

    Science.gov (United States)

    Shuang, Chendong; Wang, Jun; Li, Haibo; Li, Aimin; Zhou, Qing

    2015-01-01

    Polystyrenic (PS) anion-exchange resin and polyacrylic (PA) anion-exchange resin were used to investigate the effect of resin chemical structure on the adsorption of humic acid (HA). Due to the rearrangement of HA to form layers that function as barricades to further HA diffusion, PS resin exhibited 12.4 times slower kinetics for the initial adsorption rate and 8.4 times for the diffusion constant in comparison to that of the PA resin. An HA layer and a spherical cluster of HA can be observed on the surface of the PS and PA resins after adsorption, respectively. The considerable difference in HA adsorption between the PS and PA resins was due to the difference in molecule shape for interaction with different resin structures, which can essentially be explained by the hydrophobicity and various interactions of the PS resin. A given amount of HA occupies more positively charged sites and hydrophobic sites on the PS resin than were occupied by the same amount of HA on the PA resin. Increased pH resulted in an increase of HA adsorption onto the PA resin but a decrease in adsorption onto PS resin, as the non-electrostatic adsorption led to electrostatic repulsion between the HA attached to the resin and the HA dissolved in solution. These results suggest higher rates of adsorption and higher regeneration efficiency for interaction of HA with more hydrophilic anion exchange materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Adsorption of carbamazepine by carbon nanotubes: Effects of DOM introduction and competition with phenanthrene and bisphenol A

    International Nuclear Information System (INIS)

    Lerman, Ilya; Chen, Yona; Xing, Baoshan; Chefetz, Benny

    2013-01-01

    Carbon nanotubes, organic contaminants and dissolved organic matter (DOM) are co-introduced into the environment. Thus, the interactions between these components have to be evaluated to better understand their environmental behavior. In this study, single-walled carbon nanotubes (SWCNTs) were used as sorbent, carbamazepine was the primary adsorbate, and bisphenol A and phenanthrene were used as competitors. Strong competition with bisphenol A and no effect of phenanthrene on adsorption of carbamazepine was obtained. The hydrophobic neutral fraction of the DOM exhibited the strongest reductive effect on carbamazepine adsorption, most probably due to interactions in solution. In contrast, the hydrophobic acid fraction decreased carbamazepine adsorption mainly via direct competition. When DOM and bisphenol A were co-introduced, the adsorption of carbamazepine was significantly reduced. This study suggests that the chemical nature of DOM can significantly affect the sorptive behavior of polar organic pollutants with carbon nanotubes when all are introduced to the aquatic system. Highlights: •Bisphenol A is an efficient competitor for carbamazepine. •Phenanthrene does not compete with carbamazepine. •DOM exhibited strong reductive effect on carbamazepine adsorption by SWCNTs. •HoN fraction decreased carbamazepine adsorption due to interactions in solution. •HoA fraction decreased carbamazepine adsorption via direct competition. -- In multi-component system including the main adsorbate and competitor, DOM exhibited significant effect on adsorption of contaminants by carbon nanotubes

  15. Interaction of horophile impurities in multi-component alloy during their internal adsorption

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Darovskikh, E.G.; Zhuravlev, B.F.; AN Ukrainskoj SSR, Donetsk. Fiziko-Tekhnicheskij Inst.; AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1975-01-01

    The X-ray spectral analysis was used to investigate into the phenomenon of intercrystalline internal adsorption of different elements present in a multicomponent Nb-base alloy. The samples to be investigated underwent various kinds of heat treatments within the temperature range of 800 to 1800 deg C with different hold-up periods during heating and with different cooling rate. The annealing was performed in a high temperature vacuum furnace. The surface enrichment of the intercrystalline fractures was evaluated from the ratio of the element characteristic line intensity on the X-ray spectrograms of the fractures and sections. The studies have shown, that along with a possible intercrystalline internal adsorption of different impurities, the cases occur when one of the impurities is more readily adsorbed, while suppressing or preventing the adsorption of other elememts. The ''exchange'' of competing impurities proceeds by way of diffusion and is temperature dependent. The intercrystalline internal adsorption of chromium occurs within the temperature range of 1800 to 1500 deg C. Zr exhibits a noticeable intercrystalline internal adsorption at 800 deg C, whereas at 1100 deg and above there exists practically no intercrystalline internal adsorption of Zr. The intercrystalline internal adsorption of W and Mn occurs at about 1800 deg C, that of Mo at 1500 deg C. An evident enrichment of the fracture surfaces with Cu takes place during heating at 1100 deg within 200 hrs after quenching or slow cooling from 1800 deg C. Zirconium not only occupies the places of a possible adsorption in the structure of intercrystalline joints, getting vacant due to Cr adsorption (at 800 deg), but replaces its competitors actively at this temperature

  16. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.

    Science.gov (United States)

    Molavi, Hossein; Shojaei, Akbar; Pourghaderi, Alireza

    2018-03-27

    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption kinetics and excellent selectivity for MO over MB. These results suggested that the adsorption tendency of UND toward anionic MO dye followed not only by electrostatic interactions but also via the chemical interaction caused by the strong hydrogen bond between the sulfonate groups of MO and the oxygen containing groups on the surface of UND. In contrast, ONDs exhibited higher adsorption capacity for cationic MB whose tendency toward MB increased by increasing the thermal oxidation time due to the promotion of the negative charge on the surface of OND leading to the higher electrostatic attraction. The adsorption rate of MB on ONDs was also very high. Kinetics data was well fitted with the pseudo- second-order model for most of the adsorbents. The adsorption selectivity analysis revealed that ONDs displayed more adsorption capacity for MB compared with MO which was also attributed to high electrostatic interactions of cationic dye with negative charges of ONDs. Finally, the release behavior of NDs was also demonstrated after soaking in ethanol and acetone. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    Science.gov (United States)

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  18. Adsorption pertechnetate ions on the substituted Sn-hydroxyapatite

    International Nuclear Information System (INIS)

    Hamarova, A.; Rosskopfova, O.; Pivarciova, L.

    2015-01-01

    Hydroxyapatite is suitable adsorbent for heavy metals and radionuclides due to its large surface area, high stability under redox conditions. SnCl 2 for its reducing properties is used in biomedical applications and industrial technologies, for its reducing properties. The adsorption of TcO 4 - to the HA samples, prepared by wet precipitation method, was studied by the d radio-indication method. Radionuclide 99m Tc was used as radioisotope indicator. The effect of contact time on the adsorption of 99m TcO 4 - ions on the Sn-HA was studied. Sn 2+ ions reduced Tc (VII) to Tc (IV) forming TcO 2 , TcO(OH) 2 or more precisely TcO 2 ·2H 2 O, which can be adsorbed on the surface of the HA, or to form complexes on the surface of the hydroxyapatite. (authors)

  19. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.

    Science.gov (United States)

    Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P

    2009-12-16

    We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions.

  20. Radiation-adsorption purification of effluents containing pesticides

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Shubin, V.N.; Nikonorova, G.K.; Zorin, D.M.; Sosnovskaya, A.A.; Petryaev, E.P.; Vlasova, V.I.; Edimicheva, I.P.; Subbotina, N.N.; Belorusskij Gosudarstvennyj Univ., Minsk)

    1986-01-01

    The radiation-adsorption purification is one of the new direction in the radiation purification of natural wastes and effluents containing pesticides. This method combines the conventional adsorption purification with radiation treatment of the sorbent, and the result the protection time of the sorbent increases due to the radiation regeneration of carbon. In present work the method was used for purification of effluents from pesticides, such as 4,4'Dichlorodiphenyltrichloroethane /DDT/, 1,2,3,4,5,6-hexachlorocyclohexane /HCCH/, dimethyl 2,2-dichlorovinylphosphate /DDVF/ and petroleum products (a mixture of kerosene and xylene in ratio 7:1). Such effluents are formed at factories producing an insecticide aerosol 'Prime-71'. Three investigations were carried out on model with a solution similar composition to industrial effluents. (author)

  1. Iodide adsorption on the surface of chemically pretreated clinoptilolite

    International Nuclear Information System (INIS)

    Chmielewska-Horvatova, E.; Lesny, J.

    1995-01-01

    The possibility to use the monoionic Ag +- form (eventually Hg +- and Hg 2+ -forms) of clinoptilolite of domestic origin for radioactive iodide elimination from waters has been studied. The capacity of the monoforms of clinoptilolite towards iodide exceeds many times that of the capacity of clinoptilolite in natural form. Due to the low solubility product of AgI, Hg 2 I 2 and HgI 2 iodides generate precipitates on the zeolite surface. Rtg analyses of the silver form of clinoptilolite after sorption of iodide demonstrate the formation of new crystals on the zeolite surface. The influence of interfering anions on the adsorption capacity of silver clinoptilolite towards iodide was investigated, too. Kinetic curves of iodide desorption from the surface of silver and mercury clinoptilolite were compared. Simultaneously, adsorption isotherms for the systems aqueous iodide solution/Ag-, Hg-clinoptilolite were determined. (author) 6 refs.; 7 figs.; 4 tabs

  2. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  3. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Directory of Open Access Journals (Sweden)

    Camilo Hernán Cruz Vélez

    2008-09-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  4. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    Science.gov (United States)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  5. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Reyhaneh; Saadi, Zahra; Fazaeli, Reza; Fard, Narges Elmi [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Industrial wastewater polluted with various contaminants, including heavy metals, dyes, etc., endangers human health and the environment. Various separation techniques have been developed for the removal of pollutants from aqueous solutions. Adsorption process has drawn considerable attention due to its simplicity of design, high removal efficiency, even at dilute concentration, and economical aspect. We reviewed the most common two, three, four, and five parameter adsorption isotherm models corresponding to monolayer and multilayer adsorption on the basis of parameters that can be used for exploring novel adsorbents. Thermodynamic assumptions of the models give information about the surface properties, capacity of the adsorbent and adsorption mechanism. Seven error functions were investigated to evaluate the fitness quality of isotherm models with the experimental equilibrium data.

  6. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  7. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3

  8. Adsorption of lysozyme unto silica and polystyrene surfaces in ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... surfaces were well fitted by the Langmuir adsorption isotherm model with maximum adsorption .... following reasons: (1) Lysozyme is a globular protein with ... vigorously for 1 h to attain equilibrium adsorption and allowed to.

  9. Determination of adsorption parameters in numerical simulation for polymer flooding

    Science.gov (United States)

    Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu

    2018-02-01

    A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.

  10. Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol

    Directory of Open Access Journals (Sweden)

    Milan Sýs

    2017-01-01

    Full Text Available Adsorptive stripping voltammetry (AdSV of retinol at solid glassy carbon electrode (GCE, carbon paste electrode (CPE covered by thin layer of multi-wall carbon nanotubes (CPE/MWCNTs and carbon paste electrode covered by thin layer of single layer graphene (CPE/Graphene was compared with an extractive stripping voltammetry (ExSV into silicone oil (SO as lipophilic binder of glassy carbon paste electrode (GCPE. All types of selected working electrodes were characterized by a scanning electron microscopy to determine overall morphology of electrode surfaces together with spatial arrangement of used carbon particles. The retinol, also known as vitamin A1, was chosen as a model analyte because it is the most biologically active representative of retinoids which are classified as a significant group of lipophilic vitamins. Based on this comparison, it was observed that electrochemical method with high sensitivity (ExSV at GPCE is generally characterized by shorter linear range of the calibration curve than in case of AdSV at CPE/MWCNTs or CPE/Graphene. Unlike AdSV at solid GCE, all other tested electrochemical methods could represent suitable analytical tools for monitoring of retinoids in different types of foodstuffs. Especially, content of retinol up to tenths milligrams can be easily determined using ExSV. Additionally, negative interference of chemical species present in real samples is minimal in comparison with direct voltammetric methods performed in supporting electrolytes based on organic solvents due to application of accumulation step in "ex-situ" mode.

  11. Physical Adsorption: Experiment, Theory and Application

    DEFF Research Database (Denmark)

    Marcussen, Lis; Kjær, Ulla Dorte; Nielsen, Peter A.

    .ADSORPTION/DESORPTION IN BUILDING MATERIALS: Short description of our research project which deals with lab size and full scale experiments, mathematical modelling and development of a standard test method for characterization of the sorption properties of indoor materials.STUDIES OF ADSORPTION/DESORPTION IN DUST...

  12. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  13. Bromine pretreated chitosan for adsorption of lead

    Indian Academy of Sciences (India)

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine ...

  14. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  15. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  16. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  17. Molecular Simulation of Adsorption in Microporous Materials

    OpenAIRE

    Yiannourakou M.; Ungerer P.; Leblanc B.; Rozanska X.; Saxe P.; Vidal-Gilbert S.; Gouth F.; Montel F.

    2013-01-01

    The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm). Adsorption was computed in the Grand Canonical ensemble ...

  18. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

    International Nuclear Information System (INIS)

    Jang, Hong; Lee, Jay H.; Braatz, Richard D.

    2016-01-01

    This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

  19. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    Science.gov (United States)

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  20. Google analytics integrations

    CERN Document Server

    Waisberg, Daniel

    2015-01-01

    A roadmap for turning Google Analytics into a centralized marketing analysis platform With Google Analytics Integrations, expert author Daniel Waisberg shows you how to gain a more meaningful, complete view of customers that can drive growth opportunities. This in-depth guide shows not only how to use Google Analytics, but also how to turn this powerful data collection and analysis tool into a central marketing analysis platform for your company. Taking a hands-on approach, this resource explores the integration and analysis of a host of common data sources, including Google AdWords, AdSens

  1. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  2. Caffeine adsorption of montmorillonite in coffee extracts.

    Science.gov (United States)

    Shiono, Takashi; Yamamoto, Kenichiro; Yotsumoto, Yuko; Yoshida, Aruto

    2017-08-01

    The growth in health-conscious consumers continues to drive the demand for a wide variety of decaffeinated beverages. We previously developed a new technology using montmorillonite (MMT) in selective decaffeination of tea extract. This study evaluated and compared decaffeination of coffee extract using MMT and activated carbon (AC). MMT adsorbed caffeine without significant adsorption of caffeoylquinic acids (CQAs), feruloylquinic acids (FQAs), dicaffeoylquinic acids (di-CQAs), or caffeoylquinic lactones (CQLs). AC adsorbed caffeine, chlorogenic acids (CGAs) and CQLs simultaneously. The results suggested that the adsorption selectivity for caffeine in coffee extract is higher in MMT than AC. The caffeine adsorption isotherms of MMT in coffee extract fitted well to the Langmuir adsorption model. The adsorption properties in coffee extracts from the same species were comparable, regardless of roasting level and locality of growth. Our findings suggest that MMT is a useful adsorbent in the decaffeination of a wide range of coffee extracts.

  3. Experimental determination of fission gas adsorption coefficients

    International Nuclear Information System (INIS)

    Lovell, R.; Underhill, D.W.

    1979-01-01

    Large charcoal beds have been used for a number of years for the holdup and decay of radioactive isotopes of krypton and xenon. Reliable design of these beds depends on an accurate knowledge of the adsorption coefficient of krypton and xenon on the adsorbents used in these beds. It is somewhat surprising that there is no standard procedure of determining the adsorption coefficient for krypton and xenon. Fundamental information needed to establish a standardized reproducible test procedure is given emphasizing the breakthrough curves commonly used to analyze dynamic adsorption data can lead to serious systematic errors and the fact that the adsorption coefficient, if calculated from the arithmetic holding time, is independent of geometric factors such as the shape of the adsorption bed and the irregular shape of the adsorbent

  4. Radon adsorption on present activated charcoals

    International Nuclear Information System (INIS)

    Kazankin, Yu.N.; Trofimov, A.M.; Mikhajlova, L.K.

    1978-01-01

    Radon adsorption from helium and air has been studied on modern activated carbons of SKT-1, SKT-2a, SKT-3, SKT-2b, SKT-6, PAU-1 within the temperature range from 100 to 80 deg. It has been shown that PAU-1 carbon has the highest activity with respect to radon in the temperature range studied. With decreasing temperature the adsorption coefficients increase sharply. It has been found that for the case of radon adsorption from helium the logarythm of the Henry coefficient linearly depends on the inverse value of absolute temperature. Adsorption of radon from air is inhibited and the above-cited relationship is deviated from linear. The results of calculating differential heats of radon and air adsorption as well as coefficients of radon and air separation on carbons are presented

  5. Adsorption of methyl iodide on charcoal

    International Nuclear Information System (INIS)

    Hidajat, K.; Aracil, J.; Kenney, C.N.

    1990-01-01

    The adsorption of non-radioactive methyl iodide has been measured experimentally over a range of conditions of concentration, and temperature on an activated charcoal. This is of interest since methyl iodide is formed from iodine fission products in gas cooled nuclear reactors. A mathematical model has also been developed which describes the rate of adsorption, under isothermal and linear adsorption isotherm conditions in a recycle adsorber. This model takes into account the resistance to adsorption caused by the surface adsorption, as well as the external and internal mass transfer resistances. The solution to the model for the recycle adsorber was obtained using a semidiscretisation method to reduce the partial differential equations to a system of stiff ordinary differential equations, and the resulting differential equations solved by a standard numerical technique. (author)

  6. Adsorption of xenon and krypton on shales

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  7. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption

    Directory of Open Access Journals (Sweden)

    Silvana Canzano

    2014-07-01

    Full Text Available In this work, an experimental and modeling analysis of the adsorption of four aromatic compounds (i.e., toluene, naphthalene, o-xylene and ethylbenzene onto a commercial activated carbon is carried out. The aim is to assess the suitability of the adsorption process for the treatment of polluted groundwater, also when a multiple contamination is detected. Batch adsorption tests from simulated polluted groundwater are performed in single-compound systems and in two binary systems (i.e., toluene + naphthalene and o-xylene + ethylbenzene, at constant temperature (20 °C and pH (7. Experimental results in single-compound systems reveal that all of the analytes are significantly adsorbed on the tested activated carbon. In particular, toluene and naphthalene adsorption capacities are the highest and of similar value, while for o-xylene and ethylbenzene, the performances are lower. The adsorption of these compounds seems to be influenced by a combined effect of several parameters, such as hydrophobicity, molecule size, structure of the molecule, etc. Experimental results in binary systems show a different behavior of the two systems, which confirms their complexity and explains the interest in these complex adsorption systems. In particular, toluene and naphthalene are mutually competitive, while in the case of o-xylene + ethylbenzene, only the former undergoes competitive effects. The analysis of the entire experimental data set is integrated with a dedicated modeling analysis using the extended Langmuir model. For both single-compound and binary systems, this model provides acceptable results, in particular for low equilibrium concentrations, like those more commonly found in groundwater, and for the compounds involved in adsorptive competitive effects.

  8. Adsorption of asymmetric rigid rods or heteronuclear diatomic moleculeson homogeneous surfaces

    Science.gov (United States)

    Engl, W.; Courbin, L.; Panizza, P.

    2004-10-01

    We treat the adsorption on homogeneous surfaces of asymmetric rigid rods (like for instance heteronuclear diatomic molecules). We show that the n→0 vector spin formalism is well suited to describe such a problem. We establish an isomorphism between the coupling constants of the magnetic Hamiltonian and the adsorption parameters of the rigid rods. By solving this Hamiltonian within a mean-field approximation, we obtain analytical expressions for the densities of the different rod’s configurations, both isotherm and isobar adsorptions curves. The most probable configurations of the molecules (normal or parallel to the surface) which depends on temperature and energy parameters are summarized in a diagram. We derive that the variation of Qv , the heat of adsorption at constant volume, with the temperature is a direct signature of the adsorbed molecules configuration change. We show that this formalism can be generalized to more complicated problems such as for instance the adsorption of symmetric and asymmetric rigid rods mixtures in the presence or not of interactions.

  9. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  10. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  11. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  12. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  13. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  14. Mobility Data Analytics Center.

    Science.gov (United States)

    2016-01-01

    Mobility Data Analytics Center aims at building a centralized data engine to efficiently manipulate : large-scale data for smart decision making. Integrating and learning the massive data are the key to : the data engine. The ultimate goal of underst...

  15. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  16. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  17. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  18. Encyclopedia of analytical surfaces

    CERN Document Server

    Krivoshapko, S N

    2015-01-01

    This encyclopedia presents an all-embracing collection of analytical surface classes. It provides concise definitions  and description for more than 500 surfaces and categorizes them in 38 classes of analytical surfaces. All classes are cross references to the original literature in an excellent bibliography. The encyclopedia is of particular interest to structural and civil engineers and serves as valuable reference for mathematicians.

  19. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  20. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  1. SRL online Analytical Development

    International Nuclear Information System (INIS)

    Jenkins, C.W.

    1991-01-01

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R ampersand D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R ampersand D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control ampersand Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications

  2. Adsorption mechanism of alkyl polyglucoside (APG) on calcite nanoparticles in aqueous medium at varying pH

    Science.gov (United States)

    Suh, Seokjin; Choi, Kyeong-Ok; Yang, Seung-Chul; Kim, Yeong Eun; Ko, Sanghoon

    2017-07-01

    In this study, adsorption mechanism of alkyl polyglucoside (APG) on calcium carbonate (CaCO3) nanoparticles (CCNPs) in aqueous medium at varying pH was identified. An initial adsorption of APG on CCNP surface seemed to be occurred due to the van der Waals force. An initial surface charge influenced determination of a major driving force, which resulted in hydrogen bonds (pH 7) and the hydrophobic interaction (pH 10) as a main sources of adsorption of APG on the CCNP surface. Even if the initial surface charge of CCNPs had little effect on a quantitative adsorption of APG on CCNPs, eventually, it influence on the definitive adsorption structure between APG and CCNPs and improvement of dispersion stability of CCNPs in water. In conclusion, it was revealed that 0.39% APG aqueous solution was most appropriate to improve the dispersion stability of CCNPs, which is postulated to be used effectively in food and pharmaceutical fields.

  3. In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique

    KAUST Repository

    Harms, Hauke A.

    2012-01-01

    Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO 2 films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured. © 2012 the Owner Societies.

  4. Adsorption recovery of thorium(IV) by Myrica rubra tannin and larch tannin immobilized onto collagen fibres

    International Nuclear Information System (INIS)

    Xuepin Liao; Li Li; Bi Shi

    2004-01-01

    Novel adsorbents which can concentrate Th(IV) in aqueous solution were prepared by immobilizing Myrica rubra tannin and larch tannin onto collagen fibre matrices. The adsorption capacities of the immobilized tannins to Th(IV) are related to temperature and pH value of the adsorption process. For example, when the initial concentration of Th(IV) was 116.0 mg x l -1 and the immobilized tannin was 100 mg, the adsorption capacities of immobilized Myrica rubra tannin and larch tannin were 55.98 mg Th(IV) x g -1 and 13.19 mg Th(IV) x g -1 , respectively at 303 K, and 73.67 mg Th(IV) x g -1 and 18.19 mg Th(IV) x g -1 at 323 K. It was also found that the higher adsorption capacity was obtained at higher pH value. The adsorption equilibrium data of the immobilized tannins for Th(IV) can be well fitted by the Langmuir model and the mechanism of the adsorption was found to be a chemical adsorption. In general, the adsorption capacity of immobilized Myrica rubra tannin to Th(IV) is significantly higher than that of immobilized larch tannin, probably due to the fact that the B ring of Myrica rubra tannin has a pyrogallol structure which has higher reaction activity with metal ions. The breakthrough point of the adsorption column of immobilized Myrica rubra tannin was at 33 bed volumes for the experimental system. The mass transfer coefficient of adsorption column determined by Adams-Bohart equation was 1.61 x 10 -4 l x mg -1 x min -1 . The adsorption column can be easily regenerated by 0.1 mol x l -1 HNO 3 solution, showing outstanding ability of concentrating Th(IV). (author)

  5. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    Science.gov (United States)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  6. Semi-analytical Study of a One-dimensional Contaminant Flow in a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The Bubnov-Galerkin weighted residual method was used to solve a one- dimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution.

  7. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    Science.gov (United States)

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  9. Langmuir and Freundlich Isotherm Adsorption Equations for Chromium (VI) Waste Adsorption by Zeolite

    International Nuclear Information System (INIS)

    Murni Handayani; Eko Sulistiyono

    2009-01-01

    The research of chromium (VI) waste adsorption by zeolite has done. Wastes which are produced by Industries, both radioactive waste and heavy metal waste need done more processing so that they are not endanger environment and human health. Zeolite has very well-ordered crystal form with cavity each other to way entirely so that cause surface wide of zeolite become very big and very good as adsorbents. This research intends to know appropriate isotherm adsorption method to determine maximum capacity of zeolite to chromium (VI) waste. The equations which used in adsorption process are Langmuir and Freundlich isotherm Adsorption equations. The instrument was used in adsorption process by using Atomic Adsorption Spectroscopy (AAS). The experiment result showed that the biggest mass of chromium (VI) metal ion which was absorb by zeolite in 20 ppm concentration was 7.71 mg/gram zeolite. Adsorption process of Chromium (VI) waste by zeolite followed Langmuir and Freundlich isotherm equations with R 2 >0,9 . Appropriate equation to determine maximum adsorption capacity of zeolite for chromium (VI) waste adsorption is Langmuir equation. The maximum adsorption capacity of zeolite is 52.25 mg/gram. (author)

  10. Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Evyapan, M., E-mail: mevyapan@gmail.com [Department of Physics, University of Balikesir, Balikesir, 10145 (Turkey); Chemical and Biological Engineering, University of Sheffield, Mappin Building, S1 3JD (United Kingdom); Dunbar, A.D.F. [Chemical and Biological Engineering, University of Sheffield, Mappin Building, S1 3JD (United Kingdom)

    2016-01-30

    Graphical abstract: The enhancement in the selectivity of the vapor sensing properties of free base porphyrin by controlling the size of the pores in the surface structure was carried out. It can be used as a size selective surface layer which limits the diffusion of analyte molecules into the sensor and in extreme cases stopping the diffusion completely. - Highlights: • Surface of a thin film takes and important part for its sensing characteristics. • A systematic surface modification was carried out in order to control the vapor accessibility. • Size dependant surfaces were fabricated. • Vapor diffusion through into thin film was controlled by modifying the surface structure. • Remarkable quantitative results showed the control on selectivity of the sensor by controlling the surface. - Abstract: This study reports an enhancement in the selectivity of the vapor sensing properties of free base porphyrin 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) Langmuir–Schaefer (LS) films. These sensors respond by changing color upon adsorption of the analyte gas to the sensor surface. The enhanced selectivity is achieved by adding selective barrier layers of 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[6]arene and 4-tert-Butylcalix[8]arene embedded in PMMA (Poly(methyl methacrylate)) on top of the porphyrin sensor films to control the gaseous adsorption onto the sensor surface. The Langmuir properties of EHO, PMMA and calix[n]arene monolayers were investigated by surface pressure–area (Π–A) isotherms in order to determine the most efficient transfer pressure. Six layer EHO films were transferred onto glass and silicon substrates to investigate their optical and structural characteristics. The three different calix[n]arenes were embedded within PMMA layers to act as the selective barrier layers which were deposited on top of the six layer EHO films. The different calix[n]arene molecules vary in size and each was mixed with PMMA in

  11. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.

    Science.gov (United States)

    Tang, Chuyang Y; Shiang Fu, Q; Gao, Dawen; Criddle, Craig S; Leckie, James O

    2010-04-01

    Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns, yet very limited information has been available on PFOS adsorption onto mineral surfaces. PFOS adsorption onto goethite and silica was investigated by batch adsorption experiments under various solution compositions. Adsorption onto silica was only marginally affected by pH, ionic strength, and calcium concentration, likely due to the dominance of non-electrostatic interactions. In contrast, PFOS uptake by goethite increased significantly at high [H+] and [Ca2+], which was likely due to enhanced electrostatic attraction between the negatively charged PFOS molecules and positively charged goethite surface. The effect of pH was less significant at high ionic strength, likely due to electrical double layer compression. PFOS uptake was reduced at higher ionic strength for a strongly positively charged goethite surface (pH 3), while it increased for a weakly charged surface (pH 7 and 9), which could be attributed to the competition between PFOS-surface electrostatic attraction and PFOS-PFOS electrostatic repulsion. A conceptual model that captures PFOS-surface and PFOS-PFOS electrostatic interactions as well as non-electrostatic interaction was also formulated to understand the effect of solution chemistry on PFOS adsorption onto goethite and silica surfaces. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Adsorption Kinetics of Carbamate Pesticide in Rice Field Soil

    Directory of Open Access Journals (Sweden)

    Soontree Khuntong

    2010-07-01

    Full Text Available Ultrasonic extraction (75.55% with petroleum ether:acetone (1:1, v/v was employed for extraction of carbofuran in rice field soil. The amounts of carbofuran were determined by reverse phase HPLC. The analytical method provided high precision and accuracy with the relative error of 0.47%. The percentage of recoveries varied from 84% to 77% in the con¬centration ranges of 10–40 mg/L of spiked soil samples. The carbofuran residues in the rice field soil significantly decreased year by year because of pesticide properties, soil properties and degradation conditions. A high amount of residues was found in the plots that contained high organic contents. The adsorption of carbofuran in soil reached equilibrium within 23 h. The percentage of adsorption varied from almost 30% to 80% depending on concentrations of carbofuran. The adsorption of carbofuran agreed with Freundlich isotherms; q = 7.07 x 10-5Cf2.5092; with the correlation coefficient of 0.9281. Organic carbon coefficient, Koc, was 1.91 x 10-3 mg/L calculated from Kd, and half-life (8.9 d of adsorbed carbofuran. The GUS index (6.37 calculated from Koc presented a high lixiviation potential. The positive ΔG indicated the non-spontaneous reaction. Carbofuran rapidly desorbed from soil at the desorption rate of 0.0228 mg/kg soil d. Kinetic studies provided the first order reaction with the reaction rate of 0.0779 mg/d and half-life of 8.9 days.

  13. Analytical quality by design: a tool for regulatory flexibility and robust analytics.

    Science.gov (United States)

    Peraman, Ramalingam; Bhadraya, Kalva; Padmanabha Reddy, Yiragamreddy

    2015-01-01

    Very recently, Food and Drug Administration (FDA) has approved a few new drug applications (NDA) with regulatory flexibility for quality by design (QbD) based analytical approach. The concept of QbD applied to analytical method development is known now as AQbD (analytical quality by design). It allows the analytical method for movement within method operable design region (MODR). Unlike current methods, analytical method developed using analytical quality by design (AQbD) approach reduces the number of out-of-trend (OOT) results and out-of-specification (OOS) results due to the robustness of the method within the region. It is a current trend among pharmaceutical industry to implement analytical quality by design (AQbD) in method development process as a part of risk management, pharmaceutical development, and pharmaceutical quality system (ICH Q10). Owing to the lack explanatory reviews, this paper has been communicated to discuss different views of analytical scientists about implementation of AQbD in pharmaceutical quality system and also to correlate with product quality by design and pharmaceutical analytical technology (PAT).

  14. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  15. Analytic manifolds in uniform algebras

    International Nuclear Information System (INIS)

    Tonev, T.V.

    1988-12-01

    Here we extend Bear-Hile's result concerning the version of famous Bishop's theorem for one-dimensional analytic structures in two directions: for n-dimensional complex analytic manifolds, n>1, and for generalized analytic manifolds. 14 refs

  16. Hydrogen adsorption on and solubility in graphites

    International Nuclear Information System (INIS)

    Kanashenko, S.L.; Wampler, W.R.

    1996-01-01

    The experimental data on adsorption and solubility of hydrogen isotopes in graphite over a wide range of temperatures and pressures are reviewed. Langmuir adsorption isotherms are proposed for the hydrogen-graphite interaction. The entropy and enthalpy of adsorption are estimated, allowing for effects of relaxation of dangling sp 2 bonds. Three kinds of traps are proposed: edge carbon atoms of interstitial loops with an adsorption enthalpy relative to H 2 gas of -4.4 eV/H 2 (unrelaxed, Trap 1), edge carbon atoms at grain surfaces with an adsorption enthalpy of -2.3 eV/H 2 (relaxed, Trap 2), and basal plane adsorption sites with an enthalpy of +2.43 eV/H 2 (Trap 3). The adsorption capacity of different types of graphite depends on the concentration of traps which depends on the crystalline microstructure of the material. The number of potential sites for the 'true solubility' (Trap 3) is assumed to be about one site per carbon atom in all types of graphite, but the endothermic character of this solubility leads to a negligible H inventory compared to the concentration of hydrogen in type 1 and type 2 traps for temperatures and gas pressures used in the experiments. Irradiation with neutrons or carbon atoms increases the concentration of type 1 and type 2 traps from about 20 and 200 appm respectively for unirradiated (POCO AXF-5Q) graphite to about 1500 and 5000 appm, respectively, at damage levels above 1 dpa. (orig.)

  17. The Accelerated Late Adsorption of Pulmonary Surfactant

    Science.gov (United States)

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  18. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  19. Fibrinogen adsorption on blocked surface of albumin.

    Science.gov (United States)

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  1. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  2. Adsorption of radiostrontium by soil treated with alkali metal hydroxides

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1980-01-01

    Twelve soils from areas used for the disposal of low-level radioactive solid waste at the Oak Ridge National Laboratory were examined for their ability to adsorb trace levels of Sr. Radiostrontium adsorption, in the presence of normal soil Ca levels, was determined following the addition of LiOH, NaOH, KOH, NaCl, and Na-polyacrylate. With soils from C horizons, the average thermodynamic equilibrium constant for the Na-Ca(Sr) exchange reaction decreased from 0.063 to 0.00041 after treatment with 0.4 meq/g of NaOH, indicating a large increase in the selectivity for Ca(Sr) adsorption. With samples from A or B horizons, this effect was not observed due to the dissolution of soil organic matter; Na-polyacrylate interfered with the adsorption of Ca(Sr) in the same manner as the NaOH-solubilized soil organic matter. Selectivity differences between trace levels of Sr and the macroamounts of soil Ca were quite small ( Na > K

  3. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  4. Adsorption of heavy metals by road deposited solids.

    Science.gov (United States)

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  5. BTEX and MTBE adsorption onto raw and thermally modified diatomite.

    Science.gov (United States)

    Aivalioti, Maria; Vamvasakis, Ioannis; Gidarakos, Evangelos

    2010-06-15

    The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950). Copyright 2010 Elsevier B.V. All rights reserved.

  6. Adsorption of tetracycline on soil and sediment: Effects of pH and the presence of Cu(II)

    International Nuclear Information System (INIS)

    Zhang Zheyun; Sun Ke; Gao Bo; Zhang Guixiang; Liu Xitao; Zhao Ye

    2011-01-01

    Tetracycline (TC) is frequently detected in the environment, however, knowledge on the environmental fate and transport of TC is still limited. Batch adsorption experiments of TC by soil and sediment samples were conducted. The distribution of charge and electrostatic potential of individual atoms of various TC species in the aqueous solution were determined using MOPAC version 0.034 W program in ChemBio3D Ultra software. Most of the adsorption isotherms on the soil, river and marine sediments were well fitted with the Freundlich and Polanyi-Manes (PMM) models. The single point organic carbon (OC)-normalized adsorption distribution coefficients (K OC ) and PMM saturated adsorption capacity (Q OC 0 ) values of TC were associated with the mesopore volume and clay content to a greater extent, indicating the mesopore volume of the soil and sediments and their clay content possibly influenced the fate and transport of TC in the natural environment. The adsorption of TC on soil and sediments strongly depended on the pH and presence of Cu(II). The presence of Cu(II) facilitated TC adsorption on soil and sediments at low pH (pH < 5), possibly due to the metallic complexation and surface-bridging mechanism by Cu(II) adsorption on soil and sediments. The cation exchange interaction, metallic complexation and Coulombic interaction of mechanisms for adsorption of TC to soils and sediments were further supported by quantum chemical calculation of various TC species in different pH.

  7. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae.

    Science.gov (United States)

    Sato, Hiroki; Toyoshima, Yoshiyuki; Shintani, Takahiro; Gomi, Katsuya

    2011-12-01

    We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.

  8. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Yiqing Guan

    2013-01-01

    Full Text Available Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents.

  9. Study on adsorption behavior of radioiodine gas using incense stick aerosol

    International Nuclear Information System (INIS)

    Murata, Mikio; Noguchi, Hiroshi; Kato, Shohei; Kokubu, Morinobu

    1987-01-01

    Adsorption of radioactive elemental iodine gas ( 131 I 2 ) on incense stick aerosol particles has been studied to provide basic data for a realistic and precise assessment of dose to the public due to radioiodine released from nuclear facilities. A mixture of iodine gas and aerosol was passed once through a glass vessel to cause the adsorption reaction. The adsorption was studied at different reaction times, initial I 2 gas concentrations and particle number concentrations. The results showed that the adsorption reached an equilibrium in about 2 min at the initial I 2 gas concentration of 10 -10 g/cm 3 . The proportion of iodine adsorbed by the aerosol particles was almost constant, about 25 % at the initial I 2 gas concentrations below 10 -11 g/cm 3 and at the reaction time of 1 min, and decreased with increase of the initial concentration over 10 -11 g/cm 3 . The adsorption isotherm of the aerosol for the gas was obtained from the experimental data. The semi-empirical equations to explain the adsorption reaction were also obtained based on the experimental data and the FUCHS's equation relating to vaporization of a droplet. The sticking probability in the equations was estimated to be 7.6 x 10 -3 . The calculated results using the equations were in good agreement with the experimental ones. (author)

  10. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  11. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  12. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    Science.gov (United States)

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    López-Albarrán, P. [Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Navarro-Santos, P., E-mail: pnavarrosa@conacyt.mx [Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Garcia-Ramirez, M. A. [Research Centre for Innovation in Aeronautical Engineering, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, CP 66451 Nuevo León (Mexico); Ricardo-Chávez, J. L. [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4" asección, CP 78216, San Luis Potosí, S. L. P. (Mexico)

    2015-06-21

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC{sub 3} island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  14. Single and competitive adsorption of OMPs by carbon nanotubes - mechanism and fitting models

    Science.gov (United States)

    Kamińska, Gabriela; Dudziak, Mariusz; Bohdziewicz, Jolanta; Kudlek, Edyta

    2017-11-01

    The adsorption of three organic micropollutants (diclofenac - DFN, pentachlorophenol - PCP and octylphenol - OP) on two kinds of carbon nanotubes (single walled carbon nanotubes - SWCNT and single walled carbon nanotubes with amine group - SWCNT-NH2) was investigated, in single and bicomponent solution at pH 5. SWCNT-NH2 had three times lower specific surface area than SWCNT. Significant differences were observed in sorption capacity of SWCNT and SWCNT-NH2 for given chemicals. The sorption uptake changes in the following order: OP > PCP > DFN for SWCNT and DFN > PCP > OP for SWCNT-NH2. A few times higher adsorption of OP on SWCNT came from low OP solubility in water in comparison to PCP and DFN. While, higher adsorption of DFN and PCP on SWCNT-NH2 was a result of electrostatic attraction between dissociated form of these chemicals and positively charged SWCNT-NH2 at pH 5. In adsorption from bicomponent solution, significant competition was observed between PCP and DFN due to similar adsorption mechanism on SWCNT-NH2. Opposite tendency was observed for SWCNT, DFN did not greatly affect adsorption of PCP and OP since they were very easily absorbable by sigma-sigma interaction.

  15. Single and competitive adsorption of OMPs by carbon nanotubes – mechanism and fitting models

    Directory of Open Access Journals (Sweden)

    Kamińska Gabriela

    2017-01-01

    Full Text Available The adsorption of three organic micropollutants (diclofenac – DFN, pentachlorophenol – PCP and octylphenol – OP on two kinds of carbon nanotubes (single walled carbon nanotubes – SWCNT and single walled carbon nanotubes with amine group – SWCNT-NH2 was investigated, in single and bicomponent solution at pH 5. SWCNT-NH2 had three times lower specific surface area than SWCNT. Significant differences were observed in sorption capacity of SWCNT and SWCNT-NH2 for given chemicals. The sorption uptake changes in the following order: OP > PCP > DFN for SWCNT and DFN > PCP > OP for SWCNT-NH2. A few times higher adsorption of OP on SWCNT came from low OP solubility in water in comparison to PCP and DFN. While, higher adsorption of DFN and PCP on SWCNT-NH2 was a result of electrostatic attraction between dissociated form of these chemicals and positively charged SWCNT-NH2 at pH 5. In adsorption from bicomponent solution, significant competition was observed between PCP and DFN due to similar adsorption mechanism on SWCNT-NH2. Opposite tendency was observed for SWCNT, DFN did not greatly affect adsorption of PCP and OP since they were very easily absorbable by sigma-sigma interaction.

  16. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  17. Radiation -adsorption treatment of pesticides by using wood pulp and bagasse pulp

    International Nuclear Information System (INIS)

    Abd El-Aal, S.E.; Sokker, S.S.; Dessooki, A.M.

    2005-01-01

    Alkaline pulping of pulp wood and bagasse using sodium hydroxide resulted in the reduction of lignin from the wood and bagasse fibers and consequently increase adsorption of the pesticide pollutants to these fibers. Three different types of pesticides were used in this study namely, metalaxyl, dicloran and arelon. which were irradiated at a dose of 4 kGy before adsorption treatment.The results show that moderate adsorption was observed for all pesticides when adsorption was carried out without alkaline pulping and irradiation. This is due to the presence of lignin which retard the adsorption process. Batch sorption experiments at different pH values (3, 7, 9) for the retention of these pesticides by pulp wood and pulp bagasse fibers indicated that sorption is governed by the interaction of the ionized form of these compounds with the polyhydroxyl structure of cellulose. The study shows that alkaline pulping of pulpwood and bagasse improves its ability towards adsorption of the radiation degraded pesticide molecules

  18. Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate.

    Science.gov (United States)

    Fatehi, Pedram; Shen, Jing; Hamdan, Fadia C; Ni, Yonghao

    2013-02-15

    In this work, the adsorption of lignocelluloses of pre-hydrolysis liquor (PHL) on precipitated calcium carbonate (PCC) was studied in the presence of poly diallyldimethylammonium chloride (PDADMAC) or cationic polyacrylamide (CPAM). The results revealed that adding PCC to PHL and subsequently adding cationic polymers to PHL/PCC systems was more effective than adding cationic polymers to PHL and then adding PCC to the cationic polymer/PHL systems. At the same dosage applied, PDADMAC resulted in a higher adsorption of lignocelluloses on PCC than CPAM did due to its higher charge density. The adsorption of lignocelluloses on PCC reached its maximum in 3h, and a high temperature reduced the adsorption level as the adsorption was an exothermic process. The maximum adsorptions of 530 mg/g oligo-sugars, 203 mg/g lignin and 58 mg/g furfural on PCC were achieved via adding 0.8 mg/g PDADMAC2 (i.e. higher MW PDADMAC) to PCC/PHL system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Using Adsorption Isotherm Studies to Determine Crosslinked Polymeric Adsorbent Performance in Heavy Metals Removal from Water

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2015-01-01

    Full Text Available Polymeric adsorbents are useful tools for removing heavy metals from aqueous solutions. Adsorption models are efficient tools for accurate prediction and evaluation of the practical adsorption process in real situation. In this study, the two isotherms of Langmuir and Dubinin-Radushkevich models were employed to investigate the absorption performance of chitosan, PVA, and chitosan/PVA blend (with a weight ratio of 1:1 in the removal of Mn (II and Ni (II from aqueous solutions. The PVA adsorbent was crosslinked by both chemical and radiation methods while the others were crosslinked only chemically due to Chitosan’s lack of resistance to radiation. The results showed that the Langmuir model fitted the experimental data better than the Dubinin-Radushkevich one for both metals. The maximum adsorption capacity (qmax of the Langmuir model showed that the PVA/Chitosan adsorbent had the best adsorption compared to other adsorbents, with 52.63 mg/g for Ni and 30.30 mg/g for Mn (evidently more Ni was absorbed than Mn. Also, maximum adsorption by the chemically crosslinked PVA was 38.46 mg/g for Ni and 19.23 mg/g for Mn, which exhibits a higher level than adsorption by the radiation crosslinked PVA The results indicate that absorption capacity depends on the type of adsorbed metal, absorbent structure, and the crosslinking method employed.

  20. Adsorption of gases on heterogeneous surfaces

    CERN Document Server

    Rudzinski, W

    1991-01-01

    All real solid surfaces are heterogeneous to a greater or lesser extent and this book provides a broad yet detailed survey of the present state of gas adsorption. Coverage is comprehensive and extends from basic principles to computer simulation of adsorption. Underlying concepts are clarified and the strengths and weaknesses of the various methods described are discussed.Key Features* Adsorption isotherm equations for various types of heterogeneous solid surfaces* Methods of determining the nature of surface heterogeneity and porosity from experimental data* Studies of pha

  1. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  2. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  3. ADSORPTION RATE CONSTANTS OF EOSIN IN HUMIN

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  4. Use of diatomaceous to liquid organic wastes adsorption

    International Nuclear Information System (INIS)

    Sanhueza M, Azucena; Padilla S, Ulises

    1999-01-01

    Background: One of the radioactive wastes that the Radioactive Wastes Management Unit must process are organic liquids from external generators and from sections of the Chilean Nuclear Energy Commission (CCHEN). The wastes from external generators contain H 3 and C 14; while the wastes from the CCHEN are contaminated with uranium. The total volume of liquid organic wastes that must be treated is 5 m3. The options recommended for processing these wastes are incineration or the adsorption of the organic liquid by some adsorbing medium and its subsequent immobilization in cement molds. Due to the cost of incineration, the adsorption method was chosen for study. Objective: To find the optimum amount of adsorbent to be saturated with radioactive organic liquid from liquid scintillation and to study immobilization in cement molds. Methodology: Adsorption granulated (1568 Merck) and diatom earth were tested as adsorbent mediums. The adsorbents were mixed in different ratios of volume with the organic liquid. Then the waste was mixed with different water/cement ratios to define the best immobilization conditions. Conclusions: The tests carried out with 2 adsorbents recommended in the literature and available in the CCHEN show that as adsorbent waste ratio decreases, the percentage of liquid adsorbed increases, as expected: a greater volume of adsorbent retains a greater quantity of liquid, with an increase in the final volume, depending on the adsorbent used. Of these adsorbents, the diatom earth was better for treating liquid organic wastes. It had 100% adsorption and an increased volume of 0%, which is more than enough from the volumetric point of view of waste management. The ratio 0.8 liquid/adsorbent also showed good characteristics, but more study is needed to decide on the above, since liquid remains to be adsorbed. This work must continue to study the repeatability of results, to obtain physical and radiological characteristics for the immobilized products and to

  5. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  6. The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads.

    Science.gov (United States)

    Xia, Meng; Zheng, Xianming; Du, Mingyang; Wang, Yingying; Ding, Aizhong; Dou, Junfeng

    2018-07-01

    The increasing nuclear energy consumption has posed serious environmental concerns (e.g. nuclear leakage), and the removal of radionuclides such as cesium becomes an urgent issue to be solved currently. In this research, a novel non-toxic adsorbent lithium-modified montmorillonite clay encapsulated in calcium alginate microbeads (MCA/Li) was fabricated by using ion-exchange method and then used successfully in the remediation of cesium-contaminated wastewater. Analyses of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of adsorbent MCA/Li, such as internal crystal structure, constituent elements, and functional groups. The effects of concentration ratios (sodium alginate/montmorillonite), solution pH, contacting time and initial Cs + concentration on the adsorption behavior were carefully investigated via batch adsorption experiments. The adsorbent MCA/Li exhibited higher selectivity and removal efficiency towards Cs + with the maximum adsorption capacity of 100.25 mg/g. In the kinetics study, the pseudo-first-order fitted the cesium adsorption data of MCA/Li better than the pseudo-second-order. The adsorption mechanism studies revealed the process followed the Langmuir isotherm model, which suggested that Cs + adsorption onto MCA/Li is a monolayer homogeneous adsorption process. The research findings indicated this novel adsorbent MCA/Li demonstrated great potential in radioactive wastewater treatment due to its convenience in synthesis, high adsorption capacity, and low cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  8. Competing on talent analytics.

    Science.gov (United States)

    Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy

    2010-10-01

    Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.

  9. Advanced business analytics

    CERN Document Server

    Lev, Benjamin

    2015-01-01

    The book describes advanced business analytics and shows how to apply them to many different professional areas of engineering and management. Each chapter of the book is contributed by a different author and covers a different area of business analytics. The book connects the analytic principles with business practice and provides an interface between the main disciplines of engineering/technology and the organizational, administrative and planning abilities of management. It also refers to other disciplines such as economy, finance, marketing, behavioral economics and risk analysis. This book is of special interest to engineers, economists and researchers who are developing new advances in engineering management but also to practitioners working on this subject.

  10. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule

    Science.gov (United States)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu; Li, Liangliang

    2017-08-01

    Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO2 in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO2 due to its low cost. In this paper, the adsorption mechanisms of single SeO2 on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO2 on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O2 atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO2 and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  11. Adsorption properties of stearic acid onto untreated kaolinite | Sari ...

    African Journals Online (AJOL)

    The focus of the study is to investigate adsorption property and determine thermodynamic parameters for the adsorption of stearic acid onto untreated kaolinite at the temperatures of 25, 35 and 45 oC. The equilibrium adsorption isotherms were analyzed by linear Langmuir and Freundlich models. Adsorption experiments ...

  12. Analytic number theory

    CERN Document Server

    Iwaniec, Henryk

    2004-01-01

    Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results, many of which belong to the mainstream of arithmetic. One of the main attractions of analytic number theory is the vast diversity of concepts and methods it includes. The main goal of the book is to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, its beautiful theorems and powerful techniques. The book is written with graduate students in mind, and the authors tried to balance between clarity, completeness, and generality. The exercis

  13. An analytic thomism?

    Directory of Open Access Journals (Sweden)

    Daniel Alejandro Pérez Chamorro.

    2012-12-01

    Full Text Available For 50 years the philosophers of the Anglo-Saxon analytic tradition (E. Anscombre, P. Geach, A. Kenny, P. Foot have tried to follow the Thomas Aquinas School which they use as a source to surpass the Cartesian Epistemology and to develop the virtue ethics. Recently, J. Haldane has inaugurated a program of “analytical thomism” which main result until the present has been his “theory of identity mind/world”. Nevertheless, none of Thomás’ admirers has still found the means of assimilating his metaphysics of being.

  14. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    welfare. In conjunction with the meeting of the steering committee in Tallinn, Estonia, in April, Mihkel Kaljurand and Mihkel Koel of Tallinn University of Technology organised a successful symposium attended by 51 participants. The symposium illustrated the scientific work of the steering committee...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  15. Foundations of predictive analytics

    CERN Document Server

    Wu, James

    2012-01-01

    Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish--Fisher expansion and o

  16. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  17. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  18. The relative importance of the adsorption and partitioning mechanisms in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Höltzel, Alexandra; Tallarek, Ulrich; Guiochon, Georges

    2015-01-09

    We propose an original model of effective diffusion along packed beds of mesoporous particles for HILIC developed by combining Torquatos model for heterogeneous beds (external eluent+particles), Landauers model for porous particles (solid skeleton+internal eluent), and the time-averaged model for the internal eluent (bulk phase+diffuse water (W) layer+rigid W layer). The new model allows to determine the analyte concentration in rigid and diffuse W layer from the experimentally determined retention factor and intra-particle diffusivity and thus to distinguish the retentive contributions from adsorption and partitioning. We apply the model to investigate the separation of toluene (TO, as a non-retained compound), nortriptyline (NT), cytosine (CYT), and niacin (NA) on an organic ethyl/inorganic silica hybrid adsorbent. Elution conditions are varied through the choice of a third solvent (W, ethanol, tetrahydrofuran (THF), acetonitrile (ACN), or n-hexane) in a mobile phase (MP) of ACN/aqueous acetate buffer (pH 5)/third solvent (90/5/5, v/v/v). Whereas NA and CYT retention factors increase monotonously from W to n-hexane as third solvent, NT retention reaches its maximum with polar aprotic third solvents. The involved equilibrium constants for adsorption and partitioning, however, do not follow the same trends as the overall retention factors. NT retention is dominated by partitioning and NA retention by adsorption, while CYT retention is controlled by adsorption rather than partitioning. Our results reveal that the relative importance of adsorption and partitioning mechanisms depends in a complex way from analyte properties and experimental parameters and cannot be predicted generally. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The adsorption of argon, krypton and xenon on activated charcoal

    International Nuclear Information System (INIS)

    Underhill, D.W.

    1996-01-01

    Charcoal adsorption beds are commonly used to remove radioactive noble gases from contaminated gas streams. The design of such beds requires the adsorption coefficient for the noble gas. Here an extension of the Dubinin-Radushkevich theory of adsorption is developed to correlate the effects of temperature, pressure, concentration, and carrier gas on the adsorption coefficients of krypton, xenon, and argon on activated carbon. This model is validated with previously published adsorption measurements. It accurately predicts the equilibrium adsorption coefficient at any temperature and pressure if the potential energies of adsorption, the micropore volume, and the van der Waals constants of the gases are known. 18 refs., 4 figs

  20. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  1. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  2. Capillary condensation and adsorption of binary mixtures.

    Science.gov (United States)

    Weinberger, B; Darkrim-Lamari, F; Levesque, D

    2006-06-21

    The adsorption of equimolar binary mixtures of hydrogen-carbon dioxide, hydrogen-methane, and methane-carbon dioxide in porous material models is determined by grand canonical Monte Carlo simulations. The material models have an adsorbent surface similar to that of nanofibers with a herringbone structure. Our main result, which is relevant for hydrogen purification and carbon dioxide capture, is that the adsorption selectivities calculated for the mixtures can differ significantly from those deduced from simulations of the adsorption of pure gases, in particular, when one of the adsorbed gases presents a capillary condensation induced by confinement within the pore network. A comparison of our data is also made with theoretical models used in the literature for predicting the properties of the mixture adsorption.

  3. Adsorption of molecular hydrogen on nanostructered surfaces

    International Nuclear Information System (INIS)

    Uranga Piña, Llinersy; Martínez Mesa, Aliezer; Seifert, Gotthard

    2015-01-01

    Were investigated the effect of the structural characteristics of model nanoporous environments on the adsorption of molecular hydrogen. The adsorption properties of the target nanostructures (graphene and ZnO sheets, carbon foams, metal-organic frameworks) are evaluated in a broad range of thermodynamic conditions. The study is carried out within the density functional theory for quantum fluids at finite temperature (QLDFT), which allows to account for the many-body and quantum delocalization effects in a single theoretical framework. The exchange-correlation (excess) functional is derived from the empirical equation of state of the homogeneous system. We focus on the evaluation of hydrogen storage capacities of the substrates and on the emergence of quantum effects triggered by the confinement imposed by the host structure. The approach provides accurate estimates of the hydrogen storage capacities for realistic adsorptive media. The relation between the microscopic structure of the hydrogen fluid and the calculated adsorption properties is also addressed. (full text)

  4. Krypton based adsorption type cryogenic refrigerator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  5. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  6. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (K d ) of Sr 2+ and Ba 2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10 -2 and 10 -1 . The K d values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  7. Adsorption and Retardation of PFASs in Soil

    Science.gov (United States)

    Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.

    2017-12-01

    Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.

  8. Acid activation of natural clays aiming their application in adsorption

    International Nuclear Information System (INIS)

    Silva, M.M. da; Sousa, A.K.F. de; Lima, W.S.; Vasconcelos, P.N.M. de; Rodrigues, M. G.F.

    2012-01-01

    Clays of smectite type have wide application in industrial, mainly due to their adsorption properties. However, it is necessary to subject them to chemical treatments to optimize their potential. This study aimed to analyze the effects of acid activation on the clay Brasgel fresh. In the acid activation was used concentrated hydrochloric acid at different concentrations (3M, 4.5 M and 6 M) at a temperature of 70 ° C for 30 minutes. The samples fresh and activated technique were characterized by X-ray Diffraction (XRD). The results show that the properties of clay after activation are improved, it could be used as adsorbents in the treatment of wastewater. (author)

  9. Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation

    International Nuclear Information System (INIS)

    Cole, Milton W; Gatica, Silvina M; Kim, Hye-Young; Lueking, Angela D; Sircar, Sarmishtha

    2012-01-01

    Adsorption experiments have been interpreted frequently with simplified model geometries, such as ideally flat surfaces and slit or cylindrical pores. Recent explorations of unusual environments, such as fullerenes and metal-organic-framework materials, have led to a broadened scope of experimental, theoretical and simulation investigations. This paper reviews a number of such studies undertaken by our group. Among the topics receiving emphasis are these: universality of gas uptake in pores, relaxation of a porous absorbent due to gas uptake and the novel phases of gases on a single nanotube, all of which studies have been motivated by recent experiments.

  10. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  11. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  12. Adsorption of guaiacol on Fe (110) and Pd (111) from first principles

    Science.gov (United States)

    Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin

    2016-06-01

    The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.

  13. Towards actionable learning analytics using dispositions

    NARCIS (Netherlands)

    Tempelaar, Dirk; Rienties, Bart; Nguyen, Quan

    2017-01-01

    Studies in the field of learning analytics (LA) have shown students’ demographics and learning management system (LMS) data to be effective identifiers of “at risk” performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to

  14. A Roadmap for Analytics in Taxpayer Supervision

    NARCIS (Netherlands)

    Pijnenburg, M.G.F.; , van der, Hel-van Dijk E.C.J.M.

    2017-01-01

    Tax administrations need to become more efficient due to a growing workload, higher demands from citizens, and, in many countries, staff reduction and budget cuts. The novel field of analytics has achieved successes in improving efficiencies in areas such as banking, insurance and retail.

  15. Towards Actionable Learning Analytics Using Dispositions

    Science.gov (United States)

    Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan

    2017-01-01

    Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…

  16. The Accelerated Late Adsorption of Pulmonary Surfactant

    OpenAIRE

    Loney, Ryan W.; Anyan, Walter R.; Biswas, Samares C.; Rananavare, Shankar B.; Hall, Stephen B.

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster...

  17. The role of particle-size soil fractions in the adsorption of heavy metals

    Science.gov (United States)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    the process - the adsorption equilibrium constant (k).The ratio between the content of exchangeable cations displaced from the soil adsorbing complex (SAC) into the solution and the content of adsorbed HMs decreased with the increasing concentration of adsorbed HMs. These values could be higher (for Cu2+ and Pb2+), equal, or lower than 1 (for Zn2+) and depend on the properties of HMs. At the first case, this was due to the dissolution of readily soluble salts at low HM concentrations in the SAC. In the latter case, this was related to the adsorption of associated forms HMs and the formation of new phases localized on the surface of soil particles at high HM concentrations in the SAC. Soil solution equilibrium (SSE) accords to the soil fine fraction composition. SSE thermodynamics causes the ratio of free and associated forms of ions and ion's activity in soil solution influencing composition, concentration and adsorption of HMs salts by SAC. This study was supported by the Russian Foundation for Basic Research, project no. 12-05-33078,14-05-00586_a, grant of President of MK-6448.2014.4

  18. Adsorption of ferrous ions onto montmorillonites

    Science.gov (United States)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  19. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  20. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  1. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  2. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  3. Analytical system availability techniques

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Verbeek, P.H.J.; Thomson, W.R.

    1987-01-01

    Analytical techniques are presented to assess the probability distributions and related statistical parameters of loss of production from equipment networks subject to random failures and repairs. The techniques are based on a theoretical model for system availability, which was further developed

  4. Explanatory analytics in OLAP

    NARCIS (Netherlands)

    Caron, E.A.M.; Daniëls, H.A.M.

    2013-01-01

    In this paper the authors describe a method to integrate explanatory business analytics in OLAP information systems. This method supports the discovery of exceptional values in OLAP data and the explanation of such values by giving their underlying causes. OLAP applications offer a support tool for

  5. Analytical procedures. Pt. 1

    International Nuclear Information System (INIS)

    Weber, G.

    1985-01-01

    In analytical procedures (Boole procedures) there is certain to be a close relationship between the safety assessment and reliability assessment of technical facilities. The paper gives an overview of the organization of models, fault trees, the probabilistic evaluation of systems, evaluation with minimum steps or minimum paths regarding statistically dependent components and of systems liable to suffer different kinds of outages. (orig.) [de

  6. Ada & the Analytical Engine.

    Science.gov (United States)

    Freeman, Elisabeth

    1996-01-01

    Presents a brief history of Ada Byron King, Countess of Lovelace, focusing on her primary role in the development of the Analytical Engine--the world's first computer. Describes the Ada Project (TAP), a centralized World Wide Web site that serves as a clearinghouse for information related to women in computing, and provides a Web address for…

  7. User Behavior Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Juston Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    User Behaviour Analytics is the tracking, collecting and assessing of user data and activities. The goal is to detect misuse of user credentials by developing models for the normal behaviour of user credentials within a computer network and detect outliers with respect to their baseline.

  8. Of the Analytical Engine

    Indian Academy of Sciences (India)

    cloth will be woven all of one colour; but there will be a damask pattern upon it ... mathematical view of the Analytical Engine, and illustrate by example some of its .... be to v~rify the number of the card given it by subtracting its number from 2 3 ...

  9. Limitless Analytic Elements

    Science.gov (United States)

    Strack, O. D. L.

    2018-02-01

    We present equations for new limitless analytic line elements. These elements possess a virtually unlimited number of degrees of freedom. We apply these new limitless analytic elements to head-specified boundaries and to problems with inhomogeneities in hydraulic conductivity. Applications of these new analytic elements to practical problems involving head-specified boundaries require the solution of a very large number of equations. To make the new elements useful in practice, an efficient iterative scheme is required. We present an improved version of the scheme presented by Bandilla et al. (2007), based on the application of Cauchy integrals. The limitless analytic elements are useful when modeling strings of elements, rivers for example, where local conditions are difficult to model, e.g., when a well is close to a river. The solution of such problems is facilitated by increasing the order of the elements to obtain a good solution. This makes it unnecessary to resort to dividing the element in question into many smaller elements to obtain a satisfactory solution.

  10. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  11. Analytics for Customer Engagement

    NARCIS (Netherlands)

    Bijmolt, Tammo H. A.; Leeflang, Peter S. H.; Block, Frank; Eisenbeiss, Maik; Hardie, Bruce G. S.; Lemmens, Aurelie; Saffert, Peter

    In this article, we discuss the state of the art of models for customer engagement and the problems that are inherent to calibrating and implementing these models. The authors first provide an overview of the data available for customer analytics and discuss recent developments. Next, the authors

  12. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...

  13. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  14. Study on optimum conditions for Mo-99 adsorption by magnetite nanoparticles

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko; Damasceno, Marcos O.; Santos, Jacinete L.

    2013-01-01

    Radioisotopes play an important role in the peaceful uses of atomic energy. Technetium-99m is the most used radioisotope for diagnosis imaging in nuclear medicine and it is the decay product of Mo-99. One route to obtaining Mo-99 is in the form of fission product from Uranium targets irradiated in reactor. Uranium targets are dissolved by alkaline or acid process and the obtained solution is submitted to separation and purification steps of Mo-99 from the other fission products. Traditional separation techniques are inadequate for removing large volumes containing low concentrations metals due to the low operating efficiency and high costs processes. Therefore, alternative methods are being investigated as adsorption. Adsorption advantages over other techniques is low waste generation, easy metals recovery and reusability of adsorbents. Inorganic oxides are known for their ability to bind to metal ions in solution. At nanoscale range, this characteristic is highly potentialized. Thus, the use of nanoparticles has attracted attention for metal ions recovery by adsorption. Magnetite, Fe3O4, is an oxide formed by iron ions of valence 2+ and 3+. Due to the superparamagnetic behavior that arises in this material at nanoscale and crystal structure itself which favors surface adsorption, magnetite can be used as an adsorber agent to remove metal ions in solution. In this work, adsorption studies were performed to investigate best conditions for Mo-99 removal in solution. Influence of pH, stirring speed, contact time and initial concentration of Mo were studied. (author)

  15. Surface study of platinum decorated graphene towards adsorption of NH_3 and CH_4

    International Nuclear Information System (INIS)

    Rad, Ali Shokuhi; Pazoki, Hossein; Mohseni, Soheil; Zareyee, Daryoush; Peyravi, Majid

    2016-01-01

    To distinguish the potential of graphene sensors, there is a need to recognize the interaction between graphene sheet and adsorbing molecules. We used density functional theory (DFT) calculations to study the properties of pristine as well as Pt-decorated graphene sheet upon adsorption of NH_3 and CH_4 on its surface to exploit its potential to be as gas sensors for them. We found much higher adsorption, higher charge transfer, lower intermolecular distance, and higher orbital hybridizing upon adsorption of NH_3 and CH_4 gas molecules on Pt-decorated graphene compared to pristine graphene. Also our calculations reveal that the adsorption energies on Pt-decorated graphene sheet are in order of NH_3 >CH_4 which could be corresponded to the order of their sensitivity on this modified surface. We used orbital analysis including density of states as well as frontier molecular orbital study for all analyte-surface systems to more understanding the kind of interaction (physisorption or chemisorption). Consequently, the Pt-decorated graphene can transform the existence of NH_3 and CH_4 molecules into electrical signal and it may be potentially used as an ideal sensor for detection of NH_3 and CH_4 in ambient situation. - Highlights: • Pt-decorated graphene was investigated as an adsorbent for NH_3 and CH_4. • Much higher adsorption of NH_3 and CH_4 on Pt-decorated graphene than pristine graphene. • Higher adsorption of NH_3 compared to CH_4 on Pt-decorated graphene. • Pt influences the electronic structure of graphene.

  16. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    Science.gov (United States)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  17. Adsorption of Nile Blue A from Wastewater Using Magnetic Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Mehrnaz Ghoochian

    2016-04-01

    Full Text Available Background: Synthetic dyes are serious pollutants and wide ranges of methods have been employed for their removal from aquatic systems. We studied the adsorption of "Nile blue A" (NBA, an anionic dye, from aqueous solution by oxidized multi-walled carbon nanotubes (MWCNTs. Methods: Scanning electron microscope and Fourier transform infrared spectroscopy were used to characterize function groups produced at MWCNTs surface. Kinetics and adsorption isotherms of NBA, the effect of temperature, pH, contact time and initial dosage of nanotubes on the adsorption capacity were also assessed. The experimental data were analyzed by Langmuir and Freundlich models. Results: Most of the dye was removed in the first 5 min and best adsorption percentage was at pH 7.0. The equilibrium reached at 45 min. The experimental data were analyzed by Langmuir and Freundlich models and the results fitted well with the Freundlich model. The adsorption kinetic data were analyzed using first-order and the pseudo-second order model and the adsorption kinetic data of NBA dye onto MWCNTs fitted the pseudo-second order model. The maximum adsorption capacity was obtained as 169.49 mg g-1. Conclusion: Freundlich model suggested that the adsorption process followed heterogeneous distribution onto MWCNTs and pseudo-second model of adsorption implied that chemical processes controlled the rate-controlling step. Oxidized MWCNTs could be used as an effective adsorbent for the removal of "Nile Blue A" dye. Oxidization of MWCNTs by nitric acid, improves the efficiency of NBA removal due to increases in functional groups and total number of adsorption sites.

  18. Multispectral analytical image fusion

    International Nuclear Information System (INIS)

    Stubbings, T.C.

    2000-04-01

    With new and advanced analytical imaging methods emerging, the limits of physical analysis capabilities and furthermore of data acquisition quantities are constantly pushed, claiming high demands to the field of scientific data processing and visualisation. Physical analysis methods like Secondary Ion Mass Spectrometry (SIMS) or Auger Electron Spectroscopy (AES) and others are capable of delivering high-resolution multispectral two-dimensional and three-dimensional image data; usually this multispectral data is available in form of n separate image files with each showing one element or other singular aspect of the sample. There is high need for digital image processing methods enabling the analytical scientist, confronted with such amounts of data routinely, to get rapid insight into the composition of the sample examined, to filter the relevant data and to integrate the information of numerous separate multispectral images to get the complete picture. Sophisticated image processing methods like classification and fusion provide possible solution approaches to this challenge. Classification is a treatment by multivariate statistical means in order to extract analytical information. Image fusion on the other hand denotes a process where images obtained from various sensors or at different moments of time are combined together to provide a more complete picture of a scene or object under investigation. Both techniques are important for the task of information extraction and integration and often one technique depends on the other. Therefore overall aim of this thesis is to evaluate the possibilities of both techniques regarding the task of analytical image processing and to find solutions for the integration and condensation of multispectral analytical image data in order to facilitate the interpretation of the enormous amounts of data routinely acquired by modern physical analysis instruments. (author)

  19. Adsorption behavior and mechanism of uranium on wood fiber

    International Nuclear Information System (INIS)

    Wang Zhe; Yi Facheng; Feng Yuan

    2015-01-01

    The adsorption performance of uranium on wood fiber was studied with static experiment. The influence factors on the U(Ⅵ) removal rate such as wood fiber particle size, adsorption time, dosage, temperature, pH and initial concentration were researched, and the adsorption process was analyzed in terms of thermodynamics and kinetics. The results show that the adsorption equilibrium time is 4 hours. When the pH reaches 3 for uranium-containing wastewater, uranium can be removed with the decrease of the size of adsorbent and with the increase of adsorbent dosage and temperature. The equilibrium adsorption data fit to Langmuir isotherms. The kinetic analysis shows that the adsorption rate is mainly controlled by chemical adsorption. The adsorption process can be described by an equation of pseudo 2nd-order model. The thermodynamic data indicate that the synergistic uranium bio-sorption by wood fiber is a spontaneous and endothermal adsorption process. The adsorption mechanism was analyzed with SEM, FT-IR and EDS. The results show that the surface form of wood fiber is changed and uranium mainly chelates with active groups on the fiber-s surface and forms the complexes. These indicate that the adsorption of uranium should be of surface coordination. The analyses of EDS before and after adsorption of uranium prove that the behavior of adsorption is ion exchange. The above results indicate that the adsorption mechanism is mainly surface coordination and ion exchange adsorption, followed by physical absorption. (authors)

  20. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    Science.gov (United States)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.