WorldWideScience

Sample records for analysis reveals transcriptional

  1. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  2. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts.

    Science.gov (United States)

    Turowski, Tomasz W; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-07-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1. PMID:27206856

  3. Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription

    Directory of Open Access Journals (Sweden)

    Gibbings J George

    2008-10-01

    role in the regulation of gene expression. Conclusion Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.

  4. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  5. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  6. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  7. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice

    OpenAIRE

    Garg, Rohini; Tyagi, Akhilesh K.; Jain, Mukesh

    2012-01-01

    Hormones exert pleiotropic effects on plant growth and development throughout the life cycle. Many of these effects are mediated at molecular level via altering gene expression. In this study, we investigated the exogenous effect of plant hormones, including auxin, cytokinin, abscisic acid, ethylene, salicylic acid and jasmonic acid, on the transcription of rice genes at whole genome level using microarray. Our analysis identified a total of 4171 genes involved in several biological processes...

  8. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.

    Science.gov (United States)

    Ye, Zhenqing; Chen, Zhong; Lan, Xun; Hara, Stephen; Sunkel, Benjamin; Huang, Tim H-M; Elnitski, Laura; Wang, Qianben; Jin, Victor X

    2014-03-01

    Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is either included (inclusion isoform) or excluded (skipping isoform), are typically present in one cell, and maintain a subtle balance that is vital to cellular function and dynamics. However, how the prevailing conditions dictate which isoform is expressed and what biological factors might influence the regulation of this process remain areas requiring further exploration. In this study, we have developed a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium and experimentally validated several skipping site predictions by RT-PCR. Furthermore, we integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. Our computational analysis found that splice sites within the skipping-isoform-dominated group (SIDG) tended to exhibit weaker MaxEntScan-calculated splice site strength around middle, 'skipping', exons compared to those in the inclusion-isoform-dominated group (IIDG). We further showed the positional preference pattern of splicing factors, characterized by enrichment in the intronic splice sites immediately bordering middle exons. Finally, our analysis suggested that different epigenetic factors may introduce a variable obstacle in the

  9. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    Directory of Open Access Journals (Sweden)

    Putta Srikrishna

    2010-06-01

    Full Text Available Abstract Background The Mexican axolotl (Ambystoma mexicanum is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs were identified as unique to the axolotl (n = 76 and tiger salamander (n = 292 than were identified as shared (n = 108. All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome

  10. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

    Directory of Open Access Journals (Sweden)

    Martinez- Zapater José M

    2011-11-01

    as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. Conclusions Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.

  11. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abstract Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements

  12. Computational Analysis of Full-length cDNAs Reveals Frequent Coupling Between Transcriptional and Splicing Programs

    Science.gov (United States)

    Chern, Tzu-Ming; Paul, Nicodeme; van Nimwegen, Erik; Zavolan, Mihaela

    2008-01-01

    High-throughput sequencing studies revealed that the majority of human and mouse multi-exon genes have multiple splice forms. High-density oligonucleotide array-based measurements have further established that many exons are expressed in a tissue-specific manner. The mechanisms underlying the tissue-dependent expression of most alternative exons remain, however, to be understood. In this study, we focus on one possible mechanism, namely the coupling of (tissue specific) transcription regulation with alternative splicing. We analyzed the FANTOM3 and H-Invitational datasets of full-length mouse and human cDNAs, respectively, and found that in transcription units with multiple start sites, the inclusion of at least 15% and possibly up to 30% of the ‘cassette’ exons correlates with the use of specific transcription start sites (TSS). The vast majority of TSS-associated exons are conserved between human and mouse, yet the conservation is weaker when compared with TSS-independent exons. Additionally, the currently available data only support a weak correlation between the probabilities of TSS association of orthologous exons. Our analysis thus suggests frequent coupling of transcriptional and splicing programs, and provides a large dataset of exons on which the molecular basis of this coupling can be further studied. PMID:18276623

  13. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    contain regulated functions on their own. Collectively, we present a site-specific MMA dataset in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase....... mono-methylation (MMA) sites. We thereby identify 1,027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  14. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  15. Expression quantitative trait analysis reveals fine germline transcript regulation in mouse lung tumors.

    Science.gov (United States)

    Cotroneo, Chiara E; Dassano, Alice; Colombo, Francesca; Pettinicchio, Angela; Lecis, Daniele; Dugo, Matteo; De Cecco, Loris; Dragani, Tommaso A; Manenti, Giacomo

    2016-06-01

    Gene expression modulates cellular functions in both physiologic and pathologic conditions. Herein, we carried out a genetic linkage study on the transcriptome of lung tumors induced by urethane in an (A/J x C57BL/6)F4 intercross population, whose individual lung tumor multiplicity (Nlung) is linked to the genotype at the Pulmonary adenoma susceptibility 1 (Pas1) locus. We found that expression levels of 1179 and 1579 genes are modulated by an expression quantitative trait locus (eQTL) in cis and in trans, respectively (LOD score > 5). Of note, the genomic area surrounding and including the Pas1 locus regulated 14 genes in cis and 857 genes in trans. In lung tumors of the same (A/J x C57BL/6)F4 mice, we found 1124 genes whose transcript levels associated with Nlung (FDR cancer: they highlight the importance of Pas1 as a tumor-modifier locus, attribute to it a novel role as a major regulator of transcription in lung tumor nodules and strengthen the candidacy of the Kras gene as the effector of this locus. PMID:26966001

  16. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  17. Transcriptional Analysis Reveals Gender-Specific Changes in the Aging of the Human Immune System

    OpenAIRE

    Marttila, Saara; Jylhävä, Juulia; Nevalainen, Tapio; Nykter, Matti; Jylhä, Marja; Hervonen, Antti; Tserel, Liina; Peterson, Pärt; Hurme, Mikko

    2013-01-01

    Aging and gender have a strong influence on the functional capacity of the immune system. In general, the immune response in females is stronger than that in males, but there is scant information about the effect of aging on the gender difference in the immune response. To address this question, we performed a transcriptomic analysis of peripheral blood mononuclear cells derived from elderly individuals (nonagenarians, n = 146) and young controls (aged 19–30 years, n = 30). When compared to y...

  18. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium

    Directory of Open Access Journals (Sweden)

    Bhattacharyya-Pakrasi Maitrayee

    2010-08-01

    Full Text Available Abstract Background Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes. Results We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR, are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes. Conclusion We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This

  19. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    Science.gov (United States)

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  20. Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Calvin Tiengwe

    2012-07-01

    Full Text Available Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion.

  1. Computational Analysis of Full-length cDNAs Reveals Frequent Coupling Between Transcriptional and Splicing Programs

    OpenAIRE

    Chern, Tzu-Ming; Paul, Nicodeme; Nimwegen, Erik Van; Zavolan, Mihaela

    2008-01-01

    High-throughput sequencing studies revealed that the majority of human and mouse multi-exon genes have multiple splice forms. High-density oligonucleotide array-based measurements have further established that many exons are expressed in a tissue-specific manner. The mechanisms underlying the tissue-dependent expression of most alternative exons remain, however, to be understood. In this study, we focus on one possible mechanism, namely the coupling of (tissue specific) transcription regulati...

  2. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    OpenAIRE

    Wang, Jiangxin; Wu, Gang; Chen, Lei; Zhang, Weiwen

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific tran...

  3. Serial Analysis of Gene Expression in Plasmodium falciparum Reveals the Global Expression Profile of Erythrocytic Stages and the Presence of Anti-Sense Transcripts in the Malarial Parasite

    OpenAIRE

    Patankar, Swati; Munasinghe, Anusha; Shoaibi, Azadeh; Cummings, Leda M.; Wirth, Dyann F.

    2001-01-01

    Serial analysis of gene expression (SAGE) was applied to the malarial parasite Plasmodium falciparum to characterize the comprehensive transcriptional profile of erythrocytic stages. A SAGE library of ∼8335 tags representing 4866 different genes was generated from 3D7 strain parasites. Basic local alignment search tool analysis of high abundance SAGE tags revealed that a majority (88%) corresponded to 3D7 sequence, and despite the low complexity of the genome, 70% of these highly abundant tag...

  4. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness.

    Science.gov (United States)

    Sánchez-Arreguín, Alejandro; Pérez-Martínez, Ana Silvia; Herrera-Estrella, Alfredo

    2012-01-01

    The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δblr-1 mutant, while upregulation of proteins predominated in the Δblr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex. PMID:22058143

  5. Genome‐wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation

    Science.gov (United States)

    Pai, Vaibhav P.; Martyniuk, Christopher J.; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L.

    2015-01-01

    Abstract Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  6. Analysis of the RelA:CBP/p300 Interaction Reveals Its Involvement in NF-κB-Driven Transcription

    OpenAIRE

    Sulakshana P Mukherjee; Marcelo Behar; Birnbaum, Harry A.; Alexander Hoffmann; Wright, Peter E.; Gourisankar Ghosh

    2013-01-01

    NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding do...

  7. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia.

    Science.gov (United States)

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  8. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification.

    Science.gov (United States)

    Bertolino, Eric; Reinitz, John; Manu

    2016-05-01

    C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA. PMID:26945717

  9. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  10. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus.

    Science.gov (United States)

    Yang, Zhirong; Patra, Barunava; Li, Runzhi; Pattanaik, Sitakanta; Yuan, Ling

    2013-12-01

    WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a β-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway. PMID:23979312

  11. Novel TRF1/BRF target genes revealed by genome-wide analysis of Drosophila Pol III transcription

    OpenAIRE

    Isogai, Yoh; Takada, Shinako; Tjian, Robert; Keleş, Sündüz

    2006-01-01

    Metazoans have evolved multiple paralogues of the TATA binding protein (TBP), adding another tunable level of gene control at core promoters. While TBP-related factor 1 (TRF1) shares extensive homology with TBP and can direct both Pol II and Pol III transcription in vitro, TRF1 target sites in vivo have remained elusive. Here, we report the genome-wide identification of TRF1-binding sites using high-resolution genome tiling microarrays. We found 354 TRF1-binding sites genome-wide with ∼78% of...

  12. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  13. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress.

    Science.gov (United States)

    Gupta, Aarti; Sarkar, Ananda K; Senthil-Kumar, Muthappa

    2016-01-01

    With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed "tailored" responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly. PMID:27252712

  14. Global Transcriptional Analysis Reveals Unique and Shared Responses in Arabidopsis thaliana Exposed to Combined Drought and Pathogen Stress

    Science.gov (United States)

    Gupta, Aarti; Sarkar, Ananda K.; Senthil-Kumar, Muthappa

    2016-01-01

    With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN) demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed “tailored” responses under combined stress and the time of occurrence of each stress during their concurrence has shown differences in transcriptome profile. Our results from microarray and RT-qPCR revealed regulation of 20 novel genes uniquely during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions, time of occurrence of each stress in the interaction defines the plant responses and should thus be studied explicitly.

  15. Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress

    Directory of Open Access Journals (Sweden)

    Aarti eGupta

    2016-05-01

    Full Text Available With frequent fluctuations in global climate, plants are exposed to co-occurring drought and pathogen infection and this combination adversely affects plant survival. In the past, some studies indicated that morpho-physiological responses of plants to the combined stress are different from the individual stressed plants. However, interaction of drought stressed plants with pathogen has not been widely studied at molecular level. Such studies are important to understand the defense pathways that operate as part of combined stress tolerance mechanism. In this study, Arabidopsis thaliana was exposed to individual drought stress, Pseudomonas syringae pv tomato DC3000 (Pst DC3000 infection and their combination. Using Affymetrix WT gene 1.0 ST array, global transcriptome profiling of leaves under individual drought stress and pathogen infection was compared with their combination. The results obtained from pathway mapping (KAAS and MAPMAN demonstrated the modulation in defense pathways in A. thaliana under drought and host pathogen Pst DC3000 infection. Further, our study revealed ‘tailored’ responses under combined stress and the time of occurrence of each stress during their concurrence has showed differences in transcriptome profile. Our results from microarray and RT-qPCR revealed unique regulation of 20 novel genes exclusively during the stress interaction. This study indicates that plants exposed to concurrent drought and pathogen stress experience a new state of stress. Thus, under frequently changing climatic conditions each combination of stressor and their timing defines the plant responses and should thus be studied explicitly.

  16. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors.

    Directory of Open Access Journals (Sweden)

    Hortensia Sanchez-Calderon

    Full Text Available BACKGROUND: Insulin-like growth factor-I (IGF-I provides pivotal cell survival and differentiation signals during inner ear development throughout evolution. Homozygous mutations of human IGF1 cause syndromic sensorineural deafness, decreased intrauterine and postnatal growth rates, and mental retardation. In the mouse, deficits in IGF-I result in profound hearing loss associated with reduced survival, differentiation and maturation of auditory neurons. Nevertheless, little is known about the molecular basis of IGF-I activity in hearing and deafness. METHODOLOGY/PRINCIPAL FINDINGS: A combination of quantitative RT-PCR, subcellular fractionation and Western blotting, along with in situ hybridization studies show IGF-I and its high affinity receptor to be strongly expressed in the embryonic and postnatal mouse cochlea. The expression of both proteins decreases after birth and in the cochlea of E18.5 embryonic Igf1(-/- null mice, the balance of the main IGF related signalling pathways is altered, with lower activation of Akt and ERK1/2 and stronger activation of p38 kinase. By comparing the Igf1(-/- and Igf1(+/+ transcriptomes in E18.5 mouse cochleae using RNA microchips and validating their results, we demonstrate the up-regulation of the FoxM1 transcription factor and the misexpression of the neural progenitor transcription factors Six6 and Mash1 associated with the loss of IGF-I. Parallel, in silico promoter analysis of the genes modulated in conjunction with the loss of IGF-I revealed the possible involvement of MEF2 in cochlear development. E18.5 Igf1(+/+ mouse auditory ganglion neurons showed intense MEF2A and MEF2D nuclear staining and MEF2A was also evident in the organ of Corti. At P15, MEF2A and MEF2D expression were shown in neurons and sensory cells. In the absence of IGF-I, nuclear levels of MEF2 were diminished, indicating less transcriptional MEF2 activity. By contrast, there was an increase in the nuclear accumulation of FoxM1 and a

  17. A global transcriptional analysis of Megalobrama amblycephala revealing the molecular determinants of diet-induced hepatic steatosis.

    Science.gov (United States)

    Zhang, Dingdong; Lu, Kangle; Jiang, Guangzhen; Liu, Wenbin; Dong, Zaijie; Tian, Hongyan; Li, Xiangfei

    2015-10-10

    Blunt snout bream (Megalobrama amblycephala), a prevalent species in China's intensive polyculture systems, is highly susceptible to hepatic steatosis, resulting in considerable losses to the fish farming industry. Due to a lack of genomic resources, the molecular mechanisms of lipid metabolism in M. amblycephala are poorly understood. Here, a hepatic cDNA library was generated from equal amounts of mRNAs isolated from M. amblycephala fed normal-fat and high-fat diets. Sequencing of this library using the Illumina/Solexa platform produced approximately 51.87 million clean reads, which were assembled into 48,439 unigenes with an average length of 596 bp and an N50 value of 800 bp. These unigenes were searched against the nucleotide (NT), non-redundant (NR), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genome (KEGG) databases using the BLASTn or BLASTx algorithms (E-value ≤ 10(-5)). A total of 8602 unigenes and 22,155 unigenes were functionally classified into 25 COG categories and 259 KEGG pathways, respectively. Furthermore, 22,072 unigenes were grouped into 62 sub-categories belonging to three main Gene Ontology (GO) terms. Using a digital gene expression analysis and the M. amblycephala transcriptome as a reference, 477 genes (134 up-regulated and 343 down-regulated) were identified as differentially expressed in fish fed a high-fat diet versus a normal-fat diet. KEGG and GO functional enrichment analyses of the differentially expressed unigenes were performed and 12 candidate genes related to lipid metabolism were identified. This study provides a global survey of hepatic transcriptome profiles and identifies candidate genes that may be related to lipid metabolism in M. amblycephala. These findings will facilitate further investigations of the mechanisms underlying hepatic steatosis in M. amblycephala. PMID:26074088

  18. Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection

    OpenAIRE

    Flavell, Steven W; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2008-01-01

    Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorder...

  19. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection

    OpenAIRE

    Flavell, Steven W; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2008-01-01

    Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorder...

  20. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization.

    Science.gov (United States)

    Hu, Xiao-Mei; Shi, Cai-Yun; Liu, Xiao; Jin, Long-Fei; Liu, Yong-Zhong; Peng, Shu-Ang

    2015-02-01

    ATP-citrate lyase (ACL, EC4.1.3.8) catalyzes citrate to oxaloacetate and acetyl-CoA in the cell cytosol, and has important roles in normal plant growth and in the biosynthesis of some secondary metabolites. We identified three ACL genes, CitACLα1, CitACLα2, and CitACLβ1, in the citrus genome database. Both CitACLα1 and CitACLα2 encode putative ACL α subunits with 82.5 % amino acid identity, whereas CitACLβ1 encodes a putative ACL β subunit. Gene structure analysis showed that CitACLα1 and CitACLα2 had 12 exons and 11 introns, and CitACLβ1 had 16 exons and 15 introns. CitACLα1 and CitACLβ1 were predominantly expressed in flower, and CitACLα2 was predominantly expressed in stem and fibrous roots. As fruits ripen, the transcript levels of CitACLα1, CitACLβ1, and/or CitACLα2 in cultivars 'Niuher' and 'Owari' increased, accompanied by significant decreases in citrate content, while their transcript levels decreased significantly in 'Egan No. 1' and 'Iyokan', although citrate content also decreased. In 'HB pummelo', in which acid content increased as fruit ripened, and in acid-free pummelo, transcript levels of CitACLα2, CitACLβ1, and/or CitACLα1 increased. Moreover, mild drought stress and ABA treatment significantly increased citrate contents in fruits. Transcript levels of the three genes were significantly reduced by mild drought stress, and the transcript level of only CitACLβ1 was significantly reduced by ABA treatment. Taken together, these data indicate that the effects of ACL on citrate use during fruit ripening depends on the cultivar, and the reduction in ACL gene expression may be attributed to citrate increases under mild drought stress or ABA treatment. PMID:25120169

  1. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  2. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress.

    Science.gov (United States)

    Li, Meng-Yao; Xu, Zhi-Sheng; Huang, Ying; Tian, Chang; Wang, Feng; Xiong, Ai-Sheng

    2015-12-01

    AP2/ERF is a large transcription factor family that regulates plant physiological processes, such as plant development and stress response. Carrot (Daucus carota L.) is an important economical crop with a genome size of 480 Mb; the draft genome sequencing of this crop has been completed by our group. However, little is known about the AP2/ERF factors in carrot. In this study, a total of 267 putative AP2/ERF factors were identified from the whole-genome sequence of carrot. These AP2/ERF proteins were phylogenetically clustered into five subfamilies based on their similarity to the amino acid sequences from Arabidopsis. The distribution and comparative genome analysis of the AP2/ERF factors among plants showed the AP2/ERF factors had expansion during the evolutionary process, and the AP2 domain was highly conserved during evolution. The number of AP2/ERF factors in land plants expanded during their evolution. A total of 60 orthologous and 145 coorthologous AP2/ERF gene pairs between carrot and Arabidopsis were identified, and the interaction network of orthologous genes was constructed. The expression patterns of eight AP2/ERF family genes from each subfamily (DREB, ERF, AP2, and RAV) were related to abiotic stresses. Yeast one-hybrid and β-galactosidase activity assays confirmed the DRE and GCC box-binding activities of DREB subfamily genes. This study is the first to identify and characterize the AP2/ERF transcription factors in carrot using whole-genome analysis, and the findings may serve as references for future functional research on the transcription factors in carrot. PMID:25971861

  3. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  4. Transcriptional analysis of the HeT-A retrotransposon in mutant and wild type stocks reveals high sequence variability at Drosophila telomeres and other unusual features

    Directory of Open Access Journals (Sweden)

    Piñeyro David

    2011-11-01

    Full Text Available Abstract Background Telomere replication in Drosophila depends on the transposition of a domesticated retroelement, the HeT-A retrotransposon. The sequence of the HeT-A retrotransposon changes rapidly resulting in differentiated subfamilies. This pattern of sequence change contrasts with the essential function with which the HeT-A is entrusted and brings about questions concerning the extent of sequence variability, the telomere contribution of different subfamilies, and whether wild type and mutant Drosophila stocks show different HeT-A scenarios. Results A detailed study on the variability of HeT-A reveals that both the level of variability and the number of subfamilies are higher than previously reported. Comparisons between GIII, a strain with longer telomeres, and its parental strain Oregon-R indicate that both strains have the same set of HeT-A subfamilies. Finally, the presence of a highly conserved splicing pattern only in its antisense transcripts indicates a putative regulatory, functional or structural role for the HeT-A RNA. Interestingly, our results also suggest that most HeT-A copies are actively expressed regardless of which telomere and where in the telomere they are located. Conclusions Our study demonstrates how the HeT-A sequence changes much faster than previously reported resulting in at least nine different subfamilies most of which could actively contribute to telomere extension in Drosophila. Interestingly, the only significant difference observed between Oregon-R and GIII resides in the nature and proportion of the antisense transcripts, suggesting a possible mechanism that would in part explain the longer telomeres of the GIII stock.

  5. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination

    Directory of Open Access Journals (Sweden)

    Ding Guohui

    2007-04-01

    Full Text Available Abstract Background Conidia are considered to be the primary cause of infections by Trichophyton rubrum. Results We have developed a cDNA microarray containing 10250 ESTs to monitor the transcriptional strategy of conidial germination. A total of 1561 genes that had their expression levels specially altered in the process were obtained and hierarchically clustered with respect to their expression profiles. By functional analysis, we provided a global view of an important biological system related to conidial germination, including characterization of the pattern of gene expression at sequential developmental phases, and changes of gene expression profiles corresponding to morphological transitions. We matched the EST sequences to GO terms in the Saccharomyces Genome Database (SGD. A number of homologues of Saccharomyces cerevisiae genes related to signalling pathways and some important cellular processes were found to be involved in T. rubrum germination. These genes and signalling pathways may play roles in distinct steps, such as activating conidial germination, maintenance of isotropic growth, establishment of cell polarity and morphological transitions. Conclusion Our results may provide insights into molecular mechanisms of conidial germination at the cell level, and may enhance our understanding of regulation of gene expression related to the morphological construction of T. rubrum.

  6. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures.

    Science.gov (United States)

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu

    2015-01-01

    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to

  7. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures.

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Moreira-Filho

    Full Text Available Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS constitute an initial precipitating insult (IPI commonly associated with mesial temporal lobe epilepsy (MTLE. FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E or late (L disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i the visualization and analysis of differentially expressed (DE and complete (CO - all valid GO annotated transcripts - GCNs for the E and L groups; ii the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less

  8. The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Fiocco

    2011-08-01

    Full Text Available Small heat shock proteins (sHsps are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR procedure was developed and used to quantify the transcript level of a small heat shock gene (shs in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C, bile (0.3% w/v, hyperosmosis (1 M and 2.5 M NaCl, and low pH value (pH 4. The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR sequence (TTAGCACTC-N9-GAGTGCTAA homologue to the controlling IR of chaperone expression (CIRCE elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.

  9. The hsp 16 gene of the probiotic Lactobacillus acidophilus is differently regulated by salt, high temperature and acidic stresses, as revealed by reverse transcription quantitative PCR (qRT-PCR) analysis.

    Science.gov (United States)

    Capozzi, Vittorio; Arena, Mattia Pia; Crisetti, Elisabetta; Spano, Giuseppe; Fiocco, Daniela

    2011-01-01

    Small heat shock proteins (sHsps) are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR) procedure was developed and used to quantify the transcript level of a small heat shock gene (shs) in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C), bile (0.3% w/v), hyperosmosis (1 M and 2.5 M NaCl), and low pH value (pH 4). The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR) sequence (TTAGCACTC-N9-GAGTGCTAA) homologue to the controlling IR of chaperone expression (CIRCE) elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group. PMID:21954366

  10. Global transcriptional profiling reveals Streptococcus agalactiae genes controlled by the MtaR transcription factor

    Directory of Open Access Journals (Sweden)

    Cvek Urska

    2008-12-01

    Full Text Available Abstract Background Streptococcus agalactiae (group B Streptococcus; GBS is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR- mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. Results Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ1NP and peptidase (pdsM. The expression of four genes potentially involved in arginine transport (artPQ and arginine biosynthesis (argGH was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. Conclusion To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQ1NP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings

  11. Transcription profiling reveals stage- and function-dependent expression patterns in the filarial nematode Brugia malayi

    Directory of Open Access Journals (Sweden)

    Li Ben-Wen

    2012-05-01

    Full Text Available Abstract Background Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. Although a first draft genome sequence was released in 2007, very little is understood about transcription programs that govern developmental changes required for the parasite’s development and survival in its mammalian and insect hosts. Results We used a microarray with probes that represent some 85% of predicted genes to generate gene expression profiles for seven parasite life cycle stages/sexes. Approximately 41% of transcripts with detectable expression signals were differentially expressed across lifecycle stages. Twenty-six percent of transcripts were exclusively expressed in a single parasite stage, and 27% were expressed in all stages studied. K-means clustering of differentially expressed transcripts revealed five major transcription patterns that were associated with parasite lifecycle stages or gender. Examination of known stage-associated transcripts validated these data sets and suggested that newly identified stage or gender-associated transcripts may exercise biological functions in development and reproduction. The results also indicate that genes with similar transcription patterns were often involved in similar functions or cellular processes. For example, nuclear receptor family gene transcripts were upregulated in gene expression pattern four (female-enriched while protein kinase gene family transcripts were upregulated in expression pattern five (male-enriched. We also used pair-wise comparisons to identify transcriptional changes between life cycle stages and sexes. Conclusions Analysis of gene expression patterns of lifecycle in B. malayi has provided novel insights into the biology of filarial parasites. Proteins encoded by stage-associated and/or stage-specific transcripts are likely to be critically important for key parasite functions such as establishment and maintenance of

  12. Comparative transcriptional analysis reveals distinct expression patterns of channel catfish genes after the first infection and re-infection with Aeromonas hydrophila

    Science.gov (United States)

    To determine whether transcriptional levels of channel catfish (Ictalurus punctatus) genes are differentially regulated between a first infection with Aeromonas hydrophila and a re-infection, suppression subtractive hybridization (SSH) was performed in this study using anterior kidney cDNA after the...

  13. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum

    DEFF Research Database (Denmark)

    Uribe, Juber Herrera; Collado-Romero, Melania; Zaldívar-López, Sara; Arce, Cristina; Bautista, Rocío; Carvajal, Ana; Cirera Salicio, Susanna; Claros, M. Gonzalo; Garrido, Juan J.

    2016-01-01

    intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and mi...

  14. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Willerslev Eske

    2010-03-01

    Full Text Available Abstract Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription

  15. Clusters of internally primed transcripts reveal novel long noncoding RNAs.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Non-protein-coding RNAs (ncRNAs are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25-nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases (Kb, respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full-length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine-rich regions within longer parental transcripts. We therefore conducted a genome-wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty-six regions were identified, each of which mapped outside known protein-coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT-PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air.

  16. What can digital transcript profiling reveal about human cancers?

    Directory of Open Access Journals (Sweden)

    J.M. Cerutti

    2003-08-01

    Full Text Available Important biological and clinical features of malignancy are reflected in its transcript pattern. Recent advances in gene expression technology and informatics have provided a powerful new means to obtain and interpret these expression patterns. A comprehensive approach to expression profiling is serial analysis of gene expression (SAGE, which provides digital information on transcript levels. SAGE works by counting transcripts and storing these digital values electronically, providing absolute gene expression levels that make historical comparisons possible. SAGE produces a comprehensive profile of gene expression and can be used to search for candidate tumor markers or antigens in a limited number of samples. The Cancer Genome Anatomy Project has created a SAGE database of human gene expression levels for many different tumors and normal reference tissues and provides online tools for viewing, comparing, and downloading expression profiles. Digital expression profiling using SAGE and informatics have been useful for identifying genes that have a role in tumor invasion and other aspects of tumor progression.

  17. Structure-Function Analysis of the Human TFIIB-Related Factor II Protein Reveals an Essential Role for the C-Terminal Domain in RNA Polymerase III Transcription

    OpenAIRE

    Saxena, Ashish; Ma, Beicong; Schramm, Laura; Hernandez, Nouria

    2005-01-01

    The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2...

  18. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα

    Directory of Open Access Journals (Sweden)

    Jonnalagadda Sudhakar

    2010-01-01

    Full Text Available Abstract Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS through activation by HS factor-1 (HSF1. We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY, or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1 family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.

  19. Transcriptional Analysis of Hair Follicle-Derived Keratinocytes from Donors with Atopic Dermatitis Reveals Enhanced Induction of IL32 Gene by IFN-γ

    Directory of Open Access Journals (Sweden)

    Yoshie Yoshikawa

    2013-02-01

    Full Text Available We cultured human hair follicle-derived keratinocytes (FDKs from plucked hairs. To gain insight into gene expression signatures that can distinguish atopic dermatitis from non-atopic controls without skin biopsies, we undertook a comparative study of gene expression in FDKs from adult donors with atopic dermatitis and non-atopic donors. FDK primary cultures (atopic dermatitis, n = 11; non-atopic controls, n = 7 before and after interferon gamma (IFN-γ treatment were used for microarray analysis and quantitative RT-PCR. Comparison of FDKs from atopic and non-atopic donors indicated that the former showed activated pathways with innate immunity and decreased pathways of cell growth, as indicated by increased NLRP2 expression and decreased DKK1 expression, respectively. Treatment with IFN-γ induced the enhanced expression of IL32, IL1B, IL8, and CXCL1 in the cells from atopic donors compared to that in cells from non-atopic donors at 24 h after treatment. IL1B expression in FDKs after IFN-γ treatment correlated with IL32 expression. We hypothesized that overexpression of IL32 in hair follicle keratinocytes of patients with atopic dermatitis would lead to the excessive production of pro-IL1β and that the activation of IL1β from pro-IL1β by inflammasome complex, in which NLRP2 protein might be involved, would be augmented. This is the first report to show enhanced induction of cytokine/chemokine genes by IFN-γ in atopic dermatitis using cultured FDKs.

  20. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Andrey Alexeyenko

    Full Text Available BACKGROUND: In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio interactome based on orthologs and interaction data from other eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes. Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research. CONCLUSIONS/SIGNIFICANCE: Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.

  1. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  2. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription.

    Science.gov (United States)

    Hulme, Amy E; Perez, Omar; Hope, Thomas J

    2011-06-14

    During the early stages of HIV-1 replication the conical capsid composed of p24(CA) protein dissociates from the rest of the cytoplasmic viral complex by a process called uncoating. Although proper uncoating is known to be required for HIV-1 infection, many questions remain about the timing and factors involved in the process. Here we have used two complementary assays to study the process of uncoating in HIV-1-infected cells, specifically looking at the timing of uncoating and its relationship to reverse transcription. We developed a fluorescent microscopy-based uncoating assay that detects the association of p24(CA) with HIV-1 viral complexes in cells. We also used an owl monkey kidney (OMK) cell assay that is based on timed TRIM-CypA-mediated restriction of HIV-1 replication. Results from both assays indicate that uncoating is initiated within 1 h of viral fusion. In addition, treatment with the reverse transcriptase inhibitor nevirapine delayed uncoating in both assays. Analysis of reverse transcription products in OMK cells revealed that the generation of early reverse transcription products coincides with the timing of uncoating in these assays. Collectively, these results suggest that some aspect of reverse transcription has the ability to influence the kinetics of uncoating. PMID:21628558

  3. Global analysis of photosynthesis transcriptional regulatory networks.

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  4. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  5. Untangling the Effect of Fatty Acid Addition at Species Level Revealed Different Transcriptional Responses of the Biogas Microbial Community Members

    DEFF Research Database (Denmark)

    Treu, Laura; Campanaro, Stefano; Kougias, Panagiotis;

    2016-01-01

    In the present study, RNA-sequencing was used to elucidate the change of anaerobic digestion metatranscriptome after long chain fatty acids (oleate) exposure. To explore the general transcriptional behavior of the microbiome, the analysis was first performed on shotgun reads without considering...... a reference metagenome. As a second step, RNA reads were aligned on the genes encoded by the microbial community, revealing the expression of more than 51 000 different transcripts. The present study is the first research which was able to dissect the transcriptional behavior at a single species level...

  6. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  7. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. PMID:25525749

  8. Nuclear factor I revealed as family of promoter binding transcription activators

    Directory of Open Access Journals (Sweden)

    Plasari Genta

    2011-04-01

    Full Text Available Abstract Background Multiplex experimental assays coupled to computational predictions are being increasingly employed for the simultaneous analysis of many specimens at the genome scale, which quickly generates very large amounts of data. However, inferring valuable biological information from the comparisons of very large genomic datasets still represents an enormous challenge. Results As a study model, we chose the NFI/CTF family of mammalian transcription factors and we compared the results obtained from a genome-wide study of its binding sites with chromatin structure assays, gene expression microarray data, and in silico binding site predictions. We found that NFI/CTF family members preferentially bind their DNA target sites when they are located around transcription start sites when compared to control datasets generated from the random subsampling of the complete set of NFI binding sites. NFI proteins preferably associate with the upstream regions of genes that are highly expressed and that are enriched in active chromatin modifications such as H3K4me3 and H3K36me3. We postulate that this is a causal association and that NFI proteins mainly act as activators of transcription. This was documented for one member of the family (NFI-C, which revealed as a more potent gene activator than repressor in global gene expression analysis. Interestingly, we also discovered the association of NFI with the tri-methylation of lysine 9 of histone H3, a chromatin marker previously associated with the protection against silencing of telomeric genes by NFI. Conclusion Taken together, we illustrate approaches that can be taken to analyze large genomic data, and provide evidence that NFI family members may act in conjunction with specific chromatin modifications to activate gene expression.

  9. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates.

    Science.gov (United States)

    Halitschke, Rayko; Gase, Klaus; Hui, Dequan; Schmidt, Dominik D; Baldwin, Ian T

    2003-04-01

    Evidence is accumulating that insect-specific plant responses are mediated by constituents in the oral secretions and regurgitants (R) of herbivores, however the relative importance of the different potentially active constituents remains unclear. Fatty acid-amino acid conjugates (FACs) are found in the R of many insect herbivores and have been shown to be necessary and sufficient to elicit a set of herbivore-specific responses when the native tobacco plant Nicotiana attenuata is attacked by the tobacco hornworm, Manduca sexta. Attack by this specialist herbivore results in a large transcriptional reorganization in N. attenuata, and 161 genes have been cloned from previous cDNA differential display-polymerase chain reaction and subtractive hybridization with magnetic beads analysis. cDNAs of these genes, in addition to those of 73 new R-responsive genes identified by cDNA-amplified fragment-length polymorphism display of R-elicited plants, were spotted on polyepoxide coated glass slides to create microarrays highly enriched in Manduca spp.- and R-induced genes. With these microarrays, we compare transcriptional responses in N. attenuata treated with R from the two most damaging lepidopteran herbivores of this plant in nature, M. sexta and Manduca quinquemaculata, which have very similar FAC compositions in their R, and with the two most abundant FACs in Manduca spp. R. More than 68% of the genes up- and down-regulated by M. sexta R were similarly regulated by M. quinquemaculata R. A majority of genes up-regulated (64%) and down-regulated (49%) by M. sexta R were similarly regulated by treatment with the two FACs. In contrast, few genes showed similar transcriptional changes after H(2)O(2)- and R-treatment. These results demonstrate that the two most abundant FACs in Manduca spp. R can account for the majority of Manduca spp.-induced alterations of the wound response of N. attenuata. PMID:12692348

  10. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    Science.gov (United States)

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  11. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro;

    2010-01-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular...... mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...

  12. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  13. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Pleiss

    2007-04-01

    Full Text Available Appropriate expression of most eukaryotic genes requires the removal of introns from their pre-messenger RNAs (pre-mRNAs, a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.

  14. Untangling the Effect of Fatty Acid Addition at Species Level Revealed Different Transcriptional Responses of the Biogas Microbial Community Members.

    Science.gov (United States)

    Treu, Laura; Campanaro, Stefano; Kougias, Panagiotis G; Zhu, Xinyu; Angelidaki, Irini

    2016-06-01

    In the present study, RNA-sequencing was used to elucidate the change of anaerobic digestion metatranscriptome after long chain fatty acids (oleate) exposure. To explore the general transcriptional behavior of the microbiome, the analysis was first performed on shotgun reads without considering a reference metagenome. As a second step, RNA reads were aligned on the genes encoded by the microbial community, revealing the expression of more than 51 000 different transcripts. The present study is the first research which was able to dissect the transcriptional behavior at a single species level by considering the 106 microbial genomes previously identified. The exploration of the metabolic pathways confirmed the importance of Syntrophomonas species in fatty acids degradation, and also highlighted the presence of protective mechanisms toward the long chain fatty acid effects in bacteria belonging to Clostridiales, Rykenellaceae, and in species of the genera Halothermothrix and Anaerobaculum. Additionally, an interesting transcriptional activation of the chemotaxis genes was evidenced in seven species belonging to Clostridia, Halothermothrix, and Tepidanaerobacter. Surprisingly, methanogens revealed a very versatile behavior different from each other, even among similar species of the Methanoculleus genus, while a strong increase of the expression level in Methanosarcina sp. was evidenced after oleate addition. PMID:27154312

  15. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere

    Science.gov (United States)

    Tsabar, Michael; Haase, Julian; Harrison, Benjamin; Snider, Chloe E.; Kaminsky, Lila; Hine, Rebecca M.; Haber, James E.; Bloom, Kerry

    2016-01-01

    Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised. PMID:27128635

  16. A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere.

    Science.gov (United States)

    Tsabar, Michael; Haase, Julian; Harrison, Benjamin; Snider, Chloe E; Eldridge, Brittany; Kaminsky, Lila; Hine, Rebecca M; Haber, James E; Bloom, Kerry

    2016-04-01

    Transcriptional inactivation of the budding yeast centromere has been a widely used tool in studies of chromosome segregation and aneuploidy. In haploid cells when an essential chromosome contains a single conditionally inactivated centromere (GAL-CEN), cell growth rate is slowed and segregation fidelity is reduced; but colony formation is nearly 100%. Pedigree analysis revealed that only 30% of the time both mother and daughter cell inherit the GAL-CEN chromosome. The reduced segregation capacity of the GAL-CEN chromosome is further compromised upon reduction of pericentric cohesin (mcm21∆), as reflected in a further diminishment of the Mif2 kinetochore protein at GAL-CEN. By redistributing cohesin from the nucleolus to the pericentromere (by deleting SIR2), there is increased presence of the kinetochore protein Mif2 at GAL-CEN and restoration of cell viability. These studies identify the ability of cohesin to promote chromosome segregation via kinetochore assembly, in a situation where the centromere has been severely compromised. PMID:27128635

  17. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    Science.gov (United States)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  18. Transcriptional profiling of the bladder in urogenital schistosomiasis reveals pathways of inflammatory fibrosis and urothelial compromise.

    Directory of Open Access Journals (Sweden)

    Debalina Ray

    Full Text Available Urogenital schistosomiasis, chronic infection by Schistosoma haematobium, affects 112 million people worldwide. S. haematobium worm oviposition in the bladder wall leads to granulomatous inflammation, fibrosis, and egg expulsion into the urine. Despite the global impact of urogenital schistosomiasis, basic understanding of the associated pathologic mechanisms has been incomplete due to the lack of suitable animal models. We leveraged our recently developed mouse model of urogenital schistosomiasis to perform the first-ever profiling of the early molecular events that occur in the bladder in response to the introduction of S. haematobium eggs. Microarray analysis of bladders revealed rapid, differential transcription of large numbers of genes, peaking three weeks post-egg administration. Many differentially transcribed genes were related to the canonical Type 2 anti-schistosomal immune response, as reflected by the development of egg-based bladder granulomata. Numerous collagen and metalloproteinase genes were differentially transcribed over time, revealing complex remodeling and fibrosis of the bladder that was confirmed by Masson's Trichrome staining. Multiple genes implicated in carcinogenesis pathways, including vascular endothelial growth factor-, oncogene-, and mammary tumor-related genes, were differentially transcribed in egg-injected bladders. Surprisingly, junctional adhesion molecule, claudin and uroplakin genes, key components for maintaining the urothelial barrier, were globally suppressed after bladder exposure to eggs. This occurred in the setting of urothelial hyperplasia and egg shedding in urine. Thus, S. haematobium egg expulsion is associated with intricate modulation of the urothelial barrier on the cellular and molecular level. Taken together, our findings have important implications for understanding host-parasite interactions and carcinogenesis in urogenital schistosomiasis, and may provide clues for novel therapeutic

  19. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways

    Science.gov (United States)

    Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2016-01-01

    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways.

  20. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.;

    2015-01-01

    . We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other...... comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites...... regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress....

  1. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Directory of Open Access Journals (Sweden)

    Schuren Frank H

    2008-12-01

    Full Text Available Abstract Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.

  2. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    Directory of Open Access Journals (Sweden)

    Singh Mohan B

    2008-06-01

    Full Text Available Abstract Background Despite the importance of the shoot apical meristem (SAM in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag. Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation

  3. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  4. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    Science.gov (United States)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  5. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells.

    Directory of Open Access Journals (Sweden)

    Jinshui Fan

    Full Text Available BACKGROUND: The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined "transactome". METHODOLOGY/PRINCIPAL FINDINGS: We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. CONCLUSIONS/SIGNIFICANCE: By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.

  6. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  7. Noise in transcription negative feedback loops: simulation and experimental analysis

    OpenAIRE

    Dublanche, Yann; Michalodimitrakis, Konstantinos; Kümmerer, Nico; Foglierini, Mathilde; Serrano, Luis

    2006-01-01

    Negative feedback loops have been invoked as a way to control and decrease transcriptional noise. Here, we have built three circuits to test the effect of negative feedback loops on transcriptional noise of an autoregulated gene encoding a transcription factor (TF) and a downstream gene (DG), regulated by this TF. Experimental analysis shows that self-repression decreases noise compared to expression from a non-regulated promoter. Interestingly enough, we find that noise minimization by negat...

  8. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I.; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2016-01-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 when bound to yeast TBP, together with mutational data. The yTAF1-TAND1, which in itself acts as a transcriptional activator, binds into the DNA-binding TBP concave surface by presenting similar anchor residues to TBP as E. coli Mot1 but from a distinct structural scaffold. Furthermore, we show how yTAF1-TAND2 employs an aromatic and acidic anchoring pattern to bind a conserved yTBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides compelling insight into the competitive multiprotein TBP interplay critical to transcriptional regulation. PMID:23851461

  9. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius

    OpenAIRE

    Gerin, Donato; De Miccolis Angelini, Rita M.; Pollastro, Stefania; Faretra, Francesco

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI) vs. non-inducing (OTAN) cultural conditions, a total of 3,705 differentially expressed genes (DEGs) (fold change > |2| and FDR ≤ 0.05) wer...

  10. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  11. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  12. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2015-04-01

    Full Text Available The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

  13. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements

    Indian Academy of Sciences (India)

    Jun Ge; Zheng Lou; Hong Cui; Lei Shang; Rasika M Harshey

    2011-09-01

    Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.

  14. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    OpenAIRE

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  15. Global analysis of photosynthesis transcriptional regulatory networks.

    OpenAIRE

    Saheed Imam; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen met...

  16. Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response to Plasmopara viticola.

    Science.gov (United States)

    Lenzi, Luisa; Caruso, Carla; Bianchedi, Pier Luigi; Pertot, Ilaria; Perazzolli, Michele

    2016-01-01

    Grapevine is one of the most important fruit crops in the world, and it is highly susceptible to downy mildew caused by the biotrophic oomycete Plasmopara viticola. Gene expression profiling has been used extensively to investigate the regulation processes of grapevine-P. viticola interaction, but all studies to date have involved the use of whole leaves. However, only a small fraction of host cells is in contact with the pathogen, so highly localized transcriptional changes of infected cells may be masked by the large portion of non-infected cells when analyzing the whole leaf. In order to understand the transcriptional regulation of the plant reaction at the sites of pathogen infection, we optimized a laser microdissection protocol and analyzed the transcriptional changes in stomata cells and surrounding areas of grapevine leaves at early stages of P. viticola infection. The results indicate that the expression levels of seven P. viticola-responsive genes were greater in microdissected cells than in whole leaves, highlighting the site-specific transcriptional regulation of the host response. The gene modulation was restricted to the stomata cells and to the surrounding areas of infected tissues, indicating that the host response is mainly located at the infection sites and that short-distance signals are implicated. In addition, due to the high sensitivity of the laser microdissection technique, significant modulations of three genes that were completely masked in the whole tissue analysis were detected. The protocol validated in this study could greatly increase the sensitivity of further transcriptomic studies of the grapevine-P. viticola interaction. PMID:26546320

  17. Enhancing yeast transcription analysis through integration of heterogeneous data

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Nielsen, Jens

    2004-01-01

    from several heterogeneous data Sources, such as upstream promoter sequences, genome-scale metabolic models, annotation databases and other experimental data. In this review, we discuss how experimental design, normalisation, heterogeneous data and mathematical modelling can enhance analysis of...... newly developed co-clustering methods. where the DNA microarray analysis is enhanced by integrating data front multiple, heterogeneous sources.......DNA microarray technology enables the simultaneous measurement of the transcript level of thousands of genes. Primary analysis can be done with basic statistical tools and cluster analysis, but effective and in depth analysis of the vast amount of transcription data requires integration with data...

  18. Enhancing yeast transcription analysis through integration of heterogeneous data

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Nielsen, Jens

    2004-01-01

    DNA microarray technology enables the simultaneous measurement of the transcript level of thousands of genes. Primary analysis can be done with basic statistical tools and cluster analysis, but effective and in depth analysis of the vast amount of transcription data requires integration with data...... from several heterogeneous data Sources, such as upstream promoter sequences, genome-scale metabolic models, annotation databases and other experimental data. In this review, we discuss how experimental design, normalisation, heterogeneous data and mathematical modelling can enhance analysis of...... newly developed co-clustering methods. where the DNA microarray analysis is enhanced by integrating data front multiple, heterogeneous sources....

  19. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. PMID:26253310

  20. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    Directory of Open Access Journals (Sweden)

    Stromvik Martina

    2011-10-01

    Full Text Available Abstract Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130 from soybean has been shown to be abundantly expressed in the CS line and very

  1. Analysis artefacts of the INS-IGF2 fusion transcript

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Frogne, Thomas; Rescan, Claude;

    2015-01-01

    Background: In gene expression analysis, overlapping genes, splice variants, and fusion transcripts are potential sources of data analysis artefacts, depending on how the observed intensity is assigned to one, or more genes. We here exemplify this by an in-depth analysis of the INS-IGF2 fusion...... proteomics analysis we could not demonstrate INS-IGF2 protein in samples of human islets nor in EndoC-βH1. Conclusions: Sequence features, such as fusion transcripts spanning multiple genes can lead to unexpected results in gene expression analysis, and care must be taken in generating and interpreting...... the results. For the specific case of INS-IGF2 we conclude that the abundance of the fusion transcript/protein is exceedingly lower than previously reported, and that current immuno-reagents available for detecting INS-IGF2 protein have a strong cross-reaction to native human proinsulin. Finally, we were...

  2. Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation

    OpenAIRE

    Muramoto, Tetsuya; Cannon, Danielle; Gierliński, Marek; Corrigan, Adam; Barton, Geoffrey J.; Jonathan R Chubb

    2012-01-01

    Transcription of genes can be discontinuous, occurring in pulses or bursts. It is not clear how properties of transcriptional pulses vary between different genes. We compared the pulsing of five housekeeping and five developmentally induced genes by direct imaging of single gene transcriptional events in individual living Dictyostelium cells. Each gene displayed its own transcriptional signature, differing in probability of firing and pulse duration, frequency, and intensity. In contrast to t...

  3. Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation.

    Science.gov (United States)

    Xu, Hong-Xing; Hong, Yue; Zhang, Min-Zhu; Wang, Yong-Liang; Liu, Shu-Sheng; Wang, Xiao-Wei

    2015-01-01

    The whitefly Bemisia tabaci contains more than 35 cryptic species. The higher adaptability of Middle East-Asia Minor 1 (MEAM1) cryptic species has been recognized as one important factor for its invasion and displacement of other indigenous species worldwide. Here we compared the performance of the invasive MEAM1 and the indigenous Asia II 3 whitefly species following host plant transfer from a suitable host (cotton) to an unsuitable host (tobacco) and analyzed their transcriptional responses. After transfer to tobacco for 24 h, MEAM1 performed much better than Asia II 3. Transcriptional analysis showed that the patterns of gene regulation were very different with most of the genes up-regulated in MEAM1 but down-regulated in Asia II 3. Whereas carbohydrate and energy metabolisms were repressed in Asia II 3, the gene expression and protein metabolisms were activated in MEAM1. Compared to the constitutive high expression of detoxification genes in MEAM1, most of the detoxification genes were down-regulated in Asia II 3. Enzymatic activities of P450, GST and esterase further verified that the detoxification of MEAM1 was much higher than that of Asia II 3. These results reveal obvious differences in responses of MEAM1 and Asia II 3 to host transfer. PMID:26041313

  4. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius.

    Directory of Open Access Journals (Sweden)

    Donato Gerin

    Full Text Available Ochratoxin A (OTA is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI vs. non-inducing (OTAN cultural conditions, a total of 3,705 differentially expressed genes (DEGs (fold change > |2| and FDR ≤ 0.05 were identified. Several genes involved in primary metabolic processes, with particular regard to carbohydrate and amino acid metabolisms, secondary metabolic processes, transport, response to stress and sporulation were up-regulated by OTAI conditions at all the analysed sampling times (4, 6 and 8 DAI or starting from 6 DAI. Highly up-regulated DEGs encoding enzymes involved in biosynthesis of secondary metabolites, oxidoreductases, transporters and transcription factors were examined for their potential involvement in OTA biosynthesis and related metabolic pathways. Differential expression of genes encoding polyketide synthases (pks, non-ribosomal peptide synthetases (nrps and chloroperoxidase (cpo was validated by RT-qPCR. Among clusters of co-regulated genes involved in SM biosynthesis, one putative OTA-gene cluster, including both pks and nrps genes, was detected in the A. carbonarius genome.

  5. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius.

    Science.gov (United States)

    Gerin, Donato; De Miccolis Angelini, Rita M; Pollastro, Stefania; Faretra, Francesco

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI) vs. non-inducing (OTAN) cultural conditions, a total of 3,705 differentially expressed genes (DEGs) (fold change > |2| and FDR ≤ 0.05) were identified. Several genes involved in primary metabolic processes, with particular regard to carbohydrate and amino acid metabolisms, secondary metabolic processes, transport, response to stress and sporulation were up-regulated by OTAI conditions at all the analysed sampling times (4, 6 and 8 DAI) or starting from 6 DAI. Highly up-regulated DEGs encoding enzymes involved in biosynthesis of secondary metabolites, oxidoreductases, transporters and transcription factors were examined for their potential involvement in OTA biosynthesis and related metabolic pathways. Differential expression of genes encoding polyketide synthases (pks), non-ribosomal peptide synthetases (nrps) and chloroperoxidase (cpo) was validated by RT-qPCR. Among clusters of co-regulated genes involved in SM biosynthesis, one putative OTA-gene cluster, including both pks and nrps genes, was detected in the A. carbonarius genome. PMID:26765536

  6. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius

    Science.gov (United States)

    Gerin, Donato; De Miccolis Angelini, Rita M.; Pollastro, Stefania; Faretra, Francesco

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin harmful for animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. Gene transcriptional profiling of 4 A. carbonarius strains was carried out by RNA-Seq analysis to study transcriptome changes associated with OTA production. By comparing OTA inducing (OTAI) vs. non-inducing (OTAN) cultural conditions, a total of 3,705 differentially expressed genes (DEGs) (fold change > |2| and FDR ≤ 0.05) were identified. Several genes involved in primary metabolic processes, with particular regard to carbohydrate and amino acid metabolisms, secondary metabolic processes, transport, response to stress and sporulation were up-regulated by OTAI conditions at all the analysed sampling times (4, 6 and 8 DAI) or starting from 6 DAI. Highly up-regulated DEGs encoding enzymes involved in biosynthesis of secondary metabolites, oxidoreductases, transporters and transcription factors were examined for their potential involvement in OTA biosynthesis and related metabolic pathways. Differential expression of genes encoding polyketide synthases (pks), non-ribosomal peptide synthetases (nrps) and chloroperoxidase (cpo) was validated by RT-qPCR. Among clusters of co-regulated genes involved in SM biosynthesis, one putative OTA-gene cluster, including both pks and nrps genes, was detected in the A. carbonarius genome. PMID:26765536

  7. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  8. RNA sequencing analysis of gene expression regulated by the transcription factor SlZFP2 during early fruit development

    OpenAIRE

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xiao, Han

    2016-01-01

    The transcription factor SlZFP2 (Solanum lycopersicum Zinc Finger Protein 2) regulates ABA biosynthesis during fruit development. To reveal the regulatory network of this transcription factor, we conducted a high-throughput RNA-seq to identify differentially expressed genes in 2 dpa (days post anthesis) fruits from a representative RNAi line in Solanum pimpinellifolium LA1589 background and the wild type. The transcriptome analysis revealed that expression of 2722 genes was regulated by SlZFP...

  9. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.

    Science.gov (United States)

    Solís, Eric J; Pandey, Jai P; Zheng, Xu; Jin, Dexter X; Gupta, Piyush B; Airoldi, Edoardo M; Pincus, David; Denic, Vladimir

    2016-07-01

    Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis. PMID:27320198

  10. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonadies

    Full Text Available Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer.

  11. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  12. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  13. Dynamic transcription factor activity profiles reveal key regulatory interactions during megakaryocytic and erythroid differentiation.

    Science.gov (United States)

    Duncan, Mark T; Shin, Seungjin; Wu, Jia J; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M; Shea, Lonnie D

    2014-10-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  14. Transcript analysis of a goat mesenteric lymph node by deep next-generation sequencing.

    Science.gov (United States)

    E, G X; Zhao, Y J; Na, R S; Huang, Y F

    2016-01-01

    Deep RNA sequencing (RNA-seq) provides a practical and inexpensive alternative for exploring genomic data in non-model organisms. The functional annotation of non-model mammalian genomes, such as that of goats, is still poor compared to that of humans and mice. In the current study, we performed a whole transcriptome analysis of an intestinal mucous membrane lymph node to comprehensively characterize the transcript catalogue of this tissue in a goat. Using an Illumina HiSeq 4000 sequencing platform, 9.692 GB of raw reads were acquired. A total of 57,526 lymph transcripts were obtained, and the majority of these were mapped to known transcriptional units (42.67%). A comparison of the mRNA expression of the mesenteric lymph nodes during the juvenile and post-adolescent stages revealed 8949 transcripts that were differentially expressed, including 6174 known genes. In addition, we functionally classified these transcripts using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. A total of 6174 known genes were assigned to 64 GO terms, and 3782 genes were assigned to 303 KEGG pathways, including some related to immunity. Our results reveal the complex transcriptome profile of the lymph node and suggest that the immune system is immature in the mesenteric lymph nodes of juvenile goats. PMID:27173308

  15. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2010-01-01

    ABSTRACT: BACKGROUND: Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary......-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe...

  16. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium.

    Science.gov (United States)

    Mazin, Pavel V; Fisunov, Gleb Y; Gorbachev, Alexey Y; Kapitskaya, Kristina Y; Altukhov, Ilya A; Semashko, Tatiana A; Alexeev, Dmitry G; Govorun, Vadim M

    2014-12-01

    The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3'-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription. PMID:25361977

  17. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.; Petyuk, Vladislav A.; Jones, Marcus B.; Gritsenko, Marina A.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.

  18. Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma

    DEFF Research Database (Denmark)

    Hedegaard, Jakob; Lamy, Philippe; Nordentoft, Iver;

    2016-01-01

    Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease with widely different outcomes. We performed a comprehensive transcriptional analysis of 460 early-stage urothelial carcinomas and showed that NMIBC can be subgrouped into three major classes with basal- and luminal-like charac......Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease with widely different outcomes. We performed a comprehensive transcriptional analysis of 460 early-stage urothelial carcinomas and showed that NMIBC can be subgrouped into three major classes with basal- and luminal...... cytoskeletal functions. Furthermore, mutations in well-known cancer driver genes (e.g., TP53 and ERBB2) were primarily found in high-risk tumors, together with APOBEC-related mutational signatures. The identification of subclasses in NMIBC may offer better prognostication and treatment selection based on...

  19. Resequencing of Curcuma longa L. cv. Kedaram through transcriptome profiling reveals various novel transcripts.

    Science.gov (United States)

    Sahoo, Ambika; Jena, Sudipta; Sahoo, Suprava; Nayak, Sanghamitra; Kar, Basudeba

    2016-09-01

    Curcuma longa L. (Turmeric), of the family Zingiberaceae, is one of the economically as well as medicinally important plant species. It is a sterile, polyploid and vegetatively propagated spice crop cultivated usually in Southeast Asia. In the current study, we carried out re-sequencing through transcriptome profiling of Curcuma longa cv. Kedaram (Cl_Ked_6). We acquired a total of 1 GB raw data by resequencing through paired-end sequencing using Nextseq 500 platform. The raw data obtained in this study can be accessible in NCBI database with accession number of SRR3928562 with bioproject accession number PRJNA324755. Cufflinks-2.2.1 tool was used for transcriptome assembly which resulted in 39,554 numbers of transcripts. The transcript length ranged from 76 to 15,568, having N50 value of 1221 and median transcript length of 860. We annotated the transcripts using multiple databases. This data will be beneficial for studying sequence variations particularly SNPs between cultivars of turmeric towards authentic identification and discovery of novel functional transcripts in Kedaram. PMID:27595066

  20. Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia

    OpenAIRE

    Moslehi, Roxana; Mills, James L; Signore, Caroline; Kumar, Anil; Ambroggio, Xavier; Dzutsev, Amiran

    2013-01-01

    We previously suggested links between specific XPD mutations in the fetal genome and the risk of placental maldevelopment and preeclampsia, possibly due to impairment of Transcription Factor (TF)IIH-mediated functions in placenta. To identify the underlying mechanisms, we conducted the current integrative analysis of several relevant transcriptome data sources. Our meta-analysis revealed downregulation of TFIIH subunits in preeclamptic placentas. Our overall integrative analysis suggested tha...

  1. Transcriptional Analysis of T Cells Resident in Human Skin

    OpenAIRE

    Jane Li; Moshe Olshansky; Carbone, Francis R.; Ma, Joel Z.

    2016-01-01

    Human skin contains various populations of memory T cells in permanent residence and in transit. Arguably, the best characterized of the skin subsets are the CD8(+) permanently resident memory T cells (TRM) expressing the integrin subunit, CD103. In order to investigate the remaining skin T cells, we isolated skin-tropic (CLA(+)) helper T cells, regulatory T cells, and CD8(+) CD103(-) T cells from skin and blood for RNA microarray analysis to compare the transcriptional profiles of these grou...

  2. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth.

    Science.gov (United States)

    Cuomo, Christina A; Desjardins, Christopher A; Bakowski, Malina A; Goldberg, Jonathan; Ma, Amy T; Becnel, James J; Didier, Elizabeth S; Fan, Lin; Heiman, David I; Levin, Joshua Z; Young, Sarah; Zeng, Qiandong; Troemel, Emily R

    2012-12-01

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites. PMID:22813931

  3. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation.

    Science.gov (United States)

    Zhang, Bao-Le; Liu, Jie; Lei, Yu; Xiong, Ye; Li, Heng; Lin, Xiaoqian; Yao, Rui-Qin; Gao, Dian-Shuai

    2016-09-01

    Glioma cells express high levels of GDNF. When investigating its transcriptional regulation mechanism, we observed increased or decreased methylation of different cis-acting elements in the gdnf promoter II. However, it is difficult to determine the contributions of methylation changes of each cis-acting element to the abnormally high transcription of gdnf gene. To elucidate the contributions of methylation changes of specific cis-acting elements to the regulation of gdnf transcription, we combined gene site-directed mutation, molecular cloning, and dual luciferase assay to develop the "specific sequence methylation followed by plasmid recircularization" method to alter methylation levels of specific cis-acting elements in the gdnf promoter in living cells and assess gene transcriptional activity. This method successfully introduced artificial changes in the methylation of different cis-acting elements in the gdnf promoter II. Moreover, compared with unmethylated gdnf promoter II, both silencer II hypermethylation plus enhancer II unmethylation and hypermethylation of the entire promoter II (containing enhancer II and silencer II) significantly enhanced gdnf transcriptional activity (P  0.05). Enhancer II hypermethylation plus silencer II unmethylation did not significantly affect gene transcription (P > 0.05). Furthermore, we found significantly increased DNA methylation in the silencer II of the gdnf gene in high-grade astroglioma cells with abnormally high gdnf gene expression (P < 0.01). The absence of silencer II significantly increased gdnf promoter II activity in U251 cells (P < 0.01). In conclusion, our specific sequence methylation followed by plasmid recircularization method successfully altered the methylation levels of a specific cis-acting element in a gene promoter in living cells. This method allows in-depth investigation of the impact of methylation changes of different cis-acting elements in the same promoter on gene transcriptional

  4. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise

    NARCIS (Netherlands)

    H. Kempe; A. Schwabe; F. Crémazy; P.J. Verschure; F.J. Bruggeman

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with single-cel

  5. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    Science.gov (United States)

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivoransis an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals.Acidithiobacillus ferrivoransobtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing ofAt. ferrivoransRNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by thetetH1gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites insoxXsuggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving thesatgene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknownAt. ferrivoranstetrathionate metabolic pathway that is important in biomining. PMID:26956550

  6. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages

    OpenAIRE

    Wehrly, Tara D.; Chong, Audrey; Virtaneva, Kimmo; Sturdevant, Dan E.; Child, Robert; Edwards, Jessica A.; Brouwer, Dedeke; Nair, Vinod; Fischer, Elizabeth R.; Wicke, Luke; Curda, Alissa J.; Kupko, John J.; Martens, Craig; Crane, Deborah D.; Bosio, Catharine M.

    2009-01-01

    The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis subsp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profile...

  7. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome

    Directory of Open Access Journals (Sweden)

    Størseth Trond R

    2010-03-01

    Full Text Available Abstract Background Glutamate plays a central position in the synthesis of a variety of organic molecules in plants and is synthesised from nitrate through a series of enzymatic reactions. Glutamate synthases catalyse the last step in this pathway and two types are present in plants: NADH- or ferredoxin-dependent. Here we report a genome wide microarray analysis of the transcriptional reprogramming that occurs in leaves and roots of the A. thaliana mutant glu1-2 knocked-down in the expression of Fd-GOGAT1 (GLU1; At5g04140, one of the two genes of A. thaliana encoding ferredoxin-dependent glutamate synthase. Results Transcriptional profiling of glu1-2 revealed extensive changes with the expression of more than 5500 genes significantly affected in leaves and nearly 700 in roots. Both genes involved in glutamate biosynthesis and transformation are affected, leading to changes in amino acid compositions as revealed by NMR metabolome analysis. An elevated glutamine level in the glu1-2 mutant was the most prominent of these changes. An unbiased analysis of the gene expression datasets allowed us to identify the pathways that constitute the secondary response of an FdGOGAT1/GLU1 knock-down. Among the most significantly affected pathways, photosynthesis, photorespiratory cycle and chlorophyll biosynthesis show an overall downregulation in glu1-2 leaves. This is in accordance with their slight chlorotic phenotype. Another characteristic of the glu1-2 transcriptional profile is the activation of multiple stress responses, mimicking cold, heat, drought and oxidative stress. The change in expression of genes involved in flavonoid biosynthesis is also revealed. The expression of a substantial number of genes encoding stress-related transcription factors, cytochrome P450 monooxygenases, glutathione S-transferases and UDP-glycosyltransferases is affected in the glu1-2 mutant. This may indicate an induction of the detoxification of secondary metabolites in the

  8. A tobacco cDNA reveals two different transcription patterns in vegetative and reproductive organs

    Directory of Open Access Journals (Sweden)

    I. da Silva

    2002-08-01

    Full Text Available In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8 showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries. Plants submitted to stress (wounding, virus infection and ethylene treatment presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.

  9. Analysis of Phonetic Transcriptions for Danish Automatic Speech Recognition

    DEFF Research Database (Denmark)

    Kirkedal, Andreas Søeborg

    recognition system depends heavily on the dictionary and the transcriptions therein. This paper presents an analysis of phonetic/phonemic features that are salient for current Danish ASR systems. This preliminary study consists of a series of experiments using an ASR system trained on the DK-PAROLE corpus....... The analysis indicates that transcribing e.g. stress or vowel duration has a negative impact on performance. The best performance is obtained with coarse phonetic annotation and improves performance 1% word error rate and 3.8% sentence error rate....

  10. Characterization of a novel radiation-inducible transcript, uscA, and analysis of its transcriptional regulation

    International Nuclear Information System (INIS)

    The transcriptional expression of the uscA promote (PuscA) only occurred under aerobic conditions and a dose of 2Gy maximally activated transcription of PuscA. However, various environmental stress including physical shocks (pH, temperature, osmotic shock), DNA damaging agents (UV and MMC) or oxidative stressagents (paraquat, menadione, and H2O2) didn't cause the transcriptional activationof PuscA. The transcription of uscA was initiated at 170 bp upstream of the cyoA start codon, and ended around the ampG stop codon. The size of uscA was determined through reverse transcription assay, approximately 250 bp. The deletion analysis of uscA promoter demonstrates that radiation inducibility of PuscA is mediated by sequences present between -20 and +111 relativeto +1 of PuscA and radiation causes PuscA activation thorough permitting the expression that is repressed under non-irradiated conditions

  11. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    OpenAIRE

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2014-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 th...

  12. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants.

    OpenAIRE

    Fobert, P R; Coen, E S; Murphy, G. J.; Doonan, J H

    1994-01-01

    Transcripts from five cell cycle related genes accumulate in isolated cells dispersed throughout the actively dividing regions of plant meristems. We propose that this pattern reflects gene expression during particular phases of the cell division cycle. The high proportion of isolated cells suggests that synchrony between daughter cells is rapidly lost following mitosis. This is the first time that such a cell specific expression pattern has been described in a higher organism. Counterstainin...

  13. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    OpenAIRE

    Stromvik Martina; Kaur Navneet; Hunt Matt; Vodkin Lila

    2011-01-01

    Abstract Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Ta...

  14. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets

    OpenAIRE

    Reimand, Jüri; Vaquerizas, Juan M.; Todd, Annabel E.; Vilo, Jaak; Luscombe, Nicholas M.

    2010-01-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here...

  15. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    OpenAIRE

    Chiu, Isaac M; Barrett, Lee B.; Williams, Erika K.; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D.; Lou, Shan; Bryman, Gregory S; Roberson, David P.; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos del Moral, Enrique Jos??; Cheryl L. Stucky

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1)...

  16. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors. PMID:25688923

  17. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  18. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.

    Directory of Open Access Journals (Sweden)

    Osnat Tirosh

    Full Text Available Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.

  19. A sensitive transcriptome analysis method that can detect unknown transcripts

    Science.gov (United States)

    Fukumura, Ryutaro; Takahashi, Hirokazu; Saito, Toshiyuki; Tsutsumi, Yoko; Fujimori, Akira; Sato, Shinji; Tatsumi, Kouichi; Araki, Ryoko; Abe, Masumi

    2003-01-01

    We have developed an AFLP-based gene expression profiling method called ‘high coverage expression profiling’ (HiCEP) analysis. By making improvements to the selective PCR technique we have reduced the rate of false positive peaks to ∼4% and consequently the number of peaks, including overlapping peaks, has been markedly decreased. As a result we can determine the relationship between peaks and original transcripts unequivocally. This will make it practical to prepare a database of all peaks, allowing gene assignment without having to isolate individual peaks. This precise selection also enables us to easily clone peaks of interest and predict the corresponding gene for each peak in some species. The procedure is highly reproducible and sensitive enough to detect even a 1.2-fold difference in gene expression. Most importantly, the low false positive rate enables us to analyze gene expression with wide coverage by means of four instead of six nucleotide recognition site restriction enzymes for fingerprinting mRNAs. Therefore, the method detects 70–80% of all transcripts, including non-coding transcripts, unknown and known genes. Moreover, the method requires no sequence information and so is applicable even to eukaryotes for which there is no genome information available. PMID:12907746

  20. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Yo Saito

    Full Text Available Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S; therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2.

  1. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene.

    Science.gov (United States)

    Heilbronn, R; Jahn, G; Bürkle, A; Freese, U K; Fleckenstein, B; zur Hausen, H

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSV-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at Tm - 25 degrees C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Epstein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein. Images PMID:3023689

  2. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein.

  3. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  4. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  5. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets.

    Science.gov (United States)

    Reimand, Jüri; Vaquerizas, Juan M; Todd, Annabel E; Vilo, Jaak; Luscombe, Nicholas M

    2010-08-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here, we present a reanalysis of the original data using improved statistical techniques freely available from the BioConductor project. We identify over 100,000 differentially expressed genes-nine times the total reported by Hu et al. We validate the biological significance of these genes by assessing their functions, the occurrence of upstream TF-binding sites, and the prevalence of protein-protein interactions. The reanalysed dataset outperforms the original across all measures, indicating that we have uncovered a vastly expanded list of relevant targets. In summary, this work presents a high-quality reanalysis that maximizes the information contained in the Hu et al. compendium. The dataset is available from ArrayExpress (accession: E-MTAB-109) and it will be invaluable to any scientist interested in the yeast transcriptional regulatory system. PMID:20385592

  6. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    Science.gov (United States)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  7. Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis.

    Science.gov (United States)

    Sharma, Monika; Dhamgaye, Sanjiveeni; Singh, Ashutosh; Prasad, Rajendra

    2012-01-01

    This study shows that antifungal curcumin (CUR), significantly depletes ergosterol levels in Candida albicans. CUR while displaying synergy with fluconazole (FLC) lowers ergosterol. However, CUR alone at its synergistic concentration (lower than MIC50), could not affect ergosterol contents. For deeper insight of CUR effects on lipids, we performed high throughput mass spectroscopy (MS) based lipid profiling of C. albicans cells. The lipidome analysis revealed that there were no major changes in phosphoglycerides (PGLs) composition following CUR treatment of Candida, however, significant differences in molecular species of PGLs were detected. Among major SPLs, CUR treatment resulted in the reduction of ceramide and accumulation of IPCs levels. The lipidome of CUR treated cells confirmed a dramatic drop in the ergosterol levels with a simultaneous accumulation of its biosynthetic precursors. This was further supported by the fact that the mutants defective in ergosterol biosynthesis (ERG2 and ERG11) and those lacking the transcription factor regulating ergosterol biosynthesis, UPC2, were highly susceptible to CUR. Our study first time shows that CUR, for its antifungal activity, targets and down regulates delta 5, 6 desaturase (ERG3) resulting in depletion of ergosterol. This results in parallel accumulation of ergosterol biosynthetic precursors, generation of reactive oxygen species (ROS) and cell death. PMID:22201946

  8. Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene

    International Nuclear Information System (INIS)

    The mimivirus L544 gene product was expressed in E. coli and crystallized; preliminary phasing of a MAD data set was performed using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein. Mimivirus is the prototype of a new family (the Mimiviridae) of nucleocytoplasmic large DNA viruses (NCLDVs), which already include the Poxviridae, Iridoviridae, Phycodnaviridae and Asfarviridae. Mimivirus specifically replicates in cells from the genus Acanthamoeba. Proteomic analysis of purified mimivirus particles revealed the presence of many subunits of the DNA-directed RNA polymerase II complex. A fully functional pre-transcriptional complex appears to be loaded in the virions, allowing mimivirus to initiate transcription within the host cytoplasm immediately upon infection independently of the host nuclear apparatus. To fully understand this process, a systematic study of mimivirus proteins that are predicted (by bioinformatics) or suspected (by proteomic analysis) to be involved in transcription was initiated by cloning and expressing them in Escherichia coli in order to determine their three-dimensional structures. Here, preliminary crystallographic analysis of the recombinant L544 protein is reported. The crystals belonged to the orthorhombic space group C2221 with one monomer per asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal present in a selenomethionine-substituted protein crystal

  9. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene

    Science.gov (United States)

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle. PMID:27379520

  10. Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Baier Herwig

    2009-06-01

    reveal an unexpected role for NSF in hypothalamic development, with mutant 5 days post-fertilization larvae exhibiting a stage-dependent loss of neuroendocrine transcripts and a corresponding accumulation of neuropeptides in the soma. Based on our collective findings, we speculate that neuroendocrine transcriptional programs adapt dynamically to both the supply and demand for neuropeptides to ensure adequate homeostatic responses.

  11. Theoretical analysis of transcription process with polymerase stalling

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Experimental evidences show that in gene transcription, RNA polymerase has the possibility to be stalled at certain position of the transcription template. This may be due to the template damage, or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, or simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the {\\it effective} transcription rate (the rate to synthesize correct product mRNA) and the transcription {\\it effectiveness} (the ratio of the {\\it effective} transcription rate to the {\\it effective} transcription initiation rate) are both influenced by polymerase stalling events. This study shows that, Without backtracking, detachment of stalled polymerase can also help to increase the {\\it effective} transcription rate and transcription {\\it effectiveness}. Generally, the increase of bypass rate of the stalled polymeras...

  12. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis

    OpenAIRE

    F Nikulenkov; Spinnler, C; Li, H.; Tonelli, C; Shi, Y; Turunen, M.; Kivioja, T; Ignatiev, I.; Kel, A; Taipale, J; Selivanova, G

    2012-01-01

    The tumor-suppressor p53 can induce various biological responses. Yet, it is not clear whether it is p53 in vivo promoter selectivity that triggers different transcription programs leading to different outcomes. Our analysis of genome-wide chromatin occupancy by p53 using chromatin immunoprecipitation (ChIP)-seq revealed ‘p53 default program', that is, the pattern of major p53-bound sites that is similar upon p53 activation by nutlin3a, reactivation of p53 and induction of tumor cell apoptosi...

  13. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  14. Analysis of Hepatitis C Virus-Inoculated Chimpanzees Reveals Unexpected Clinical Profiles

    OpenAIRE

    Bassett, Suzanne E.; Brasky, Kathleen M.; Lanford, Robert E.

    1998-01-01

    The clinical course of hepatitis C virus (HCV) infections in a chimpanzee cohort was examined to better characterize the outcome of this valuable animal model. Results of a cross-sectional study revealed that a low percentage (39%) of HCV-inoculated chimpanzees were viremic based on reverse transcription (RT-PCR) analysis. A correlation was observed between viremia and the presence of anti-HCV antibodies. The pattern of antibodies was dissimilar among viremic chimpanzees and chimpanzees that ...

  15. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    Science.gov (United States)

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-01

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. PMID:27098040

  16. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis

    International Nuclear Information System (INIS)

    EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. This metaanalysis suggests that ‘combination therapies’ can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding

  17. Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    R. Kucharski

    2003-08-01

    Full Text Available Transferrins belong to a family of iron-binding proteins that have been implicated in innate immunity and in vitellogenesis in insects. Here we have sequenced and characterized a full-length cDNA encoding a putative iron-binding transferrin (AmTRF in the honeybee. AmTRF shows high level of sequence identity with transferrins in both vertebrates and insects (26-46% suggesting that the primary function of the predicted 712 amino acid protein is binding and transporting of iron. AmTRF is expressed ubiquitously, but particularly high levels of its mRNA are found in the central brain and in the compound eye. Using northern blotting and a microarray based approach we have examined the levels of AmTRF mRNA by expression profiling under a wide range of conditions including developmental stages, septic injury and juvenile hormone treatment. Increased expression of AmTRF is seen during early pupal stages, in the brain of mature foragers and in the abdomen of virgin queens, whereas treatment with juvenile hormone leads to a decrease of AmTRF levels in the abdomen. We show that a transcriptional response of transferrin to septic injury with E. coli is relatively moderate as compared to a dramatic up-regulation of an antibacterial polypeptide, Hymenoptaecin, under similar conditions. We conclude that major fluctuations of AmTRF mRNA in time and space are consistent with context-dependent functional significance and suggest broader multifunctional roles for transferrin in insects.

  18. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae

    OpenAIRE

    Teixeira, Miguel C; Monteiro, Pedro; Jain, Pooja; Tenreiro, Sandra; Fernandes, Alexandra R.; Mira, Nuno P.; Alenquer, Marta; Freitas, Ana T.; Oliveira, Arlindo L.; Sá-Correia, Isabel

    2005-01-01

    We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; ) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence which was spread throughout 861 bibliographic references. It also includes 257 specific DNA-binding sites for more than a hundred characterized transcript...

  19. Full-Length Structures of BenM and Two Variants Reveal Different Oligomerization Schemes for LysR-Type Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ruangprasert, Ajchareeya; Craven, Sarah H.; Neidle, Ellen L.; Momany, Cory (Georgia)

    2010-11-30

    BenM, a LysR-type transcriptional regulator (LTTR) from the bacterium Acinetobacter baylyi, responds synergistically to benzoate and cis,cis-muconate. With these effectors, BenM activates gene expression during benzoate consumption. Without effectors, BenM represses transcription. Here, X-ray crystallography was used to determine the full-length structures of BenM and two variants that activate transcription without benzoate or cis,cis-muconate: BenM(R156H) and BenM(E226K). Previous studies indicate that these regulators function as tetramers. Here, interconnections between subunits in the crystals prevented the formation of a closed oligomer and highlighted the inherent flexibility of this multidomain regulator. Nevertheless, analysis of subunit interfaces suggested the functional significance of key interactions. The structures of BenM and its variants were nearly identical, implying that transcriptional differences rely on factors beyond major conformational changes defined solely by sequence. Comparisons of BenM with other LTTRs, including unpublished structures in the Protein Data Bank, revealed extensive variation in the relative orientations of DNA-binding domains (DBDs) and effector-binding domains (EBDs). To form dimers, different LTTRs used similar interfaces between two EBDs, each containing two subdomains: EBD-I and EBD-II. Surprisingly, the dimers used three substantially different schemes to form higher-order oligomers. In one scheme used by BenM, oligomer assembly involved contacts between the EBD-II regions and the DBD regions of adjacent subunits. In another scheme, there were no contacts between the EBDs; only the DBDs were involved in tetramer formation. In the third scheme, the oligomer interface involved DBD and EBD-I/EBD-II contacts. These diverse schemes demonstrate novel variation in the oligomeric structures of individual LTTRs within this large and important family.

  20. The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation

    International Nuclear Information System (INIS)

    The crystal structure of the NGO1945 gene product from N. gonorrhoeae (UniProt Q5F5IO) reveals that the N-terminal domain assigned as a domain of unknown function (DUF2063) is likely to bind DNA and that the protein may be involved in transcriptional regulation. Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The crystal structure of a member of this family, NGO1945 from Neisseria gonorrhoeae, has been determined and reveals that the N-terminal DUF2063 domain is likely to be a DNA-binding domain. In conjunction with the rest of the protein, NGO1945 is likely to be involved in transcriptional regulation, which is consistent with genomic neighborhood analysis. Of the 216 currently known proteins that contain a DUF2063 domain, the most significant sequence homologs of NGO1945 (∼40–99% sequence identity) are from various Neisseria and Haemophilus species. As these are important human pathogens, NGO1945 represents an interesting candidate for further exploration via biochemical studies and possible therapeutic intervention

  1. Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Directory of Open Access Journals (Sweden)

    Craigon Marie

    2009-08-01

    Full Text Available Abstract Background Interferons (IFNs are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs. Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs with a non-targeting (control siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000 prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated

  2. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  3. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Institute of Scientific and Technical Information of China (English)

    Yonglong Yu; Dong Zhu; Chaoying Ma; Hui Cao; Yaping Wang; Yanhao Xu; Wenying Zhang; Yueming Yan

    2016-01-01

    Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20) during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further informa-tion about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  4. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    DEFF Research Database (Denmark)

    Klochendler, Agnes; Weinberg-Corem, Noa; Moran, Maya;

    2012-01-01

    biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to......Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive...... reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of...

  5. The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector.

    Science.gov (United States)

    Boudes, Marion; Lazar, Noureddine; Graille, Marc; Durand, Dominique; Gaidenko, Tatiana A; Stewart, Valley; van Tilbeurgh, Herman

    2012-08-01

    The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding. PMID:22690729

  6. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.

    Directory of Open Access Journals (Sweden)

    Eliska Vohradska

    Full Text Available Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network--the yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic network was attained. The model allowed for performing virtual experiments on the network and observing their influence on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable. As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the system into the network, its functional properties cannot be studied and interpreted correctly.

  7. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts

    Directory of Open Access Journals (Sweden)

    Yonatan Stelzer

    2015-04-01

    Full Text Available Parental imprinting results in monoallelic parent-of-origin-dependent gene expression. However, many imprinted genes identified by differential methylation do not exhibit complete monoallelic expression. Previous studies demonstrated complex tissue-dependent expression patterns for some imprinted genes. Still, the complete magnitude of this phenomenon remains largely unknown. By differentiating human parthenogenetic induced pluripotent stem cells into different cell types and combining DNA methylation with a 5′ RNA sequencing methodology, we were able to identify tissue- and isoform-dependent imprinted genes in a genome-wide manner. We demonstrate that nearly half of all imprinted genes express both biallelic and monoallelic isoforms that are controlled by tissue-specific alternative promoters. This study provides a global analysis of tissue-specific imprinting in humans and suggests that alternative promoters are central in the regulation of imprinted genes.

  8. Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud.

    Directory of Open Access Journals (Sweden)

    Xing Huang

    Full Text Available In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5 or extremely low (Dazhuhuangbaima shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.

  9. Exogenous reference gene normalization for real-time reverse transcription-polymerase chain reaction analysis under dynamic endogenous transcription

    Institute of Scientific and Technical Information of China (English)

    Stephen Johnston; Zachary Gallaher; Krzysztof Czaja

    2012-01-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2-ΔΔCt normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.

  10. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  11. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition.

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    Full Text Available BACKGROUND: Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1% from the forward library and 62 (21.8% from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. CONCLUSIONS/SIGNIFICANCE: The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to

  12. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response

    Directory of Open Access Journals (Sweden)

    Geijer Cecilia

    2012-10-01

    Full Text Available Abstract Background Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. Results Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. Conclusions Resumption of growth in germinating spores is characterized by

  13. Co-expression network analysis identifies transcriptional modules in the mouse liver.

    Science.gov (United States)

    Liu, Wei; Ye, Hua

    2014-10-01

    The mouse liver transcriptome has been extensively studied but little is known about the global hepatic gene network of the mouse under normal physiological conditions. Understanding this will help reveal the transcriptional organization of the liver and elucidate its functional complexity. Here, weighted gene co-expression network analysis (WGCNA) was carried out to explore gene co-expression networks using large-scale microarray data from normal mouse livers. A total of 7,203 genes were parsed into 16 gene modules associated with protein catabolism, RNA processing, muscle contraction, transcriptional regulation, oxidation reduction, sterol biosynthesis, translation, fatty acid metabolism, immune response and others. The modules were organized into higher order co-expression groups. Hub genes in each module were found to be critical for module function. In sum, the analyses revealed the gene modular map of the mouse liver under normal physiological condition. These results provide a systems-level framework to help understand the complexity of the mouse liver at the molecular level, and should be beneficial in annotating uncharacterized genes. PMID:24816893

  14. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  15. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription.

    Science.gov (United States)

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-02-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  16. A Genome-Wide Transcription An alysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids

    Institute of Scientific and Technical Information of China (English)

    Hui-Yong Zhang; Li-Geng Ma; Xing Wang Deng; Hang He; Liang-Bi Chen; Lei Li; Man-Zhong Liang; Xiang-Feng Wang; Xi-Gang Liu; Guang-Ming He; Run-Sheng Chen

    2008-01-01

    Heterosis,or hybrid vigor,refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance.Although a century-long history of research has generated several hypotheses regarding the genetic basis of heterosis,the molecular mechanisms underlying heterosis and heterotic gene expression remain elusive.Here,we report a genome-wide gene expression analysis of two heterotic crosses in rice,taking advantage of its fully sequenced genomes.Approximately 7-9%of the genes were differentially expressed in the seedling shoots from two sets of heterotic crosses,including many transcription factor genes,and exhibited multiple modes of gene action.Comparison of the putative promoter regions of the ortholog genes between inbred parents revealed extensive sequence variation,particularly smallinsertions/deletions(INDELs),many of which result in the formation/disruption of putative cis-regulatory elements.Together,these results suggest that a combinatoriaI interplay between expression of transcription factors and polymorphic promoter cis-regulatory elements in the hybrids is one plausible molecular mechanism underlying heterotic gene action and thus heterosis in rice.

  17. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry

    Directory of Open Access Journals (Sweden)

    Javier Villacreses

    2015-04-01

    Full Text Available Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1. High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs: ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV, Petuvirus genus. ORF1 encodes a movement protein (MP; ORF2 a Reverse Transcriptase (RT and a Ribonuclease H (RNase H domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs, AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq. Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.

  18. Deep sequencing reveals the complete genome and evidence for transcriptional activity of the first virus-like sequences identified in Aristotelia chilensis (Maqui Berry).

    Science.gov (United States)

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F; Alzate, Juan F; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-04-01

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%-73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242

  19. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Close Timothy J

    2009-08-01

    Full Text Available Abstract Background Rice and barley are both members of Poaceae (grass family but have a marked difference in salt tolerance. The molecular mechanism underlying this difference was previously unexplored. This study employs a comparative genomics approach to identify analogous and contrasting gene expression patterns between rice and barley. Results A hierarchical clustering approach identified several interesting expression trajectories among rice and barley genotypes. There were no major conserved expression patterns between the two species in response to salt stress. A wheat salt-stress dataset was queried for comparison with rice and barley. Roughly one-third of the salt-stress responses of barley were conserved with wheat while overlap between wheat and rice was minimal. These results demonstrate that, at transcriptome level, rice is strikingly different compared to the more closely related barley and wheat. This apparent lack of analogous transcriptional programs in response to salt stress is further highlighted through close examination of genes associated with root growth and development. Conclusion The analysis provides support for the hypothesis that conservation of transcriptional signatures in response to environmental cues depends on the genetic similarity among the genotypes within a species, and on the phylogenetic distance between the species.

  20. Transcript profiling reveals that cysteine protease inhibitors are up-regulated in tuber sprouts after extended darkness.

    Science.gov (United States)

    Grandellis, Carolina; Giammaria, Veronica; Fantino, Elisa; Cerrudo, Ignacio; Bachmann, Sandra; Santin, Franco; Ulloa, Rita M

    2016-07-01

    Potato (Solanum tuberosum L.) tubers are an excellent staple food due to its high nutritional value. When the tuber reaches physiological competence, sprouting proceeds accompanied by changes at mRNA and protein levels. Potato tubers become a source of carbon and energy until sprouts are capable of independent growth. Transcript profiling of sprouts grown under continuous light or dark conditions was performed using the TIGR 10K EST Solanaceae microarray. The profiles analyzed show a core of highly expressed transcripts that are associated to the reactivation of growth. Under light conditions, the photosynthetic machinery was fully activated; the highest up-regulation was observed for the Rubisco activase (RCA), the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the Photosystem II 22 kDa protein (CP22) genes, among others. On the other hand, sprouts exposed to continuous darkness elongate longer, and after extended darkness, synthesis of chloroplast components was repressed, the expression of proteases was reduced while genes encoding cysteine protease inhibitors (CPIs) and metallocarboxypeptidase inhibitors (MPIs) were strongly induced. Northern blot and RT-PCR analysis confirmed that MPI levels correlated with the length of the dark period; however, CPI expression was strong only after longer periods of darkness, suggesting a feedback loop (regulation mechanism) in response to dark-induced senescence. Prevention of cysteine protease activity in etiolated sprouts exposed to extended darkness could delay senescence until they emerge to light. PMID:27075731

  1. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Qing

    2009-07-01

    Full Text Available Abstract Background Recent work has revealed that a core group of transcription factors (TFs regulates the key characteristics of embryonic stem (ES cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA, we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status, which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology.

  2. Transcriptional analysis implicates endoplasmic reticulum stress in bovine spongiform encephalopathy.

    Directory of Open Access Journals (Sweden)

    Yue Tang

    Full Text Available Bovine spongiform encephalopathy (BSE is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity.

  3. Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response.

    Science.gov (United States)

    Dinesh, Dhurvas Chandrasekaran; Kovermann, Michael; Gopalswamy, Mohanraj; Hellmuth, Antje; Calderón Villalobos, Luz Irina A; Lilie, Hauke; Balbach, Jochen; Abel, Steffen

    2015-05-12

    The plant hormone auxin activates primary response genes by facilitating proteolytic removal of auxin/indole-3-acetic acid (AUX/IAA)-inducible repressors, which directly bind to transcriptional auxin response factors (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼ 6.4 μM) were determined by isothermal titration calorimetry. In silico protein-protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein-protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression. PMID:25918389

  4. Cloning, nucleotide sequence and transcriptional analysis of the uvrA gene from Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    A recombinant plasmid capable of restoring UV resistance to an Escherichia coli uvrA mutant was isolated from a genomic library of Neisseria gonorrhoeae. Sequence analysis revealed an open reading frame whose deduced amino acid sequence displayed significant similarity to those of the UvrA proteins of other bacterial species. A second open reading frame (ORF259) was identified upstream from, and in the opposite orientation to the gonococcal uvrA gene. Transcriptional fusions between portions of the gonococcal uvrA upstream region and a reporter gene were used to localise promoter activity in both E. coli and N. gonorrhoeae. The transcriptional starting points of uvrA and ORF259 were mapped in E. coli by primer extension analysis, and corresponding σ70 promoters were identified. The arrangement of the uvrA-ORF259 intergenic region is similar to that of the gonococcal recA-aroD intergenic region. Both contain inverted copies of the 10 bp neisserial DNA uptake sequence situated between divergently transcribed genes. However, there is no evidence that either the uptake sequence or the proximity of the promoters influences expression of these genes. (author)

  5. YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae

    OpenAIRE

    Monteiro, Pedro T.; Mendes, Nuno D; Teixeira, Miguel C.; d’Orey, Sofia; Tenreiro, Sandra; Mira, Nuno P; Pais, Hélio; Francisco, Alexandre P.; Alexandra M. Carvalho; Lourenço, Artur B.; Sá-Correia, Isabel; Oliveira, Arlindo L.; Freitas, Ana T.

    2007-01-01

    The Yeast search for transcriptional regulators and consensus tracking (YEASTRACT) information system (www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in September 2007, this database contains over 30 990 regulatory associations between Transcription Factors (TFs) and target genes and includes 284 specific DNA binding sites for 108 characterized TFs. Computational tools are also provided to facilitate ...

  6. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    Directory of Open Access Journals (Sweden)

    Tian-Tian Zhao

    Full Text Available Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I, Unigene37641 (group II and Unigene20441 (group III, were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101 were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold

  7. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate.

    Science.gov (United States)

    Rajaraman, Eashwar; Agarwal, Ankit; Crigler, Jacob; Seipelt-Thiemann, Rebecca; Altman, Elliot; Eiteman, Mark A

    2016-09-01

    Eighteen strains of Escherichia coli were compared for maximum specific growth rate (μ MAX) on 85 mM acetate as the sole carbon source. The C strain ATCC8739 had the greatest growth rate (0.41 h(-1)) while SCS-1 had the slowest growth rate (0.15 h(-1)). Transcriptional analysis of three of the strains (ATCC8739, BL21, SMS-3-5) was conducted to elucidate why ATCC8739 had the greatest maximum growth rate. Seventy-one genes were upregulated 2-fold or greater in ATCC8739, while 128 genes were downregulated 2-fold or greater in ATCC8739 compared to BL21 and SMS-3-5. To generate a strain that could grow more quickly on acetate, ATCC8739 was cultured in a chemostat using a progressively increasing dilution rate. When the dilution rate reached 0.50 h(-1), three isolated colonies each grew faster than ATCC8739 on 85 mM acetate, with MEC136 growing the fastest with a growth rate of 0.51 h(-1), about 25 % greater than ATCC8739. Transcriptional analysis of MEC136 showed that eight genes were downregulated 2-fold or greater and one gene was upregulated 2-fold or greater compared to ATCC8739. Genomic sequencing revealed that MEC136 contained a single mutation, causing a serine to proline change in amino acid 266 of RpoA, the α subunit of the RNA polymerase core enzyme. The 260-270 amino acid region of RpoA has been shown to be a key region of the protein that affects the interaction of the α subunit of the RNA polymerase core enzyme with several global transcriptional activators, such as CRP and FNR. PMID:27448288

  8. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    Directory of Open Access Journals (Sweden)

    Nicolas M Bertagnolli

    Full Text Available To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  9. Molecular analysis of endothelial progenitor cell (EPC subtypes reveals two distinct cell populations with different identities

    Directory of Open Access Journals (Sweden)

    Simpson David A

    2010-05-01

    Full Text Available Abstract Background The term endothelial progenitor cells (EPCs is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs and outgrowth endothelial cells (OECs. Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN with links to immunity and inflammation (TLRs, CD14, HLAs, whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.

  10. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas

    OpenAIRE

    Bao, Zhao-Shi; Chen, Hui-min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; HU, HUI-MIN

    2014-01-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent ...

  11. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.

    OpenAIRE

    Hori, R; Pyo, S.; Carey, M

    1995-01-01

    Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB...

  12. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models

    DEFF Research Database (Denmark)

    Klein, Hans-Ulrich; Schäfer, Martin; Porse, Bo T; Hasemann, Marie S; Ickstadt, Katja; Dugas, Martin

    2014-01-01

    Histone modifications are a key epigenetic mechanism to activate or repress the transcription of genes. Datasets of matched transcription data and histone modification data obtained by ChIP-seq exist, but methods for integrative analysis of both data types are still rare. Here, we present a novel...

  13. Transcriptional Analysis of a Whole-Body Form of Long-Term Habituation in "Aplysia Californica"

    Science.gov (United States)

    Holmes, Geraldine; Herdegen, Samantha; Schuon, Jonathan; Cyriac, Ashly; Lass, Jamie; Conte, Catherine; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.

    2015-01-01

    Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle,…

  14. Analysis of p53 mutants for transcriptional activity.

    OpenAIRE

    Raycroft, L.; Schmidt, J. R.; Yoas, K; Hao, M M; Lozano, G.

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 protein...

  15. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    Science.gov (United States)

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  16. Transcriptional and functional analysis of the Neisseria gonorrhoeae fur regulon

    Science.gov (United States)

    To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator senses intracellular iron stores and acting as a repressor, directly regulates transcription of iron-responsive genes by binding to a conserve...

  17. Single-Cell Analysis of Ribonucleotide Reductase Transcriptional and Translational Response to DNA Damage

    OpenAIRE

    Mazumder, Aprotim; Tummler, Katja; Bathe, Mark; Samson, Leona D.

    2013-01-01

    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and p...

  18. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Here we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.

  19. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine (Vitis pseudoreticulata).

    Science.gov (United States)

    Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Li, Ya-Juan; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-02-01

    Heat shock transcription factors (Hsfs) are known to play pivotal roles in the adaptation of plants to heat stress and other stress stimuli. While grapevine (Vitis vinifera L.) is one of the most important fruit crops worldwide, little is known about the Hsf family in Vitis spp. Here, we identified nineteen putative Hsf genes (VviHsfs) in Vitis spp based on the 12 × grape genome (V. vinifera L.). Phylogenetic analysis revealed three classes of grape Hsf genes (classes A, B, and C). Additional comparisons between grape and Arabidopsis thaliana demonstrated that several VviHsfs genes occurred in corresponding syntenic blocks of Arabidopsis. Moreover, we examined the expression profiles of the homologs of the VviHsfs genes (VpHsfs) in the wild Chinese Vitis pseudoreticulata accession Baihe-35-1, which is tolerant to various environmental stresses. Among the nineteen VpHsfs, ten VpHsfs displayed lower transcript levels under non-stress conditions and marked up-regulation during heat stress treatment; several VpHsfs also displayed altered expression levels in response to cold, salt, and hormone treatments, suggesting their versatile roles in response to stress stimuli. In addition, eight VpHsf-GFP fusion proteins showed differential subcellular localization in V. pseudoreticulata mesophyll protoplasts. Taken together, our data may provide an important reference for further studies of Hsf genes in Vitis spp. PMID:26689772

  20. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    Science.gov (United States)

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  1. Genome-wide transcription analysis of clinal genetic variation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern populations using whole genome tiling arrays. We found that genes that were differentially expressed between the cline ends were generally associated with metabolism and growth, and experimental alteration of expression of a sample of them generally resulted in altered body size in the predicted direction, sometimes significantly so. We further identified the serpent (srp transcription factor binding sites to be enriched near genes up-regulated in expression in the south. Analysis of clinal populations revealed a significant cline in the expression level of srp. Experimental over-expression of srp increased body size, as predicted from its clinal expression pattern, suggesting that it may be involved in regulating adaptive clinal variation in Drosophila. This study identified a handful of genes that contributed to clinal phenotypic variation through altered gene expression level, yet misexpression of individual gene led to modest body size change.

  2. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis.

    Science.gov (United States)

    Dos Santos Castro, Lilian; de Paula, Renato G; Antoniêto, Amanda C C; Persinoti, Gabriela F; Silva-Rocha, Rafael; Silva, Roberto N

    2016-01-01

    We defined the role of the transcriptional factor-XYR1-in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  3. Network based transcription factor analysis of regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Cameron Jo Ann

    2011-03-01

    Full Text Available Abstract Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets. Network analysis showed that TGF-β1 and fibronectin (FN lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem

  4. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    Science.gov (United States)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  5. Mapping the Transcription Start Points of the Staphylococcus aureus eap, emp, and vwb Promoters Reveals a Conserved Octanucleotide Sequence That Is Essential for Expression of These Genes▿ †

    OpenAIRE

    Harraghy, Niamh; Homerova, Dagmar; Herrmann, Mathias; Kormanec, Jan

    2007-01-01

    Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.

  6. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    Science.gov (United States)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  7. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus.

    Science.gov (United States)

    Fox, B A; Bzik, D J

    1994-11-01

    We evaluated the stage-specific transcription and processing of serine repeat antigen (SERA) messenger RNA to further examine mechanisms regulating gene expression in Plasmodium falciparum. SERA mRNA was expressed exclusively in trophozoite and schizont stages. Transcription from the SERA gene was first detected between 24 and 29 h following erythrocyte invasion. The transcript mapping data revealed heterogeneity of the SERA mRNA 5' and 3' ends. RNA sequencing revealed that SERA transcripts were not generated by a trans-splicing mechanism. A new SERA gene, SERA3, was identified 1.8 kb upstream of SERA. The direction of transcription of the SERA locus genes, SERA3, SERA, and SERA2, was mapped relative to the location of other chromosome 2 genetic markers. The SERA locus and the closely linked MSA2 locus were found to be transcriptionally regulated in a coordinate fashion. Collectively, the results of these experiments show that parallel and coordinately controlled transcription units reside on chromosome 2. These results implicate a novel mechanism of transcriptional control in Plasmodium. PMID:7891737

  8. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  9. Comet Methy-sens and DNMTs transcriptional analysis as a combined approach in epigenotoxicology

    Directory of Open Access Journals (Sweden)

    Alessio Perotti

    2015-05-01

    In conclusion, our data demonstrate that Comet Methy-sens, in combination with the analysis of transcriptional levels of DNA methyl transferases, represents a simple and multifunctional approach to implement biomonitoring studies on epigenotoxicological effects of known and unknown xenobiotics.

  10. Cloning of the cDNA for the TATA-binding protein-associated factorII170 subunit of transcription factor B-TFIID reveals homology to global transcription regulators in yeast and Drosophila

    Science.gov (United States)

    van der Knaap, Jan A.; Borst, Jan Willem; van der Vliet, Peter C.; Gentz, Reiner; Timmers, H. Th. Marc

    1997-01-01

    The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development. PMID:9342322

  11. Corona cell RNA sequencing from individual oocytes revealed transcripts and pathways linked to euploid oocyte competence and live birth.

    Science.gov (United States)

    Parks, Jason C; Patton, Alyssa L; McCallie, Blair R; Griffin, Darren K; Schoolcraft, William B; Katz-Jaffe, Mandy G

    2016-05-01

    Corona cells surround the oocyte and maintain a close relationship through transzonal processes and gap junctions, and may be used to assess oocyte competence. In this study, the corona cell transcriptome of individual cumulus oocyte complexes (COCs) was investigated. Isolated corona cells were collected from COCs that developed into euploid blastocysts and were transferred in a subsequent frozen embryo transfer. Ten corona cell samples underwent RNA-sequencing to generate unique gene expression profiles. Live birth was compared with negative implantation after the transfer of a euploid blastocyst using bioinformatics and statistical analysis. Individual corona cell samples produced a mean of 21.2 million sequence reads, and 307 differentially expressed transcrpits (P APC, AXIN and GSK3B, were independently validated by real-time quantitative reverse transcription. Individual, corona cell transcriptome was successfully generated using RNA-sequencing. Key genes and signalling pathways were identified in association with implantation outcome after the transfer of a euploid blastocyst in a frozen embryo transfer. These data could provide novel biomarkers for the non-invasive assessment of embryo viability. PMID:26995658

  12. Analysis of mitochondrial transcription factor A SNPs in alcoholic cirrhosis

    OpenAIRE

    Tang, Chun; LIU, HONGMING; TANG, YONGLIANG; Guo, Yong; LIANG, XIANCHUN; GUO, LIPING; Pi, Ruxian; Yang, Juntao

    2013-01-01

    Genetic susceptibility to alcoholic cirrhosis (AC) exists. We previously demonstrated hepatic mitochondrial DNA (mtDNA) damage in patients with AC compared with chronic alcoholics without cirrhosis. Mitochondrial transcription factor A (mtTFA) is central to mtDNA expression regulation and repair; however, it is unclear whether there are specific mtTFA single nucleotide polymorphisms (SNPs) in patients with AC and whether they affect mtDNA repair. In the present study, we screened mtTFA SNPs i...

  13. Transcriptional analysis of the human PAX9 promoter

    OpenAIRE

    Carolina Vieira de Almeida; Simone Caixeta de Andrade; Cristiane Pereira Borges Saito; Liza Lima Ramenzoni; Sergio Roberto Peres Line

    2010-01-01

    OBJECTIVES: PAX9 belongs to the Pax family of transcriptional factor genes. This gene is expressed in embryonic tissues such as somites, pharyngeal pouch endoderm, distal limb buds and neural crest-derived mesenchyme. Polymorphisms in the upstream promoter region of the human PAX9 have been associated with human non-syndromic tooth agenesis. In the present study, we verified the in vitro mRNA expression of this gene and the luciferase activity of two constructs containing promoter sequences o...

  14. Analysis of cDNAs and Genomic DNA of Snake Venom CTL-like Proteins Revealed An Extraordinary Post-transcriptional Processing Event%蛇毒C型凝集素类蛋白cDNA与基因组DNA序列分析显示特别的转录后加工

    Institute of Scientific and Technical Information of China (English)

    查向东; 周立志; 黄河胜; 刘兢; 徐康森

    2004-01-01

    为研究蛇毒C型凝集素类蛋白的快速进化机制和结构功能关系,使用PCR技术扩增了若干编码C型凝集素类蛋白β链的cDNA分子以及agkisasin β的基因组DNA,并将这些扩增产物进行克隆和测序.对测序结果与试验过程中的具体条件进行了因果关系分析,并且进行点阵图比较和多序列比对.结果表明,可能存在"转录后同源重组"等转录后的事件,在蛇毒C型凝集素类蛋白的多样性上起着重要的作用.对于解释基因数目与蛋白质数目的差异这一后基因组时代的重要问题,具有一定的参考价值.首次报告蛇毒C型凝集素类蛋白的基因组DNA序列,其中未发现有内含子.%To better understand the accelerated evolution of snake venom C-type lectin-like proteins (CTL-like proteins) and to investigate the structure-function relationships, PCR was conducted to amplify cDNAs coding for the β chains of snake venom CTL-like proteins and the genomic DNA of agkisasin β. The reaction products were cloned and sequenced. The causal relationships between the sequences and the experimental conditions were established. Dot plot analysis and multiple alignments were also performed. The results suggested the existence of a post-transcriptional processing event that was essentially homologous recombination at the RNA level, which might play an important role in the diversity of snake venom CTL-like proteins. This inference would provide a novel perspective for explaining a challenging problem of the post-genomic era: the discrepancy between the limited number of genes and the large collection of cDNAs, which was most prominent with regard to certain snake venom proteins. The genomic DNA of a snake venom C-type lectin-like protein was elucidated and no introns were found in the coding region.

  15. Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schiefelbein John

    2008-07-01

    Full Text Available Abstract Background Single-repeat R3 MYB transcription factors are critical components of the lateral inhibition machinery that mediates epidermal cell patterning in plants. Sequence analysis of the Arabidopsis genome using the BLAST program reveals that there are a total of six genes, including TRIPTYCHON (TRY, CAPRICE (CPC, TRICHOMELESS1 (TCL1, and ENHANCER of TRY and CPC 1, 2, and 3 (ETC1, ETC2 and ETC3 encoding single-repeat R3 MYB transcription factors that are approximately 50% identical to one another at the amino acid level. Previous studies indicate that these single-repeat R3 MYBs regulate epidermal cell patterning. However, each of the previous studies of these single-repeat R3 MYBs has been limited to an analysis of only a subset of these six genes, and furthermore, they have limited their attention to epidermal development in only one or two of the organs. In addition, the transcriptional regulation of these single-repeat R3 MYB genes remains largely unknown. Results By analyzing multiple mutant lines, we report here that TCL1 functions redundantly with other single-repeat R3 MYB transcription factors to control both leaf trichome and root hair formation. On the other hand, ETC1 and ETC3 participate in controlling trichome formation on inflorescence stems and pedicles. Further, we discovered that single-repeat R3 MYBs suppress trichome formation on cotyledons and siliques, organs that normally do not bear any trichomes. By using Arabidopsis protoplast transfection assays, we found that all single-repeat R3 MYBs examined interact with GL3, and that GL1 or WER and GL3 or EGL3 are required and sufficient to activate the transcription of TRY, CPC, ETC1 and ETC3, but not TCL1 and ETC2. Furthermore, only ETC1's transcription was greatly reduced in the gl3 egl3 double mutants. Conclusion Our comprehensive analysis enables us to draw broader conclusions about the role of single-repeat R3 MYB gene family than were possible in the earlier

  16. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    Science.gov (United States)

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  17. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    Science.gov (United States)

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  18. Transcriptional Analysis of the Rubrerythrin and Superoxide Dismutase Genes of Clostridium perfringens

    Science.gov (United States)

    Geissmann, Thomas A.; Teuber, Michael; Meile, Leo

    1999-01-01

    We cloned and sequenced a 2.7-kb fragment of chromosomal DNA from Clostridium perfringens containing the superoxide dismutase-encoding gene, sod. Previously, rubrerythrin from C. perfringens had been isolated and its gene (rbr) had been cloned (Y. Lehmann, L. Meile, and M. Teuber, J. Bacteriol. 178:7152–7158, 1996). Northern blot experiments revealed a length of approximately 800 bases for each transcript of rbr and sod of C. perfringens. Thus, rbr and sod each represent a monocistronic operon. Their transcription start points were located by primer extension analyses. sod transcription was shown to depend on the growth phase, and it reached a maximum during the transition from log phase to stationary phase. Neither sod nor rbr transcription was influenced by oxidative stress. PMID:10559182

  19. Analysis of intron sequence features associated with transcriptional regulation in human genes.

    Directory of Open Access Journals (Sweden)

    Huimin Li

    Full Text Available Although some preliminary work has revealed the potential transcriptional regulatory function of the introns in eukaryotes, additional evidences are needed to support this conjecture. In this study, we perform systemic analyses of the sequence characteristics of human introns. The results show that the first introns are generally longer and C, G and their dinucleotide compositions are over-represented relative to other introns, which are consistent with the previous findings. In addition, some new phenomena concerned with transcriptional regulation are found: i the first introns are enriched in CpG islands; and ii the percentages of the first introns containing TATA, CAAT and GC boxes are relatively higher than other position introns. The similar features of introns are observed in tissue-specific genes. The results further support that the first introns of human genes are likely to be involved in transcriptional regulation, and give an insight into the transcriptional regulatory regions of genes.

  20. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum.

    Science.gov (United States)

    Li, Zhenjun; Peng, Rihe; Tian, Yongsheng; Han, Hongjuan; Xu, Jing; Yao, Quanhong

    2016-08-01

    MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants. PMID:27279646

  1. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Hawthorn Lesleyann

    2010-08-01

    Full Text Available Abstract Background A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine parallel analyses that assess changes in the copy number alterations (CNAs. This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions which demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes'. Methods We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs. Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Fourteen IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from loss of heterozygosity (LOH analysis to identify genes showing altered expression in LOH regions. Results Common chromosome gains and amplifications were identified at 1q21.3, 6p21.3, 7p11.2-p12.1, 8q21.11 and 8q24.3. A novel amplicon was identified at 5p15.33. Frequent losses were found at 1p36.22, 8q23.3, 11p13, 11q23, and 22q13. Over 130 genes were identified with concurrent increases or decreases in expression that mapped to these regions of copy number alterations. LOH analysis revealed three tumors with whole chromosome or p arm allelic loss of chromosome 17. Genes were identified that mapped to copy neutral LOH regions. LOH with accompanying copy loss was detected on Xp24 and Xp25 and genes mapping to these regions with decreased expression were identified. Gene expression data highlighted the PPARα/RXRα Activation Pathway as down-regulated in the tumor samples. Conclusion We have demonstrated the utility of the application of

  2. The Transcript Profile of a Traditional Chinese Medicine, Atractylodes lancea, Revealing Its Sesquiterpenoid Biosynthesis of the Major Active Components

    Science.gov (United States)

    Ahmed, Shakeel; Zhan, Chuansong; Yang, Yanyan; Wang, Xuekui; Yang, Tewu; Zhao, Zeying; Zhang, Qiyun; Li, Xiaohua; Hu, Xuebo

    2016-01-01

    Atractylodes lancea (Thunb.) DC., named “Cangzhu” in China, which belongs to the Asteraceae family. In some countries of Southeast Asia (China, Thailand, Korea, Japan etc.) its rhizome, commonly called rhizoma atractylodis, is used to treat many diseases as it contains a variety of sesquiterpenoids and other components of medicinal importance. Despite its medicinal value, the information of the sesquiterpenoid biosynthesis is largely unknown. In this study, we investigated the transcriptome analysis of different tissues of non-model plant A. lancea by using short read sequencing technology (Illumina). We found 62,352 high quality unigenes with an average sequence length of 913 bp in the transcripts of A. Lancea. Among these, 43,049 (69.04%), 30,264 (48.53%), 26,233 (42.07%), 17,881 (28.67%) and 29,057(46.60%) unigenes showed significant similarity (E-value<1e-5) to known proteins in Nr, KEGG, SWISS-PROT, GO, and COG databases, respectively. Of the total 62,352 unigenes, 43,049 (Nr Database) open reading frames were predicted. On the basis of different bioinformatics tools we identify all the enzymes that take part in the terpenoid biosynthesis as well as five different known sesquiterpenoids via cytosolic mevalonic acid (MVA) pathway and plastidal methylerythritol phosphate (MEP) pathways. In our study, 6, 864 Simple Sequence Repeats (SSRs) were also found as great potential markers in A. lancea. This transcriptomic resource of A. lancea provides a great contribution in advancement of research for this specific medicinal plant and more specifically for the gene mining of different classes of terpenoids and other chemical compounds that have medicinal as well as economic importance. PMID:26990438

  3. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    Science.gov (United States)

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  4. Transcriptome-wide Analysis Of Vernalization Reveals Conserved and Species-specific Mechanisms in Brachypodium

    Institute of Scientific and Technical Information of China (English)

    Qing Huan; Zhiwei Mao; Jingyu Zhang; Yunyuan Xu; Kang Chong

    2013-01-01

    Several temperate cereals need vernalization to promote flowering.Little,however,is known about the vernalization-memory-related genes,and almost no comparative analysis has been performed.Here,RNA-Seq was used for transcriptome analysis in non-vernalized,vernalized and post-vernalized Brachypodium distachyon (L.) Beauv.seedlings.In total,the expression of 1,665 genes showed significant changes (fold change ≥4) in response to vernalization.Among them,674 putative vernalization-memory-related genes with a constant response to vernalization were significantly enriched in transcriptional regulation and monooxygenase-mediated biological processes.Comparative analysis of vernalization-memory-related genes with barley demonstrated that the oxidative-stress response was the most conserved pathway between these two plant species.Moreover,Brachypodium preferred to regulate transcription and protein phosphorylation processes,while vernalization-memory-related genes,whose products are cytoplasmic membrane-bound-vesicle-located proteins,were preferred to be regulated in barley.Correlation analysis of the vernalization-related genes with barley revealed that the vernalization mechanism was conserved between these two plant species.In summary,vernalization,including its memory mechanism,is conserved between Brachypodium and barley,although several species-specific features also exist.The data reported here will provide primary resources for subsequent functional research in vernalization.

  5. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    Directory of Open Access Journals (Sweden)

    Cochrane Brett

    2009-12-01

    Full Text Available Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2, and that a functional SPI2 secretion system regulator (ssrA was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect

  6. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  7. Transcriptional analysis of the human PAX9 promoter

    Science.gov (United States)

    de ALMEIDA, Carolina Vieira; de ANDRADE, Simone Caixeta; SAITO, Cristiane Pereira Borges; RAMENZONI, Liza Lima; LINE, Sergio Roberto Peres

    2010-01-01

    Objectives PAX9 belongs to the Pax family of transcriptional factor genes. This gene is expressed in embryonic tissues such as somites, pharyngeal pouch endoderm, distal limb buds and neural crest-derived mesenchyme. Polymorphisms in the upstream promoter region of the human PAX9 have been associated with human non-syndromic tooth agenesis. In the present study, we verified the in vitro mRNA expression of this gene and the luciferase activity of two constructs containing promoter sequences of the PAX9 gene. Material and Methods Embryonic tissues were obtained from digits, face, and midbrain/hindbrain regions. Fragments containing PAX9 promoter sequences were cloned into reporter plasmids and were transfected into the different cell cultures. mRNA were extracted from primary cell cultures. Results The semi-quantitative RT-PCR results showed that in vitro E13.5 limb bud and CNS cells express PAX9, but cells derived from the facial region do not. Moreover, the luciferase assay showed that protein activity of the constructed vector was weaker than pgl3 -basic alone. Conclusion The present results suggest that the promoter sequences analyzed are not sufficient to drive PAX9 gene transcription. PMID:21085804

  8. Transcriptional analysis of the human PAX9 promoter

    Directory of Open Access Journals (Sweden)

    Carolina Vieira de Almeida

    2010-10-01

    Full Text Available OBJECTIVES: PAX9 belongs to the Pax family of transcriptional factor genes. This gene is expressed in embryonic tissues such as somites, pharyngeal pouch endoderm, distal limb buds and neural crest-derived mesenchyme. Polymorphisms in the upstream promoter region of the human PAX9 have been associated with human non-syndromic tooth agenesis. In the present study, we verified the in vitro mRNA expression of this gene and the luciferase activity of two constructs containing promoter sequences of the PAX9 gene. MATERIAL AND METHODS: Embryonic tissues were obtained from digits, face, and midbrain/hindbrain regions. Fragments containing PAX9 promoter sequences were cloned into reporter plasmids and were transfected into the different cell cultures. mRNA were extracted from primary cell cultures. RESULTS: The semi-quantitative RT-PCR results showed that in vitro E13.5 limb bud and CNS cells express PAX9, but cells derived from the facial region do not. Moreover, the luciferase assay showed that protein activity of the constructed vector was weaker than pgl3 -basic alone. CONCLUSIONS: The present results suggest that the promoter sequences analyzed are not sufficient to drive PAX9 gene transcription.

  9. Gene Transcription Profile in Mice Vaccinated with Ultraviolet-attenuated Cercariae of Schistosoma japonicum Reveals Molecules Contributing to Elevated IFN-γLevels

    Institute of Scientific and Technical Information of China (English)

    Xiang ZHU; Feng LIU; Chuan SU; Guan-Ling WU; Zhao-Song ZHANG; Min-Jun JI; Hai-Wei WU; Yong WANG; Xiao-Ping CAI; Lei ZHANG; Shu-Ying HU; Lin-Lin FU

    2005-01-01

    Vaccination with ultraviolet-attenuated cercariae of Schistosoma japonicum induced protective immunity against challenge infection in experimental animal models. Our preliminary study on the transcription levels of IFN-γ and IL-4 in splenic CD4+ T cells revealed that attenuated cercariae elicited predominantly a Thl response in mice at the early stage, whereas normal cercariae stimulated primarily Th2dependent responses. Further analysis on the gene profile of the skin-draining lymph nodes demonstrated that the levels of IFN-γ were significantly higher in vaccinated mice than those in infected mice at day 4, 7 and 14 post-vaccination or post-infection. However, for IL-12 and IL-4, the potent inducers of Th l and Th2 responses, respectively, as well as IL-10, there were no differences over the course of the experiment between the infected and vaccinated mice. To explore the underlying factors that may potentially contribute to elevated IFN-γ in vaccinated mice, the mRNA profiles of the skin-draining lymph nodes at day 4 postexposure were compared using oligonucleotide microarrays. Within the 847 probe sets with increased signal values, we focused on chemokines, cytokines and relevant receptors, which were validated by semi-quantitative RT-PCR. A comprehensive understanding of the immune mechanisms of attenuated cercariae-induced protection may contribute to developing efficient vaccination strategies against S. japonicum, especially during the early stage of infection.

  10. A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence

    Directory of Open Access Journals (Sweden)

    Georg Kuales

    2015-01-01

    Full Text Available Trophoblast stem cells (TSCs represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.

  11. [Transcriptional analysis of the Grp gene, a genomic homolog of the retrotransposon gypsy gag gene, in Drosophila melanogaster].

    Science.gov (United States)

    Nefedova, L N; Kuz'min, I V; Burmistrova, D A; Rezazadekh, S; Kim, A I

    2011-08-01

    In the present work, we studied the Grp gene (CG4680, Gag related protein) expression at the transcriptional level. It was found that at the embryonic and larval stages of D. melanogaster development the Grp expression proceeds at a low level, but it significantly increases at the adult stage. Adult individuals display a tissue-specific expression: an eleveated level of transcription is observed in the gut tissues, but not in the chitin carcass, head, and gonads. Since the gut may potentially be a primary barrier for the penetration of a viral infection, we conducted a comparative analysis of Grp gene transcription in D. melanogaster strains differing in the presence of active copies of the gypsy errantivirus and in the status of the flamenco gene controlling sensitivity to errantiviral infections. No noticeable differences in the level of Grp gene transcription were revealed. Thus, the Grp gene is not a pseudogene, but it is a functional gene of the D. melanogaster genome whose role remains to be elucidated. PMID:21954611

  12. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    OpenAIRE

    Zhou Qing; Plath Kathrin; Fan Guoping; Mason Mike J; Horvath Steve

    2009-01-01

    Abstract Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we...

  13. Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution.

    Science.gov (United States)

    Ki, Sanghee; Park, Daechan; Selden, Hilary J; Seita, Jun; Chung, Haewon; Kim, Jonghwan; Iyer, Vishwanath R; Ehrlich, Lauren I R

    2014-10-01

    Age-associated thymic involution results in diminished T cell output and function in aged individuals. However, molecular mediators contributing to the decline in thymic function during early thymic involution remain largely unknown. Here, we present transcriptional profiling of purified thymic stromal subsets from mice 1, 3, and 6 months of age spanning early thymic involution. The data implicate unanticipated biological functions for a subset of thymic epithelial cells. The predominant transcriptional signature of early thymic involution is decreased expression of cell-cycle-associated genes and E2F3 transcriptional targets in thymic epithelial subsets. Also, expression of proinflammatory genes increases with age in thymic dendritic cells. Many genes previously implicated in late involution are already deregulated by 3-6 months of age. We provide these thymic stromal data sets, along with thymocyte data sets, in a readily searchable web-based platform, as a resource for investigations into thymocyte:stromal interactions and mechanisms of thymic involution. PMID:25284794

  14. Transcriptional analysis of a whole-body form of long-term habituation in Aplysia californica

    OpenAIRE

    Holmes, Geraldine; Herdegen, Samantha; Schuon, Jonathan; Cyriac, Ashly; Lass, Jamie; Conte, Catherine; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.

    2015-01-01

    Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle, we have developed a protocol for producing whole-body long-term habituation of the siphon-withdrawal reflex (SWR) of Aplysia californica. Specifical...

  15. The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts.

    Science.gov (United States)

    Peviani, Alessia; Lastdrager, Jeroen; Hanson, Johannes; Snel, Berend

    2016-01-01

    Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions. PMID:27457880

  16. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    Science.gov (United States)

    Chandran, Divya; Sankararamasubramanian, H M; Kumar, M Ashok; Parida, Ajay

    2014-04-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385 contigs and 1,428 singletons, with 591 expressed sequence tags mapping for enzymes having catalytic roles in various metabolic pathways. Differences in transcript levels in early and mid-to-late maturation stages of seeds were also investigated using sequence information obtained from the cDNA subtraction library. Seven out of 12 transcripts having putative roles in central carbon metabolism were up regulated in early seed maturation stage while lipid metabolism related transcripts were detected at higher levels in the later stage of seed maturation. Interestingly, 4 of the transcripts revealed putative alternative splice variants that were specifically present or up regulated in the early or late maturation stage of the seeds. Transcript expression patterns from the current study using maturing seeds of J. curcas reveal a subtle balancing of oil accumulation and utilization, which may be influenced by their energy requirements. PMID:24757322

  17. Linear stability analysis reveals exclusion zone for sliding bed transport

    Directory of Open Access Journals (Sweden)

    Talmon Arnold M.

    2015-06-01

    Full Text Available A bend or any another pipe component disturbs solids transport in pipes. Longitudinal pressure profiles downstream of such a component may show a stationary transient harmonic wave, as revealed by a recent settling slurry laboratory experiment. Therefore the fundamental transient response of the two-layer model for fully stratified flow is investigated as a first approach. A linear stability analysis of the sliding bed configuration is conducted. No stationary transient harmonic waves are found in this analysis, but adaptation lengths for exponential recovery are quantified. An example calculation is given for a 0.1 m diameter pipeline.

  18. Genome-wide analysis of antisense transcription with Affymetrix exon array

    Directory of Open Access Journals (Sweden)

    Jung Yong-chul

    2008-01-01

    Full Text Available Abstract Background A large number of natural antisense transcripts have been identified in human and mouse genomes. Study of their potential functions clearly requires cost-efficient method for expression analysis. Results Here we show that Affymetrix Exon arrays, which were designed to detect conventional transcripts in the sense orientation, can be used to monitor antisense expression across all exonic loci in mammalian genomes. Through modification of the cDNA synthesis protocol, we labeled single-strand cDNA in the reverse orientation as in the standard protocol, thus enabling the detection of antisense transcripts using the same array. Applying this technique to human Jurkat cells, we identified antisense transcription at 2,088 exonic loci of 1,516 UniGene clusters. Many of these antisense transcripts were not observed previously and some were validated by orientation-specific RT-PCR. Conclusion Our results suggest that with a modified protocol Affymetrix human, mouse and rat Exon arrays can be used as a routine method for genome-wide analysis of antisense transcription in these genomes.

  19. Quantitative Transcript Analysis in Plants: Improved First-strand cDNA Synthesis

    Institute of Scientific and Technical Information of China (English)

    Nai-Zhong XIAO; Lei BA; Preben Bach HOLM; Xing-Zhi WANG; Steve BOWRA

    2005-01-01

    The quantity and quality of first-strand cDNA directly influence the accuracy of transcriptional analysis and quantification. Using a plant-derived α-tubulin as a model system, the effect of oligo sequence and DTT on the quality and quantity of first-strand cDNA synthesis was assessed via a combination of semi-quantitative PCR and real-time PCR. The results indicated that anchored oligo dT significantly improved the quantity and quality of α-tubulin cDNA compared to the conventional oligo dT. Similarly, omitting DTT from the first-strand cDNA synthesis also enhanced the levels of transcript. This is the first time that a comparative analysis has been undertaken for a plant system and it shows conclusively that small changes to current protocols can have very significant impact on transcript analysis.

  20. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis

    OpenAIRE

    Chen, Cynthia; Lodish, Harvey F.

    2014-01-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA1 and TAL1, have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation and whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction...

  1. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways.

    Science.gov (United States)

    Rowell, Janelle; Koitabashi, Norimichi; Kass, David A; Barth, Andreas S

    2014-10-15

    Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation. PMID:25159852

  2. Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

    OpenAIRE

    Pizeta Semighini, Camile; Marins, Mozart; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2002-01-01

    The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated dr...

  3. Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas.

    Directory of Open Access Journals (Sweden)

    Chunjing Wang

    Full Text Available Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4 and 30 non-tumor samples (normal brain as control tissues. Utilizing Differential Rank Conservation (DIRAC, a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human

  4. Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas.

    Science.gov (United States)

    Wang, Chunjing; Funk, Cory C; Eddy, James A; Price, Nathan D

    2013-01-01

    Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades

  5. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells

    OpenAIRE

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the tra...

  6. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    OpenAIRE

    Hamilton, Shea; Bongaerts, Roy JM; Mulholland, Francis; Cochrane, Brett; Porter, Jonathan; Lucchini, Sacha; Lappin-Scott, Hilary M.; Hinton, Jay CD

    2009-01-01

    Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria...

  7. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern.

    Science.gov (United States)

    Donizetti, Aldo; Fiengo, Marcella; Iazzetti, Giovanni; del Gaudio, Rosanna; Di Giaimo, Rossella; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-01-01

    Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis. PMID:25384467

  8. Transcriptome analysis reveals dynamic changes in the gene expression of tobacco seedlings under low potassium stress

    Indian Academy of Sciences (India)

    Liming Lu; Yong Chen; Lin Lu; Yifei Lu; Liqin Li

    2015-09-01

    Potassium plays a key role in plant development and reproduction. In agricultural practice, potassium deficiency is common worldwide, and leads to crop growth inhibition and output reduction. In this study, we analysed the transcriptome of tobacco seedlings under low potassium stress. Tobacco seedlings with or without decreased potassium treatment were harvested after 0 (control), 6, 12, or 24 h and were submitted for microarray analysis. The results showed that up to 3790 genes were upregulated or downregulated more than 2-fold as a result of the decreased potassium treatment. Gene ontology analysis revealed significantly differentially expressed genes that were categorized as cation binding, transcription regulation, metabolic processes, transporter activity and enzyme regulation. Some potassium, nitrogen and phosphorus transporters; transcription factors; and plant signal molecules, such as CPKs were also significantly differentially expressed under potassium deficiency. Our results indicate that the expression profiles of a large number of genes involved in various plant physiological processes are significantly altered in response to potassium deficiency, which can result in physiological and morphological changes in tobacco plants.

  9. Large-scale analysis by SAGE reveals new mechanisms of v-erbA oncogene action

    Directory of Open Access Journals (Sweden)

    Faure Claudine

    2007-10-01

    Full Text Available Abstract Background: The v-erbA oncogene, carried by the Avian Erythroblastosis Virus, derives from the c-erbAα proto-oncogene that encodes the nuclear receptor for triiodothyronine (T3R. v-ErbA transforms erythroid progenitors in vitro by blocking their differentiation, supposedly by interference with T3R and RAR (Retinoic Acid Receptor. However, v-ErbA target genes involved in its transforming activity still remain to be identified. Results: By using Serial Analysis of Gene Expression (SAGE, we identified 110 genes deregulated by v-ErbA and potentially implicated in the transformation process. Bioinformatic analysis of promoter sequence and transcriptional assays point out a potential role of c-Myb in the v-ErbA effect. Furthermore, grouping of newly identified target genes by function revealed both expected (chromatin/transcription and unexpected (protein metabolism functions potentially deregulated by v-ErbA. We then focused our study on 15 of the new v-ErbA target genes and demonstrated by real time PCR that in majority their expression was activated neither by T3, nor RA, nor during differentiation. This was unexpected based upon the previously known role of v-ErbA. Conclusion: This paper suggests the involvement of a wealth of new unanticipated mechanisms of v-ErbA action.

  10. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna

    2014-11-14

    We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.

  11. Global Transcriptional Profiling Reveals Distinct Functions of Thymic Stromal Subsets and Age-Related Changes during Thymic Involution

    Directory of Open Access Journals (Sweden)

    Sanghee Ki

    2014-10-01

    Full Text Available Age-associated thymic involution results in diminished T cell output and function in aged individuals. However, molecular mediators contributing to the decline in thymic function during early thymic involution remain largely unknown. Here, we present transcriptional profiling of purified thymic stromal subsets from mice 1, 3, and 6 months of age spanning early thymic involution. The data implicate unanticipated biological functions for a subset of thymic epithelial cells. The predominant transcriptional signature of early thymic involution is decreased expression of cell-cycle-associated genes and E2F3 transcriptional targets in thymic epithelial subsets. Also, expression of proinflammatory genes increases with age in thymic dendritic cells. Many genes previously implicated in late involution are already deregulated by 3–6 months of age. We provide these thymic stromal data sets, along with thymocyte data sets, in a readily searchable web-based platform, as a resource for investigations into thymocyte:stromal interactions and mechanisms of thymic involution.

  12. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis.

    Science.gov (United States)

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  13. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis

    Directory of Open Access Journals (Sweden)

    Mauget Steven A

    2004-11-01

    metabolic activities that are important in the recovery of the gametophytes from desiccation. A comparison of the GO distribution of Tortula clusters with an identical analysis of 9,981 clusters from the desiccation sensitive bryophyte species Physcomitrella patens, revealed, and accentuated, the differences between stressed and unstressed transcriptomes. Cross species sequence comparisons indicated that on the whole the Tortula clusters were more closely related to those from Physcomitrella than Arabidopsis (complete genome BLASTx comparison although because of the differences in the databases there were more high scoring matches to the Arabidopsis sequences. The most abundant transcripts contained within the Tortula ESTs encode Late Embryogenesis Abundant (LEA proteins that are normally associated with drying plant tissues. This suggests that LEAs may also play a role in recovery from desiccation when water is reintroduced into a dried tissue. Conclusion The establishment of a rehydration EST collection for Tortula ruralis, an important plant model for plant stress responses and vegetative desiccation tolerance, is an important step in understanding the genome level response to cellular dehydration. The type of transcript analysis performed here has laid the foundation for more detailed functional and genome level analyses of the genes involved in desiccation tolerance in plants.

  14. Transcript analysis of parasitic females of the sedentary semi-endoparasitic nematode Rotylenchulus reniformis.

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Scheffler, Brian S

    2010-07-01

    Rotylenchulus reniformis, the reniform nematode, is a sedentary semi-endoparasitic nematode capable of infecting >300 plant species, including a large number of crops such as cotton, soybean, and pineapple. In contrast to other economically important plant-parasitic nematodes, molecular genetic data regarding the R. reniformis transcriptome is virtually nonexistant. Herein, we present a survey of R. reniformis ESTs that were sequenced from a sedentary parasitic female cDNA library. Cluster analysis of 2004 high quality ESTs produced 123 contigs and 508 singletons for a total of 631 R. reniformis unigenes. BLASTX analyses revealed that 39% of all unigenes showed similarity to known proteins (Etranscript sequence data necessary for investigating engineered resistance against R. reniformis and (ii) hints at the existance of a thiamin biosynthesis pathway in an animal. PMID:20346373

  15. Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels

    Directory of Open Access Journals (Sweden)

    Feyereisen R

    2006-06-01

    Full Text Available Abstract Background Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV. Results Results show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76% showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses. Conclusion This analysis of the

  16. Cloning of the cDNA for the TATA-binding protein-associated factorII170 subunit of transcription factor B-TFIID reveals homology to global transcription regulators in yeast and Drosophila

    OpenAIRE

    van der Knaap, Jan A.; Borst, Jan Willem; van der Vliet, Peter C.; Gentz, Reiner; Timmers, H.Th. Marc

    1997-01-01

    The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira...

  17. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingkang Guo; Jian Wu; Qian Ji; Chao Wang; Lei Luo; Yi Yuan; Yonghua Wang; Jian Wang

    2008-01-01

    The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other impor tant biological processes. Study of the HSF gene family is important for understanding the mechanism by which plants respond to stress. The completed genome sequences of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) constitute a valuable resource for comparative genomic analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. The identification of phylogenetic relationships among HSF proteins in these species is a fundamental step to unravel the functionality of new and yet uncharacterized genes belonging to this family.In this study, the full complement of HSF genes in rice and Arabidopsis has probably been identified through the genome-wide scan. Phylogenetic analyses resulted in the identification of three major clusters of orthologous genes that contain members belonging to both species, which must have been represented in their common ancestor before the taxonomic splitting of the angiosperms. Further analysis of the phylogenetic tree reveals a possible dicot specific gene group. We also identified nine pairs of paralogs, as evidence for studies on the evolution history of rice HSF family and rice genome evolution. Expression data analysis indicates that HSF proteins are widely expressed in plants. These results provide a solid base for future functional genomic studies of the HSF gene family in rice and Arabidopsis.

  18. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...... tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. RESULTS: The major findings are upregulation of cell cycle pathways and a...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major...

  19. A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis.

    Directory of Open Access Journals (Sweden)

    Varun ePandey

    2013-09-01

    Full Text Available Pantothenate Kinase-Associated Neurodegeneration (PKAN is a neurodegenerative disorder with a poorly understood molecular mechanism. It is caused by mutations in Pantothenate Kinase, the first enzyme in the Coenzyme A (CoA biosynthetic pathway. Here, we developed a Drosophila model of PKAN (tim-fbl flies that allows us to continuously monitor the modeled disease in the brain. In tim-fbl flies, downregulation of fumble, the Drosophila PanK homologue in the cells containing a circadian clock results in characteristic features of PKAN such as developmental lethality, hypersensitivity to oxidative stress, and diminished life span. Despite quasi-normal circadian transcriptional rhythms, tim-fbl flies display brain-specific aberrant circadian locomotor rhythms, and a unique transcriptional signature. Comparison with expression data from flies exposed to paraquat demonstrates that, as previously suggested, pathways others than oxidative stress are affected by PANK downregulation. Surprisingly we found a significant decrease in the expression of key components of the photoreceptor recycling pathways, which could lead to retinal degeneration, a hallmark of PKAN. Importantly, these defects are not accompanied by changes in structural components in eye genes suggesting that changes in gene expression in the eye precede and may cause the retinal degeneration. Indeed tim-fbl flies have diminished response to light transitions, and their altered day/night patterns of activity demonstrates defects in light perception. This suggest that retinal lesions are not solely due to oxidative stress and demonstrates a role for the transcriptional response to CoA deficiency underlying the defects observed in dPanK deficient flies. Moreover, in the present study we developed a new fly model that can be applied to other diseases and that allows the assessment of neurodegeneration in the brains of living flies.

  20. Comparative analysis of acute and chronic corticosteroid pharmacogenomic effects in rat liver: Transcriptional dynamics and regulatory structures

    Directory of Open Access Journals (Sweden)

    DuBois Debra C

    2010-10-01

    Full Text Available Abstract Background Comprehensively understanding corticosteroid pharmacogenomic effects is an essential step towards an insight into the underlying molecular mechanisms for both beneficial and detrimental clinical effects. Nevertheless, even in a single tissue different methods of corticosteroid administration can induce different patterns of expression and regulatory control structures. Therefore, rich in vivo datasets of pharmacological time-series with two dosing regimens sampled from rat liver are examined for temporal patterns of changes in gene expression and their regulatory commonalities. Results The study addresses two issues, including (1 identifying significant transcriptional modules coupled with dynamic expression patterns and (2 predicting relevant common transcriptional controls to better understand the underlying mechanisms of corticosteroid adverse effects. Following the orientation of meta-analysis, an extended computational approach that explores the concept of agreement matrix from consensus clustering has been proposed with the aims of identifying gene clusters that share common expression patterns across multiple dosing regimens as well as handling challenges in the analysis of microarray data from heterogeneous sources, e.g. different platforms and time-grids in this study. Six significant transcriptional modules coupled with typical patterns of expression have been identified. Functional analysis reveals that virtually all enriched functions (gene ontologies, pathways in these modules are shown to be related to metabolic processes, implying the importance of these modules in adverse effects under the administration of corticosteroids. Relevant putative transcriptional regulators (e.g. RXRF, FKHD, SP1F are also predicted to provide another source of information towards better understanding the complexities of expression patterns and the underlying regulatory mechanisms of those modules. Conclusions We have proposed a

  1. Transfer entropy, symbolic transfer entropy and transcript mutual information indicators reveal a leading role of infragranular layers during slow oscillations

    Directory of Open Access Journals (Sweden)

    Núria Tort-Colet

    2015-04-01

    To determine the directionality of the information flow between different layers of the cortex and the connected thalamus during spontaneous activity we obtained multilayer local field potentials from the rat visual cortex and from its connected thalamus, the lateral geniculate nucleus, during deep anaesthesia. We analyzed directionality of information flow between thalamus, cortical infragranular layers (5 and 6 and supragranular layers (2/3 by means of three information theoretical indicators: transfer entropy, symbolic transfer entropy and transcript mutual information. These three indicators coincided in finding that infragranular layers lead the information flow during slow oscillations both towards supragranular layers and towards the thalamus.

  2. Minimal Promoter Systems Reveal the Importance of Conserved Residues in the B-finger of Human Transcription Factor IIB*

    OpenAIRE

    Thompson, Nancy E.; GLASER, BRYAN T.; Foley, Katherine M.; Burton, Zachary F.; Burgess, Richard R.

    2009-01-01

    The “B-finger” of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeL...

  3. How to Identify Negative Attitudes towards Inclusive Education: Critical Discourse Analysis of Russian Transcripts Using Role and Reference Grammar

    Directory of Open Access Journals (Sweden)

    Mariia Rubtcova

    2016-09-01

    Full Text Available This paper presents the Role and Reference Grammar (RRG analysis that aims to reveal possibilities required for carrying out the interdisciplinary research development within Critical Discourse Analysis (CDA. It takes a closer look at conflicts, considering the example of a conflict situation occurred in reaction to the opening of the inclusive academic programme at one of St. Petersburg’s secondary schools. Role and Reference Grammar application demonstrates that the use of different verb types and macroroles has led to the various interpretations. These findings confirm that RRG could influence the increase of objectivity of the transcript analysis in qualitative social research. RRG provides new information which in combination with other methods can help us to understand the positions of participants involved into conflictsKeywords: Role and Reference Grammar, Inclusive Education, Qualitative social research in Sociology of Management

  4. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.;

    2010-01-01

    constitutively expressed protein isoforms, which were associated with 203 ORFs in the A. balhimycina genome. These data, providing insights on the major metabolic pathways/molecular processes operating in this organism, were used to compile 2-DE reference maps covering 3-10, 4-7 and 4.5-5.5 pH gradients...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis......, energetic and redox balance, sugar/amino sugar metabolism, balhimycin biosynthesis and transcriptional regulation or with hypothetical and/or unknown function. Interestingly, proteins involved in the biosynthesis of balhimycin precursors, such as amino acids, amino sugars and central carbon metabolism...

  5. Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools

    Science.gov (United States)

    Leshkowitz, Dena; Feldmesser, Ester; Friedlander, Gilgi; Jona, Ghil; Ainbinder, Elena; Parmet, Yisrael; Horn-Saban, Shirley

    2016-01-01

    One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was to assess and compare the ability of the bioinformatics approaches and tools to assemble, quantify and detect differentially expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro synthesized mouse spike-in control transcripts were added to the total RNA of differentiating mouse embryonic bodies, and their expression patterns were measured. This novel approach was used to assess the accuracy of the tools, as established by comparing the observed results versus the results expected of the mouse controlled spiked-in transcripts. We found that detection of differential expression at the gene level is adequate, yet on the transcript-isoform level, all tools tested lacked accuracy and precision. PMID:27100792

  6. Transcriptional Analysis of the Rubrerythrin and Superoxide Dismutase Genes of Clostridium perfringens

    OpenAIRE

    Geissmann, Thomas A.; Teuber, Michael; Meile, Leo

    1999-01-01

    We cloned and sequenced a 2.7-kb fragment of chromosomal DNA from Clostridium perfringens containing the superoxide dismutase-encoding gene, sod. Previously, rubrerythrin from C. perfringens had been isolated and its gene (rbr) had been cloned (Y. Lehmann, L. Meile, and M. Teuber, J. Bacteriol. 178:7152–7158, 1996). Northern blot experiments revealed a length of approximately 800 bases for each transcript of rbr and sod of C. perfringens. Thus, rbr and sod each represent a monocistronic opero...

  7. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  8. Perturbations of PIP3 signalling trigger a global remodelling of mRNA landscape and reveal a transcriptional feedback loop.

    Science.gov (United States)

    Kiselev, Vladimir Yu; Juvin, Veronique; Malek, Mouhannad; Luscombe, Nicholas; Hawkins, Phillip; Le Novère, Nicolas; Stephens, Len

    2015-11-16

    PIP3 is synthesized by the Class I PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. PIP3-dependent modulation of mRNA accumulation is clearly important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to acute regulation by EGF, in the presence or absence of a PI3Kα inhibitor, compare it to chronic activation of PI3K signalling by cancer-relevant mutations (isogenic cells expressing an oncomutant PI3Kα allele or lacking the PIP3-phosphatase/tumour-suppressor, PTEN). Our results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signalling ('butterfly effect'), a much smaller number do so in a coherent fashion with the different PIP3 perturbations. This suggests a subset of more directly regulated mRNAs. We show that mRNAs respond differently to given aspects of PIP3 regulation. Some PIP3-sensitive mRNAs encode PI3K pathway components, thus suggesting a transcriptional feedback loop. We identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement. PMID:26464442

  9. Reverse Genetic Analysis of Transcription FactorOsHox9, a Member of Homeobox Family, in Rice

    Institute of Scientific and Technical Information of China (English)

    AI Li-ping; SHEN Ao; GAO Zhi-chao; LI Zheng-long; SUN Qiong-lin; LI Ying-ying; LUAN Wei-jiang

    2014-01-01

    Homeobox transcription factors participate in the growth and development of plants by regulating cell differentiation, morphogenesis and environmental signal response. To reveal the functions of these transcription factors in rice, we constructed the RNAi vectors ofOsHox9, a member of homeobox family, and analyzed the function ofOsHox9 using reverse genetics. The plant height and tillering number of RNAi transgenic plants decreased compared with those of wild-type plants. Reverse transcription-polymerase chain reaction analysis showed thatOsHox9 expression reduced in the transgenic plants with phenotypic variance, whereas that in the transgenic plants without phenotypic variance was similar to that in the wild-type plants. This result suggests that the phenotypes of the transgenic plants were caused by RNAi effects. The tissue-specificity ofOsHox9 expression indicated that it was expressed in different organs, with high expression in stem apical meristem and young panicles. Subcelular location ofOsHox9 demonstrated that it was localized on the cell membrane.

  10. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    LENUS (Irish Health Repository)

    Pin, Carmen

    2009-11-16

    Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells

  11. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Directory of Open Access Journals (Sweden)

    Hinton Jay CD

    2009-11-01

    Full Text Available Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells and 16 days (old cells. Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186 than in young cells (467. Relatively, few genes (62 were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young

  12. Global transcription analysis of vaccinated channel catfish following challenge with virulent Edwardsiella ictaluri

    Science.gov (United States)

    To determine the identities of genes involved in either innate or adaptive immunity, microarray analysis of 65,182 UniGene transcripts were performed to compare gene expression in vaccinated channel catfish after challenge with a virulent Edwardsiella ictaluri compared to that in sham-vaccinated fis...

  13. A Procedure for the Computerized Analysis of Cleft Palate Speech Transcription

    Science.gov (United States)

    Fitzsimons, David A.; Jones, David L.; Barton, Belinda; North, Kathryn N.

    2012-01-01

    The phonetic symbols used by speech-language pathologists to transcribe speech contain underlying hexadecimal values used by computers to correctly display and process transcription data. This study aimed to develop a procedure to utilise these values as the basis for subsequent computerized analysis of cleft palate speech. A computer keyboard…

  14. Protein Evolution in Cell and Tissue Development: Going Beyond Sequence and Transcriptional Analysis

    OpenAIRE

    Dickinson, Daniel J.; Weis, William I.; Nelson, W. James

    2011-01-01

    Studies of animal evolution often focus on sequence and transcriptional analysis, based on an assumption that the evolution of development is driven by changes in gene expression. We argue that biochemical and cell biological approaches are also required, because sequence-conserved proteins can have different biochemical, cellular and developmental properties.

  15. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  16. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    Science.gov (United States)

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  17. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis.

    Science.gov (United States)

    Xu, Xinsen; Zhou, Yanyan; Miao, Runchen; Chen, Wei; Qu, Kai; Pang, Qing; Liu, Chang

    2016-06-01

    We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm. We utilized the WGCNA to identify the coexpressed genes (modules) after non-specific filtering. Correlation and survival analyses were conducted using the modules, and gene ontology (GO) enrichment was applied to explore the possible mechanisms. Eight distinct modules were identified by the WGCNA. Pink and red modules were associated with liver function, whereas turquoise and black modules were inversely correlated with tumor staging. Poor outcomes were found in the low expression group in the turquoise module and in the high expression group in the red module. In addition, GO enrichment analysis suggested that inflammation, immune, virus-related, and interferon-mediated pathways were enriched in the turquoise module. Several potential biomarkers, such as cyclin-dependent kinase 1 (CDK1), topoisomerase 2α (TOP2A), and serpin peptidase inhibitor clade C (antithrombin) member 1 (SERPINC1), were also identified. In conclusion, gene signatures identified from the genome-based assays could contribute to HCC stratification. WGCNA was able to identify significant groups of genes associated with cancer prognosis. PMID:27052251

  18. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. PMID:26743712

  19. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis red-flesh mutant

    Directory of Open Access Journals (Sweden)

    Zhang Jianchen

    2009-11-01

    Full Text Available Abstract Background Interest in lycopene metabolism and regulation is growing rapidly because accumulative studies have suggested an important role for lycopene in human health promotion. However, little is known about the molecular processes regulating lycopene accumulation in fruits other than tomato so far. Results On a spontaneous sweet orange bud mutant with abnormal lycopene accumulation in fruits and its wild type, comparative transcripts profiling was performed using Massively Parallel Signature Sequencing (MPSS. A total of 6,877,027 and 6,275,309 reliable signatures were obtained for the wild type (WT and the mutant (MT, respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed gene in MT is 18,106, larger than that in WT 17,670, suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts abundance between MT and WT revealed that 3,738 genes show more than two fold expression difference, and 582 genes are up- or down-regulated at 0.05% significance level by more than three fold difference. Functional assignments of the differentially expressed genes indicated that 26 reliable metabolic pathways are altered in the mutant; the most noticeable ones are carotenoid biosynthesis, photosynthesis, and citrate cycle. These data suggest that enhanced photosynthesis and partial impairment of lycopene downstream flux are critical for the formation of lycopene accumulation trait in the mutant. Conclusion This study provided a global picture of the gene expression changes in a sweet orange red-flesh mutant as compared to the wild type. Interpretation of the differentially expressed genes revealed new insight into the molecular processes regulating lycopene accumulation in the sweet orange red-flesh mutant.

  20. Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor

    Directory of Open Access Journals (Sweden)

    Sederoff Ron

    2008-02-01

    Full Text Available Abstract Background Symbiotic ectomycorrhizal associations of fungi with forest trees play important and economically significant roles in the nutrition, growth and health of boreal forest trees, as well as in nutrient cycling. The ecology and physiology of ectomycorrhizal associations with Pinus sp are very well documented but very little is known about the molecular mechanisms behind these mutualistic interactions with gymnosperms as compared to angiosperms. Results Using a micro-array approach, the relative abundance of 2109 EST transcripts during interaction of Pinus sylvestris roots with the ectomycorrhizal fungus was profiled. The results reveal significant differential expression of a total of 236 ESTs, 96 transcripts differentially abundant after 1 day of physical contact with the fungus, 134 transcripts after 5 days and only 6 after 15 days at early stages of mantle formation on emerging lateral roots. A subset of cell wall modification and stress related genes was further assessed by quantitative reverse transcription PCR at late stages of mycorrhizal development coinciding with Hartig net formation. The results reveal down regulation of gene transcripts involved in general defence mechanism (e.g. antimicrobial peptide as well as those involved in cell wall modification (e.g. glycine rich protein, xyloglucan endo transglycosylase. Conclusion This study constitutes the first attempt to characterize the transcriptome of the plant partner in the Pinus sylvestris – Laccaria bicolor model system. We identified 236 ESTs which are potentially important for molecular regulation of a functional symbiotic association in conifer host. The results highlight similarities with other studies based on angiosperm model systems, nevertheless some differences were found in the timing and spatial scale of gene regulation during ectomycorrhiza development in gymnosperms. The present study has identified a number of potentially important molecular events

  1. Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Wang

    Full Text Available Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru (67/248, or 27% is similar to the percentage of transcripts located within these inversions (31%. These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of

  2. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  3. Minimal promoter systems reveal the importance of conserved residues in the B-finger of human transcription factor IIB.

    Science.gov (United States)

    Thompson, Nancy E; Glaser, Bryan T; Foley, Katherine M; Burton, Zachary F; Burgess, Richard R

    2009-09-11

    The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE). Mutations in conserved residues located on the sides of the B-finger had the greatest effect on activity in both minimal promoter systems, with mutations in residues Glu-51 and Arg-66 eliminating activity. The double change-of-charge mutant (E51R:R66E) did not show activity in either minimal promoter system. Mutations in the nonconserved residues at the tip of the B-finger did not significantly affect activity. However, all of the mutations in the B-finger showed at least 25% activity in the HeLa cell NE. Chimeric proteins, containing B-finger sequences from species with conserved residues on the side of the B-finger, showed wild-type activity in a minimal promoter system and in the HeLa cell NE. However, chimeric proteins whose sequence showed divergence on the sides of the B-finger had reduced activity. Transcription factor IIF (TFIIF) partially restored activity of the inactive mutants in the minimal promoter system, suggesting that TFIIF in HeLa cell NE helps to rescue the inactive mutations by interacting with either the B-finger or another component of the initiation complex that is influenced by the B-finger. PMID:19590095

  4. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Science.gov (United States)

    Zhang, Yuchao; Li, Weijia; Dou, Yujuan; Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca. PMID:26636322

  5. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  6. Dissection of the wheat transcription factor HBP-1a(17) reveals a modular structure for the activation domain.

    Science.gov (United States)

    Nakayama, T; Okanami, M; Meshi, T; Iwabuchi, M

    1997-02-20

    The wheat bZIP protein HBP-1a(17) is a putative transcription factor regulating histone gene expression. To delineate the functional domain(s) of this factor, we made a series of effector constructs expressing fusion proteins, in which various portions of HBP-1a(17) are fused to the DNA-binding domain of the yeast transcriptional activator GAL4, in plant cells. When the beta-glucuronidase (GUS) reporter gene, driven by the wheat histone H3 core promoter harboring the GAL4-binding sequence, was co-transfected with such effector genes into tobacco protoplasts, several portions of HBP-1a(17) influenced reporter gene expression. The N-terminal one-third of HBP-1a(17), termed the P region (residues 1-118) due to its Pro content, did not activate the reporter gene, in contrast to the corresponding Pro-rich region of Arabidopsis GBF1 (residues 1-110), which functions as an activation domain. When the P region was divided into two, however, both its N-terminal (1-56; termed NP) and C-terminal (58-118; termed PC) halves were able to enhance expression of the reporter gene. When the NP region was further divided into NP(5-30) and NP(30-56), both regions still retained activating ability. These results suggest that the P region of HBP-1a(17) is composed of several modules each having activating function, and modification and/or conformational changes of the P region might influence its function. PMID:9065688

  7. Comprehensive analysis of transcription dynamics from brain samples following behavioral experience.

    Science.gov (United States)

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied(1,2). In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

  8. Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience

    Science.gov (United States)

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

  9. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  10. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    Science.gov (United States)

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  11. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR and denervated (DL forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa. Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST contigs from the Ambystoma EST database more than doubled (3935 to 9411 the number of non-redundant human-A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.

  12. Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

    Science.gov (United States)

    Pizeta Semighini, Camile; Marins, Mozart; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2002-01-01

    The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated drugs, such as camptothecin, imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide. We also verified the relative transcript levels of the Atr genes in the A. nidulans imazalil-resistant mutants. These genes displayed a very complex pattern in different ima genetic backgrounds. The imaB mutant has higher basal transcript levels of AtrB and -D than those of the wild-type strain. The levels of these two genes are comparable when the imaB mutant is grown in the presence and absence of imazalil. The imaC, -D, and -H mutants have higher basal levels of AtrA than that of the wild type. The same behavior is observed for the relative transcript levels of AtrB in the imaG mutant background. PMID:11872487

  13. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  14. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  15. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy

    Science.gov (United States)

    Nelson, Andrew C.; Mould, Arne W.; Bikoff, Elizabeth K.; Robertson, Elizabeth J.

    2016-01-01

    Growth and survival of the mammalian embryo within the uterine environment depends on the placenta, a highly complex vascularized organ comprised of both maternal and foetal tissues. Recent experiments demonstrate that the zinc finger transcriptional repressor Prdm1/Blimp1 is essential for specification of spiral artery trophoblast giant cells (SpA-TGCs) that invade and remodel maternal blood vessels. To learn more about functional contributions made by Blimp1+ cell lineages here we perform the first single-cell RNA-seq analysis of the placenta. Cell types of both foetal and maternal origin are profiled. Comparisons with microarray datasets from mutant placenta and in vitro differentiated trophoblast stem cells allow us to identify Blimp1-dependent transcripts enriched in SpA-TGCs. Our experiments provide new insights into the functionally distinct cell types present at the maternal–foetal interface and advance our knowledge of dynamic gene expression patterns controlling placental morphogenesis and vascular mimicry. PMID:27108815

  16. Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus

    Indian Academy of Sciences (India)

    Puli Chandramouli Reddy; Ishani Sinha; Ashwin Kelkar; Farhat Habib; Saurabh J Pradhan; Raman Sukumar; Sanjeev Galande

    2015-12-01

    The Asian elephant Elephas maximus and the African elephant Loxodonta africana that diverged 5-7 million years ago exhibit differences in their physiology, behaviour and morphology. A comparative genomics approach would be useful and necessary for evolutionary and functional genetic studies of elephants. We performed sequencing of E. maximus and map to L. africana at ∼ 15X coverage. Through comparative sequence analyses, we have identified Asian elephant specific homozygous, non-synonymous single nucleotide variants (SNVs) that map to 1514 protein coding genes, many of which are involved in olfaction. We also present the first report of a high-coverage transcriptome sequence in E. maximus from peripheral blood lymphocytes. We have identified 103 novel protein coding transcripts and 66-long non-coding (Inc)RNAs. We also report the presence of 181 protein domains unique to elephants when compared to other Afrotheria species. Each of these findings can be further investigated to gain a better understanding of functional differences unique to elephant species, as well as those unique to elephantids in comparison with other mammals. This work therefore provides a valuable resource to explore the immense research potential of comparative analyses of transcriptome and genome sequences in the Asian elephant.

  17. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action.

    Science.gov (United States)

    Curtis Hewitt, S; Couse, J F; Korach, K S

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes. PMID:11250727

  18. In Vivo T-Box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuromesodermal Bipotency

    Directory of Open Access Journals (Sweden)

    George E. Gentsch

    2013-09-01

    Full Text Available The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which together maintain neuromesodermal stem cells and determine their bipotential fates in frog embryos. These T-box proteins are all recruited to the same genomic recognition sites, from where they activate genes involved in stem cell maintenance and mesoderm formation while repressing neurogenic genes. Consequently, their loss causes embryos to form an oversized neural tube with no mesodermal derivatives. This collaboration between T-box family members thus ensures the continuous formation of correctly proportioned neural and mesodermal tissues in vertebrate embryos during axial elongation.

  19. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  20. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  1. Transcriptome meta-analysis reveals dysregulated pathways in nasopharyngeal carcinoma.

    Science.gov (United States)

    Tulalamba, Warut; Larbcharoensub, Noppadol; Sirachainan, Ekaphop; Tantiwetrueangdet, Aunchalee; Janvilisri, Tavan

    2015-08-01

    Nasopharyngeal carcinoma (NPC) is a malignant cancer arising from the epithelial surface of the nasopharynx that mostly appears in advanced stages of the disease, leading to a poor prognosis. To date, a number of mRNA profiling investigations on NPC have been reported in order to identify suitable biomarkers for early detection. However, the results may be specific to each study with distinct sample types. In this study, an integrative meta-analysis of NPC transcriptome data was performed to determine dysregulated pathways, potentially leading to identification of molecular markers. Ten independent NPC gene expression profiling microarray datasets, including 135 samples from NPC cell lines, primary cell lines, and tissues were assimilated into a meta-analysis and cross-validation to identify a cohort of genes that were significantly dysregulated in NPC. Bioinformatics analyses of these genes revealed the significant pathways and individual players involving in cellular metabolism, cell cycle regulation, DNA repair, as well as ErbB pathway. Altogether, we propose that dysregulation of these molecular pathways in NPC might play a role in the NPC pathogenesis, providing clues, which could eventually translate into diagnostic and therapeutic approaches. PMID:25724187

  2. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. PMID:26050562

  3. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  4. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence.

    Science.gov (United States)

    Sunkel, Benjamin; Wu, Dayong; Chen, Zhong; Wang, Chiou-Miin; Liu, Xiangtao; Ye, Zhenqing; Horning, Aaron M; Liu, Joseph; Mahalingam, Devalingam; Lopez-Nicora, Horacio; Lin, Chun-Lin; Goodfellow, Paul J; Clinton, Steven K; Jin, Victor X; Chen, Chun-Liang; Huang, Tim H-M; Wang, Qianben

    2016-05-19

    Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes. PMID:26743006

  5. Pyrosequencing-Based Transcriptome Analysis of the Asian Rice Gall Midge Reveals Differential Response during Compatible and Incompatible Interaction

    Directory of Open Access Journals (Sweden)

    Jagadish S. Bentur

    2012-10-01

    Full Text Available The Asian rice gall midge (Orseolia oryzae is a major pest responsible for immense loss in rice productivity. Currently, very little knowledge exists with regard to this insect at the molecular level. The present study was initiated with the aim of developing molecular resources as well as identifying alterations at the transcriptome level in the gall midge maggots that are in a compatible (SH or in an incompatible interaction (RH with their rice host. Roche 454 pyrosequencing strategy was used to develop both transcriptomics and genomics resources that led to the identification of 79,028 and 85,395 EST sequences from gall midge biotype 4 (GMB4 maggots feeding on a susceptible and resistant rice variety, TN1 (SH and Suraksha (RH, respectively. Comparative transcriptome analysis of the maggots in SH and RH revealed over-representation of transcripts from proteolysis and protein phosphorylation in maggots from RH. In contrast, over-representation of transcripts for translation, regulation of transcription and transcripts involved in electron transport chain were observed in maggots from SH. This investigation, besides unveiling various mechanisms underlying insect-plant interactions, will also lead to a better understanding of strategies adopted by insects in general, and the Asian rice gall midge in particular, to overcome host defense.

  6. Analysis of the CCR3 promoter reveals a regulatory region in exon 1 that binds GATA-1

    Directory of Open Access Journals (Sweden)

    Koch Laura E

    2005-04-01

    Full Text Available Abstract Background CC Chemokine Receptor 3 (CCR3, the major chemokine receptor expressed on eosinophils, binds promiscuously to several ligands including eotaxins 1, 2, and 3. Even though the only cells that consistently accumulate following eotaxin administration in vivo are myeloid cells (primarily eosinophils, other cell types have recently been shown to express CCR3. It is therefore important to elucidate the molecular mechanisms regulating receptor expression. Results In order to define regions responsible for CCR3 transcription, a DNAse hypersensitive site was identified in the vicinity of exon 1. Coupled with our previous data implicating exon 1 in CCR3 transcription, we hypothesized that transcription factors bind to exon-1. Electrophoretic mobility shift analysis revealed that nuclear proteins in eosinophilic cells bound to exon 1. Furthermore, antibody interference and mutation studies demonstrated GATA-1 binding to exon 1. In order to test the 1.6-kb CCR3 promoter element (that includes exon 1 for in vivo function, this region was used to generate transgenic mice that expressed a reporter protein. Strong transgene expression was achieved, with the pattern of expression suggesting a broad acting promoter. Conclusion The transcription factor GATA-1 binds to CCR3 exon 1. The 1.6-kb CCR3 promoter element, that includes exon 1, is a strong promoter in vivo.

  7. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  8. An expression analysis of 57 transcription factors derived from ESTs of developing seeds in Maize (Zea mays).

    Science.gov (United States)

    Wang, Guifeng; Wang, Hui; Zhu, Jia; Zhang, Jing; Zhang, Xiaowei; Wang, Fei; Tang, Yuanping; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2010-06-01

    Maize seeds are an important source of food, animal feed, and industrial raw materials. To understand global gene expression and regulation during maize seed development, a normalized cDNA library, covering most of the developmental stages of maize seeds, was constructed. Sequencing analysis of 10,848 randomly selected clones identified 6,630 unique ESTs. Among them, 57 putative transcription factors (TFs) were identified. The TFs belong to seven different super-families, specifically 17 Zinc-finger, 13 bZIP, 8 bHLH, 6 MADS, 7 MYB, 3 Homedomain, and 3 AP2/EREBP. The spatial and temporal expression of the TFs was analyzed by semi-quantitative RT-PCR with representative tissue types and seeds at different developmental stages, revealing their diverse expression patterns and expression levels. One-third (19) of the maize TFs was found their putative orthologs in Arabidopsis. Similar expression patterns were observed in both maize and Arabidopsis for the majority of orthologous pairs (15 out of 19), suggesting their conserved functions during seed development. In conclusion, the systematic analysis of maize seed TFs has provided valuable insight into transcriptional regulation during maize seed development. PMID:20336461

  9. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  10. Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes co-regulated by histone modification patterns.

    Directory of Open Access Journals (Sweden)

    Yayoi Natsume-Kitatani

    Full Text Available N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs, which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (http://www.mathworks.com/, is available from the supporting page for this paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm.

  11. Cloning and functional analysis of FLJ20420: a novel transcription factor for the BAG-1 promoter.

    Directory of Open Access Journals (Sweden)

    Hongyu Liu

    Full Text Available BAG-1 is an anti-apoptotic protein that interacts with a variety of cellular molecules to inhibit apoptosis. The mechanisms by which BAG-1 interacts with other proteins to inhibit apoptosis have been extensively explored. However, it is currently unknown how BAG-1 expression is regulated at the molecular level, especially in cancer cells. Here we reported to clone a novel down-regulated BAG-1 expression gene named FLJ20420 using hBAG-1 promoter as a probe to screen Human Hela 5' cDNA library by Southernwestern blot. The FLJ20420 gene encodes a ∼26-kDa protein that is localized in both the cytoplasm and nucleus. We proved that FLJ20420 protein can specially bind hBAG-1 promoter region by EMSA in vivo and ChIP assay in vivo. Northern blot analysis revealed a low level of FLJ20420 transcriptional expression in normal human tissues (i.e., brain, placenta, lung, liver, kidney, pancreas and cervix, except for heart and skeletal muscles, which showed higher levels. Furthermore, enhanced FLJ20420 expression was observed in tumor cell lines (i.e., MDA468, BT-20, MCF-7, C33A, HeLa and Caski. Knockdown of endogenous FLJ20420 expression significantly increased BAG-1 expression in A549 and L9981 cells, and also significantly enhanced their sensitivity to cisplatin-induced apoptosis. A microarray assay of the FLJ20420 siRNA -transfectants showed altered expression of 505 known genes, including 272 upregulated and 233 downregulated genes. Finally, our gene array studies in lung cancer tissue samples revealed a significant increase in FLJ20420 expression in primary lung cancer relative to the paired normal lung tissue controls (p = 0.0006. The increased expression of FLJ20420 corresponded to a significant decrease in BAG-1 protein expression in the primary lung cancers, relative to the paired normal lung tissue controls (p = 0.0001. Taken together, our experiments suggest that FLJ20420 functions as a down-regulator of BAG-1 expression. Its abnormal

  12. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

    OpenAIRE

    Cuomo, Christina A.; Desjardins, Christopher A.; Malina A Bakowski; Goldberg, Jonathan; Ma, Amy T.; Becnel, James J.; Didier, Elizabeth S.; Fan, Lin; Heiman, David I.; Levin, Joshua Z.; Young, Sarah; Zeng, Qiandong; Emily R Troemel

    2012-01-01

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time ...

  13. Transcriptome network analysis reveals candidate genes for renal cell carcinoma

    OpenAIRE

    Wei Zhai; Yun-Fei Xu; Min Liu; Jun-Hua Zheng

    2012-01-01

    Context: Renal cell carcinoma (RCC) is a kidney cancer that originates in renal parenchyma and it is the most common type of kidney cancer with approximately 80% lethal cases. Aims: To interpret the mechanism, explore the regulation of TF-target genes and TF-pathway, and identify the potential key genes of renal cell carcinoma. Settings and Design: After constructing a regulation network from differently expressed genes and transcription factors, pathway regulation network and gene onto...

  14. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  15. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    Science.gov (United States)

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade. PMID:26285209

  16. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    Directory of Open Access Journals (Sweden)

    Eugenio Gómez Minguet

    Full Text Available Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus based on the proven Position Weight Matrices (PWM formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade.

  17. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    Science.gov (United States)

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  18. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes

    OpenAIRE

    Basnet, R.K.; Moreno Pachón, N.M.; Lin, K.; Bucher, J; Visser, R.G.F.; Maliepaard, C.A.; Bonnema, A.B.

    2013-01-01

    Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to ...

  19. A Systems Level Analysis of Transcriptional Changes in Alzheimer's Disease and Normal Aging

    OpenAIRE

    Miller, Jeremy A; Oldham, Michael C.; Geschwind, Daniel H.

    2008-01-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting millions of elderly individuals worldwide. Advances in the genetics of AD have led to new levels of understanding and treatment opportunities. Here, we used a systems biology approach based on weighted gene coexpression network analysis to determine transcriptional networks in AD. This method permits a higher order depiction of gene expression relationships and identifies modules of coexpressed genes that are func...

  20. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    OpenAIRE

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A.

    2008-01-01

    Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription ...

  1. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites

    OpenAIRE

    Swindell, William R.; Sarkar, Mrinal K; Stuart, Philip E.; Voorhees, John J.; Elder, James T.; Johnston, Andrew; Gudjonsson, Johann E.

    2015-01-01

    Background Psoriasis is a cytokine-mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy. Methods Meta-analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237...

  2. Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis.

    OpenAIRE

    O'Driscoll, Lorraine

    2013-01-01

    PUBLISHED Weighted gene coexpression network analysis (WGCNA) is a powerful 'guilt-by-association'-based method to extract coexpressed groups of genes from large heterogeneous messenger RNA expression data sets. We have utilized WGCNA to identify 11 coregulated gene clusters across 2342 breast cancer samples from 13 microarray-based gene expression studies. A number of these transcriptional modules were found to be correlated to clinicopathological variables (e.g. tumor grade), survival en...

  3. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  4. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Emani

    2015-03-01

    Full Text Available The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency.

  5. Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora

    DEFF Research Database (Denmark)

    Bay, L. K.; Ulstrup, K. E.; Nielsen, H. B.;

    2009-01-01

    ) following translocation to a lower light and turbidity environment. Such metabolic downregulation may indicate nonoxidative stress, hibernation or caloric restriction associated with the changed environmental conditions. Green fluorescent protein-related genes were the most differentially expressed and were...... exclusively downregulated; however, green fluorescent protein levels remained unchanged following translocation. Photophysiological responses of corals from both locations were characterized by a decline when introduced to the common laboratory environment but remained healthy (F-v/F-m > 0.6). Declines.......07% in the interaction (source population-dependent responses to translocation). Functional analyses identified an over-representation of differentially expressed genes associated with metabolism and fluorescence categories (primarily downregulated), and environmental information processing (primarily upregulated...

  6. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

    OpenAIRE

    Martinez- Zapater José M; Grimplet Jerome; Choi Young H; Maltese Federica; Sousa Lisete; Ali Kashif; Silva Marta S; Agudelo-Romero Patricia; Fortes Ana M; Verpoorte Robert; Pais Maria S

    2011-01-01

    Abstract Background Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susc...

  7. Identification of Novel Stress-responsive Transcription Factor Genes in Rice by cDNA Array Analysis

    Institute of Scientific and Technical Information of China (English)

    Cong-Qing Wu; Hong-Hong Hu; Ya Zeng; Da-Cheng Liang; Ka-Bin Xie; Jian-Wei Zhang; Zhao-Hui Chu; Li-Zhong Xiong

    2006-01-01

    Numerous studies have shown that array of transcription factors has a role in regulating plant responses to environmental stresses. Only a small portion of them however, have been identified or characterized.More than 2 300 putative transcription factors were predicted in the rice genome and more than half of them were supported by expressed sequences. With an attempt to identify novel transcription factors involved in the stress responses, a cDNA array containing 753 putative rice transcription factors was generated to analyze the transcript profiles of these genes under drought and salinity stresses and abscisic acid treatment at seedling stage of rice. About 80% of these transcription factors showed detectable levels of transcript in seedling leaves. A total of 18 up-regulated transcription factors and 29 down-regulated transcription factors were detected with the folds of changes from 2.0 to 20.5 in at least one stress treatment.Most of these stress-responsive genes have not been reported and the expression patterns for five genes under stress conditions were further analyzed by RNA gel blot analysis. These novel stress-responsive transcription factors provide new opportunities to study the regulation of gene expression in plants under stress conditions.

  8. Extendable blocking probe in reverse transcription for analysis of RNA variants with superior selectivity

    Science.gov (United States)

    Ho, Tho H.; Dang, Kien X.; Lintula, Susanna; Hotakainen, Kristina; Feng, Lin; Olkkonen, Vesa M.; Verschuren, Emmy W.; Tenkanen, Tuomas; Haglund, Caj; Kolho, Kaija-Leena; Stenman, Ulf-Hakan; Stenman, Jakob

    2015-01-01

    Here we provide the first strategy to use a competitive Extendable Blocking Probe (ExBP) for allele-specific priming with superior selectivity at the stage of reverse transcription. In order to analyze highly similar RNA variants, a reverse-transcriptase primer whose sequence matches a specific variant selectively primes only that variant, whereas mismatch priming to the alternative variant is suppressed by virtue of hybridization and subsequent extension of the perfectly matched ExBP on that alternative variant template to form a cDNA–RNA hybrid. This hybrid will render the alternative RNA template unavailable for mismatch priming initiated by the specific primer in a hot-start protocol of reverse transcription when the temperature decreases to a level where such mismatch priming could occur. The ExBP-based reverse transcription assay detected BRAF and KRAS mutations in at least 1000-fold excess of wild-type RNA and detection was linear over a 4-log dynamic range. This novel strategy not only reveals the presence or absence of rare mutations with an exceptionally high selectivity, but also provides a convenient tool for accurate determination of RNA variants in different settings, such as quantification of allele-specific expression. PMID:25378315

  9. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    Science.gov (United States)

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.; Bogdanove, Adam J.

    2016-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution.

  10. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    -antisense transcript pairs, analysis of the gene ontology terms showed a significant over-representation of transcripts involved in energy production. These included several representations of ATP synthase, photosystem proteins and RUBISCO, which indicated that photosynthesis is likely to be regulated by antisense transcripts. Conclusion This study demonstrated the novel use of an adapted labeling protocol and a 3'IVT GeneChip array for large-scale identification of antisense transcription in wheat. The results show that antisense transcription is relatively abundant in wheat, and may affect the expression of valuable agronomic phenotypes. Future work should select potentially interesting transcript pairs for further functional characterization to determine biological activity.

  11. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  12. Analysis of small nucleolar RNAs reveals unique genetic features in malaria parasites

    Directory of Open Access Journals (Sweden)

    Sharma Amit

    2009-02-01

    Full Text Available Abstract Background Ribosome biogenesis is an energy consuming and stringently controlled process that involves hundreds of trans-acting factors. Small nucleolar RNAs (snoRNAs, important components of ribosome biogenesis are non-coding guide RNAs involved in rRNA processing, nucleotide modifications like 2'-O-ribose methylation, pseudouridylation and possibly gene regulation. snoRNAs are ubiquitous and are diverse in their genomic organization, mechanism of transcription and process of maturation. In vertebrates, most snoRNAs are present in introns of protein coding genes and are processed by exonucleolytic cleavage, while in plants they are transcribed as polycistronic transcripts. Results This is a comprehensive analysis of malaria parasite snoRNA genes and proteins that have a role in ribosomal biogenesis. Computational and experimental approaches have been used to identify several box C/D snoRNAs from different species of Plasmodium and confirm their expression. Our analyses reveal that the gene for endoribonuclease Rnt1 is absent from Plasmodium falciparum genome, which indicates the existence of alternative pre-rRNA processing pathways. The structural features of box C/D snoRNAs are highly conserved in Plasmodium genus; however, unlike other organisms most parasite snoRNAs are present in single copy. The genomic localization of parasite snoRNAs shows mixed patterns of those observed in plants, yeast and vertebrates. We have localized parasite snoRNAs in untranslated regions (UTR of mRNAs, and this is an unprecedented and novel genetic feature. Akin to mammalian snoRNAs, those in Plasmodium may also behave as mobile genetic elements. Conclusion This study provides a comprehensive overview on trans-acting genes involved in ribosome biogenesis and also a genetic insight into malaria parasite snoRNA genes.

  13. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes

    Energy Technology Data Exchange (ETDEWEB)

    Lamerdin, J.E.; Stilwagen, S.A.; Ramirez, M.H. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-06-15

    The ERCC2 (excision repair cross-complementing rodent repair group 2) gene product is involved in transcription-coupled repair as an integral member of the basal transcription factor BTF2/TFIIH complex. Defects in this gene can result in three distinct human disorders, namely the cancer-prone syndrome xeroderma pigmentosum complementation group D, trichothiodystrophy, and Cockayne syndrome. We report the comparative analysis of 91.6 kb of new sequence including 54.3 kb encompassing the human ERCC2 locus, the syntenic region in the mouse (32.6 kb), and a further 4.7 kb of sequence 3{prime} of the previously reported ERCC2 region in the hamster. In addition to ERCC2, our analysis revealed the presence of two previously undescribed genes in all three species. The first is centromeric (in the human) to ERCC2 and is most similar to the kinesin light chain gene in sea urchin. The second gene is telomeric (in the human) to ERCC2 and contains a motif found in ankyrins, some cell proteins, and transcription factors. Multiple EST matches to this putative new gene indicate that it is expressed in several human tissues, including breast. The identification and description of two new genes provides potential candidate genes for disorders mapping to this region of 19q13.2. 42 refs., 6 figs., 3 tabs.

  14. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes.

    Science.gov (United States)

    Lamerdin, J E; Stilwagen, S A; Ramirez, M H; Stubbs, L; Carrano, A V

    1996-06-15

    The ERCC2 (excision repair cross-complementing rodent repair group 2) gene product is involved in transcription-coupled repair as an integral member of the basal transcription factor BTF2/TFIIH complex. Defects in this gene can result in three distinct human disorders, namely the cancer-prone syndrome xeroderma pigmentosum complementation group D, trichothiodystrophy, and Cockayne syndrome. We report the comparative analysis of 91.6 kb of new sequence including 54.3 kb encompassing the human ERCC2 locus, the syntenic region in the mouse (32.6 kb), and a further 4.7 kb of sequence 3' of the previously reported ERCC2 region in the hamster. In addition to ERCC2, our analysis revealed the presence of two previously undescribed genes in all three species. The first is centromeric (in the human) to ERCC2 and is most similar to the kinesin light chain gene in sea urchin. The second gene is telomeric (in the human) to ERCC2 and contains a motif found in ankyrins, some cell cycle proteins, and transcription factors. Multiple EST matches to this putative new gene indicate that it is expressed in several human tissues, including breast. The identification and description of two new genes provides potential candidate genes for disorders mapping to this region of 19q13.2. PMID:8786141

  15. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dariel Ashton-Beaucage

    2014-03-01

    Full Text Available The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway--including a new protein complex modulating RAF activation--we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing

  16. Genome-wide transcriptional profiling reveals two distinct outcomes in central Nervous system infections of rabies virus

    Directory of Open Access Journals (Sweden)

    Daiting eZhang

    2016-05-01

    Full Text Available Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq to compare the brain transcriptomes of normal mice versus HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV infection can effectively prevent the CVS-11 to invade central nervous system (CNS, but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4+ T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the postexposure treatment window

  17. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus

    Science.gov (United States)

    Zhang, Daiting; He, Feilong; Bi, Shuilian; Guo, Huixia; Zhang, Baoshi; Wu, Fan; Liang, Jiaqi; Yang, Youtian; Tian, Qin; Ju, Chunmei; Fan, Huiying; Chen, Jinding; Guo, Xiaofeng; Luo, Yongwen

    2016-01-01

    Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV) strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq) to compare the brain transcriptomes of normal mice vs. HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV) infection can effectively prevent the CVS-11 to invade central nervous system (CNS), but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4+ T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the post-exposure treatment window for RABV

  18. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model.

    Science.gov (United States)

    Wilson, Nicola K; Schoenfelder, Stefan; Hannah, Rebecca; Sánchez Castillo, Manuel; Schütte, Judith; Ladopoulos, Vasileios; Mitchelmore, Joanna; Goode, Debbie K; Calero-Nieto, Fernando J; Moignard, Victoria; Wilkinson, Adam C; Jimenez-Madrid, Isabel; Kinston, Sarah; Spivakov, Mikhail; Fraser, Peter; Göttgens, Berthold

    2016-03-31

    Comprehensive study of transcriptional control processes will be required to enhance our understanding of both normal and malignant hematopoiesis. Modern sequencing technologies have revolutionized our ability to generate genome-scale expression and histone modification profiles, transcription factor (TF)-binding maps, and also comprehensive chromatin-looping information. Many of these technologies, however, require large numbers of cells, and therefore cannot be applied to rare hematopoietic stem/progenitor cell (HSPC) populations. The stem cell factor-dependent multipotent progenitor cell line HPC-7 represents a well-recognized cell line model for HSPCs. Here we report genome-wide maps for 17 TFs, 3 histone modifications, DNase I hypersensitive sites, and high-resolution promoter-enhancer interactomes in HPC-7 cells. Integrated analysis of these complementary data sets revealed TF occupancy patterns of genomic regions involved in promoter-anchored loops. Moreover, preferential associations between pairs of TFs bound at either ends of chromatin loops led to the identification of 4 previously unrecognized protein-protein interactions between key blood stem cell regulators. All HPC-7 data sets are freely available both through standard repositories and a user-friendly Web interface. Together with previously generated genome-wide data sets, this study integrates HPC-7 data into a genomic resource on par with ENCODE tier 1 cell lines and, importantly, is the only current model with comprehensive genome-scale data that is relevant to HSPC biology. PMID:26809507

  19. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signalling

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-10-01

    Full Text Available Transcription factors (TFs are major players in stress signalling and constitute an integral part of signalling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4 model plants, Setaria italica (SiWRKY and S. viridis (SvWRKY, respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analysed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY, followed by group III (39 SiWRKY and 11 SvWRKY and group I (10 SiWRKY and 6 SvWRKY. Group II proteins were further classified into 5 subgroups (IIa to IIe based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity and hormone treatments (abscisic acid, salicylic acid and methyl jasmonate suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signalling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signalling.

  20. Identification, Isolation, and Expression Analysis of Heat Shock Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Yang eHu

    2015-09-01

    Full Text Available Heat shock transcription factors (Hsfs are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14 and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt, biotic stress (powdery mildew infection, and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid. Fifteen of the 17 FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli.

  1. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca.

    Science.gov (United States)

    Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue

    2015-01-01

    Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli. PMID:26442049

  2. Characterisation of transcriptional responses to dioxins and dioxin-like contaminants in roach (Rutilus rutilus) using whole transcriptome analysis.

    Science.gov (United States)

    Brinkmann, Markus; Koglin, Sven; Eisner, Bryanna; Wiseman, Steve; Hecker, Markus; Eichbaum, Kathrin; Thalmann, Beat; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner

    2016-01-15

    There is significant concern regarding the contamination of riverine sediments with dioxins and dioxin-like compounds (DLCs), including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and some polycyclic aromatic hydrocarbons (PAHs). The majority of studies investigating the ecotoxicology of DLCs in fish have focused on a few standard model species. However, there is significant uncertainty as to whether these model species are representative of native river fish, particularly in Europe. In this study, the transcriptional responses following exposure to equipotent concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 156 or the dioxin-like PAH, benzo[k]fluoranthene (BkF), were investigated in juvenile roach (Rutilus rutilus), a fish species that constitutes a large proportion of the fish biomass in freshwater bodies throughout Europe. To this end, RNA sequencing analysis was used to comprehensively characterise the molecular mechanisms and pathways of toxicity of these DLCs. Whole transcriptome analyses using ClueGO software revealed that DLCs have the potential to disrupt a number of important processes, including energy metabolism, oogenesis, the immune system, apoptosis and the response to oxidative stress. However, despite using equipotent concentrations, there was very little conservation of the transcriptional responses observed in fish exposed to different DLCs. TCDD provoked significant specific changes in the levels of transcripts related to immunotoxicity and carbohydrate metabolism, while PCB 156 caused virtually no specific effects. Exposure to BkF affected the most diverse suite of molecular functions and biological processes, including blood coagulation, oxidative stress responses, unspecific responses to organic or inorganic substances/stimuli, cellular redox homeostasis and specific receptor pathways. To our knowledge, this is the first study of the transcriptome

  3. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis

    Directory of Open Access Journals (Sweden)

    Giorno Filomena

    2012-11-01

    Full Text Available Abstract Background Heat shock transcriptional factors (Hsfs play a crucial role in plant responses to biotic and abiotic stress conditions and in plant growth and development. Apple (Malus domestica Borkh is an economically important fruit tree whose genome has been fully sequenced. So far, no detailed characterization of the Hsf gene family is available for this crop plant. Results A genome-wide analysis was carried out in Malus domestica to identify heat shock transcriptional factor (Hsf genes, named MdHsfs. Twenty five MdHsfs were identified and classified in three main groups (class A, B and C according to the structural characteristics and to the phylogenetic comparison with Arabidopsis thaliana and Populus trichocarpa. Chromosomal duplications were analyzed and segmental duplications were shown to have occurred more frequently in the expansion of Hsf genes in the apple genome. Furthermore, MdHsfs transcripts were detected in several apple organs, and expression changes were observed by quantitative real-time PCR (qRT-PCR analysis in developing flowers and fruits as well as in leaves, harvested from trees grown in the field and exposed to the naturally increased temperatures. Conclusions The apple genome comprises 25 full length Hsf genes. The data obtained from this investigation contribute to a better understanding of the complexity of the Hsf gene family in apple, and provide the basis for further studies to dissect Hsf function during development as well as in response to environmental stimuli.

  4. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development.

    Science.gov (United States)

    Lyu, Xueliang; Shen, Cuicui; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Our comparative genomic analysis showed that the numbers of plant cell wall (PCW)- and fungal cell wall (FCW)-degradation-associated carbohydrate-active enzymes (CAZymes) in necrotrophic and hemibiotrophic fungi are significantly larger than that in most biotrophic fungi. However, our transcriptional analyses of CAZyme-encoding genes in Melampsora larici-populina, Puccinia graminis and Sclerotinia sclerotiorum showed that many genes encoding PCW- and FCW-degradation-associated CAZymes were significantly up-regulated during the infection of both necrotrophic fungi and biotrophic fungi, indicating an existence of a universal mechanism underlying PCW degradation and FCW reorganization or modification, which are both intimately involved in necrotrophic and biotrophic fungal infection. Furthermore, our results showed that the FCW reorganization or modification was also related to the fungal development. Additionally, our transcriptional analysis of the secretome of S. sclerotiorum showed that many secreted protein-encoding genes were dramatically induced during infection. Among them, a small, cysteine-rich protein SsCVNH was experimentally confirmed to be essential for the virulence and sclerotial development, indicating that the small secreted proteins might also play crucial roles as potential effectors in host-non-specific necrotrophic fungi. PMID:26531059

  5. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq

    DEFF Research Database (Denmark)

    Sittka, A; Lucchini, S; Papenfort, K;

    2008-01-01

    Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial...... transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co......-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis...

  6. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis reveal substantial intra-family gene diversity and novel venom transcripts

    Directory of Open Access Journals (Sweden)

    Wüster Wolfgang

    2009-11-01

    Full Text Available Abstract Background Venom variation occurs at all taxonomical levels and can impact significantly upon the clinical manifestations and efficacy of antivenom therapy following snakebite. Variation in snake venom composition is thought to be subject to strong natural selection as a result of adaptation towards specific diets. Members of the medically important genus Echis exhibit considerable variation in venom composition, which has been demonstrated to co-evolve with evolutionary shifts in diet. We adopt a venom gland transcriptome approach in order to investigate the diversity of toxins in the genus and elucidate the mechanisms which result in prey-specific adaptations of venom composition. Results Venom gland transcriptomes were created for E. pyramidum leakeyi, E. coloratus and E. carinatus sochureki by sequencing ~1000 expressed sequence tags from venom gland cDNA libraries. A standardised methodology allowed a comprehensive intra-genus comparison of the venom gland profiles to be undertaken, including the previously described E. ocellatus transcriptome. Blast annotation revealed the presence of snake venom metalloproteinases, C-type lectins, group II phopholipases A2, serine proteases, L-amino oxidases and growth factors in all transcriptomes throughout the genus. Transcripts encoding disintegrins, cysteine-rich secretory proteins and hyaluronidases were obtained from at least one, but not all, species. A representative group of novel venom transcripts exhibiting similarity to lysosomal acid lipase were identified from the E. coloratus transcriptome, whilst novel metallopeptidases exhibiting similarity to neprilysin and dipeptidyl peptidase III were identified from E. p. leakeyi and E. coloratus respectively. Conclusion The comparison of Echis venom gland transcriptomes revealed substantial intrageneric venom variation in representations and cluster numbers of the most abundant venom toxin families. The expression profiles of established

  7. Genome-Wide Analysis and Molecular Characterization of Heat Shock Transcription Factor Family in Glycine max

    Institute of Scientific and Technical Information of China (English)

    Eunsook Chung; Kyoung-Mi Kim; Jai-Heon Lee

    2013-01-01

    Heat shock transcription factors (Hsfs) play an essential role on the increased tolerance against heat stress by regulating the expression of heat-responsive genes.In this study,a genome-wide analysis was performed to identify all of the soybean (Glycine max) GmHsfgenes based on the latest soybean genome sequence.Chromosomal location,protein domain,motif organization,and phylogenetic relationships of 26 non-redundant GmHsf genes were analyzed compared with AtHsfs (Arabidopsis thaliana Hsfs).According to their structural features,the predicted members were divided into the previously defined classes A-C,as described for AtHsfs.Transcript levels and subcellular localization of five GmHsfs responsive to abiotic stresses were analyzed by real-time RT-PCR.These results provide a fundamental clue for understanding the complexity of the soybean GmHsfgene family and cloning the functional genes in future studies.

  8. Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves.

    Directory of Open Access Journals (Sweden)

    Wenying Xu

    Full Text Available Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96% diurnal probe sets in seedling leaves, 13,773 (24.08% diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated

  9. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar (Coleoptera: Curculionidae Reveals Multiple Protease-Like Transcripts.

    Directory of Open Access Journals (Sweden)

    Arnubio Valencia

    Full Text Available The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.

  10. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts

    Science.gov (United States)

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W.; Eyun, Seong-il; Noriega, Daniel D.; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest. PMID:26949943

  11. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Directory of Open Access Journals (Sweden)

    Jared D Sharp

    Full Text Available Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.

  12. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Science.gov (United States)

    Sharp, Jared D; Singh, Atul K; Park, Sang Tae; Lyubetskaya, Anna; Peterson, Matthew W; Gomes, Antonio L C; Potluri, Lakshmi-Prasad; Raman, Sahadevan; Galagan, James E; Husson, Robert N

    2016-01-01

    Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions. PMID:27003599

  13. Power analysis attacks revealing the secrets of smart cards

    CERN Document Server

    Mangard, Stefan; Popp, Thomas

    2008-01-01

    A comprehensive treatment of power analysis attacks and countermeasures. Based on the principle that the only way to defend against power analysis attacks is to understand them, this book explains how power analysis attacks work. It discusses simple and differential power analysis as well as advanced techniques like template attacks.

  14. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  15. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  16. Analysis of prostate-specific antigen transcripts in chimpanzees, cynomolgus monkeys, baboons, and African green monkeys.

    Directory of Open Access Journals (Sweden)

    James N Mubiru

    Full Text Available The function of prostate-specific antigen (PSA is to liquefy the semen coagulum so that the released sperm can fuse with the ovum. Fifteen spliced variants of the PSA gene have been reported in humans, but little is known about alternative splicing in nonhuman primates. Positive selection has been reported in sex- and reproductive-related genes from sea urchins to Drosophila to humans; however, there are few studies of adaptive evolution of the PSA gene. Here, using polymerase chain reaction (PCR product cloning and sequencing, we study PSA transcript variant heterogeneity in the prostates of chimpanzees (Pan troglodytes, cynomolgus monkeys (Macaca fascicularis, baboons (Papio hamadryas anubis, and African green monkeys (Chlorocebus aethiops. Six PSA variants were identified in the chimpanzee prostate, but only two variants were found in cynomolgus monkeys, baboons, and African green monkeys. In the chimpanzee the full-length transcript is expressed at the same magnitude as the transcripts that retain intron 3. We have found previously unidentified splice variants of the PSA gene, some of which might be linked to disease conditions. Selection on the PSA gene was studied in 11 primate species by computational methods using the sequences reported here for African green monkey, cynomolgus monkey, baboon, and chimpanzee and other sequences available in public databases. A codon-based analysis (dN/dS of the PSA gene identified potential adaptive evolution at five residue sites (Arg45, Lys70, Gln144, Pro189, and Thr203.

  17. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Philip D Townsend

    Full Text Available The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.

  18. The complement system of elasmobranches revealed by liver transcriptome analysis of a hammerhead shark, Sphyrna zygaena.

    Science.gov (United States)

    Goshima, Masayuki; Sekiguchi, Reo; Matsushita, Misao; Nonaka, Masaru

    2016-08-01

    Comprehensive studies of the complement genes in basal vertebrates have revealed that cyclostomes have apparently primitive complement systems whereas bony fish have well-developed complement systems comparable to those of mammals. Here we have performed liver transcriptome analysis of a hammerhead shark, Sphyrna zygaeana, to elucidate the early history of vertebrate complement evolution. Identified genes were; one C1qB, one C1r, one C1s, one MASP-1/-3, one MASP-2, two factor B/C2, one C3, three C4, one C5, one C6, one C7, one C8A, three C8B, one C8G, one C9, two factor I and one S protein. No MBL, ficolin, C1qA or C1qC were found. These results indicate that the lectin, classical, alternative and lytic pathways were established in the common ancestor of jawed vertebrates. In addition to the absence of MBL and ficolin, the MASP transcripts lacked the serine protease domain, suggesting that the lectin pathway was lost in the hammerhead shark lineage. PMID:26987526

  19. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis.

    Science.gov (United States)

    Iff, Joël; Wang, Wei; Sajic, Tatjana; Oudry, Nathalie; Gueneau, Estelle; Hopfgartner, Gérard; Varesio, Emmanuel; Szanto, Ildiko

    2009-10-01

    Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis. PMID:19663508

  20. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  1. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways

    Directory of Open Access Journals (Sweden)

    Colón-Carmona Adán

    2010-04-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L. under phenanthrene treatment, and compared the results to published Arabidopsis microarray data representing a variety of stress and hormone treatments. In addition, to probe hormonal aspects of PAH stress, we assayed transgenic ethylene-inducible reporter plants as well as ethylene pathway mutants under phenanthrene treatment. Results Microarray results revealed numerous perturbations in signaling and metabolic pathways that regulate reactive oxygen species (ROS and responses related to pathogen defense. A number of glutathione S-transferases that may tag xenobiotics for transport to the vacuole were upregulated. Comparative microarray analyses indicated that the phenanthrene response was closely related to other ROS conditions, including pathogen defense conditions. The ethylene-inducible transgenic reporters were activated by phenanthrene. Mutant experiments showed that PAH inhibits growth through an ethylene-independent pathway, as PAH-treated ethylene-insensitive etr1-4 mutants exhibited a greater growth reduction than WT. Further, phenanthrene-treated, constitutive ethylene signaling mutants had longer roots than the untreated control plants, indicating that the PAH inhibits parts of the ethylene signaling pathway. Conclusions This study identified major physiological systems that participate in the PAH-induced stress response in Arabidopsis. At the transcriptional level, the results identify specific gene targets that will be valuable in finding lead compounds and engineering increased

  2. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development1[OPEN

    Science.gov (United States)

    Pattison, Richard J.; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-01-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs. PMID:26099271

  3. Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Directory of Open Access Journals (Sweden)

    Laurila Kirsti

    2011-10-01

    Full Text Available Abstract Background Approximately half of all human genes use alternative transcription start sites (TSSs to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage. Results By profiling 108 colorectal samples using exon arrays, we identified nine genes (TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5, and SCIN showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for CHEK1, OSBPL1A, and TCF12 in a subset of these cancer types. To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both OSBPL1A and TRAK1. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples. Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples

  4. A Study on the application of Data Mining Methods in the analysis of Transcripts

    Directory of Open Access Journals (Sweden)

    Luis Raunheitte

    2012-06-01

    Full Text Available Schools always had an essential role in the formation of students' intellect; however, the constant incorporation of knowledge to improve techniques and technologies used in the production of goods and services has caused a major demand for highly qualified professionals and, in order to meet that need, the teaching process must understand and adapt to the profile of the students. The transcript is the most used document to measure the performance of a student. Its digital storage combined with data mining methodologies can contribute not only to the analysis of performances, but also to the identification of significant information about student

  5. Whole-Genome Transcriptional Analysis of Escherichia coli during Heat Inactivation Processes Related to Industrial Cooking

    OpenAIRE

    Guernec, A.; Robichaud-Rincon, P.; Saucier, L.

    2013-01-01

    Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value (Fo7010) of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated ...

  6. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    OpenAIRE

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were...

  7. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes.

    Directory of Open Access Journals (Sweden)

    Marcela Dávila López

    Full Text Available The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional

  8. Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Yuanhao Zhang

    Full Text Available Adherent-invasive Escherichia coli (AIEC strains are detected more frequently within mucosal lesions of patients with Crohn's disease (CD. The AIEC phenotype consists of adherence and invasion of intestinal epithelial cells and survival within macrophages of these bacteria in vitro. Our aim was to identify candidate transcripts that distinguish AIEC from non-invasive E. coli (NIEC strains and might be useful for rapid and accurate identification of AIEC by culture-independent technology. We performed comparative RNA-Sequence (RNASeq analysis using AIEC strain LF82 and NIEC strain HS during exponential and stationary growth. Differential expression analysis of coding sequences (CDS homologous to both strains demonstrated 224 and 241 genes with increased and decreased expression, respectively, in LF82 relative to HS. Transition metal transport and siderophore metabolism related pathway genes were up-regulated, while glycogen metabolic and oxidation-reduction related pathway genes were down-regulated, in LF82. Chemotaxis related transcripts were up-regulated in LF82 during the exponential phase, but flagellum-dependent motility pathway genes were down-regulated in LF82 during the stationary phase. CDS that mapped only to the LF82 genome accounted for 747 genes. We applied an in silico subtractive genomics approach to identify CDS specific to AIEC by incorporating the genomes of 10 other previously phenotyped NIEC. From this analysis, 166 CDS mapped to the LF82 genome and lacked homology to any of the 11 human NIEC strains. We compared these CDS across 13 AIEC, but none were homologous in each. Four LF82 gene loci belonging to clustered regularly interspaced short palindromic repeats region (CRISPR--CRISPR-associated (Cas genes were identified in 4 to 6 AIEC and absent from all non-pathogenic bacteria. As previously reported, AIEC strains were enriched for pdu operon genes. One CDS, encoding an excisionase, was shared by 9 AIEC strains. Reverse

  9. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism

    DEFF Research Database (Denmark)

    Casanovas, Albert; Sprenger, Richard R; Tarasov, Kirill; Ruckerbauer, David E; Hannibal-Bach, Hans Kristian; Zanghellini, Jürgen; Jensen, Ole N; Ejsing, Christer S

    2015-01-01

    architecture and processes during physiological adaptations in yeast. Our results reveal that activation of cardiolipin synthesis and remodeling supports mitochondrial biogenesis in the transition from fermentative to respiratory metabolism, that down-regulation of de novo sterol synthesis machinery prompts...... of peroxisomal biogenesis, via the heterodimeric Oaf1/Pip2 transcription factor. Our work demonstrates the pivotal role of lipid metabolism in adaptive processes and provides a resource to investigate its regulation at the cellular level....

  10. Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid.

    Science.gov (United States)

    Nam, Jeong-Won; Kappock, T Joseph

    2007-01-01

    Crepis alpina acetylenase is a variant FAD2 desaturase that catalyses the insertion of a triple bond at the Delta12 position of linoleic acid, forming crepenynic acid in developing seeds. Seeds contain a high level of crepenynic acid but other tissues contain none. Using reverse transcriptase-coupled PCR (RT-PCR), acetylenase transcripts were identified in non-seed C. alpina tissues, which were highest in flower heads. To understand why functional expression of the acetylenase is limited to seeds, genes that affect acetylenase activity by providing substrate (FAD2) or electrons (cytochrome b5), or that compete for substrate (FAD3), were cloned. RT-PCR analysis indicated that the availability of a preferred cytochrome b5 isoform is not a limiting factor. Developing seeds co-express acetylenase and FAD2 isoform 2 (FAD2-2) at high levels. Flower heads co-express FAD2-3 and FAD3 at high levels, and FAD2-2 and acetylenase at moderate levels. FAD2-3 was not expressed in developing seed. Real-time RT-PCR absolute transcript quantitation showed 10(4)-fold higher acetylenase expression in developing seeds than in flower heads. Collectively, the results show that both the acetylenase expression level and the co-expression of other desaturases may contribute to the tissue specificity of crepenynate production. Helianthus annuus contains a Delta12 acetylenase in a polyacetylene biosynthetic pathway, so does not accumulate crepenynate. Real-time RT-PCR analysis showed relatively strong acetylenase expression in young sunflowers. Acetylenase transcription is observed in both species without accumulation of the enzymatic product, crepenynate. Functional expression of acetylenase appears to be affected by competition and collaboration with other enzymes. PMID:17329262

  11. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming;

    2012-01-01

    RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed a...

  12. Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii

    Directory of Open Access Journals (Sweden)

    Shan Zhao

    2015-03-01

    Full Text Available The WUSCHEL (WUS-related homeobox (WOX gene family coordinates transcription during the early phases of embryogenesis. In this study, a putative WOX2 homolog was isolated and characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum. The sequence consisted of 2045 bp, and contained an open reading frame (ORF, encoded 322 amino acids. The predicted protein sequence contained a highly conserved homeodomain and the WUS-box domain, which is present in some members of the WOX protein family. The full-length ORF was subcloned into prokaryotic expression vector pET-30a, and an approximately 34-kDa protein was expressed in Escherichia coli BL21 (DE3 cells with IPTG induction. The molecular mass of the expressed protein was identical to that predicted by the cDNA sequence. Phylogenetic analysis suggested that Ae. tauschii WOX2 is closely related to the rice and maize orthologs. Quantitative PCR analysis showed that WOX2 from Ae. tauschii was primarily expressed in the seeds; transcription increased during seed development and declined after the embryos matured, suggesting that WOX2 is associated with embryo development in Ae. tauschii.

  13. Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii.

    Science.gov (United States)

    Zhao, Shan; Jiang, Qian-Tao; Ma, Jian; Wang, Ji-Rui; Liu, Ya-Xi; Chen, Guo-Yue; Qi, Peng-Fei; Pu, Zhi-En; Lu, Zhen-Xiang; Zheng, You-Liang; Wei, Yu-Ming

    2015-03-01

    The WUSCHEL (WUS)-related homeobox (WOX) gene family coordinates transcription during the early phases of embryogenesis. In this study, a putative WOX2 homolog was isolated and characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum. The sequence consisted of 2045 bp, and contained an open reading frame (ORF), encoded 322 amino acids. The predicted protein sequence contained a highly conserved homeodomain and the WUS-box domain, which is present in some members of the WOX protein family. The full-length ORF was subcloned into prokaryotic expression vector pET-30a, and an approximately 34-kDa protein was expressed in Escherichia coli BL21 (DE3) cells with IPTG induction. The molecular mass of the expressed protein was identical to that predicted by the cDNA sequence. Phylogenetic analysis suggested that Ae. tauschii WOX2 is closely related to the rice and maize orthologs. Quantitative PCR analysis showed that WOX2 from Ae. tauschii was primarily expressed in the seeds; transcription increased during seed development and declined after the embryos matured, suggesting that WOX2 is associated with embryo development in Ae. tauschii. PMID:25983628

  14. Genomewide analysis of TCP transcription factor gene family in Malus domestica

    Indian Academy of Sciences (India)

    Ruirui Xu; Peng Sun; Fengjuan Jia; Longtao Lu; Yuanyuan Li; Shizhong Zhang; Jinguang Huang

    2014-12-01

    Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock–scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.

  15. RNA-Seq analysis reveals a six-gene SoxR regulon in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Nawar Naseer

    Full Text Available The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers.

  16. RNA-Seq analysis reveals a six-gene SoxR regulon in Streptomyces coelicolor.

    Science.gov (United States)

    Naseer, Nawar; Shapiro, Joshua A; Chander, Monica

    2014-01-01

    The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers. PMID:25162599

  17. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells

    Science.gov (United States)

    Guo, Jia; Hanawalt, Philip C.; Spivak, Graciela

    2013-01-01

    Oxidized bases in DNA have been implicated in cancer, aging and neurodegenerative disease. We have developed an approach combining single-cell gel electrophoresis (comet) with fluorescence in situ hybridization (FISH) that enables the comparative quantification of low, physiologically relevant levels of DNA lesions in the respective strands of defined nucleotide sequences and in the genome overall. We have synthesized single-stranded probes targeting the termini of DNA segments of interest using a polymerase chain reaction-based method. These probes facilitate detection of damage at the single-molecule level, as the lesions are converted to DNA strand breaks by lesion-specific endonucleases or glycosylases. To validate our method, we have documented transcription-coupled repair of cyclobutane pyrimidine dimers in the ataxia telangiectasia-mutated (ATM) gene in human fibroblasts irradiated with 254 nm ultraviolet at 0.1 J/m2, a dose ∼100-fold lower than those typically used. The high specificity and sensitivity of our approach revealed that 7,8-dihydro-8-oxoguanine (8-oxoG) at an incidence of approximately three lesions per megabase is preferentially repaired in the transcribed strand of the ATM gene. We have also demonstrated that the hOGG1, XPA, CSB and UVSSA proteins, as well as actively elongating RNA polymerase II, are required for this process, suggesting cross-talk between DNA repair pathways. PMID:23775797

  18. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    Science.gov (United States)

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  19. Integrative Analysis of Transcriptional Regulatory Network and Copy Number Variation in Intrahepatic Cholangiocarcinoma

    Science.gov (United States)

    Li, Ling; Lian, Baofeng; Li, Chao; Li, Wei; Li, Jing; Zhang, Yuannv; He, Xianghuo; Li, Yixue; Xie, Lu

    2014-01-01

    Background Transcriptional regulatory network (TRN) is used to study conditional regulatory relationships between transcriptional factors and genes. However few studies have tried to integrate genomic variation information such as copy number variation (CNV) with TRN to find causal disturbances in a network. Intrahepatic cholangiocarcinoma (ICC) is the second most common hepatic carcinoma with high malignancy and poor prognosis. Research about ICC is relatively limited comparing to hepatocellular carcinoma, and there are no approved gene therapeutic targets yet. Method We first constructed TRN of ICC (ICC-TRN) using forward-and-reverse combined engineering method, and then integrated copy number variation information with ICC-TRN to select CNV-related modules and constructed CNV-ICC-TRN. We also integrated CNV-ICC-TRN with KEGG signaling pathways to investigate how CNV genes disturb signaling pathways. At last, unsupervised clustering method was applied to classify samples into distinct classes. Result We obtained CNV-ICC-TRN containing 33 modules which were enriched in ICC-related signaling pathways. Integrated analysis of the regulatory network and signaling pathways illustrated that CNV might interrupt signaling through locating on either genomic sites of nodes or regulators of nodes in a signaling pathway. In the end, expression profiles of nodes in CNV-ICC-TRN were used to cluster the ICC patients into two robust groups with distinct biological function features. Conclusion Our work represents a primary effort to construct TRN in ICC, also a primary effort to try to identify key transcriptional modules based on their involvement of genetic variations shown by gene copy number variations (CNV). This kind of approach may bring the traditional studies of TRN based only on expression data one step further to genetic disturbance. Such kind of approach can easily be extended to other disease samples with appropriate data. PMID:24897108

  20. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Joshi Anagha

    2009-05-01

    Full Text Available Abstract Background A myriad of methods to reverse-engineer transcriptional regulatory networks have been developed in recent years. Direct methods directly reconstruct a network of pairwise regulatory interactions while module-based methods predict a set of regulators for modules of coexpressed genes treated as a single unit. To date, there has been no systematic comparison of the relative strengths and weaknesses of both types of methods. Results We have compared a recently developed module-based algorithm, LeMoNe (Learning Module Networks, to a mutual information based direct algorithm, CLR (Context Likelihood of Relatedness, using benchmark expression data and databases of known transcriptional regulatory interactions for Escherichia coli and Saccharomyces cerevisiae. A global comparison using recall versus precision curves hides the topologically distinct nature of the inferred networks and is not informative about the specific subtasks for which each method is most suited. Analysis of the degree distributions and a regulator specific comparison show that CLR is 'regulator-centric', making true predictions for a higher number of regulators, while LeMoNe is 'target-centric', recovering a higher number of known targets for fewer regulators, with limited overlap in the predicted interactions between both methods. Detailed biological examples in E. coli and S. cerevisiae are used to illustrate these differences and to prove that each method is able to infer parts of the network where the other fails. Biological validation of the inferred networks cautions against over-interpreting recall and precision values computed using incomplete reference networks. Conclusion Our results indicate that module-based and direct methods retrieve largely distinct parts of the underlying transcriptional regulatory networks. The choice of algorithm should therefore be based on the particular biological problem of interest and not on global metrics which cannot be

  1. Subfield profitability analysis reveals an economic case for cropland diversification

    Science.gov (United States)

    Brandes, E.; McNunn, G. S.; Schulte, L. A.; Bonner, I. J.; Muth, D. J.; Babcock, B. A.; Sharma, B.; Heaton, E. A.

    2016-01-01

    Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in agricultural systems, but are limited by perceived conflicts between economic and ecosystem service goals and a lack of tools enabling effective operational management. Here we use Iowa—an agriculturally homogeneous state representative of the Maize Belt—to demonstrate an economic rationale for cropland diversification at the subfield scale. We used a novel computational framework that integrates disparate but publicly available data to map ˜3.3 million unique potential management polygons (9.3 Mha) and reveal subfield opportunities to increase overall field profitability. We analyzed subfield profitability for maize/soybean fields during 2010-2013—four of the most profitable years in recent history—and projected results for 2015. While cropland operating at a loss of US 250 ha-1 or more was negligible between 2010 and 2013 at 18 000-190 000 ha (<2% of row-crop land), the extent of highly unprofitable land increased to 2.5 Mha, or 27% of row-crop land, in the 2015 projection. Aggregation of these areas to the township level revealed ‘hotspots’ for potential management change in Western, Central, and Northeast Iowa. In these least profitable areas, incorporating conservation management that breaks even (e.g., planting low-input perennials), into low-yielding portions of fields could increase overall cropland profitability by 80%. This approach is applicable to the broader region and differs substantially from the status quo of ‘top-down’ land management for conservation by harnessing private interest to align profitability with the production of ecosystem services.

  2. BAHAMAS: new SNIa analysis reveals inconsistencies with standard cosmology

    CERN Document Server

    Shariff, H; Trotta, R; van Dyk, D A

    2015-01-01

    We present results obtained by applying our BAyesian HierArchical Modeling for the Analysis of Supernova cosmology (BAHAMAS) software package to the 740 spectroscopically confirmed supernovae type Ia (SNIa) from the "Joint Light-curve Analysis" (JLA) dataset. We simultaneously determine cosmological parameters and standardization parameters, including host galaxy mass corrections, residual scatter and object-by-object intrinsic magnitudes. Combining JLA and Planck Cosmic Microwave Background data, we find significant discrepancies in cosmological parameter constraints with respect to the standard analysis: we find Omega_M = 0.399+/-0.027, 2.8\\sigma\\ higher than previously reported and w = -0.910+/-0.045, 1.6\\sigma\\ higher than the standard analysis. We determine the residual scatter to be sigma_res = 0.104+/-0.005. We confirm (at the 95% probability level) the existence of two sub-populations segregated by host galaxy mass, separated at log_{10}(M/M_solar) = 10, differing in mean intrinsic magnitude by 0.055+...

  3. RNA-seq dependent transcriptional analysis unveils gene expression profile in the intestine of sea cucumber Apostichopus japonicus during aestivation.

    Science.gov (United States)

    Zhao, Ye; Yang, Hongsheng; Storey, Kenneth B; Chen, Muyan

    2014-06-01

    The seasonal marine, the sea cucumber Apostichopus japonicus (Selenka, 1867), cycles annually between periods of torpor when water temperature is above about 25°C in summer and active life when temperature is below about 18°C. This species is a good candidate model organism for studies of environmentally-induced aestivation in marine invertebrates. Previous studies have examined various aspects of aestivation of A. japonicus, however, knowledge of the molecular regulation underpinning these events is still fragmentary. In the present study, we constructed a global gene expression profile of the intestine tissue of A. japonicus using RNA-seq to identify transcriptional responses associated with transitions between different states: non-aestivation (NA), deep-aestivation (DA), and arousal from aestivation (AA). The analysis identified 1245 differentially expressed genes (DEGs) between DA vs. NA states, 1338 DEGs between AA vs. DA, and 1321 DEGs between AA vs. NA using the criteria |Log2Ratio|≥1 and FDR≤0.001. Of these, 25 of the most significant DEGs were verified by real-time PCR, showing trends in expression patterns that were almost in full concordance between the two techniques. GO analysis revealed that for DA vs. NA, 24 metabolic associated processes were highly enriched (corrected p valuejaponicus and identifies a series of candidate genes and pathways for further research on the molecular mechanisms of aestivation. PMID:24713300

  4. Guard Cell Purification and RNA Isolation Suitable for High Throughput Transcriptional Analysis of Cell-Type Responses to Biotic Stresses

    Science.gov (United States)

    Obulareddy, Nisita; Panchal, Shweta; Melotto, Maeli

    2014-01-01

    Stomata, the micro-pores on leaf surface, are formed by a pair of guard cells. In addition to control water loss and gas exchange between the plant and the environment, these cells act as immunity gates to prevent pathogen invasion of the plant apoplast. Here, we report a brief procedure to obtain highly pure guard cell preparations using conditions that preserve the guard cell transcriptome as much as possible for a robust high-throughput RNA sequence analysis. The advantages of this procedure included: 1) substantial shortening of the time required for obtaining high yield of >97% pure guard cell protoplasts (GCP), 2) extraction of enough amount of high quality RNA for direct sequencing, and 3) limited RNA decay during sample manipulation. Gene expression analysis by RT-qPCR revealed that wound-related genes were not induced during release of guard cells from leaves. To validate our approach, we performed a high throughput deep-sequencing of guard cell transcriptome (RNA-seq). A total of 18,994 nuclear-encoded transcripts was detected, which expanded the transcriptome by 70%. The optimized GCP isolation and RNA extraction protocols are simple, reproducible, and fast allowing the discovery of genes and regulatory networks inherent to the guard cells under various stresses. PMID:23634837

  5. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. PMID:27105420

  6. Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco.

    Science.gov (United States)

    Daurelio, Lucas Damián; Petrocelli, Silvana; Blanco, Francisca; Holuigue, Loreto; Ottado, Jorgelina; Orellano, Elena Graciela

    2011-03-01

    Plants are continuously exposed to pathogen challenge. The most common defense response to pathogenic microorganisms is the nonhost response, which is usually accompanied by transcriptional changes. In order to identify genes involved in nonhost resistance, we evaluated the tobacco transcriptome profile after infection with Xanthomonas axonopodis pv. citri (Xac), a nonhost phytopathogenic bacterium. cDNA-amplified fragment length polymorphism was used to identify differentially expressed transcripts in tobacco leaves infected with Xac at 2, 8 and 24h post-inoculation. From a total of 2087 transcript-derived fragments (TDFs) screened (approximately 20% of the tobacco transcriptome), 316 TDFs showed differential expression. Based on sequence similarities, 82 differential TDFs were identified and assigned to different functional categories: 56 displayed homology to genes with known functions, 12 to proteins with unknown functions and 14 did not have a match. Real-time PCR was carried out with selected transcripts to confirm the expression pattern obtained. The results reveal novel genes associated with nonhost resistance in plant-pathogen interaction in tobacco. These novel genes could be included in future strategies of molecular breeding for nonhost disease resistance. PMID:20828873

  7. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis.

    Science.gov (United States)

    Gremski, Luiza Helena; da Silveira, Rafael Bertoni; Chaim, Olga Meiri; Probst, Christian Macagnan; Ferrer, Valéria Pereira; Nowatzki, Jenifer; Weinschutz, Hellen Chris; Madeira, Humberto Maciel; Gremski, Waldemiro; Nader, Helena Bonciani; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2010-12-01

    Spiders of the Loxosceles genus are cosmopolitan, and their venom components possess remarkable biological properties associated with their ability to act upon different molecules and receptors. Accidents with Loxosceles intermedia specimens are recognized as a public health problem in the south of Brazil. To describe the transcriptional profile of the L. intermedia venom gland, we generated a wide cDNA library, and its transcripts were functionally and structurally analyzed. After initial analyses, 1843 expressed sequence tags (ESTs) produced readable sequences that were grouped into 538 clusters, 281 of which were singletons. 985 reads (53% of total ESTs) matched to known proteins. Similarity searches showed that toxin-encoding transcripts account for 43% of the total library and comprise a great number of ESTs. The most frequent toxins were from the LiTx family, which are known for their insecticidal activity. Both phospholipase D and astacin-like metalloproteases toxins account for approximately 9% of total transcripts. Toxins components such as serine proteases, hyaluronidases and venom allergens were also found but with minor representation. Almost 10% of the ESTs encode for proteins involved in cellular processes. These data provide an important overview of the L. intermedia venom gland expression scenario and revealed significant differences from profiles of other spiders from the Loxosceles genus. Furthermore, our results also confirm that this venom constitutes an amazing source of novel compounds with potential agrochemical, industrial and pharmacological applications. PMID:20644878

  8. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis.

    Science.gov (United States)

    Chen, Cynthia; Lodish, Harvey F

    2014-06-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis. PMID:24607859

  9. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yang

    Full Text Available Bisphenol A (BPA is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA.A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM.Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2 and paired box 6 (Pax6, had preferentially down-regulated expression (Bonferroni correction p-value <10(-4 and log2-transformed fold change ≤-1.2 in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh, vascular endothelial growth factor A (VEGFA and Notch signaling.These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.

  10. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution

    Directory of Open Access Journals (Sweden)

    Singh Rama S

    2008-08-01

    Full Text Available Abstract Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set, approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription

  11. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria

    OpenAIRE

    Raoult Didier; Pontarotti Pierre; Royer-Carenzi Manuela; Merhej Vicky

    2009-01-01

    Abstract Background Genome size and gene content in bacteria are associated with their lifestyles. Obligate intracellular bacteria (i.e., mutualists and parasites) have small genomes that derived from larger free-living bacterial ancestors; however, the different steps of bacterial specialization from free-living to intracellular lifestyle have not been studied comprehensively. The growing number of available sequenced genomes makes it possible to perform a statistical comparative analysis of...

  12. Genome analysis of the platypus reveals unique signatures of evolution

    OpenAIRE

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.

    2008-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-o...

  13. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress

    Science.gov (United States)

    Wu, Yin-Huan; Wang, Tong; Wang, Ke; Liang, Qian-Yu; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Jiang, Bei-Bei; Zhang, Lei

    2016-01-01

    Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat) of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs) were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress. PMID:27447718

  14. Transcription analysis of the Streptomyces coelicolor A3(2) rrnA operon

    DEFF Research Database (Denmark)

    van Wezel, G P; Krab, I M; Douthwaite, S; Bibb, M J; Vijgenboom, E; Bosch, L

    1994-01-01

    Transcription start sites and processing sites of the Streptomyces coelicolor A3(2) rrnA operon have been investigated by a combination of in vivo and in vitro transcription analyses. The data from these approaches are consistent with the existence of four in vivo transcription sites, correspondi...

  15. Elucidating the altered transcriptional programs in breast cancer using independent component analysis.

    Directory of Open Access Journals (Sweden)

    Andrew E Teschendorff

    2007-08-01

    Full Text Available The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA, a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial-mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype-pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases.

  16. Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis.

    Directory of Open Access Journals (Sweden)

    Jaume Pérez-Sánchez

    Full Text Available Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB, to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb. Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc. Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO by vegetable oils (VO in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health.

  17. Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis

    Science.gov (United States)

    Pérez-Sánchez, Jaume; Estensoro, Itziar; Redondo, María José; Calduch-Giner, Josep Alvar; Kaushik, Sadasivam; Sitjà-Bobadilla, Ariadna

    2013-01-01

    Mucins are O-glycosylated glycoproteins present on the apex of all wet-surfaced epithelia with a well-defined expression pattern, which is disrupted in response to a wide range of injuries or challenges. The aim of this study was to identify mucin gene sequences of gilthead sea bream (GSB), to determine its pattern of distribution in fish tissues and to analyse their transcriptional regulation by dietary and pathogenic factors. Exhaustive search of fish mucins was done in GSB after de novo assembly of next-generation sequencing data hosted in the IATS transcriptome database (www.nutrigroup-iats.org/seabreamdb). Six sequences, three categorized as putative membrane-bound mucins and three putative secreted-gel forming mucins, were identified. The transcriptional tissue screening revealed that Muc18 was the predominant mucin in skin, gills and stomach of GSB. In contrast, Muc19 was mostly found in the oesophagus and Muc13 was along the entire intestinal tract, although the posterior intestine exhibited a differential pattern with a high expression of an isoform that does not share a clear orthologous in mammals. This mucin was annotated as intestinal mucin (I-Muc). Its RNA expression was highly regulated by the nutritional background, whereas the other mucins, including Muc2 and Muc2-like, were expressed more constitutively and did not respond to high replacement of fish oil (FO) by vegetable oils (VO) in plant protein-based diets. After challenge with the intestinal parasite Enteromyxum leei, the expression of a number of mucins was decreased mainly in the posterior intestine of infected fish. But, interestingly, the highest down-regulation was observed for the I-Muc. Overall, the magnitude of the changes reflected the intensity and progression of the infection, making mucins and I-Muc, in particular, reliable markers of prognostic and diagnostic value of fish intestinal health. PMID:23776483

  18. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Yong-Ling Liao

    2015-01-01

    Full Text Available WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.

  19. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Science.gov (United States)

    Liao, Yong-Ling; Shen, Yong-Bao; Chang, Jie; Zhang, Wei-Wei; Cheng, Shui-Yuan; Xu, Feng

    2015-01-01

    WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter. PMID:26351628

  20. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    myosin light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to......Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified...

  1. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms

    Directory of Open Access Journals (Sweden)

    Paczia Nicole

    2012-09-01

    Full Text Available Abstract Overflow metabolism is well known for yeast, bacteria and mammalian cells. It typically occurs under glucose excess conditions and is characterized by excretions of by-products such as ethanol, acetate or lactate. This phenomenon, also denoted the short-term Crabtree effect, has been extensively studied over the past few decades, however, its basic regulatory mechanism and functional role in metabolism is still unknown. Here we present a comprehensive quantitative and time-dependent analysis of the exometabolome of Escherichia coli, Corynebacterium glutamicum, Bacillus licheniformis, and Saccharomyces cerevisiae during well-controlled bioreactor cultivations. Most surprisingly, in all cases a great diversity of central metabolic intermediates and amino acids is found in the culture medium with extracellular concentrations varying in the micromolar range. Different hypotheses for these observations are formulated and experimentally tested. As a result, the intermediates in the culture medium during batch growth must originate from passive or active transportation due to a new phenomenon termed “extended” overflow metabolism. Moreover, we provide broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake. In turn, this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and 13C-metabolic flux analysis.

  2. Transcriptome analysis of copper homeostasis genes reveals coordinated upregulation of SLC31A1,SCO1, and COX11 in colorectal cancer.

    Science.gov (United States)

    Barresi, Vincenza; Trovato-Salinaro, Angela; Spampinato, Giorgia; Musso, Nicolò; Castorina, Sergio; Rizzarelli, Enrico; Condorelli, Daniele Filippo

    2016-08-01

    Copper homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones encoded by a group of genes collectively known as copper homeostasis genes (CHGs). In this work, analysis of The Cancer Genome Atlas database for somatic point mutations in colorectal cancer revealed that inactivating mutations are absent or extremely rare in CHGs. Using oligonucleotide microarrays, we found a strong increase in mRNA levels of the membrane copper transporter 1 protein [CTR1; encoded by the solute carrier family 31 member 1 gene (SLC31A1 gene)] in our series of colorectal carcinoma samples. CTR1 is the main copper influx transporter and changes in its expression are able to induce modifications of cellular copper accumulation. The increased SLC31A1 mRNA level is accompanied by a parallel increase in transcript levels for copper efflux pump ATP7A, copper metabolism Murr1 domain containing 1 (COMMD1), the cytochrome C oxidase assembly factors [synthesis of cytochrome c oxidase 1 (SCO1) and cytochrome c oxidase copper chaperone 11 (COX11)], the cupric reductase six transmembrane epithelial antigen of the prostate (STEAP3), and the metal-regulatory transcription factors (MTF1, MTF2) and specificity protein 1 (SP1). The significant correlation between SLC31A1,SCO1, and COX11 mRNA levels suggests that this transcriptional upregulation might be part of a coordinated program of gene regulation. Transcript-level upregulation of SLC31A1,SCO1, and COX11 was also confirmed by the analysis of different colon carcinoma cell lines (Caco-2, HT116, HT29) and cancer cell lines of different tissue origin (MCF7, PC3). Finally, exon-level expression analysis of SLC31A1 reveals differential expression of alternative transcripts in colorectal cancer and normal colonic mucosa. PMID:27516958

  3. DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates.

    Science.gov (United States)

    Hovey, Raymond; Lentes, Sabine; Ehrenreich, Armin; Salmon, Kirsty; Saba, Karla; Gottschalk, Gerhard; Gunsalus, Robert P; Deppenmeier, Uwe

    2005-05-01

    Methansarcina mazei Gö1 DNA arrays were constructed and used to evaluate the genomic expression patterns of cells grown on either of two alternative methanogenic substrates, acetate or methanol, as sole carbon and energy source. Analysis of differential transcription across the genome revealed two functionally grouped sets of genes that parallel the central biochemical pathways in, and reflect many known features of, acetate and methanol metabolism. These include the acetate-induced genes encoding acetate activating enzymes, acetyl-CoA synthase/CO dehydrogenase, and carbonic anhydrase. Interestingly, additional genes expressed at significantly higher levels during growth on acetate included two energy-conserving complexes (the Ech hydrogenase, and the A1A0-type ATP synthase). Many previously unknown features included the induction by acetate of genes coding for ferredoxins and flavoproteins, an aldehyde:ferredoxin oxidoreductase, enzymes for the synthesis of aromatic amino acids, and components of iron, cobalt and oligopeptide uptake systems. In contrast, methanol-grown cells exhibited elevated expression of genes assigned to the methylotrophic pathway of methanogenesis. Expression of genes for components of the translation apparatus was also elevated in cells grown in the methanol medium relative to acetate, and was correlated with the faster growth rate observed on the former substrate. These experiments provide the first comprehensive insight into substrate-dependent gene expression in a methanogenic archaeon. This genome-wide approach, coupled with the complementary molecular and biochemical tools, should greatly accelerate the exploration of Methanosarcina cell physiology, given the present modest level of our knowledge of these large archaeal genomes. PMID:15902489

  4. Proteomic analysis reveals metabolic and regulatory systems involved the syntrophic and axenic lifestyle of Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Jessica Rhea Sieber

    2015-02-01

    Full Text Available Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomic approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis macromolecular stability and energy metabolism to S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.

  5. Analysis of newly established EST databases reveals similarities between heart regeneration in newt and fish

    Directory of Open Access Journals (Sweden)

    Weis Patrick

    2010-01-01

    Full Text Available Abstract Background The newt Notophthalmus viridescens possesses the remarkable ability to respond to cardiac damage by formation of new myocardial tissue. Surprisingly little is known about changes in gene activities that occur during the course of regeneration. To begin to decipher the molecular processes, that underlie restoration of functional cardiac tissue, we generated an EST database from regenerating newt hearts and compared the transcriptional profile of selected candidates with genes deregulated during zebrafish heart regeneration. Results A cDNA library of 100,000 cDNA clones was generated from newt hearts 14 days after ventricular injury. Sequencing of 11520 cDNA clones resulted in 2894 assembled contigs. BLAST searches revealed 1695 sequences with potential homology to sequences from the NCBI database. BLAST searches to TrEMBL and Swiss-Prot databases assigned 1116 proteins to Gene Ontology terms. We also identified a relatively large set of 174 ORFs, which are likely to be unique for urodele amphibians. Expression analysis of newt-zebrafish homologues confirmed the deregulation of selected genes during heart regeneration. Sequences, BLAST results and GO annotations were visualized in a relational web based database followed by grouping of identified proteins into clusters of GO Terms. Comparison of data from regenerating zebrafish hearts identified biological processes, which were uniformly overrepresented during cardiac regeneration in newt and zebrafish. Conclusion We concluded that heart regeneration in newts and zebrafish led to the activation of similar sets of genes, which suggests that heart regeneration in both species might follow similar principles. The design of the newly established newt EST database allows identification of molecular pathways important for heart regeneration.

  6. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  7. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  8. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  9. Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    Full Text Available Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the "rules" that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.

  10. Survey of Transcript Expression in Rainbow Trout Leukocytes Reveals a Major Contribution of Interferon-Responsive Genes in the Early Response to a Rhabdovirus Infection

    Science.gov (United States)

    O'Farrell, Caroline; Vaghefi, Nikta; Cantonnet, Monique; Buteau, Bénédicte; Boudinot, Pierre; Benmansour, Abdenour

    2002-01-01

    Virus infections induce changes in the expression of host cell genes. A global knowledge of these modifications should help to better understand the virus/host cell interactions. To obtain a more comprehensive view of the rainbow trout response to a viral infection, we used the subtractive suppressive hybridization methodology in the viral hemorrhagic septicemia model of infection. We infected rainbow trout leukocytes with viral hemorrhagic septicemia virus (VHSV), and total RNA from infected and mock-infected cells was compared at 40 h postinfection. Twenty-four virus-induced genes were ultimately retrieved from the subtracted cDNA library, and their differential expression was further confirmed by semiquantitative reverse transcription-PCR and Northern blot analysis. Among these sequences, three were already described as VHSV-induced genes. Eight sequences with known homologs were extended to full-length cDNA using 5′ and 3′ rapid amplification of cDNA ends, and they were subsequently divided into three functional subsets. Four genes were homologous to mammalian interferon responsive genes, three were similar to chemo-attractant molecules (CXC chemokine, galectin), and two had nucleic acid binding domains. All of the virus-induced genes were also induced by rainbow trout interferon, indicating that the interferon pathway is the predominant component of the anti-VHSV response. They were also expressed in vivo in experimentally infected fish, indicating their biological relevance in natural infection. PMID:12134009

  11. Bioimage analysis of Shigella infection reveals targeting of colonic crypts.

    Science.gov (United States)

    Arena, Ellen T; Campbell-Valois, Francois-Xavier; Tinevez, Jean-Yves; Nigro, Giulia; Sachse, Martin; Moya-Nilges, Maryse; Nothelfer, Katharina; Marteyn, Benoit; Shorte, Spencer L; Sansonetti, Philippe J

    2015-06-23

    Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri. A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host-pathogen systems in a tailored and robust manner, inclusive of the infectious agent. PMID:26056271

  12. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners

    Science.gov (United States)

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W. Thomas; Bush, Nicole R.; Adler, Nancy; Levine, Joel D.

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of “reciprocal” interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  13. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners.

    Science.gov (United States)

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W Thomas; Bush, Nicole R; Adler, Nancy; Levine, Joel D

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of "reciprocal" interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  14. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    David P Hall

    Full Text Available Acute mountain sickness (AMS is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS, we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25. These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  15. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice.

    Science.gov (United States)

    Zhang, Jingyu; Luo, Wei; Zhao, Yuan; Xu, Yunyuan; Song, Shuhui; Chong, Kang

    2016-09-01

    Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments. PMID:27198693

  16. Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle BiogenesisW⃞

    Science.gov (United States)

    Lurin, Claire; Andrés, Charles; Aubourg, Sébastien; Bellaoui, Mohammed; Bitton, Frédérique; Bruyère, Clémence; Caboche, Michel; Debast, Cédrig; Gualberto, José; Hoffmann, Beate; Lecharny, Alain; Le Ret, Monique; Martin-Magniette, Marie-Laure; Mireau, Hakim; Peeters, Nemo; Renou, Jean-Pierre; Szurek, Boris; Taconnat, Ludivine; Small, Ian

    2004-01-01

    The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms. PMID:15269332

  17. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-02-01

    Full Text Available Abstract Background Recently, microRNAs (miRNAs have taken centre stage in the field of human molecular oncology. Several studies have shown that miRNA profiling analyses offer new possibilities in cancer classification, diagnosis and prognosis. However, the function of miRNAs that are dysregulated in tumours remains largely a mystery. Global analysis of miRNA-target gene expression has helped illuminate the role of miRNAs in developmental gene expression programs, but such an approach has not been reported in cancer transcriptomics. Results In this study, we globally analysed the expression patterns of miRNA target genes in prostate cancer by using several public microarray datasets. Intriguingly, we found that, in contrast to global mRNA transcript levels, putative miRNA targets showed a reduced abundance in prostate tumours relative to benign prostate tissue. Additionally, the down-regulation of these miRNA targets positively correlated with the number of types of miRNA target-sites in the 3' untranslated regions of these targets. Further investigation revealed that the globally low expression was mainly driven by the targets of 36 specific miRNAs that were reported to be up-regulated in prostate cancer by a miRNA expression profiling study. We also found that the transcript levels of miRNA targets were lower in androgen-independent prostate cancer than in androgen-dependent prostate cancer. Moreover, when the global analysis was extended to four other cancers, significant differences in transcript levels between miRNA targets and total mRNA backgrounds were found. Conclusion Global gene expression analysis, along with further investigation, suggests that miRNA targets have a significantly reduced transcript abundance in prostate cancer, when compared with the combined pool of all mRNAs. The abnormal expression pattern of miRNA targets in human cancer could be a common feature of the human cancer transcriptome. Our study may help to shed new

  18. Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules

    Directory of Open Access Journals (Sweden)

    Tang Vivian W

    2006-12-01

    Full Text Available Abstract Background Zonula occludens, also known as the tight junction, is a specialized cell-cell interaction characterized by membrane "kisses" between epithelial cells. A cytoplasmic plaque of ~100 nm corresponding to a meshwork of densely packed proteins underlies the tight junction membrane domain. Due to its enormous size and difficulties in obtaining a biochemically pure fraction, the molecular composition of the tight junction remains largely unknown. Results A novel biochemical purification protocol has been developed to isolate tight junction protein complexes from cultured human epithelial cells. After identification of proteins by mass spectroscopy and fingerprint analysis, candidate proteins are scored and assessed individually. A simple algorithm has been devised to incorporate transmembrane domains and protein modification sites for scoring membrane proteins. Using this new scoring system, a total of 912 proteins have been identified. These 912 hits are analyzed using a bioinformatics approach to bin the hits in 4 categories: configuration, molecular function, cellular function, and specialized process. Prominent clusters of proteins related to the cytoskeleton, cell adhesion, and vesicular traffic have been identified. Weaker clusters of proteins associated with cell growth, cell migration, translation, and transcription are also found. However, the strongest clusters belong to synaptic proteins and signaling molecules. Localization studies of key components of synaptic transmission have confirmed the presence of both presynaptic and postsynaptic proteins at the tight junction domain. To correlate proteomics data with structure, the tight junction has been examined using electron microscopy. This has revealed many novel structures including end-on cytoskeletal attachments, vesicles fusing/budding at the tight junction membrane domain, secreted substances encased between the tight junction kisses, endocytosis of tight junction

  19. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.

    Science.gov (United States)

    Pertea, Mihaela; Kim, Daehwan; Pertea, Geo M; Leek, Jeffrey T; Salzberg, Steven L

    2016-09-01

    High-throughput sequencing of mRNA (RNA-seq) has become the standard method for measuring and comparing the levels of gene expression in a wide variety of species and conditions. RNA-seq experiments generate very large, complex data sets that demand fast, accurate and flexible software to reduce the raw read data to comprehensible results. HISAT (hierarchical indexing for spliced alignment of transcripts), StringTie and Ballgown are free, open-source software tools for comprehensive analysis of RNA-seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts including novel splice variants, compute the abundance of these transcripts in each sample and compare experiments to identify differentially expressed genes and transcripts. This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts. The protocol's execution time depends on the computing resources, but it typically takes under 45 min of computer time. HISAT, StringTie and Ballgown are available from http://ccb.jhu.edu/software.shtml. PMID:27560171

  20. Genome Wide Analysis of Chromatin Regulation by Cocaine Reveals a Novel Role for Sirtuins

    OpenAIRE

    Renthal, William; Kumar, Arvind; Xiao, Guanghua; Wilkinson, Matthew; Covington, Herbert E.; Maze, Ian; Sikder, Devanjan; Robison, Alfred J.; LaPlant, Quincey; Dietz, David M.; Russo, Scott J.; Vialou, Vincent; Chakravarty, Sumana; Kodadek, Thomas J.; Stack, Ashley

    2009-01-01

    Changes in gene expression contribute to the long-lasting regulation of the brain’s reward circuitry seen in drug addiction, however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings...

  1. Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway.

    Directory of Open Access Journals (Sweden)

    Yujiro Tanaka

    Full Text Available Stress-inducible transcription factors play a pivotal role in cellular adaptation to environment to maintain homeostasis and integrity of the genome. Activating transcription factor 3 (ATF3 is induced by a variety of stress and inflammatory conditions and is over-expressed in many kinds of cancer cells. However, molecular mechanisms underlying pleiotropic functions of ATF3 have remained elusive. Here we employed systems analysis to identify genome-wide targets of ATF3 that is either induced by an alkylating agent methyl methanesulfonate (MMS or over-expressed in a prostate tumour cell line LNCaP. We show that stress-induced and cancer-associated ATF3 is recruited to 5,984 and 1,423 targets, respectively, in the human genome, 89% of which are common. Notably, ATF3 targets are highly enriched for not only ATF/CRE motifs but also binding sites of several other stress-inducible transcription factors indicating an extensive network of stress response factors in transcriptional regulation of target genes. Further analysis of effects of ATF3 knockdown on these targets revealed that stress-induced ATF3 regulates genes in metabolic pathways, cell cycle, apoptosis, cell adhesion, and signalling including insulin, p53, Wnt, and VEGF pathways. Cancer-associated ATF3 is involved in regulation of distinct sets of genes in processes such as calcium signalling, Wnt, p53 and diabetes pathways. Notably, stress-induced ATF3 binds to 40% of p53 targets and activates pro-apoptotic genes such as TNFRSF10B/DR5 and BBC3/PUMA. Cancer-associated ATF3, by contrast, represses these pro-apoptotic genes in addition to CDKN1A/p21. Taken together, our data reveal an extensive network of stress-inducible transcription factors and demonstrate that ATF3 has opposing, cell context-dependent effects on p53 target genes in DNA damage response and cancer development.

  2. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  3. Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis.

    Science.gov (United States)

    Pham, Phuong Anh; Wahl, Vanessa; Tohge, Takayuki; de Souza, Laise Rosado; Zhang, Youjun; Do, Phuc Thi; Olas, Justyna J; Stitt, Mark; Araújo, Wagner L; Fernie, Alisdair R

    2015-11-01

    The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD(+) salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds. PMID:26428915

  4. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  5. MORPHEUS, a webtool for transcription factor binding analysis using position weight matrices with dependency

    OpenAIRE

    Eugenio Gómez Minguet; Stéphane Segard; Céline Charavay; François Parcy

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use ...

  6. Analysis of the proximal transcriptional element of the myelin basic protein gene.

    OpenAIRE

    Devine-Beach, K; Haas, S.; Khalili, K

    1992-01-01

    The gene encoding myelin basic protein (MBP) contains multiple activator sequences spanning upstream of its transcriptional initiation site which differentially promote transcription in glial cells. The proximal activator sequence, designated MB1, activates transcription in a glial cell type specific manner. This sequence resides between -14 to -50 with respect to the RNA initiation site of the MBP gene. We have identified within the MB1 sequence a 10-nucleotide domain, 5'-ACCTTCAAAG-3', that...

  7. Cloning and analysis of expression patterns and transcriptional regulation of RghBNG in response to plant growth regulators and abiotic stresses in Rehmannia glutinosa.

    Science.gov (United States)

    Zhou, Yanqing; Zhang, Yonghua; Wei, Jun; Zhang, Yu; Li, Jingyun; Wang, Wanshen; Duan, Hongying; Chen, Juanjuan

    2015-01-01

    RghBNG, a gene of unknown function, was cloned from Rehmannia glutinosa by reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA of RghBNG was 548 bp with a282-bp open reading frame. It encoded a polypeptide of 93 amino acids with a predicted molecular weight of 10.5 kDa and a theoretical isoelectric point of 9.25. Bioinformatics analysis indicated that RghBNG had no homology to any known plant genes, whereas the RghBNG polypeptide was highly similar to other plant proteins and possessed one conserved B12D protein family functional domain. Phylogenetic analysis revealed that RghBNG encoded for a dicot protein. RghBNG spatial and temporal expression patterns and responses to abiotic stresses and plant growth regulators were investigated by qRT-PCR. RghBNG transcripts were detected in roots, stems, leaves, petals, receptacles, stamens and pistils with the highest and lowest levels respectively observed in petals and leaves of mature plants. Additionally, RghBNG transcripts were detected at three developmental stages of roots, stems and leaves; the highest levels were observed in roots at seedling stage; Transcript levels changed to varying degrees in different tissues and stages; We also studied the effects of abiotic stress and plant growth regulators in roots and leaves. RghBNG expression was significantly increased (p < 0.01) by chromium, gibberellic acid and NaCl, with the highest levels induced by chromium stress; In contrast, 6-benzyladenine reduced expression. These results strongly suggest that RghBNG is involved in R. glutinosa growth, development and response to plant growth regulators and abiotic stresses. PMID:25674509

  8. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  9. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Parker Albert

    2010-11-01

    Full Text Available Abstract Background Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared ranki ngs for a priori identified physiological marker genes between the biofilm and published data sets. Results Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1. Conclusions Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due

  10. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states.

    Science.gov (United States)

    Inglis, Diane O; Voorhies, Mark; Hocking Murray, Davina R; Sil, Anita

    2013-06-01

    Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia. PMID:23563482

  11. Acidified nitrite inhibits proliferation of Listeria monocytogenes - Transcriptional analysis of a preservation method.

    Science.gov (United States)

    Müller-Herbst, Stefanie; Wüstner, Stefanie; Kabisch, Jan; Pichner, Rohtraud; Scherer, Siegfried

    2016-06-01

    Sodium nitrite (NaNO2) is added as a preservative during raw meat processing such as raw sausage production to inhibit growth of pathogenic bacteria. In the present study it was shown in challenge assays that the addition of sodium nitrite indeed inhibited growth and survival of Listeria monocytogenes in short-ripened spreadable raw sausages. Furthermore, in vitro growth analyses were performed, which took into account combinations of various parameters of the raw sausage ripening process like temperature, oxygen availability, pH, NaCl concentration, and absence or presence of NaNO2. Data based on 300 growth conditions revealed that the inhibitory effect of nitrite was most prominent in combination with acidification, a combination that is also achieved during short-ripened spreadable raw sausage production. At pH6.0 and below, L. monocytogenes was unable to replicate in the presence of 200mg/l NaNO2. During the adaptation of L. monocytogenes to acidified nitrite stress (pH6.0, 200mg/l NaNO2) in comparison to acid exposure only (pH6.0, 0mg/l NaNO2), a massive transcriptional adaptation was observed using microarray analyses. In total, 202 genes were up-regulated and 204 genes were down-regulated. In accordance with growth inhibition, a down-regulation of genes encoding for proteins which are involved in central cellular processes, like cell wall/membrane/envelope biogenesis, translation and ribosomal structure and biogenesis, transcription, and replication, recombination and repair, was observed. Among the up-regulated genes the most prominent group belonged to poorly characterized genes. A considerable fraction of the up-regulated genes has been shown previously to be up-regulated intracellularly in macrophages, after exposure to acid shock or to be part of the SigB regulon. These data indicate that the adaptation to acidified nitrite partly overlaps with the adaptation to stress conditions being present during host colonization. PMID:27017279

  12. Preliminary analysis of Stearoyl Co-A Desaturase gene transcripts in River buffalo

    Directory of Open Access Journals (Sweden)

    L. Ramunno

    2010-02-01

    Full Text Available Stearoyl-CoA desaturase (SCD is a key enzyme in the biosynthesis of monounsaturated fatty acids (MUFAs. In cattle, SCD gene extends over a DNA segment of ~17.0 Kb, and it is organized in 6 exons and 5 introns. The SCD gene has been indicated as the candidate gene to change the saturated/unsaturated FAs ratio and hence it has been suggested as the gene influencing the fat quality. In cattle, eight SNPs have been identified and one of them, (T→C at 231st nt of 5th exon, is responsible for the Val→Ala amino acid change. The C allele has been associated with higher content of MUFAs in carcasses, and it is positively related to a higher index of desaturation (C18:0/C18:1 and C16:0/C16:1 in the milk. In this study, we report on preliminary results of analysis of transcripts of the SCD encoding gene in river buffalo. The electrophoretic analysis of the RT-PCR products and the subsequent sequencing showed at least five different populations of mRNA. The most represented population is correctly assembled (~1300 bp, followed by the one which is deleted of ~750bp, corresponding to the 3rd, 4th and 5th exon and partially to the 2nd and 6th exon.

  13. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    Science.gov (United States)

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. PMID:25592959

  14. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

    Directory of Open Access Journals (Sweden)

    Craig P Giacomini

    2013-04-01

    Full Text Available Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a "breakpoint analysis" pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1, SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2, RAF1 kinase in pancreatic cancer (ATG7/RAF1 and anaplastic astrocytoma (BCL6/RAF1, EWSR1 in melanoma (EWSR1/CREM, CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6, and CLTC in breast cancer (CLTC/VMP1. Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases, with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.

  15. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    Science.gov (United States)

    Bergenholm, David

    2016-01-01

    ABSTRACT In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly decreased expression of NCE103, encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity to oxidative stress and ethanol stress, assigning Cst6p as a new member of the stress-responsive transcriptional regulatory network. These results show that mapping of genome-wide binding sites can provide new insights into the function of transcription factors and highlight the highly connected and condition-dependent nature of the transcriptional regulatory network in S. cerevisiae. PMID:27143390

  16. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein

    International Nuclear Information System (INIS)

    Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5 kb. Besides the 3.2 kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription

  17. Comparing Virtual Reference Exit Survey Results and Transcript Analysis: A Model for Service Evaluation

    Science.gov (United States)

    Smyth, Joanne B.; MacKenzie, James C.

    2006-01-01

    This study uses virtual reference transcripts for which patrons completed exit surveys to seek any correlations between user and librarian satisfaction within virtual reference transactions. By analyzing transcripts with a focus on three elements-technology performance, preferred reference practices, and the demonstrated communication levels of…

  18. Analysis of the transcription initiation mechanism of tomato spotted wilt virus

    NARCIS (Netherlands)

    Duijsings, D.M.J.M.

    2001-01-01

    Genome replication and transcription of Tomato spotted wilt virus (TSWV, genus Tospovirus ) follows in most aspects the general rules for negative strand RNA viruses with segmented genomes. One common feature is the occurrence of "cap snatching" during transcription initiation. During this process,

  19. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance.

    Science.gov (United States)

    McNutt, Patrick; Gut, Ian; Hubbard, Kyle; Beske, Phil

    2015-06-01

    The use of fold-change (FC) to prioritize differentially expressed genes (DEGs) for post-hoc characterization is a common technique in the analysis of RNA sequencing datasets. However, the use of FC can overlook certain population of DEGs, such as high copy number transcripts which undergo metabolically expensive changes in expression yet fail to exceed the ratiometric FC cut-off, thereby missing potential important biological information. Here we evaluate an alternative approach to prioritizing RNAseq data based on absolute changes in normalized transcript counts (ΔT) between control and treatment conditions. In five pairwise comparisons with a wide range of effect sizes, rank-ordering of DEGs based on the magnitude of ΔT produced a power curve-like distribution, in which 4.7-5.0% of transcripts were responsible for 36-50% of the cumulative change. Thus, differential gene expression is characterized by the high production-cost expression of a small number of genes (large ΔT genes), while the differential expression of the majority of genes involves a much smaller metabolic investment by the cell. To determine whether the large ΔT datasets are representative of coordinated changes in the transcriptional program, we evaluated large ΔT genes for enrichment of gene ontologies (GOs) and predicted protein interactions. In comparison to randomly selected DEGs, the large ΔT transcripts were significantly enriched for both GOs and predicted protein interactions. Furthermore, enrichments were were consistent with the biological context of each comparison yet distinct from those produced using equal-sized populations of large FC genes, indicating that the large ΔT genes represent an orthagonal transcriptional response. Finally, the composition of the large ΔT gene sets were unique to each pairwise comparison, indicating that they represent coherent and context-specific responses to biological conditions rather than the non-specific upregulation of a family of genes

  20. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.

    Directory of Open Access Journals (Sweden)

    Xiujing He

    Full Text Available Nitrogen (N is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach

  1. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franko; Kölliker, Roland

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted...... selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique...... genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed...

  2. Transcriptome network analysis reveals potential candidate genes for squamous lung cancer.

    Science.gov (United States)

    Bai, Jing; Hu, Sheng

    2012-01-01

    Squamous lung cancer is a common type of lung cancer; however, its mechanism of oncogenesis is still unknown. The aim of this study was to screen candidate genes of squamous lung cancer using a bioinformatics strategy and elucidate the mechanism of squamous lung cancer. Published microarray data of the GSE3268 series was obtained from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using the software R, and differentially expressed genes by R analysis were harvested. The relationship between transcription factors and target genes in cancer were collected from the Transcriptional regulatory element database. A transcriptome network analysis method was used to construct gene regulation networks and select the candidate genes for squamous lung cancer. SPI1, FLI1, FOS, ETS2, EGR1 and PPARG were defined as candidate genes for squamous lung cancer by the transcriptome network analysis method. Among them, 5 genes had been reported to be involved in lung cancer, except SPI1 and FLI1. Effective recall on previous knowledge conferred strong confidence in these methods. It is demonstrated that transcriptome network analysis is useful in the identification of candidate genes in disease. PMID:21922129

  3. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Yin, Hua; Ma, Yanlin; Deng, Yang; Xu, Zhenbo; Liu, Junyan; Zhao, Junfeng; Dong, Jianjun; Yu, Junhong; Chang, Zongming

    2016-08-01

    Genome shuffling is an efficient and promising approach for the rapid improvement of microbial phenotypes. In this study, genome shuffling was applied to enhance the yield of glutathione produced by Saccharomyces cerevisiae YS86. Six isolates with subtle improvements in glutathione yield were obtained from populations generated by ultraviolet (UV) irradiation and nitrosoguanidine (NTG) mutagenesis. These yeast strains were then subjected to recursive pool-wise protoplast fusion. A strain library that was likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both UV irradiation and heat treatments. After two rounds of genome shuffling, a high-yield recombinant YSF2-19 strain that exhibited 3.2- and 3.3-fold increases in glutathione production in shake flask and fermenter respectively was obtained. Comparative analysis of synthetase gene expression was conducted between the initial and shuffled strains using FQ (fluorescent quantitation) RT-PCR (reverse transcription polymerase chain reaction). Delta CT (threshold cycle) relative quantitation analysis revealed that glutathione synthetase gene (GSH-I) expression at the transcriptional level in the YSF2-19 strain was 9.9-fold greater than in the initial YS86. The shuffled yeast strain has a potential application in brewing, other food, and pharmaceutical industries. Simultaneously, the analysis of improved phenotypes will provide more valuable data for inverse metabolic engineering. PMID:27302037

  4. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    Science.gov (United States)

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  5. Transcriptional (ChIP-Chip) Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm.

    Science.gov (United States)

    Pahl, Matthew C; Erdman, Robert; Kuivaniemi, Helena; Lillvis, John H; Elmore, James R; Tromp, Gerard

    2015-01-01

    We investigated transcriptional control of gene expression in human abdominal aortic aneurysm (AAA). We previously identified 3274 differentially expressed genes in human AAA tissue compared to non-aneurysmal controls. Four expressed transcription factors (ELF1, ETS2, STAT5 and RUNX1) were selected for genome-wide chromatin immunoprecipitation. Transcription factor binding was enriched in 4760 distinct genes (FDR < 0.05), of which 713 were differentially expressed in AAA. Functional classification using Gene Ontology (GO), KEGG, and Network Analysis revealed enrichment in several biological processes including "leukocyte migration" (FDR = 3.09 × 10-05) and "intracellular protein kinase cascade" (FDR = 6.48 × 10-05). In the control aorta, the most significant GO categories differed from those in the AAA samples and included "cytoskeleton organization" (FDR = 1.24 × 10-06) and "small GTPase mediated signal transduction" (FDR = 1.24 × 10-06). Genes up-regulated in AAA tissue showed a highly significant enrichment for GO categories "leukocyte migration" (FDR = 1.62 × 10-11), "activation of immune response" (FDR = 8.44 × 10-11), "T cell activation" (FDR = 4.14 × 10-10) and "regulation of lymphocyte activation" (FDR = 2.45 × 10-09), whereas the down-regulated genes were enriched in GO categories "cytoskeleton organization" (FDR = 7.84 × 10-05), "muscle cell development" (FDR = 1.00 × 10-04), and "organ morphogenesis" (FDR = 3.00 × 10-04). Quantitative PCR assays confirmed a sub-set of the transcription factor binding sites including those in MTMR11, DUSP10, ITGAM, MARCH1, HDAC8, MMP14, MAGI1, THBD and SPOCK1. PMID:25993293

  6. Transcriptional (ChIP-Chip Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm

    Directory of Open Access Journals (Sweden)

    Matthew C. Pahl

    2015-05-01

    Full Text Available We investigated transcriptional control of gene expression in human abdominal aortic aneurysm (AAA. We previously identified 3274 differentially expressed genes in human AAA tissue compared to non-aneurysmal controls. Four expressed transcription factors (ELF1, ETS2, STAT5 and RUNX1 were selected for genome-wide chromatin immunoprecipitation. Transcription factor binding was enriched in 4760 distinct genes (FDR < 0.05, of which 713 were differentially expressed in AAA. Functional classification using Gene Ontology (GO, KEGG, and Network Analysis revealed enrichment in several biological processes including “leukocyte migration” (FDR = 3.09 × 10−05 and “intracellular protein kinase cascade” (FDR = 6.48 × 10−05. In the control aorta, the most significant GO categories differed from those in the AAA samples and included “cytoskeleton organization” (FDR = 1.24 × 10−06 and “small GTPase mediated signal transduction” (FDR = 1.24 × 10−06. Genes up-regulated in AAA tissue showed a highly significant enrichment for GO categories “leukocyte migration” (FDR = 1.62 × 10−11, “activation of immune response” (FDR = 8.44 × 10−11, “T cell activation” (FDR = 4.14 × 10−10 and “regulation of lymphocyte activation” (FDR = 2.45 × 10−09, whereas the down-regulated genes were enriched in GO categories “cytoskeleton organization” (FDR = 7.84 × 10−05, “muscle cell development” (FDR = 1.00 × 10−04, and “organ morphogenesis” (FDR = 3.00 × 10−04. Quantitative PCR assays confirmed a sub-set of the transcription factor binding sites including those in MTMR11, DUSP10, ITGAM, MARCH1, HDAC8, MMP14, MAGI1, THBD and SPOCK1.

  7. A Mutation in cnot8, Component of the Ccr4-Not Complex Regulating Transcript Stability, Affects Expression Levels of Developmental Regulators and Reveals a Role of Fgf3 in Development of Caudal Hypothalamic Dopaminergic Neurons

    OpenAIRE

    Koch, Peter; Löhr, Heiko B.; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic diffe...

  8. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    International Nuclear Information System (INIS)

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1β) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAFI48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells

  9. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis.

    Science.gov (United States)

    Gürgan, Muazzez; Erkal, Nilüfer Afşar; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  10. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Institute of Scientific and Technical Information of China (English)

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  11. Comparative serial analysis of gene expression of transcript profiles of tomato roots infected with cyst nematode.

    Science.gov (United States)

    Uehara, Taketo; Sugiyama, Shunpei; Masuta, Chikara

    2007-01-01

    We analyzed global transcripts for tomato roots infected with the cyst nematode Globodera rostochiensis using serial analysis of gene expression (SAGE). SAGE libraries were made from nematode-infected roots and uninfected roots at 14 days after inoculation, and the clones including SAGE tags were sequenced. Genes were identified by matching the SAGE tags to tomato expressed sequence tags and cDNA databases. We then compiled a list of numerous genes according to the mRNA levels that were altered after cyst nematode infection. Our SAGE results showed significant changes in expression of many unreported genes involved in nematode infection. Of these, for discussion we selected five SAGE tags of RSI-1, BURP domain-containing protein, hexose transporter, P-rich protein, and PHAP2A that were activated by cyst nematode infection. Over 20% of the tags that were upregulated in the infected root have unknown functions (non-annotated), suggesting that we can obtain information on previously unreported and uncharacterized genes by SAGE. We can also obtain information on previously reported genes involved in nematode infection (e.g., multicystatin, peroxidase, catalase, pectin esterase, and S-adenosylmethionine transferase). To evaluate the validity of our SAGE results, seven genes were further analyzed by semiquantitative reverse transcriptase-polymerase chain reaction and Northern blot hybridization; the results agreed well with the SAGE data. PMID:16983456

  12. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Muazzez Gürgan

    2015-06-01

    Full Text Available Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C and heat (42 °C stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F. The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS bacteria under temperature stress.

  13. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH.

    Science.gov (United States)

    Lee, ChangHwan; Roberts, Samantha E; Gladfelter, Amy S

    2016-04-01

    mRNA positioning in the cell is important for diverse cellular functions and proper development of multicellular organisms. Single-molecule RNA FISH (smFISH) enables quantitative investigation of mRNA localization and abundance at the level of individual molecules in the context of cellular features. Details about spatial mRNA patterning at various times, in different genetic backgrounds, at different developmental stages, and under varied environmental conditions provide invaluable insights into the mechanisms and functions of spatial regulation. Here, we describe detailed methods for performing smFISH along with immunofluorescence for two large, multinucleate cell types: the fungus Ashbya gossypii and cultured mouse myotubes. We also put forward a semi-automated image processing tool that systematically detects mRNAs from smFISH data and statistically analyzes the spatial pattern of mRNAs using a customized MATLAB code. These protocols and image analysis tools can be adapted to a wide variety of transcripts and cell types for systematically and quantitatively analyzing mRNA distribution in three-dimensional space. PMID:26690072

  14. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.

    Directory of Open Access Journals (Sweden)

    Marcin Dembek

    Full Text Available Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01. A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth.

  15. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection.

    Directory of Open Access Journals (Sweden)

    Cheng Tang

    Full Text Available BACKGROUND: Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C infection using Illumina-Solexa sequencing. RESULTS: After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG, the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1 and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32. The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. CONCLUSION: This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck

  16. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways

    Science.gov (United States)

    The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of wheat in a...

  17. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst...

  18. Molecular analysis of immunoglobulin genes reveals frequent clonal relatedness in double monoclonal gammopathies

    International Nuclear Information System (INIS)

    Monoclonal gammopathies (MGs) are hematological diseases characterized by high levels of a monoclonal immunoglobulin (Ig) or M-protein. Within this group are patients with more than one M-protein, referred to as double MGs (DMGs). The M-proteins in DMG patients may have different heavy chain (HC) isotypes that are associated with different light chains (LCs), or different HCs that are LC matched. In this study, we examined the clonal relatedness of the M-proteins in the latter type in a cohort of 14 DMG patients. By using PCR, we identified 7/14 DMG patients that expressed two Ig HC isotypes with identical Ig HC variable (IGHV), diversity (IGHD), joining (IGHJ), and complementarity determining region (HCDR3) sequences. Two additional DMG patients had two Ig transcripts using the same IGHV, IGHD and IGHJ genes but with slight differences in variable region or HCDR3 mutations. LC analysis confirmed that a single LC was expressed in 3/7 DMG patients with identical HC transcripts and in the two DMGs with highly similar transcripts. The PCR findings were confirmed by immunofluorescence for HC and LC expression. Clonally related HC-dissimilar/LC-matched DMGs may occur often and defines a new subtype of MG that may serve as a tool for studies of disease pathogenesis

  19. Genomic organization, transcript variants and comparative analysis of the human nucleoporin 155 (NUP155) gene

    DEFF Research Database (Denmark)

    Zhang, Xiuqing; Yang, Huanming; Yu, Jun;

    2002-01-01

    Nucleoporin 155 (Nup155) is a major component of the nuclear pore complex (NPC) involved in cellular nucleo-cytoplasmic transport. We have acquired the complete sequence and interpreted the genomic organization of the Nup155 orthologos from human (Homo sapiens) and pufferfish (Fugu rubripes), which...... cloned DNA complementary to RNAs of the Nup155 orthologs from Fugu and mouse. Comparative analysis of the Nup155 orthologs in many species, including H. sapiens, Mus musculus, Rattus norvegicus, F. rubripes, Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae, has revealed two...

  20. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation.

    Directory of Open Access Journals (Sweden)

    Emma M Quinn

    Full Text Available Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; P(adjusted = 2.40x10(-11 in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (P(adjusted = 0.002, and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10(-16 and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; P(adjusted = 3.6x10(-3 as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10(-16 indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis.

  1. Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.

    Science.gov (United States)

    Shukla, Devesh; Krishnamurthy, Sneha; Sahi, Shivendra V

    2014-01-01

    The unique physico-chemical properties of gold nanoparticles (AuNPs) find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl(-) 4 In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- h in presence of gold solution (HAuCl4) using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit), ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4(-) treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE), suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE) points to the operation of a predominant signaling mechanism in response to AuCl(-) 4 exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of candidate genes

  2. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  3. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    Directory of Open Access Journals (Sweden)

    Colombo Carlos A

    2011-02-01

    Full Text Available Abstract Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive

  4. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    International Nuclear Information System (INIS)

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with [355]methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units

  5. Genome-wide transcription analysis of clinal genetic variation in Drosophila

    NARCIS (Netherlands)

    Chen, Ying; Lee, Siu F.; Blanc, Eric; Reuter, Caroline; Wertheim, Bregje; Martinez-Diaz, Pedro; Hoffmann, Ary A.; Partridge, Linda

    2012-01-01

    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation betwee

  6. Comparative Analysis of Transcription Factors Families across Fungal Tree of Life

    Energy Technology Data Exchange (ETDEWEB)

    Salamov, Asaf; Grigoriev, Igor

    2015-03-19

    Transcription factors (TFs) are proteins that regulate the transcription of genes, by binding to specific DNA sequences. Based on literature (Shelest, 2008; Weirauch and Hughes,2011) collected and manually curated list of DBD Pfam domains (in total 62 DBD domains) We looked for distribution of TFs in 395 fungal genomes plus additionally in plant genomes (Phytozome), prokaryotes(IMG), some animals/metazoans and protists genomes

  7. In vitro analysis of a transcription termination site for RNA polymerase II.

    OpenAIRE

    Wiest, D K; Hawley, D K

    1990-01-01

    Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction cond...

  8. Genetic analysis of the Sall transcription factor family in murine development

    OpenAIRE

    Elling, Ulrich

    2006-01-01

    Spalt (sal)-like proteins are transcription factors that are described for nematodes, shrimp, insects and multiple chordata analyzed till date. Mutations in genes of the spalt like transcription factor family have been shown to manifest in phenotypic aberrations in several model organisms. Moreover, humans carrying mutations in spalt like genes suffer from various developmental defects. A deeper understanding of the role of Sall genes in mammalian development will therefore be required ...

  9. Diagnostic value of thyroid transcription factor-1 for pleural or other serous metastases of pulmonary adenocarcinoma: a meta-analysis.

    Science.gov (United States)

    Shen, Yongchun; Pang, Caishuang; Shen, Konglong; Wu, Yanqiu; Li, Diandian; Wan, Chun; Liao, Zenglin; Yang, Ting; Chen, Lei; Wen, Fuqiang

    2016-01-01

    The role of thyroid transcription factor 1 (TTF-1) in the diagnosis of metastatic pulmonary adenocarcinomas in pleural, pericardial, and peritoneal effusions has not been defined. This study aimed to assess the overall diagnostic accuracy of TTF-1 for metastatic pulmonary adenocarcinomas in pleural or other effusions. Literature search was conducted in PubMed, EMBASE, and other databases to find eligible publications. Quality was assessed according to standardized QUADAS-2 criteria. Sensitivity, specificity, positive/negative likelihood ratio (PLR/NLR), and diagnostic odds ratio (DOR) were pooled. Summary receiver operating characteristic (SROC) curves were used to assess overall performance of the TTF-1 assay. A systematic search revealed 20 studies comprising a total of 1,213 subjects in this meta-analysis. The summary estimates were listed as follows: sensitivity, 0.74 (95% CI: 0.69-0.79); specificity, 0.99 (95% CI: 0.97-1.00); PLR, 78.16 (95% CI: 27.15-225.05); NLR, 0.26 (95% CI: 0.22-0.32); and diagnostic odds ratio, 297.75 (95% CI: 104.16-851.19). Estimated positive and negative post-probability values for metastatic pulmonary adenocarcinomas prevalence of 20% were 95% and 6%, respectively. The area under the SROC curve was 0.96. TTF-1 shows significant potential as a diagnostic marker to differentiate metastatic pulmonary from non-pulmonary adenocarcinomas in pleural or other effusions. These results justify larger, more rigorous studies to confirm such a diagnostic role. PMID:26806377

  10. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system

    Directory of Open Access Journals (Sweden)

    Michiel van der Vaart

    2013-05-01

    Toll-like receptors (TLRs are an important class of pattern recognition receptors (PRRs that recognize microbial and danger signals. Their downstream signaling upon ligand binding is vital for initiation of the innate immune response. In human and mammalian models, myeloid differentiation factor 88 (MYD88 is known for its central role as an adaptor molecule in interleukin 1 receptor (IL-1R and TLR signaling. The zebrafish is increasingly used as a complementary model system for disease research and drug screening. Here, we describe a zebrafish line with a truncated version of MyD88 as the first zebrafish mutant for a TLR signaling component. We show that this immune-compromised mutant has a lower survival rate under standard rearing conditions and is more susceptible to challenge with the acute bacterial pathogens Edwardsiella tarda and Salmonella typhimurium. Microarray and quantitative PCR analysis revealed that expression of genes for transcription factors central to innate immunity (including NF-ĸB and AP-1 and the pro-inflammatory cytokine Il1b, is dependent on MyD88 signaling during these bacterial infections. Nevertheless, expression of immune genes independent of MyD88 in the myd88 mutant line was sufficient to limit growth of an attenuated S. typhimurium strain. In the case of infection with the chronic bacterial pathogen Mycobacterium marinum, we show that MyD88 signaling has an important protective role during early pathogenesis. During mycobacterial infection, the myd88 mutant shows accelerated formation of granuloma-like aggregates and increased bacterial burden, with associated lower induction of genes central to innate immunity. This zebrafish myd88 mutant will be a valuable tool for further study of the role of IL1R and TLR signaling in the innate immunity processes underlying infectious diseases, inflammatory disorders and cancer.

  11. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis

    Directory of Open Access Journals (Sweden)

    Goldstein Ralf

    2010-02-01

    Full Text Available Abstract Background Even though the process of potato tuber starch biosynthesis is well understood, mechanisms regulating biosynthesis are still unclear. Transcriptome analysis provides valuable information as to how genes are regulated. Therefore, this work aimed at investigating transcriptional regulation of starch biosynthetic genes in leaves and tubers of potato plants under various conditions. More specifically we looked at gene expression diurnally in leaves and tubers, during tuber induction and in tubers growing at different velocities. To determine velocity of potato tuber growth a new method based on X-ray Computed Tomography (X-ray CT was established. Results Comparative transcriptome analysis between leaves and tubers revealed striking similarities with the same genes being differentially expressed in both tissues. In tubers, oscillation of granule bound starch synthase (GBSS expression was observed which could be linked to sucrose supply from source leaves. X-ray CT was used to determine time-dependent changes in tuber volume and the growth velocity was calculated. Although there is not a linear correlation between growth velocity and expression of starch biosynthetic genes, there are significant differences between growing and non-growing tubers. Co-expression analysis was used to identify transcription factors positively correlating with starch biosynthetic genes possibly regulating starch biosynthesis. Conclusion Most starch biosynthetic enzymes are encoded by gene families. Co-expression analysis revealed that the same members of these gene families are co-regulated in leaves and tubers. This suggests that regulation of transitory and storage starch biosynthesis in leaves and tubers, respectively, is surprisingly similar. X-ray CT can be used to monitor growth and development of belowground organs and allows to link tuber growth to changes in gene expression. Comparative transcriptome analysis provides a useful tool to identify

  12. Mutational analysis of the transcription start site of the yeast tRNA(Leu3) gene.

    Science.gov (United States)

    Fruscoloni, P; Zamboni, M; Panetta, G; De Paolis, A; Tocchini-Valentini, G P

    1995-01-01

    In addition to the well-known internal promoter elements of tRNA genes, 5' flanking sequences can also influence the efficiency of transcription by Saccharomyces cerevisiae extracts in vitro. A consensus sequence of yeast tRNA genes in the vicinity of the transcriptional start site can be derived. To determine whether the activity of this region can be attributed to particular sequence features we studied in vitro mutants of the start site region. We found that the start site can be shifted, but only to a limited extent, by moving the conserved sequence element. We found that both a pyrimidine-purine motif (with transcription initiating at the purine) and a small T:A base pair block upstream are important for efficient transcription in vitro. Thus