WorldWideScience

Sample records for analysis reveals association

  1. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Bischoff, Emmanuel; Proux, Caroline

    2008-01-01

    BACKGROUND: Pregnancy-associated malaria (PAM) causing maternal anemia and low birth weight is among the multiple manifestations of Plasmodium falciparum malaria. Infected erythrocytes (iEs) can acquire various adhesive properties that mediate the clinical severity of malaria. Recent advances...

  2. CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    NARCIS (Netherlands)

    Macé, Aurélien; Tuke, Marcus A; Deelen, Patrick; Kristiansson, Kati; Mattsson, Hannele; Nõukas, Margit; Sapkota, Yadav; Schick, Ursula; Porcu, Eleonora; Rüeger, Sina; McDaid, Aaron F; Porteous, David; Winkler, Thomas W; Salvi, Erika; Shrine, Nick; Liu, Xueping; Ang, Wei Q; Zhang, Weihua; Feitosa, Mary F; Venturini, Cristina; van der Most, Peter J; Rosengren, Anders; Wood, Andrew R; Beaumont, Robin N; Jones, Samuel E; Ruth, Katherine S; Yaghootkar, Hanieh; Tyrrell, Jessica; Havulinna, Aki S; Boers, Harmen; Mägi, Reedik; Kriebel, Jennifer; Müller-Nurasyid, Martina; Perola, Markus; Nieminen, Markku; Lokki, Marja-Liisa; Kähönen, Mika; Viikari, Jorma S; Geller, Frank; Lahti, Jari; Palotie, Aarno; Koponen, Päivikki; Lundqvist, Annamari; Rissanen, Harri; Bottinger, Erwin P; Afaq, Saima; Wojczynski, Mary K; Lenzini, Petra; Nolte, Ilja M; Sparsø, Thomas; Schupf, Nicole; Christensen, Kaare; Perls, Thomas T; Newman, Anne B; Werge, Thomas; Snieder, Harold; Spector, Timothy D; Chambers, John C; Koskinen, Seppo; Melbye, Mads; Raitakari, Olli T; Lehtimäki, Terho; Tobin, Martin D; Wain, Louise V; Sinisalo, Juha; Peters, Annette; Meitinger, Thomas; Martin, Nicholas G; Wray, Naomi R; Montgomery, Grant W; Medland, Sarah E; Swertz, Morris A; Vartiainen, Erkki; Borodulin, Katja; Männistö, Satu; Murray, Anna; Bochud, Murielle; Jacquemont, Sébastien; Rivadeneira, Fernando; Hansen, Thomas F; Oldehinkel, Albertine J; Mangino, Massimo; Province, Michael A; Deloukas, Panos; Kooner, Jaspal S; Freathy, Rachel M; Pennell, Craig; Feenstra, Bjarke; Strachan, David P; Lettre, Guillaume; Hirschhorn, Joel; Cusi, Daniele; Heid, Iris M; Hayward, Caroline; Männik, Katrin; Beckmann, Jacques S; Loos, Ruth J F; Nyholt, Dale R; Metspalu, Andres; Eriksson, Johan G; Weedon, Michael N; Salomaa, Veikko; Franke, Lude; Reymond, Alexandre; Frayling, Timothy M; Kutalik, Zoltán

    2017-01-01

    There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at

  3. Evolutionary Meta-Analysis of Association Studies Reveals Ancient Constraints Affecting Disease Marker Discovery

    Science.gov (United States)

    Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448

  4. Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height

    NARCIS (Netherlands)

    Lanktree, Matthew B.; Guo, Yiran; Murtaza, Muhammed; Glessner, Joseph T.; Bailey, Swneke D.; Onland-Moret, N. Charlotte; Lettre, Guillaume; Ongen, Halit; Rajagopalan, Ramakrishnan; Johnson, Toby; Shen, Haiqing; Nelson, Christopher P.; Klopp, Norman; Baumert, Jens; Padmanabhan, Sandosh; Pankratz, Nathan; Pankow, James S.; Shah, Sonia; Taylor, Kira; Barnard, John; Peters, Bas J.; Maloney, Cliona M.; Lobmeyer, Maximilian T.; Stanton, Alice; Zafarmand, M. Hadi; Romaine, Simon P. R.; Mehta, Amar; van Iperen, Erik P. A.; Gong, Yan; Price, Tom S.; Smith, Erin N.; Kim, Cecilia E.; Li, Yun R.; Asselbergs, Folkert W.; Atwood, Larry D.; Bailey, Kristian M.; Bhatt, Deepak; Bauer, Florianne; Behr, Elijah R.; Bhangale, Tushar; Boer, Jolanda M. A.; Boehm, Bernhard O.; Bradfield, Jonathan P.; Brown, Morris; Braund, Peter S.; Burton, Paul R.; Carty, Cara; Chandrupatla, Hareesh R.; Chen, Wei; Connell, John; Dalgeorgou, Chrysoula; de Boer, Anthonius; Drenos, Fotios; Elbers, Clara C.; Fang, James C.; Fox, Caroline S.; Frackelton, Edward C.; Fuchs, Barry; Furlong, Clement E.; Gibson, Quince; Gieger, Christian; Goel, Anuj; Grobbee, Diederik E.; Hastie, Claire; Howard, Philip J.; Huang, Guan-Hua; Johnson, W. Craig; Li, Qing; Kleber, Marcus E.; Klein, Barbara E. K.; Klein, Ronald; Kooperberg, Charles; Ky, Bonnie; LaCroix, Andrea; Lanken, Paul; Lathrop, Mark; Li, Mingyao; Marshall, Vanessa; Melander, Olle; Mentch, Frank D.; Meyer, Nuala J.; Monda, Keri L.; Montpetit, Alexandre; Murugesan, Gurunathan; Nakayama, Karen; Nondahl, Dave; Onipinla, Abiodun; Rafelt, Suzanne; Newhouse, Stephen J.; Otieno, F. George; Patel, Sanjey R.; Putt, Mary E.; Rodriguez, Santiago; Safa, Radwan N.; Sawyer, Douglas B.; Schreiner, Pamela J.; Simpson, Claire; Sivapalaratnam, Suthesh; Srinivasan, Sathanur R.; Suver, Christine; Swergold, Gary; Sweitzer, Nancy K.; Thomas, Kelly A.; Thorand, Barbara; Timpson, Nicholas J.; Tischfield, Sam; Tobin, Martin; Tomaszewski, Maciej; Tomaszweski, Maciej; Verschuren, W. M. Monique; Wallace, Chris; Winkelmann, Bernhard; Zhang, Haitao; Zheng, Dongling; Zhang, Li; Zmuda, Joseph M.; Clarke, Robert; Balmforth, Anthony J.; Danesh, John; Day, Ian N.; Schork, Nicholas J.; de Bakker, Paul I. W.; Delles, Christian; Duggan, David; Hingorani, Aroon D.; Hirschhorn, Joel N.; Hofker, Marten H.; Humphries, Steve E.; Kivimaki, Mika; Lawlor, Debbie A.; Kottke-Marchant, Kandice; Mega, Jessica L.; Mitchell, Braxton D.; Morrow, David A.; Palmen, Jutta; Redline, Susan; Shields, Denis C.; Shuldiner, Alan R.; Sleiman, Patrick M.; Smith, George Davey; Farrall, Martin; Jamshidi, Yalda; Christiani, David C.; Casas, Juan P.; Hall, Alistair S.; Doevendans, Pieter A.; Christie, Jason D.; Berenson, Gerald S.; Murray, Sarah S.; Illig, Thomas; Dorn, Gerald W.; Cappola, Thomas P.; Boerwinkle, Eric; Sever, Peter; Rader, Daniel J.; Reilly, Muredach P.; Caulfield, Mark; Talmud, Philippa J.; Topol, Eric; Engert, James C.; Wang, Kai; Dominiczak, Anna; Hamsten, Anders; Curtis, Sean P.; Silverstein, Roy L.; Lange, Leslie A.; Sabatine, Marc S.; Trip, Mieke; Saleheen, Danish; Peden, John F.; Cruickshanks, Karen J.; März, Winfried; O'Connell, Jeffrey R.; Klungel, Olaf H.; Wijmenga, Cisca; Maitland-van der Zee, Anke Hilse; Schadt, Eric E.; Johnson, Julie A.; Jarvik, Gail P.; Papanicolaou, George J.; Grant, Struan F. A.; Munroe, Patricia B.; North, Kari E.; Samani, Nilesh J.; Koenig, Wolfgang; Gaunt, Tom R.; Anand, Sonia S.; van der Schouw, Yvonne T.; Soranzo, Nicole; FitzGerald, Garret A.; Reiner, Alex; Hegele, Robert A.; Hakonarson, Hakon; Keating, Brendan J.

    2011-01-01

    Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and

  5. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  6. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas.

    Directory of Open Access Journals (Sweden)

    Priscila Daniele Ramos Cirilo

    Full Text Available Uterine Leiomyomas (ULs are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs. Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs.We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC and gene expression microarrays (SAM. The CONEXIC algorithm was applied to integrate the data.The integrated analysis identified the top 30 significant genes (P<0.01, which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively and IGFBP5 (P = 0.0002 and P = 0.006, respectively were up-regulated in the tumours when compared with the adjacent normal myometrium.The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs.

  7. CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    DEFF Research Database (Denmark)

    Macé, Aurélien; Tuke, Marcus A; Deelen, Patrick

    2017-01-01

    There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations......-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.......)). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m(2) for each Mb of total deletion burden (P = 2.5 × 10(-10), 6.0 × 10(-5), and 2.9 × 10(-3)). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor...

  8. Proteomic analysis reveals changes in carbohydrate and protein metabolism associated with broiler breast myopathy.

    Science.gov (United States)

    Kuttappan, Vivek A; Bottje, Walter; Ramnathan, Ranjith; Hartson, Steven D; Coon, Craig N; Kong, Byung-Whi; Owens, Casey M; Vazquez-Añon, Mercedes; Hargis, Billy M

    2017-08-01

    White Striping (WS) and Woody Breast (WB) are 2 conditions that adversely affect consumer acceptance as well as quality of poultry meat and meat products. Both WS and WB are characterized with degenerative myopathic changes. Previous studies showed that WS and WB in broiler fillets could result in higher ultimate pH, increased drip loss, and decreased marinade uptake. The main objective of the present study was to compare the proteomic profiles of muscle tissue (n = 5 per group) with either NORM (no or few minor myopathic lesions) or SEV (with severe myopathic changes). Proteins were extracted from these samples and analyzed using a hybrid LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). Over 800 proteins were identified in the muscle samples, among which 141 demonstrated differential (P < 0.05) expression between NORM and SEV. The set of differentially (P < 0.05) expressed proteins was uploaded to Ingenuity Pathway Analysis® (IPA) software to determine the associated biological networks and pathways. The IPA analysis showed that eukaryotic initiation factor-2 (eIF-2) signaling, mechanistic target of rapamycin (mTOR) signaling, as well as regulation of eIF4 and p70S6K signaling were the major canonical pathways up-regulated (P < 0.05) in SEV muscle compared to NORM. The up-regulation of these pathways indicate an increase in protein synthesis which could be part of the rapid growth as well as cellular stress associated with ongoing muscle degeneration and the attempt to repair tissue damage in SEV birds. Furthermore, IPA analysis revealed that glycolysis and gluconeogenesis were the major down-regulated (P < 0.05) canonical pathways in SEV with respect to NORM muscle. Down-regulation of these pathways could be the reason for higher ultimate pH seen in SEV muscle samples indicating reduced glycolytic potential. In conclusion, comparison of proteomic profiles of NORM and SEV muscle samples showed differences in protein profile which explains some of the observed

  9. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    Science.gov (United States)

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  10. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  11. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    Directory of Open Access Journals (Sweden)

    Candida Vannini

    Full Text Available Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  12. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis

    Science.gov (United States)

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  13. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

    Science.gov (United States)

    Bertram, Lars; Lange, Christoph; Mullin, Kristina; Parkinson, Michele; Hsiao, Monica; Hogan, Meghan F; Schjeide, Brit M M; Hooli, Basavaraj; Divito, Jason; Ionita, Iuliana; Jiang, Hongyu; Laird, Nan; Moscarillo, Thomas; Ohlsen, Kari L; Elliott, Kathryn; Wang, Xin; Hu-Lince, Diane; Ryder, Marie; Murphy, Amy; Wagner, Steven L; Blacker, Deborah; Becker, K David; Tanzi, Rudolph E

    2008-11-01

    Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.

  14. SNP and haplotype analysis reveal IGF2 variants associated with growth traits in Chinese Qinchuan cattle.

    Science.gov (United States)

    Huang, Yong-Zhen; Zhan, Zhao-Yang; Li, Xin-Yi; Wu, Sheng-Ru; Sun, Yu-Jia; Xue, Jing; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Jia, Yu-Tang; Chen, Hong

    2014-02-01

    Insulin-like growth factor 2 (IGF2) is a potent cell growth and differentiation factor and is implicated in mammals' growth and development. The objective of this study was to evaluate the effects of the mutations in the bovine IGF2 with growth traits in Chinese Qinchuan cattle. Four single nucleotide polymorphisms (SNPs) were detected of the bovine IGF2 by DNA pool sequencing and forced polymerase chain reaction-restriction fragment length polymorphism (forced PCR-RFLP) methods. We also investigated haplotype structure and linkage disequilibrium (LD) coefficients for four SNPs in 817 individuals representing two main cattle breeds from China. The result of haplotype analysis showed eight different haplotypes and 27 combined genotypes within the study population. The statistical analyses indicated that the four SNPs, combined genotypes and haplotypes are associated with the withers height, body length, chest breadth, chest depth and body weight in Qinchuan cattle population (P growth traits; the heterozygote diplotype was associated with higher growth traits compared to wild-type homozygote. Our results provide evidence that polymorphisms in the IGF2 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.

  15. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.

  16. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  17. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population.

    Directory of Open Access Journals (Sweden)

    Kejun Wang

    Full Text Available In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1, seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3, and one for average daily gain (COL27A1. Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.

  18. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  19. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.

    Science.gov (United States)

    Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara

    2016-11-01

    The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis.

    Science.gov (United States)

    Noyes, Noelle; Cho, Kyu-Chul; Ravel, Jacques; Forney, Larry J; Abdo, Zaid

    2018-01-01

    The vaginal microbiome plays an influential role in several disease states in reproductive age women, including bacterial vaginosis (BV). While demographic characteristics are associated with differences in vaginal microbiome community structure, little is known about the influence of sexual and hygiene habits. Furthermore, associations between the vaginal microbiome and risk symptoms of bacterial vaginosis have not been fully elucidated. Using Bayesian network (BN) analysis of 16S rRNA gene sequence results, demographic and extensive questionnaire data, we describe both novel and previously documented associations between habits of women and their vaginal microbiome. The BN analysis approach shows promise in uncovering complex associations between disparate data types. Our findings based on this approach support published associations between specific microbiome members (e.g., Eggerthella, Gardnerella, Dialister, Sneathia and Ruminococcaceae), the Nugent score (a BV diagnostic) and vaginal pH (a risk symptom of BV). Additionally, we found that several microbiome members were directly connected to other risk symptoms of BV (such as vaginal discharge, odor, itch, irritation, and yeast infection) including L. jensenii, Corynebacteria, and Proteobacteria. No direct connections were found between the Nugent Score and risk symptoms of BV other than pH, indicating that the Nugent Score may not be the most useful criteria for assessment of clinical BV. We also found that demographics (i.e., age, ethnicity, previous pregnancy) were associated with the presence/absence of specific vaginal microbes. The resulting BN revealed several as-yet undocumented associations between birth control usage, menstrual hygiene practices and specific microbiome members. Many of these complex relationships were not identified using common analytical methods, i.e., ordination and PERMANOVA. While these associations require confirmatory follow-up study, our findings strongly suggest that future

  1. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis.

    Directory of Open Access Journals (Sweden)

    Noelle Noyes

    Full Text Available The vaginal microbiome plays an influential role in several disease states in reproductive age women, including bacterial vaginosis (BV. While demographic characteristics are associated with differences in vaginal microbiome community structure, little is known about the influence of sexual and hygiene habits. Furthermore, associations between the vaginal microbiome and risk symptoms of bacterial vaginosis have not been fully elucidated. Using Bayesian network (BN analysis of 16S rRNA gene sequence results, demographic and extensive questionnaire data, we describe both novel and previously documented associations between habits of women and their vaginal microbiome. The BN analysis approach shows promise in uncovering complex associations between disparate data types. Our findings based on this approach support published associations between specific microbiome members (e.g., Eggerthella, Gardnerella, Dialister, Sneathia and Ruminococcaceae, the Nugent score (a BV diagnostic and vaginal pH (a risk symptom of BV. Additionally, we found that several microbiome members were directly connected to other risk symptoms of BV (such as vaginal discharge, odor, itch, irritation, and yeast infection including L. jensenii, Corynebacteria, and Proteobacteria. No direct connections were found between the Nugent Score and risk symptoms of BV other than pH, indicating that the Nugent Score may not be the most useful criteria for assessment of clinical BV. We also found that demographics (i.e., age, ethnicity, previous pregnancy were associated with the presence/absence of specific vaginal microbes. The resulting BN revealed several as-yet undocumented associations between birth control usage, menstrual hygiene practices and specific microbiome members. Many of these complex relationships were not identified using common analytical methods, i.e., ordination and PERMANOVA. While these associations require confirmatory follow-up study, our findings strongly

  2. Associations between sexual habits, menstrual hygiene practices, demographics and the vaginal microbiome as revealed by Bayesian network analysis

    Science.gov (United States)

    Noyes, Noelle; Cho, Kyu-Chul; Ravel, Jacques; Forney, Larry J.

    2018-01-01

    The vaginal microbiome plays an influential role in several disease states in reproductive age women, including bacterial vaginosis (BV). While demographic characteristics are associated with differences in vaginal microbiome community structure, little is known about the influence of sexual and hygiene habits. Furthermore, associations between the vaginal microbiome and risk symptoms of bacterial vaginosis have not been fully elucidated. Using Bayesian network (BN) analysis of 16S rRNA gene sequence results, demographic and extensive questionnaire data, we describe both novel and previously documented associations between habits of women and their vaginal microbiome. The BN analysis approach shows promise in uncovering complex associations between disparate data types. Our findings based on this approach support published associations between specific microbiome members (e.g., Eggerthella, Gardnerella, Dialister, Sneathia and Ruminococcaceae), the Nugent score (a BV diagnostic) and vaginal pH (a risk symptom of BV). Additionally, we found that several microbiome members were directly connected to other risk symptoms of BV (such as vaginal discharge, odor, itch, irritation, and yeast infection) including L. jensenii, Corynebacteria, and Proteobacteria. No direct connections were found between the Nugent Score and risk symptoms of BV other than pH, indicating that the Nugent Score may not be the most useful criteria for assessment of clinical BV. We also found that demographics (i.e., age, ethnicity, previous pregnancy) were associated with the presence/absence of specific vaginal microbes. The resulting BN revealed several as-yet undocumented associations between birth control usage, menstrual hygiene practices and specific microbiome members. Many of these complex relationships were not identified using common analytical methods, i.e., ordination and PERMANOVA. While these associations require confirmatory follow-up study, our findings strongly suggest that future

  3. Meta-analysis reveals an association of STAT4 polymorphisms with systemic autoimmune disorders and anti-dsDNA antibody.

    Science.gov (United States)

    Zheng, Junfeng; Yin, Junping; Huang, Renliang; Petersen, Frank; Yu, Xinhua

    2013-08-01

    Signal transducer and activator of transcription 4 (STAT4) has been recently identified as a susceptibility gene for multiple autoimmune diseases. Here we performed a comprehensive analysis of the association between STAT4 and several different autoimmune disorders to identify potential common inflammatory principles behind this association. Our meta-analysis revealed that the STAT4 rs7574865 polymorphism is associated with four autoimmune diseases with systemic pathology, including systemic lupus erythematosus (OR = 1.52; 95% CI = 1.48 - 1.56, Prs7574865 polymorphism is associated with the presence of autoantibodies with systemic reactivity (anti-ds-DNA antibodies) in SLE patients (OR = 1.37; 95% CI = 1.21 - 1.56, P = 1.12 × 10(-6)). However, no such specific association was seen in RA with regard to the presence of non-systemically reacting antibodies, including rheumatoid factor and anti-cyclic citrullinated peptide antibodies. Taken together, these results suggest that STAT4 polymorphisms are associated with autoimmune diseases which are characterized by a systemic pathology and anti-dsDNA antibody. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  4. A global analysis of bird plumage patterns reveals no association between habitat and camouflage

    Directory of Open Access Journals (Sweden)

    Marius Somveille

    2016-11-01

    Full Text Available Evidence suggests that animal patterns (motifs function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types—mottled (irregular, scales, bars and spots (regular—and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species’ geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world’s birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world’s eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  5. A global analysis of bird plumage patterns reveals no association between habitat and camouflage.

    Science.gov (United States)

    Somveille, Marius; Marshall, Kate L A; Gluckman, Thanh-Lan

    2016-01-01

    Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types-mottled (irregular), scales, bars and spots (regular)-and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species' geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world's birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world's eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  6. NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis.

    Science.gov (United States)

    Cui, Jiajia; Liu, Yuetao; Hu, Yinghuan; Tong, Jiayu; Li, Aiping; Qu, Tingli; Qin, Xuemei; Du, Guanhua

    2017-01-05

    Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, 1 H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis.

    Science.gov (United States)

    Zywicki, Marek; Bakowska-Zywicka, Kamilla; Polacek, Norbert

    2012-05-01

    The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manner.

  8. Revealing proteins associated with symbiotic germination of Gastrodia elata by proteomic analysis.

    Science.gov (United States)

    Zeng, Xu; Li, Yuanyuan; Ling, Hong; Chen, Juan; Guo, Shunxing

    2018-03-06

    Gastrodia elata, a mycoheterotrophic orchid, is a well-known medicinal herb. In nature, the seed germination of G. elata requires proper fungal association, because of the absence of endosperm. To germinate successfully, G. elata obtains nutrition from mycorrhizal fungi such as Mycena. However, Mycena is not able to supply nutrition for the further development and enlargement of protocorms into tubers, flowering and fruit setting of G. elata. To date, current genomic studies on this topic are limited. Here we used the proteomic approach to explore changes in G. elata at different stages of symbiotic germination. Using mass spectrometry, 3787 unique proteins were identified, of which 599 were classified as differentially accumulated proteins. Most of these differentially accumulated proteins were putatively involved in energy metabolism, plant defense, molecular signaling, and secondary metabolism. Among them, the defense genes (e.g., pathogenesis-/wound-related proteins, peroxidases, and serine/threonine-protein kinase) were highly expressed in late-stage protocorms, suggesting that fungal colonization triggered the significant defense responses of G. elata. The present study indicated the metabolic change and defensive reaction could disrupt the balance between Mycena and G. elata during mycorrhizal symbiotic germination.

  9. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  10. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  11. Mass Cytometry and Topological Data Analysis Reveal Immune Parameters Associated with Complications after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Tadepally Lakshmikanth

    2017-08-01

    Full Text Available Human immune systems are variable, and immune responses are often unpredictable. Systems-level analyses offer increased power to sort patients on the basis of coordinated changes across immune cells and proteins. Allogeneic stem cell transplantation is a well-established form of immunotherapy whereby a donor immune system induces a graft-versus-leukemia response. This fails when the donor immune system regenerates improperly, leaving the patient susceptible to infections and leukemia relapse. We present a systems-level analysis by mass cytometry and serum profiling in 26 patients sampled 1, 2, 3, 6, and 12 months after transplantation. Using a combination of machine learning and topological data analyses, we show that global immune signatures associated with clinical outcome can be revealed, even when patients are few and heterogeneous. This high-resolution systems immune monitoring approach holds the potential for improving the development and evaluation of immunotherapies in the future.

  12. Meta-analysis reveals an association between signal transducer and activator of transcription-4 polymorphism and hepatocellular carcinoma risk.

    Science.gov (United States)

    Zhang, Li; Xu, Kuihua; Liu, Chuanmiao; Chen, Jiasheng

    2017-03-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Signal transducer and activator of transcription (STAT) proteins play a multitude of important functions in liver pathophysiology. Recent studies have indicated associations of rs7574865 single nucleotide polymorphism (SNP) in the STAT4 gene with various autoimmune diseases. The association between STAT4 polymorphism and the risk of HCC has been analyzed in several studies, but results remain inconsistent. This study used a meta-analysis approach to comprehensively investigate the correlation between STAT4 polymorphism and HCC risk based on previously published reports. Studies were searched from the databases of PubMed, EMBase, Web of Science, and the Chinese National Knowledge Infrastructure up to 31 December 2015. The meta-analysis was carried out based on the statement of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Eight published studies, consisting of 7503 HCC patients (cases) and 13 831 individuals without HCC (controls), were included in the present study. Meta-analysis of the included studies revealed that STAT4 rs7574865 polymorphism contributed to the risk of HCC under all four genetic models, consisting of the allelic model (G vs. T: odds ratio [OR], 1.25; 95% confidence interval [CI], 1.19-1.30), the dominant effect model (GG + GT vs. TT: OR, 1.52; 95% CI, 1.26-1.84), the recessive effect model (GG vs. GT + TT: OR, 1.35; 95% CI, 1.21-1.50), and the co-dominant effect model (GG vs.. TT: OR, 1.72; 95% CI, 1.42-2.10) comparisons. No publication bias was indicated from either visualization of the funnel plot or Egger's test. A significantly increased risk of HCC associated with the rs7574865 G was found. The rs7574865 polymorphism might be used as one risk factor for HCC. © 2016 The Japan Society of Hepatology.

  13. Meta-analysis reveals association between most common class II haplotype in full-heritage Native Americans and rheumatoid arthritis.

    Science.gov (United States)

    Williams, R C; Jacobsson, L T; Knowler, W C; del Puente, A; Kostyu, D; McAuley, J E; Bennett, P H; Pettitt, D J

    1995-01-01

    The association of RA with the alleles at the HLA system was tested among Pima and Tohono O'odham Indians (Pimans) of the Gila River Indian Community of Arizona. Serologic class I (HLA-A, -B, and -C) alleles were typed in 51 individuals with RA and in 302 without RA. Serologic class II (HLA-DR, DQ; DR52 DR53) alleles were typed in a subset of 47 with RA and 147 without RA. Molecular subtypes of DR3X6, DRB1*1402, and *1406 were determined in 29 individuals, 16 with RA and 13 without RA. Among the cases with RA, 46 of 47 had the serologic antigen HLA-DR3X6, as did 140 of 147 of those without the disease. However, this association was not statistically significant because of the high prevalence of the antigen in the controls. Data from Pimans were analyzed with similar results from the Tlingit and Yakima Indians. A meta-analysis employing the Mantel-Haenszel procedure, stratified by tribe, revealed a statistically significant association between the most common haplotype, DRB1*1402 DQA1*0501 DQB1*0301 DRB3*0101, and RA (summary odds ratio = 2.63, 95% confidence interval = 1.08, 6.46). There was also a statistically significant difference in the genotype distributions of one class I locus, HLA-C, between those with and without RA (chi 2 = 12.4, 5 df; p = 0.03). It is concluded that the association with the most common class II haplotype in full-heritage Native Americans might help explain their high prevalence of RA.

  14. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis.

    Science.gov (United States)

    Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong

    2017-12-15

    -receptor interaction" were remarked significant (adjusted pfunctional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis. Copyright © 2017. Published by Elsevier B.V.

  15. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    Science.gov (United States)

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  16. Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses

    DEFF Research Database (Denmark)

    Abdelbary, Mohamed M. H.; Wittenberg, Anne; Cuny, Christiane

    2014-01-01

    -allelic polymorphisms, and phylogenetic analyses revealed that an epidemic sub-clone within CC398 (dubbed 'clade (C)') has spread within and between equine hospitals, where it causes nosocomial infections in horses and colonises the personnel. While clade (C) was strongly associated with S. aureus from horses...

  17. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  18. Histo-chemical and biochemical analysis reveals association of er1 mediated powdery mildew resistance and redox balance in pea.

    Science.gov (United States)

    Mohapatra, Chinmayee; Chand, Ramesh; Navathe, Sudhir; Sharma, Sandeep

    2016-09-01

    Powdery mildew caused by Erysiphe pisi is one of the important diseases responsible for heavy yield losses in pea crop worldwide. The most effective method of controlling the disease is the use of resistant varieties. The resistance to powdery mildew in pea is recessive and governed by a single gene er1. The objective of present study is to investigate if er1 mediated powdery mildew resistance is associated with changes in the redox status of the pea plant. 16 pea genotypes were screened for powdery mildew resistance in field condition for two years and, also, analyzed for the presence/absence of er1 gene. Histochemical analysis with DAB and NBT staining indicates accumulation of reactive oxygen species (ROS) in surrounding area of powdery mildew infection which was higher in susceptible genotypes as compared to resistant genotypes. A biochemical study revealed that the activity of superoxide dismutase (SOD) and catalase, enzymes involved in scavenging ROS, was increased in, both, resistant and susceptible genotypes after powdery mildew infection. However, both enzymes level was always higher in resistant than susceptible genotypes throughout time course of infection. Moreover, irrespective of any treatment, the total phenol (TP) and malondialdehyde (MDA) content was significantly high and low in resistant genotypes, respectively. The powdery mildew infection elevated the MDA content but decreased the total phenol in pea genotypes. Statistical analysis showed a strong positive correlation between AUDPC and MDA; however, a negative correlation was observed between AUDPC and SOD, CAT and TP. Heritability of antioxidant was also high. The study identified few novel genotypes resistant to powdery mildew infection that carried the er1 gene and provided further clue that er1 mediated defense response utilizes antioxidant machinery to confer powdery mildew resistance in pea. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Polyphyletic Nature of Salmonella enterica Serotype Derby and Lineage-Specific Host-Association Revealed by Genome-Wide Analysis

    Science.gov (United States)

    Sévellec, Yann; Vignaud, Marie-Léone; Granier, Sophie A.; Lailler, Renaud; Feurer, Carole; Le Hello, Simon; Mistou, Michel-Yves; Cadel-Six, Sabrina

    2018-01-01

    In France, Salmonella Derby is one of the most prevalent serotypes in pork and poultry meat. Since 2006, it has ranked among the 10 most frequent Salmonella serotypes isolated in humans. In previous publications, Salmonella Derby isolates have been characterized by pulsed field gel electrophoresis (PFGE) and antimicrobial resistance (AMR) profiles revealing the existence of different pulsotypes and AMR phenotypic groups. However, these results suffer from the low discriminatory power of these typing methods. In the present study, we built a collection of 140 strains of S. Derby collected in France from 2014 to 2015 representative of the pork and poultry food sectors. The whole collection was characterized using whole genome sequencing (WGS), providing a significant contribution to the knowledge of this underrepresented serotype, with few genomes available in public databases. The genetic diversity of the S. Derby strains was analyzed by single-nucleotide polymorphism (SNP). We also investigated AMR by both genome and phenotype, the main Salmonella pathogenicity island (SPI) and the fimH gene sequences. Our results show that this S. Derby collection is spread across four different lineages genetically distant by an average of 15k SNPs. These lineages correspond to four multilocus sequence typing (MLST) types (ST39, ST40, ST71, and ST682), which were found to be associated with specific animal hosts: pork and poultry. While the ST71 and ST682 strains are pansusceptible, ST40 isolates are characterized by the multidrug resistant profile STR-SSS-TET. Considering virulence determinants, only ST39 and ST40 present the SPI-23, which has previously been associated with pork enterocyte invasion. Furthermore, the pork ST682 isolates were found to carry mutations in the fimH sequence that could participate in the host tropism of this group. Our phylogenetic analysis demonstrates the polyphyletic nature of the Salmonella serotype Derby and provides an opportunity to identify

  20. Polyphyletic Nature of Salmonella enterica Serotype Derby and Lineage-Specific Host-Association Revealed by Genome-Wide Analysis

    Directory of Open Access Journals (Sweden)

    Yann Sévellec

    2018-05-01

    Full Text Available In France, Salmonella Derby is one of the most prevalent serotypes in pork and poultry meat. Since 2006, it has ranked among the 10 most frequent Salmonella serotypes isolated in humans. In previous publications, Salmonella Derby isolates have been characterized by pulsed field gel electrophoresis (PFGE and antimicrobial resistance (AMR profiles revealing the existence of different pulsotypes and AMR phenotypic groups. However, these results suffer from the low discriminatory power of these typing methods. In the present study, we built a collection of 140 strains of S. Derby collected in France from 2014 to 2015 representative of the pork and poultry food sectors. The whole collection was characterized using whole genome sequencing (WGS, providing a significant contribution to the knowledge of this underrepresented serotype, with few genomes available in public databases. The genetic diversity of the S. Derby strains was analyzed by single-nucleotide polymorphism (SNP. We also investigated AMR by both genome and phenotype, the main Salmonella pathogenicity island (SPI and the fimH gene sequences. Our results show that this S. Derby collection is spread across four different lineages genetically distant by an average of 15k SNPs. These lineages correspond to four multilocus sequence typing (MLST types (ST39, ST40, ST71, and ST682, which were found to be associated with specific animal hosts: pork and poultry. While the ST71 and ST682 strains are pansusceptible, ST40 isolates are characterized by the multidrug resistant profile STR-SSS-TET. Considering virulence determinants, only ST39 and ST40 present the SPI-23, which has previously been associated with pork enterocyte invasion. Furthermore, the pork ST682 isolates were found to carry mutations in the fimH sequence that could participate in the host tropism of this group. Our phylogenetic analysis demonstrates the polyphyletic nature of the Salmonella serotype Derby and provides an opportunity

  1. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment.

    Directory of Open Access Journals (Sweden)

    Torsten Thomas

    Full Text Available BACKGROUND: Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. METHODOLOGY/PRINCIPAL FINDINGS: To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage. Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. CONCLUSIONS/SIGNIFICANCE: The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated

  2. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment.

    Science.gov (United States)

    Thomas, Torsten; Evans, Flavia F; Schleheck, David; Mai-Prochnow, Anne; Burke, Catherine; Penesyan, Anahit; Dalisay, Doralyn S; Stelzer-Braid, Sacha; Saunders, Neil; Johnson, Justin; Ferriera, Steve; Kjelleberg, Staffan; Egan, Suhelen

    2008-09-24

    Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community. We have also identified properties that could mediate interactions

  3. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations.

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D; Eeles, Rosalind A; Chatterjee, Nilanjan; Schumacher, Fredrick R; Schildkraut, Joellen M; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Amin Al Olama, Ali; Berndt, Sonja I; Giovannucci, Edward L; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J; Stevens, Victoria L; Wiklund, Fredrik; Willett, Walter C; Goode, Ellen L; Permuth, Jennifer B; Risch, Harvey A; Reid, Brett M; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T; Chang-Claude, Jenny; Hudson, Thomas J; Kocarnik, Jonathan K; Newcomb, Polly A; Schoen, Robert E; Slattery, Martha L; White, Emily; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-Silva, Isabel; Eliassen, A Heather; Figueroa, Jonine D; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A; Nevanlinna, Heli; Peeters, Petra H; Peto, Julian; Prentice, Ross L; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F; Schmutzler, Rita K; Southey, Melissa C; Tamimi, Rulla; Travis, Ruth C; Turnbull, Clare; Uitterlinden, Andre G; Wang, Zhaoming; Whittemore, Alice S; Yang, Xiaohong R; Zheng, Wei; Buchanan, Daniel D; Casey, Graham; Conti, David V; Edlund, Christopher K; Gallinger, Steven; Haile, Robert W; Jenkins, Mark; Le Marchand, Loïc; Li, Li; Lindor, Noralene M; Schmit, Stephanie L; Thibodeau, Stephen N; Woods, Michael O; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N; Stefansson, Kari; Sulem, Patrick; Chen, Y Ann; Tyrer, Jonathan P; Christiani, David C; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J; Gong, Jian; Peters, Ulrike; Gruber, Stephen B; Amos, Christopher I; Sellers, Thomas A; Easton, Douglas F; Hunter, David J; Haiman, Christopher A; Henderson, Brian E; Hung, Rayjean J

    2016-09-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103-14. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate and colorectal cancer reveals novel pleiotropic associations

    Science.gov (United States)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fred; Schildkraut, Joellen; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Olama, Ali Amin Al; Berndt, Sonja I; Giovannucci, Edward; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter; Goode, Ellen L.; Permuth, Jennifer; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao-Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma’en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-staged approach to conduct genome-wide association studies for lung, ovary, breast, prostate and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. PMID:27197191

  5. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci

    NARCIS (Netherlands)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-01

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and

  6. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Davila Olivas, Nelson H.; Kruijer, Willem; Gort, Gerrit; Wijnen, Cris L.; Loon, van Joop J.A.; Dicke, Marcel

    2017-01-01

    Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two

  7. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    Science.gov (United States)

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-08-26

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  8. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis Revealed by Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Pingping Wang

    2016-08-01

    Full Text Available In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female’s highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  9. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  10. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci.

    Science.gov (United States)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-22

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.

  11. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  12. Quantitative proteomic analysis of human testis reveals system-wide molecular and cellular pathways associated with non-obstructive azoospermia.

    Science.gov (United States)

    Alikhani, Mehdi; Mirzaei, Mehdi; Sabbaghian, Marjan; Parsamatin, Pouria; Karamzadeh, Razieh; Adib, Samane; Sodeifi, Niloofar; Gilani, Mohammad Ali Sadighi; Zabet-Moghaddam, Masoud; Parker, Lindsay; Wu, Yunqi; Gupta, Vivek; Haynes, Paul A; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-06-06

    Male infertility accounts for half of the infertility problems experienced by couples. Azoospermia, having no measurable level of sperm in seminal fluid, is one of the known conditions resulting in male infertility. In order to elucidate the complex molecular mechanisms causing male azoospermia, label-free quantitative shotgun proteomics was carried out on testicular tissue specimens from patients with obstructive azoospermia and non-obstructive azoospermia, including maturation arrest (MA) and Sertoli cell only syndrome (SCOS). The abundance of 520 proteins was significantly changed across three groups of samples. We were able to identify several functional biological pathways enriched in azoospermia samples and confirm selected differentially abundant proteins, using multiple histological methods. The results revealed that cell cycle and proteolysis, and RNA splicing were the most significant biological processes impaired by the substantial suppression of proteins related to the aforementioned categories in SCOS tissues. In the MA patient testes, generation of precursor metabolites and energy as well as oxidation-reduction were the most significantly altered processes. Novel candidate proteins identified in this study include key transcription factors, many of which have not previously been shown to be associated with azoospermia. Our findings can provide substantial insights into the molecular regulation of spermatogenesis and human reproduction. The obtained data showed a drastic suppression of proteins involved in spliceosome, cell cycle and proteasome proteins, as well as energy and metabolic production in Sertoli cell only syndrome testis tissue, and to a lesser extent in maturation arrest samples. Moreover, we identified new transcription factors that are highly down-regulated in SCOS and MA patients, thus helping to understand the molecular complexity of spermatogenesis in male infertility. Our findings provide novel candidate protein targets associated

  13. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.

    Science.gov (United States)

    Sznajder, Anna; Pfeiffer, Daniel; Jendrossek, Dieter

    2015-03-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    Full Text Available The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a "gene-cooperativity" network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD.

  15. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    Science.gov (United States)

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    Science.gov (United States)

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  17. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Sun, Jin; Mok, FloraSy; Liu, Lingli; Qiu, Jianwen; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  18. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-03-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  19. Development of a versatile enrichment analysis tool reveals associations between the maternal brain and mental health disorders, including autism

    Science.gov (United States)

    2013-01-01

    Background A recent study of lateral septum (LS) suggested a large number of autism-related genes with altered expression in the postpartum state. However, formally testing the findings for enrichment of autism-associated genes proved to be problematic with existing software. Many gene-disease association databases have been curated which are not currently incorporated in popular, full-featured enrichment tools, and the use of custom gene lists in these programs can be difficult to perform and interpret. As a simple alternative, we have developed the Modular Single-set Enrichment Test (MSET), a minimal tool that enables one to easily evaluate expression data for enrichment of any conceivable gene list of interest. Results The MSET approach was validated by testing several publicly available expression data sets for expected enrichment in areas of autism, attention deficit hyperactivity disorder (ADHD), and arthritis. Using nine independent, unique autism gene lists extracted from association databases and two recent publications, a striking consensus of enrichment was detected within gene expression changes in LS of postpartum mice. A network of 160 autism-related genes was identified, representing developmental processes such as synaptic plasticity, neuronal morphogenesis, and differentiation. Additionally, maternal LS displayed enrichment for genes associated with bipolar disorder, schizophrenia, ADHD, and depression. Conclusions The transition to motherhood includes the most fundamental social bonding event in mammals and features naturally occurring changes in sociability. Some individuals with autism, schizophrenia, or other mental health disorders exhibit impaired social traits. Genes involved in these deficits may also contribute to elevated sociability in the maternal brain. To date, this is the first study to show a significant, quantitative link between the maternal brain and mental health disorders using large scale gene expression data. Thus, the

  20. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  1. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance.

    Science.gov (United States)

    Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping

    2016-05-01

    Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.

  2. Molecular and morphological analysis reveals five new species of Zygophiala associated with flyspeck signs on plant hosts from China.

    Directory of Open Access Journals (Sweden)

    Liu Gao

    Full Text Available Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes--internal transcribed spacer (ITS, partial translation elongation factor 1-alpha (TEF, β-tubulin (TUB2, and actin (ACT--both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.. Cross inoculation tests provided evidence of host specificity among SBFS species.

  3. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts

    KAUST Repository

    Cziesielski, Maha J.

    2018-04-18

    Corals and their endosymbiotic dinoflagellates of the genus Symbiodinium have a fragile relationship that breaks down under heat stress, an event known as bleaching. However, many coral species have adapted to high temperature environments such as the Red Sea (RS). To investigate mechanisms underlying temperature adaptation in zooxanthellate cnidarians we compared transcriptome- and proteome-wide heat stress response (24 h at 32°C) of three strains of the model organism Aiptasia pallida from regions with differing temperature profiles; North Carolina (CC7), Hawaii (H2) and the RS. Correlations between transcript and protein levels were generally low but inter-strain comparisons highlighted a common core cnidarian response to heat stress, including protein folding and oxidative stress pathways. RS anemones showed the strongest increase in antioxidant gene expression and exhibited significantly lower reactive oxygen species (ROS) levels in hospite However, comparisons of antioxidant gene and protein expression between strains did not show strong differences, indicating similar antioxidant capacity across the strains. Subsequent analysis of ROS production in isolated symbionts confirmed that the observed differences of ROS levels in hospite were symbiont-driven. Our findings indicate that RS anemones do not show increased antioxidant capacity but may have adapted to higher temperatures through association with more thermally tolerant symbionts.

  4. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts

    KAUST Repository

    Cziesielski, Maha J.; Liew, Yi Jin; Cui, Guoxin; Schmidt-Roach, Sebastian; Campana, Sara; Marondedze, Claudius; Aranda, Manuel

    2018-01-01

    Corals and their endosymbiotic dinoflagellates of the genus Symbiodinium have a fragile relationship that breaks down under heat stress, an event known as bleaching. However, many coral species have adapted to high temperature environments such as the Red Sea (RS). To investigate mechanisms underlying temperature adaptation in zooxanthellate cnidarians we compared transcriptome- and proteome-wide heat stress response (24 h at 32°C) of three strains of the model organism Aiptasia pallida from regions with differing temperature profiles; North Carolina (CC7), Hawaii (H2) and the RS. Correlations between transcript and protein levels were generally low but inter-strain comparisons highlighted a common core cnidarian response to heat stress, including protein folding and oxidative stress pathways. RS anemones showed the strongest increase in antioxidant gene expression and exhibited significantly lower reactive oxygen species (ROS) levels in hospite However, comparisons of antioxidant gene and protein expression between strains did not show strong differences, indicating similar antioxidant capacity across the strains. Subsequent analysis of ROS production in isolated symbionts confirmed that the observed differences of ROS levels in hospite were symbiont-driven. Our findings indicate that RS anemones do not show increased antioxidant capacity but may have adapted to higher temperatures through association with more thermally tolerant symbionts.

  5. Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Constancias, Florentin; Liu, Yang

    2017-01-01

    relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F. alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus...

  6. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindstrom, Sara; Brennan, Paul; Bickeboller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Gronberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomaki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; dos-Santos-Silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Timens, Wim

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820

  7. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, G. (Gordon); P. Kraft (Peter); P.D.P. Pharoah (Paul); R. Eeles (Rosalind); Chatterjee, N. (Nilanjan); F.R. Schumacher (Fredrick R); J.M. Schildkraut (Joellen); S. Lindstrom (Stephen); P. Brennan (Paul); H. Bickeböller (Heike); R. Houlston (Richard); M.T. Landi (Maria Teresa); N.E. Caporaso (Neil); Risch, A. (Angela); A.A. Al Olama (Ali Amin); S.I. Berndt (Sonja); Giovannucci, E.L. (Edward L.); H. Grönberg (Henrik); Z. Kote-Jarai; Ma, J. (Jing); K.R. Muir (K.); M.J. Stampfer (Meir J.); Stevens, V.L. (Victoria L.); F. Wiklund (Fredrik); W.C. Willett (Walter C.); E.L. Goode (Ellen); Permuth, J.B. (Jennifer B.); H. Risch (Harvey); Reid, B.M. (Brett M.); Bezieau, S. (Stephane); H. Brenner (Hermann); Chan, A.T. (Andrew T.); J. Chang-Claude (Jenny); T.J. Hudson (Thomas); Kocarnik, J.K. (Jonathan K.); P. Newcomb (Polly); Schoen, R.E. (Robert E.); Slattery, M.L. (Martha L.); White, E. (Emily); M.A. Adank (Muriel); H. Ahsan (Habibul); K. Aittomäki (Kristiina); Baglietto, L. (Laura); Blomquist, C. (Carl); F. Canzian (Federico); K. Czene (Kamila); I. dos Santos Silva (Isabel); Eliassen, A.H. (A. Heather); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); O. Fletcher (Olivia); M. García-Closas (Montserrat); M.M. Gaudet (Mia); Johnson, N. (Nichola); P. Hall (Per); A. Hazra (Aditi); R. Hein (Rebecca); Hofman, A. (Albert); J.L. Hopper (John); A. Irwanto (Astrid); M. Johansson (Mattias); R. Kaaks (Rudolf); M.G. Kibriya (Muhammad); P. Lichtner (Peter); J. Liu (Jianjun); E. Lund (Eiliv); Makalic, E. (Enes); A. Meindl (Alfons); B. Müller-Myhsok (B.); Muranen, T.A. (Taru A.); H. Nevanlinna (Heli); P.H.M. Peeters; J. Peto (Julian); R. Prentice (Ross); N. Rahman (Nazneen); M.-J. Sanchez (Maria-Jose); D.F. Schmidt (Daniel); R.K. Schmutzler (Rita); M.C. Southey (Melissa); Tamimi, R. (Rulla); S.P.L. Travis (Simon); C. Turnbull (Clare); Uitterlinden, A.G. (Andre G.); Z. Wang (Zhaoming); A.S. Whittemore (Alice); X.R. Yang (Xiaohong); W. Zheng (Wei); D. Buchanan (Daniel); G. Casey (Graham); G. Conti (Giario); C.K. Edlund (Christopher); S. Gallinger (Steve); R. Haile (Robert); M. Jenkins (Mark); Marchand, L. (Loïcle); Li, L. (Li); N.M. Lindor (Noralane); Schmit, S.L. (Stephanie L.); S.N. Thibodeau (Stephen); M.O. Woods (Michael); T. Rafnar (Thorunn); J. Gudmundsson (Julius); S.N. Stacey (Simon); Stefansson, K. (Kari); P. Sulem (Patrick); Chen, Y.A. (Y. Ann); J.P. Tyrer (Jonathan); Christiani, D.C. (David C.); Wei, Y. (Yongyue); H. Shen (Hongbing); Z. Hu (Zhibin); X.-O. Shu (Xiao-Ou); Shiraishi, K. (Kouya); A. Takahashi (Atsushi); Y. Bossé (Yohan); M. Obeidat (Ma'en); D.C. Nickle (David); W. Timens (Wim); M. Freedman (Matthew); Li, Q. (Qiyuan); D. Seminara (Daniela); S.J. Chanock (Stephen); Gong, J. (Jian); U. Peters (Ulrike); S.B. Gruber (Stephen); Amos, C.I. (Christopher I.); T.A. Sellers (Thomas A.); D.F. Easton (Douglas F.); D. Hunter (David); C.A. Haiman (Christopher A.); B.E. Henderson (Brian); R.J. Hung (Rayjean)

    2016-01-01

    textabstractIdentifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851

  8. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations

    NARCIS (Netherlands)

    Fehringer, Gordon; Kraft, Peter; Pharoah, Paul D.; Eeles, Rosalind A.; Chatterjee, Nilanjan; Schumacher, Fredrick R.; Schildkraut, Joellen M.; Lindström, Sara; Brennan, Paul; Bickeböller, Heike; Houlston, Richard S.; Landi, Maria Teresa; Caporaso, Neil; Risch, Angela; Al Olama, Ali Amin; Berndt, Sonja I.; Giovannucci, Edward L.; Grönberg, Henrik; Kote-Jarai, Zsofia; Ma, Jing; Muir, Kenneth; Stampfer, Meir J.; Stevens, Victoria L.; Wiklund, Fredrik; Willett, Walter C.; Goode, Ellen L.; Permuth, Jennifer B.; Risch, Harvey A.; Reid, Brett M.; Bezieau, Stephane; Brenner, Hermann; Chan, Andrew T.; Chang-Claude, Jenny; Hudson, Thomas J.; Kocarnik, Jonathan K.; Newcomb, Polly A.; Schoen, Robert E.; Slattery, Martha L.; White, Emily; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Baglietto, Laura; Blomquist, Carl; Canzian, Federico; Czene, Kamila; Dos-Santos-silva, Isabel; Eliassen, A. Heather; Figueroa, Jonine D.; Flesch-Janys, Dieter; Fletcher, Olivia; Garcia-Closas, Montserrat; Gaudet, Mia M.; Johnson, Nichola; Hall, Per; Hazra, Aditi; Hein, Rebecca; Hofman, Albert; Hopper, John L.; Irwanto, Astrid; Johansson, Mattias; Kaaks, Rudolf; Kibriya, Muhammad G.; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Meindl, Alfons; Müller-Myhsok, Bertram; Muranen, Taru A.; Nevanlinna, Heli; Peeters, Petra H.; Peto, Julian; Prentice, Ross L.; Rahman, Nazneen; Sanchez, Maria Jose; Schmidt, Daniel F.; Schmutzler, Rita K.; Southey, Melissa C.; Tamimi, Rulla; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Wang, Zhaoming; Whittemore, Alice S.; Yang, Xiaohong R.; Zheng, Wei; Buchanan, Daniel D.; Casey, Graham; Conti, David V.; Edlund, Christopher K.; Gallinger, Steven; Haile, Robert W.; Jenkins, Mark; Marchand, Loïcle; Li, Li; Lindor, Noralene M.; Schmit, Stephanie L.; Thibodeau, Stephen N.; Woods, Michael O.; Rafnar, Thorunn; Gudmundsson, Julius; Stacey, Simon N.; Stefansson, Kari; Sulem, Patrick; Chen, Y. Ann; Tyrer, Jonathan P.; Christiani, David C.; Wei, Yongyue; Shen, Hongbing; Hu, Zhibin; Shu, Xiao Ou; Shiraishi, Kouya; Takahashi, Atsushi; Bossé, Yohan; Obeidat, Ma'en; Nickle, David; Timens, Wim; Freedman, Matthew L.; Li, Qiyuan; Seminara, Daniela; Chanock, Stephen J.; Gong, Jian; Peters, Ulrike; Gruber, Stephen B.; Amos, Christopher I.; Sellers, Thomas A.; Easton, Douglas F.; Hunter, David J.; Haiman, Christopher A.; Henderson, Brian E.; Hung, Rayjean J.

    2016-01-01

    Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820

  9. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjögren's Syndrome According to Ancestry

    DEFF Research Database (Denmark)

    Taylor, Kimberly E; Wong, Quenna; Levine, David M

    2017-01-01

    common protocol-directed methods. The aim of this study was to examine the genetic etiology of Sjögren's syndrome (SS) across ancestry and disease subsets. METHODS: We performed genome-wide association study analyses using SICCA subjects and external controls obtained from dbGaP data sets, one using all......OBJECTIVE: The Sjögren's International Collaborative Clinical Alliance (SICCA) is an international data registry and biorepository derived from a multisite observational study of participants in whom genotyping was performed on the Omni2.5M platform and who had undergone deep phenotyping using...... subphenotype distributions differ by ethnicity, and whether this contributes to the heterogeneity of genetic associations. RESULTS: We observed significant associations in established regions of the major histocompatibility complex (MHC), IRF5, and STAT4 (P = 3 × 10(-42) , P = 3 × 10(-14) , and P = 9 × 10...

  10. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjögren's Syndrome According to Ancestry.

    Science.gov (United States)

    Taylor, Kimberly E; Wong, Quenna; Levine, David M; McHugh, Caitlin; Laurie, Cathy; Doheny, Kimberly; Lam, Mi Y; Baer, Alan N; Challacombe, Stephen; Lanfranchi, Hector; Schiødt, Morten; Srinivasan, M; Umehara, Hisanori; Vivino, Frederick B; Zhao, Yan; Shiboski, Stephen C; Daniels, Troy E; Greenspan, John S; Shiboski, Caroline H; Criswell, Lindsey A

    2017-06-01

    The Sjögren's International Collaborative Clinical Alliance (SICCA) is an international data registry and biorepository derived from a multisite observational study of participants in whom genotyping was performed on the Omni2.5M platform and who had undergone deep phenotyping using common protocol-directed methods. The aim of this study was to examine the genetic etiology of Sjögren's syndrome (SS) across ancestry and disease subsets. We performed genome-wide association study analyses using SICCA subjects and external controls obtained from dbGaP data sets, one using all participants (1,405 cases, 1,622 SICCA controls, and 3,125 external controls), one using European participants (585, 966, and 580, respectively), and one using Asian participants (460, 224, and 901, respectively) with ancestry adjustments via principal components analyses. We also investigated whether subphenotype distributions differ by ethnicity, and whether this contributes to the heterogeneity of genetic associations. We observed significant associations in established regions of the major histocompatibility complex (MHC), IRF5, and STAT4 (P = 3 × 10 -42 , P = 3 × 10 -14 , and P = 9 × 10 -10 , respectively), and several novel suggestive regions (those with 2 or more associations at P ancestry (P = 4 × 10 -15 and P = 4 × 10 -5 , respectively), but that subphenotype differences did not explain most of the ancestry differences in genetic associations. Genetic associations with SS differ markedly according to ancestry; however, this is not explained by differences in subphenotypes. © 2017, The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  11. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes

    DEFF Research Database (Denmark)

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene

    2018-01-01

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel...... available data using novel genetic resources and analytical approaches....... associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly...

  12. Meta-analysis of Gene Expression in the Mouse Liver Reveals Biomarkers Associated with Inflammation Increased Early During Aging

    Science.gov (United States)

    Aging is associated with a predictable loss of cellular homeostasis, a decline in physiological function and an increase in various diseases. We hypothesized that similar age-related gene expression profiles would be observed in mice across independent studies. Employing a metaan...

  13. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    Science.gov (United States)

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  14. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines

    NARCIS (Netherlands)

    Cabral, A.; Rego, C.; Nascimento, T.; Oliveira, H.; Groenewald, J.Z.; Crous, P.W.

    2012-01-01

    Black foot is an important disease of grapevines, which has in recent years been recorded with increased incidence and severity throughout the world, affecting grapevines both in nurseries and young vineyards. In the past the disease has been associated with infections by Ilyonectria macrodidyma,

  15. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia

    2017-10-11

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  16. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance

    KAUST Repository

    Sheen, Patricia; Requena, David; Gushiken, Eduardo; Gilman, Robert H.; Antiparra, Ricardo; Lucero, Bryan; Lizá rraga, Pilar; Cieza, Basilio; Roncal, Elisa; Grandjean, Louis; Pain, Arnab; McNerney, Ruth; Clark, Taane G.; Moore, David; Zimic, Mirko

    2017-01-01

    Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear.We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion.These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.

  17. Meta-Analysis Reveals Significant Association of the 3'-UTR VNTR in SLC6A3 with Alcohol Dependence.

    Science.gov (United States)

    Ma, Yunlong; Fan, Rongli; Li, Ming D

    2016-07-01

    Although many studies have analyzed the association of 3'-untranslated region variable-number tandem repeat (VNTR) polymorphism in SLC6A3 with alcohol dependence (AD), the results remain controversial. This study aimed to determine whether this variant indeed has any genetic effect on AD by integrating 17 reported studies with 5,929 participants included. The A9-dominant genetic model that considers A9-repeat and non-A9 repeat as 2 genotypes and compared their frequencies in alcoholics with that in controls was adopted. Considering the potential influence of ethnicity, differences in diagnostic criteria of AD, and alcoholic subgroups, stratified meta-analyses were conducted. There existed no evidence for the presence of heterogeneity among the studied samples, indicating the results under the fixed-effects model are acceptable. We found a significant association of VNTR A9 genotypes with AD in all ethnic populations (pooled odds ratio [OR] 1.12; 95% confidence interval [CI] 1.00, 1.25; p = 0.045) and the Caucasian population (pooled OR 1.15; 95% CI 1.01, 1.31; p = 0.036). We also found VNTR A9 genotypes to be significantly associated with alcoholism as defined by the DSM-IV criteria (pooled OR 1.18; 95% CI 1.03, 1.36; p = 0.02). Further, we found a significant association between VNTR A9 genotypes and alcoholism associated with alcohol withdrawal seizure or delirium tremens (pooled OR 1.55; 95% CI 1.24, 1.92; p = 1.0 × 10(-4) ). In all these meta-analyses, no evidence of publication bias was detected. We concluded that the VNTR polymorphism has an important role in the etiology of AD, and individuals with at least 1 A9 allele are more likely to be dependent on alcohol than persons carrying the non-A9 allele. Copyright © 2016 by the Research Society on Alcoholism.

  18. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP.

    Directory of Open Access Journals (Sweden)

    Struan F A Grant

    2008-03-01

    Full Text Available Recently an association was demonstrated between the single nucleotide polymorphism (SNP, rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA. Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI>or=95th percentile, 2,270 Caucasian controls (BMI<95th percentile, 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r(2 = 1 in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR of 1.27 (95% CI 1.08-1.47; P = 0.0022. Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91-1.21; P = 0.49 and of 1.31 (95% CI 1.050-1.643; P = 0.017 respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact.

  19. Sequence analysis of three canine adipokine genes revealed an association between TNF polymorphisms and obesity in Labrador dogs.

    Science.gov (United States)

    Mankowska, M; Stachowiak, M; Graczyk, A; Ciazynska, P; Gogulski, M; Nizanski, W; Switonski, M

    2016-04-01

    Obesity is an emerging health problem in purebred dogs. Due to their crucial role in energy homeostasis control, genes encoding adipokines are considered candidate genes, and their variants may be associated with predisposition to obesity. Searching for polymorphism was carried out in three adipokine genes (TNF, RETN and IL6). The study was performed on 260 dogs, including lean (n = 109), overweight (n = 88) and obese (n = 63) dogs. The largest cohort was represented by Labrador Retrievers (n = 136). Altogether, 24 novel polymorphisms were identified: 12 in TNF (including one missense SNP), eight in RETN (including one missense SNP) and four in IL6. Distributions of five common SNPs (two in TNF, two in RETN and one in IL6) were further analyzed with regard to body condition score. Two SNPs in the non-coding parts of TNF (c.-40A>C and c.233+14G>A) were associated with obesity in Labrador dogs. The obtained results showed that the studied adipokine genes are highly polymorphic and two polymorphisms in the TNF gene may be considered as markers predisposing Labrador dogs to obesity. © 2015 Stichting International Foundation for Animal Genetics.

  20. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    Science.gov (United States)

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis

    Science.gov (United States)

    Waśkiewicz, Agnieszka; Stępień, Łukasz; Wilman, Karolina; Kachlicki, Piotr

    2013-01-01

    Fusarium proliferatum and F. verticillioides are considered as minor pathogens of pea (Pisum sativum L.). Both species can survive in seed material without visible disease symptoms, but still contaminating it with fumonisins. Two populations of pea-derived F. proliferatum and F. verticillioides strains were subjected to FUM1 sequence divergence analysis, forming a distinct group when compared to the collection strains originating from different host species. Furthermore, the mycotoxigenic abilities of those strains were evaluated on the basis of in planta and in vitro fumonisin biosynthesis. No differences were observed in fumonisin B (FB) levels measured in pea seeds (maximum level reached 1.5 μg g−1); however, in rice cultures, the majority of F. proliferatum genotypes produced higher amounts of FB1–FB3 than F. verticillioides strains. PMID:23470545

  2. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    Science.gov (United States)

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  4. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  5. Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yen Ling Low

    2010-07-01

    Full Text Available Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (p(global = 0.034 and endometrial (p(global = 0.052 cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (p(global = 0.008 and endometrial cancer (p(global = 0.014. The sub-pathway association was validated in the Finnish sample of breast cancer (p(global = 0.015. Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (p(global = 0.0003. Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite

  6. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  7. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  8. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium.

    Directory of Open Access Journals (Sweden)

    Fengxi Yang

    Full Text Available Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms

  9. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient

    Science.gov (United States)

    Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir

    2018-01-01

    Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643

  10. Longitudinal analysis reveals characteristically high proportions of bacterial vaginosis-associated bacteria and temporal variability of vaginal microbiota in northern pig-tailed macaques (Macaca leonina).

    Science.gov (United States)

    Zhu, Lin; Lei, Ai-Hua; Zheng, Hong-Yi; Lyu, Long-Bao; Zhang, Zhi-Gang; Zheng, Yong-Tang

    2015-09-18

    The complex and dynamic vaginal microbial ecosystem is critical to both health and disease of the host. Studies focusing on how vaginal microbiota influences HIV-1 infection may face limitations in selecting proper animal models. Given that northern pig-tailed macaques (Macaca leonina) are susceptible to HIV-1 infection, they may be an optimal animal model for elucidating the mechanisms by which vaginal microbiota contributes to resistance and susceptibility to HIV-1 infection. However, little is known about the composition and temporal variability of vaginal microbiota of the northern pig-tailed macaque. Here, we present a comprehensive catalog of the composition and temporal dynamics of vaginal microbiota of two healthy northern pig-tailed macaques over 19 weeks using 454-pyrosequencing of 16S rRNA genes. We found remarkably high proportions of a diverse array of anaerobic bacteria associated with bacterial vaginosis. Atopobium and Sneathia were dominant genera, and interestingly, we demonstrated the presence of Lactobacillus-dominated vaginal microbiota. Moreover, longitudinal analysis demonstrated that the temporal dynamics of the vaginal microbiota were considerably individualized. Finally, network analysis revealed that vaginal pH may influence the temporal dynamics of the vaginal microbiota, suggesting that inter-subject variability of vaginal bacterial communities could be mirrored in inter-subject variation in correlation profiles of species with each other and with vaginal pH over time. Our results suggest that the northern pig-tailed macaque could be an ideal animal model for prospective investigation of the mechanisms by which vaginal microbiota influence susceptibility and resistance to HIV-1 infection in the context of highly polymicrobial and Lactobacillus-dominated states.

  11. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    DEFF Research Database (Denmark)

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos

    2012-01-01

    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associ...

  12. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    Directory of Open Access Journals (Sweden)

    Thomas Hoffmann

    2015-07-01

    Full Text Available T-cell receptors (TCR play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR, which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation.

  13. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic.

    Directory of Open Access Journals (Sweden)

    Fang Han

    2013-10-01

    Full Text Available Previous studies in narcolepsy, an autoimmune disorder affecting hypocretin (orexin neurons and recently associated with H1N1 influenza, have demonstrated significant associations with five loci. Using a well-characterized Chinese cohort, we refined known associations in TRA@ and P2RY11-DNMT1 and identified new associations in the TCR beta (TRB@; rs9648789 max P = 3.7 × 10(-9 OR 0.77, ZNF365 (rs10995245 max P = 1.2 × 10(-11 OR 1.23, and IL10RB-IFNAR1 loci (rs2252931 max P = 2.2 × 10(-9 OR 0.75. Variants in the Human Leukocyte Antigen (HLA- DQ region were associated with age of onset (rs7744020 P = 7.9×10(-9 beta -1.9 years and varied significantly among cases with onset after the 2009 H1N1 influenza pandemic compared to previous years (rs9271117 P = 7.8 × 10(-10 OR 0.57. These reflected an association of DQB1*03:01 with earlier onset and decreased DQB1*06:02 homozygosity following 2009. Our results illustrate how genetic association can change in the presence of new environmental challenges and suggest that the monitoring of genetic architecture over time may help reveal the appearance of novel triggers for autoimmune diseases.

  14. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12

    OpenAIRE

    Kilarski, L. L.; Achterberg, S.; Devan, W. J.; Traylor, M.; Malik, R.; Lindgren, A.; Pare, G.; Sharma, P.; Slowik, A.; Thijs, V.; Walters, M.; Worrall, B. B.; Sale, M. M.; Algra, A.; Kappelle, L. J.

    2014-01-01

    textabstractResults: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07-1.13], p 5 7.12 3 10-11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90-1.17], p 5 0.695).Conclusion: Our resu...

  15. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.

    OpenAIRE

    Estrada, K.; Styrkarsdottir, U.; Evangelou, E.; Hsu, Y.H.; Duncan, E.L.; Ntzani, E.E.; Oei, L.; Albagha, O.M.; Amin, N.; Kemp, J.P.; Koller, D.L.; Li, G.; Liu, C.T.; Minster, R.L.; Moayyeri, A.

    2012-01-01

    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We ident...

  16. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    NARCIS (Netherlands)

    I.M. Heid (Iris); A.U. Jackson (Anne); J.C. Randall (Joshua); T.W. Winkler (Thomas); L. Qi (Lu); V. Ssteinthorsdottir (Valgerdur); G. Tthorleifsson (Ggudmar); M.C. Zillikens (Carola); E.K. Sspeliotes (Eelizabeth); R. Mägi (Reedik); T. Workalemahu (Tsegaselassie); C.C. White (Charles); N. Bouatia-Naji (Nabila); T.B. Harris (Tamara); S.I. Berndt (Sonja); E. Ingelsson (Erik); C.J. Willer (Cristen); J. Luan; S. Vedantam (Sailaja); T. Eesko (Tõnu); T.O. Kilpeläinen (Tuomas); Z. Kutalik (Zoltán); S. Li (Shengxu); K.L. Monda (Keri); A.L. Dixon (Anna); C. Holmes (Christopher); R.C. Kaplan (Robert); L. Liang (Liming); J. Min (Josine); M.F. Moffatt (Miriam); C. Molony (Cliona); G. Nicholson (Ggeorge); E.E. Sschadt (Eeric); K.T. Zondervan (Krina); M.F. Feitosa (Mary Furlan); T. Ferreira (Teresa); H.L. Allen; R.J. Weyant (Robert); E. Wheeler (Eleanor); A.R. Wood (Andrew); K. Eestrada (Karol); M.E. Goddard (Michael); G. Lettre (Guillaume); M. Mangino (Massimo); D.R. Nyholt (Dale); S. Purcell (Shaun); A.V. Ssmith; P.M. Visscher (Peter); J. Yang (Joanna); S.A. McCcarroll (Ssteven); J. Nemesh (James); B.F. Voight (Benjamin); D. Absher (Devin); N. Amin (Najaf); T. Aspelund (Thor); L. Coin (Lachlan); N.L. Glazer (Nicole); C. Hayward (Caroline); N. Heard-Ccosta (Nancy); J.J. Hottenga (Jouke Jan); A. Johansson (Åsa); T. Johnson (Toby); M. Kaakinen (Marika); K. Kapur (Karen); S. Ketkar (Shamika); J.W. Knowles (Joshua); P. Kraft (Peter); A. Kraja (Aldi); C. Lamina (Claudia); M.F. Leitzmann (Michael); B. McKknight (Barbara); A.D. Morris (Andrew); K. Oong (Ken); J.R.B. Perry (John); M.J. Peters (Marjolein); O. Polasek (Ozren); I. Prokopenko (Inga); N.W. Rayner (Nigel William); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); N.R. Robertson (Neil); S. Sanna (Serena); U. Sovio (Ulla); I. Surakka (Ida); A. Teumer (Alexander); S. van Wingerden (Sophie); V. Vitart (Veronique); J.H. Zhao (Jing Hua); C. Cavalcanti-Proença (Christine); P.S. Chines (Peter); E. Fisher (Eeva); J.R. Kulzer (Jennifer); C. Lecoeur (Cécile); N. Narisu (Narisu); C. Sandholt (Camilla); L.J. Scott (Laura); K. Silander (Kaisa); K. Stark (Klaus); M.L. Tammesoo; T.M. Teslovich (Tanya); N.J. Timpson (Nicholas); R.P. Welch (Ryan); D.I. Chasman (Daniel); M.N. Cooper (Matthew); J.O. Jansson; J. Kettunen (Johannes); R. Wlawrence (Robert); N. Pellikka (Niina); M. Perola (Markus); L. Vandenput (Liesbeth); H. Alavere (Helene); P. Almgren (Peter); L.D. Atwood (Larry); A.J. Bennett (Amanda); R. Biffar (Reiner); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan); T.A. Buchanan (Thomas); H. Campbell (Harry); I.N.M. Day (Ian); M. Dei (Mariano); M. Dörr (Marcus); P. Eelliott (Paul); M.R. Eerdos (Micheal); J.G. Eeriksson (Johan); N.B. Freimer (Nelson); M. Fu (Mao); S. Gaget (Stefan); E.J.C. de Geus (Eco); A.P. Gjesing (Anette); H. Grallert (Harald); J. Gräßler (Jürgen); C.J. Groves (Christopher); C. Guiducci (Candace); A.L. Hartikainen; N. Hassanali (Neelam); A.S. Havulinna (Aki); K.H. Herzig; A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); P. Jousilahti (Pekka); A. Jula (Antti); E. Kajantie (Eero); L. Kinnunen (Leena); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); H.K. Kroemer (Heyo); V. Krzelj (Vjekoslav); J. Kuusisto (Johanna); K. Kvaløy (Kirsti); J. Laitinen (Jaana); O. Lantieri (Olivier); G.M. Lathrop (Mark); M.L. Lokki; R.N. Luben (Robert); B. Ludwig (Barbara); W.L. McArdle (Wendy); A. McCcarthy (Anne); M.A. Morken (Mario); M. Nelis (Mari); M.J. Neville (Matthew); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); A. Pouta (Anneli); M. Ridderstråle (Martin); N.J. Samani (Nilesh); J. Saramies (Jouko); J. Sinisalo (Juha); J.H. Smit (Jan); R.J. Strawbridge (Rona); H.M. Stringham (Heather); A.J. Swift (Amy); M. Teder-Llaving (Maris); B. Thomson (Brian); G. Usala; J.B.J. van Meurs (Joyce); G.J. van Ommen (Gert); V. Vatin (Vincent); C.B. Volpato; H. Wallaschofski (Henri); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); D.R. Witte (Deniel); L. Zgaga (Lina); P. Zitting (Paavo); J.P. Beilby (John); A. James (Alan); M. Kähönen (Mika); T. Lehtimäki (Terho); M.S. Nieminen (Markku); C. Ohlsson (Claes); C. Palmer (Cameron); O. Raitakari (Olli); P.M. Ridker (Paul); M. Stumvoll (Michael); A. Tönjes (Anke); J. Viikari (Jorma); B. Balkau (Beverley); Y. Ben-Shlomo; R.N. Bergman (Richard); H. Boeing (Heiner); A.V. Smith (Albert Vernon); S. Eebrahim (Shah); P. Froguel (Philippe); T. Hansen (Torben); C. Hengstenberg (Christian); K. Hveem (Kristian); B. Isomaa (Bo); T. Jørgensen (Torben); F. Karpe (Fredrik); K-T. Khaw (Kay-Tee); M. Laakso (Markku); D.A. Lawlor (Debbie); M. Marre (Michel); T. Meitinger (Thomas); A. Metspalu (Andres); K. Midthjell (Kristian); O. Pedersen (Oluf); V. Salomaa (Veikko); P.E.H. Schwarz (Peter); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); N.J. Wareham (Nick); A.M. Arnold (Alice); J.S. Beckmann (Jacques); S.M. Bergmann (Sven); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); F.S. Collins (Francis); G. Eeiriksdottir (Gudny); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); A. Hamsten (Anders); A.T. Hattersley (Andrew); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); C. Iribarren (Carlos); M.R. Järvelin; W.H.L. Kao (Wen); J. Kaprio (Jaakko); L.J. Launer (Lenore); P. Munroe (Patricia); B.A. Oostra (Ben); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); B.M. Psaty (Bruce); T. Quertermous (Thomas); A. Rissanen (Aila); I. Rudan (Igor); A.R. Shuldiner (Alan); N. Soranzo (Nicole); T.D. Spector (Timothy); A.C. Syvanen; M. Uda (Manuela); A.G. Uitterlinden (André); H. Völzke (Henry); P. Vollenweider (Peter); J.F. Wilson (James); J.C.M. Witteman (Jacqueline); A.F. Wright (Alan); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunians (Talin); D.J. Hunter (David); K.E. North (Kari); J.R. O'Cconnell (Jeffrey); L. Peltonen (Leena Johanna); D. Schlessinger; D.P. Strachan (David); J.N. Hirschhorn (Joel); T.L. Assimes (Themistocles); H.E. Wichmann (Heinz Erich); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cornelia); K. Stefansson (Kari); L.A. Cupples (Adrienne); R.J.F. Loos (Ruth); I.E. Barroso (Inês); C.S. Fox (Caroline); K.L. Mohlke (Karen); C.M. Lindgren (Cecilia); R.M. Watanabe (Richard); M.N. Weedon (Michael)

    2010-01-01

    textabstractWaist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association

  17. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    NARCIS (Netherlands)

    K. Estrada Gil (Karol); U. Styrkarsdottir (Unnur); E. Evangelou (Evangelos); Y.-H. Hsu (Yi-Hsiang); E.L. Duncan (Emma); E.E. Ntzani (Evangelia); L. Oei (Ling); O.M.E. Albagha (Omar M.); N. Amin (Najaf); J.P. Kemp (John); D.L. Koller (Daniel); G. Li (Guo); C.-T. Liu (Ching-Ti); R.L. Minster (Ryan); A. Moayyeri (Alireza); L. Vandenput (Liesbeth); D. Willner (Dana); S.-M. Xiao (Su-Mei); L.M. Yerges-Armstrong (Laura); H.-F. Zheng (Hou-Feng); N. Alonso (Nerea); J. Eriksson (Joel); C.M. Kammerer (Candace); S. Kaptoge (Stephen); P.J. Leo (Paul); G. Thorleifsson (Gudmar); S.G. Wilson (Scott); J.F. Wilson (James); V. Aalto (Ville); T.A. van Alen (Theo); A.K. Aragaki (Aaron); T. Aspelund (Thor); J.R. Center (Jacqueline); Z. Dailiana (Zoe); C. Duggan; M. Garcia (Melissa); N. Garcia-Giralt (Natàlia); S. Giroux (Sylvie); G. Hallmans (Göran); L.J. Hocking (Lynne); L.B. Husted (Lise Bjerre); K. Jameson (Karen); R. Khusainova (Rita); G.S. Kim (Ghi Su); C. Kooperberg (Charles); T. Koromila (Theodora); M. Kruk (Marcin); M. Laaksonen (Marika); A.Z. LaCroix (Andrea); S.U. Lee (Seung); P.C. Leung (Ping); J.R. Lewis (Joshua); L. Masi (Laura); S. Mencej-Bedrac (Simona); T.V. Nguyen (Tuan); X. Nogues (Xavier); M.S. Patel (Millan); J. Prezelj (Janez); L.M. Rose (Lynda); S. Scollen (Serena); K. Siggeirsdottir (Kristin); G.D. Smith; O. Svensson (Olle); S. Trompet (Stella); O. Trummer (Olivia); N.M. van Schoor (Natasja); M.M. Woo (Margaret M.); K. Zhu (Kun); S. Balcells (Susana); M.L. Brandi; B.M. Buckley (Brendan M.); S. Cheng (Sulin); C. Christiansen; C. Cooper (Charles); G.V. Dedoussis (George); I. Ford (Ian); M. Frost (Morten); D. Goltzman (David); J. González-Macías (Jesús); M. Kähönen (Mika); M. Karlsson (Magnus); E.K. Khusnutdinova (Elza); J.-M. Koh (Jung-Min); P. Kollia (Panagoula); B.L. Langdahl (Bente); W.D. Leslie (William); P. Lips (Paul); O. Ljunggren (Östen); R. Lorenc (Roman); J. Marc (Janja); D. Mellström (Dan); B. Obermayer-Pietsch (Barbara); D. Olmos (David); U. Pettersson-Kymmer (Ulrika); D.M. Reid (David); J.A. Riancho (José); P.M. Ridker (Paul); M.F. Rousseau (Francois); P.E.S. Lagboom (P Eline); N.L.S. Tang (Nelson L.); R. Urreizti (Roser); W. Van Hul (Wim); J. Viikari (Jorma); M.T. Zarrabeitia (María); Y.S. Aulchenko (Yurii); M.C. Castaño Betancourt (Martha); E. Grundberg (Elin); L. Herrera (Lizbeth); T. Ingvarsson (Torvaldur); H. Johannsdottir (Hrefna); T. Kwan (Tony); R. Li (Rui); R.N. Luben (Robert); M.C. Medina-Gomez (Carolina); S. Th Palsson (Stefan); S. Reppe (Sjur); J.I. Rotter (Jerome); G. Sigurdsson (Gunnar); J.B.J. van Meurs (Joyce); D.J. Verlaan (Dominique); F.M. Williams (Frances); A.R. Wood (Andrew); Y. Zhou (Yanhua); K.M. Gautvik (Kaare); T. Pastinen (Tomi); S. Raychaudhuri (Soumya); J.A. Cauley (Jane); D.I. Chasman (Daniel); G.R. Clark (Graeme); S. Cummings; P. Danoy (Patrick); E.M. Dennison (Elaine); R. Eastell (Richard); J.A. Eisman (John); V. Gudnason (Vilmundur); A. Hofman (Albert); R.D. Jackson (Rebecca); G. Jones (Graeme); J.W. Jukema (Jan Wouter); K-T. Khaw (Kay-Tee); T. Lehtimäki (Terho); Y. Liu (YongMei); M. Lorentzon (Mattias); E.V. McCloskey (Eugene); B.D. Mitchell (Braxton); K. Nandakumar (Kannabiran); G.C. Nicholson (Geoffrey); B.A. Oostra (Ben); M. Peacock (Munro); H.A.P. Pols (Huib); R.L. Prince (Richard); O. Raitakari (Olli); I.R. Reid (Ian); J. Robbins (John); P.N. Sambrook (Philip); P.C. Sham (Pak); A.R. Shuldiner (Alan); F.A. Tylavsky (Frances); C.M. van Duijn (Cornelia); N.J. Wareham (Nick); L.A. Cupples (Adrienne); M.J. Econs (Michael); D.M. Evans (David); T.B. Harris (Tamara); A.W.C. Kung (Annie); B.M. Psaty (Bruce); J. Reeve (Jonathan); T.D. Spector (Timothy); E.A. Streeten (Elizabeth); M.C. Zillikens (Carola); U. Thorsteinsdottir (Unnur); C. Ohlsson (Claes); D. Karasik (David); J.B. Richards (Brent); M.A. Brown (Matthew); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); S.H. Ralston (Stuart); J.P.A. Ioannidis (John); D.P. Kiel (Douglas); F. Rivadeneira Ramirez (Fernando)

    2012-01-01

    textabstractBone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top

  18. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N

    2017-10-17

    Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.

  19. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes*

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H. J.; Hensbergen, Paul J.; Reiding, Karli R.; Hazes, Johanna M. W.; Dolhain, Radboud J. E. M.; Wuhrer, Manfred

    2014-01-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. PMID:25004930

  1. Cryptorchidism and testicular germ cell tumors: comprehensive meta-analysis reveals that association between these conditions diminished over time and is modified by clinical characteristics

    Directory of Open Access Journals (Sweden)

    Kimberly eBanks

    2013-02-01

    Full Text Available Introduction: Risk of testicular germ cell tumors (TGCT is consistently associated with a history of cryptorchidism (CO in epidemiologic studies. Factors modifying the association may provide insights regarding etiology of TGCT and suggest a basis for individualized care of CO. To identify modifiers of the CO-TGCT association, we conducted a comprehensive, quantitative evaluation of epidemiologic data.Materials and Methods: Human studies cited in PubMed or ISI Web of Science indices through December 2011 and selected unpublished epidemiologic data were reviewed to identify 35 articles and one unpublished dataset with high-quality data on the CO-TGCT association. Association data were extracted as point and 95% confidence interval estimates of odds ratio (OR or standardized incidence ratio (SIR, or as tabulated data. Values were recorded for each study population, and for subgroups defined by features of study design, CO and TGCT. Extracted data were used to estimate summary risk ratios (sRR and evaluate heterogeneity of the CO-TGCT association between subgroups.Results: The overall meta-analysis showed that history of CO is associated with four-fold increased TGCT risk (RR=4.1(95%CI=3.6-4.7. Subgroup analyses identified five determinants of stronger association: bilateral CO, unilateral CO ipsilateral to TGCT, delayed CO treatment, TGCT diagnosed before 1970, and seminoma histology. Conclusions: Modifying factors may provide insight into TGCT etiology and suggest improved approaches to managing CO. Based on available data, cryptorchidism patients and their parents or caregivers should be made aware of elevated TGCT risk following orchidopexy, regardless of age at repair, unilateral versus bilateral nondescent, or position of undescended testes.

  2. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis.

    Science.gov (United States)

    Chen, Pingli; Shen, Zhikang; Ming, Luchang; Li, Yibo; Dan, Wenhan; Lou, Guangming; Peng, Bo; Wu, Bian; Li, Yanhua; Zhao, Da; Gao, Guanjun; Zhang, Qinglu; Xiao, Jinghua; Li, Xianghua; Wang, Gongwei; He, Yuqing

    2018-01-01

    Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes ( PG5a , Wx , AGPS2a , RP6 , and, RM1 ). Several starch-metabolism-related genes ( AGPS2a , OsACS6 , PUL , GBSSII , and ISA2 ) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6 , RM1 , Wx , and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would

  3. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin Content Revealed by Genome-Wide Association Analysis

    Directory of Open Access Journals (Sweden)

    Pingli Chen

    2018-05-01

    Full Text Available Rice seed storage protein (SSP is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb, globulin (Glo, prolamin (Pro, glutelin (Glu, and total SSP (Total. A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97 and NIL(Delong208, and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1. Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2 were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide

  4. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition.

    Science.gov (United States)

    Ki, Bo-Min; Ryu, Hee Wook; Cho, Kyung-Suk

    2018-02-22

    Soil burial and composting methods have been widely used for the disposal of pig carcasses. The relationship between bacterial community structure and odor emission was examined using extended local similarity analysis (eLSA) during the degradation of pig carcasses in soil and compost. In soil, Hyphomicrobium, Niastella, Rhodanobacter, Polaromonas, Dokdonella and Mesorhizobium were associated with the emission of sulfur-containing odors such as hydrogen sulfide, methyl mercaptan and dimethyl disulfide. Sphingomonas, Rhodanobacter, Mesorhizobium, Dokdonella, Leucobacter and Truepera were associated with the emission of nitrogen-containing odors including ammonia and trimetylamine. In compost, however, Carnobacteriaceae, Lachnospiaceae and Clostridiales were highly correlated with the emission of sulfur-containing odors, while Rumincoccaceae was associated with the emission of nitrogen-containing odors. The emission of organic acids was closely related to Massilia, Sphaerobacter and Bradyrhizobiaceae in soil, but to Actinobacteria, Sporacetigenium, Micromonosporaceae and Solirubrobacteriales in compost. This study suggests that network analysis using eLSA is a useful strategy for exploring the mechanisms of odor emission during biodegradation of pig carcasses.

  5. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    Science.gov (United States)

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-01-01

    Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420

  6. Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution.

    Science.gov (United States)

    Pausch, Hubert; Emmerling, Reiner; Gredler-Grandl, Birgit; Fries, Ruedi; Daetwyler, Hans D; Goddard, Michael E

    2017-11-09

    Genotyping and whole-genome sequencing data have been generated for hundreds of thousands of cattle. International consortia used these data to compile imputation reference panels that facilitate the imputation of sequence variant genotypes for animals that have been genotyped using dense microarrays. Association studies with imputed sequence variant genotypes allow for the characterization of quantitative trait loci (QTL) at nucleotide resolution particularly when individuals from several breeds are included in the mapping populations. We imputed genotypes for 28 million sequence variants in 17,229 cattle of the Braunvieh, Fleckvieh and Holstein breeds in order to compile large mapping populations that provide high power to identify QTL for milk production traits. Association tests between imputed sequence variant genotypes and fat and protein percentages in milk uncovered between six and thirteen QTL (P < 1e-8) per breed. Eight of the detected QTL were significant in more than one breed. We combined the results across breeds using meta-analysis and identified a total of 25 QTL including six that were not significant in the within-breed association studies. Two missense mutations in the ABCG2 (p.Y581S, rs43702337, P = 4.3e-34) and GHR (p.F279Y, rs385640152, P = 1.6e-74) genes were the top variants at QTL on chromosomes 6 and 20. Another known causal missense mutation in the DGAT1 gene (p.A232K, rs109326954, P = 8.4e-1436) was the second top variant at a QTL on chromosome 14 but its allelic substitution effects were inconsistent across breeds. It turned out that the conflicting allelic substitution effects resulted from flaws in the imputed genotypes due to the use of a multi-breed reference population for genotype imputation. Many QTL for milk production traits segregate across breeds and across-breed meta-analysis has greater power to detect such QTL than within-breed association testing. Association testing between imputed sequence variant genotypes and

  7. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    Science.gov (United States)

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  8. Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease.

    Science.gov (United States)

    Husi, Holger; Van Agtmael, Tom; Mullen, William; Bahlmann, Ferdinand H; Schanstra, Joost P; Vlahou, Antonia; Delles, Christian; Perco, Paul; Mischak, Harald

    2014-04-01

    Macrovascular complications of diabetes mellitus are a major risk factor for cardiovascular morbidity and mortality. Currently, studies only partially described the molecular pathophysiology of diabetes mellitus-associated effects on vasculature. However, better understanding of systemic effects is essential in unraveling key molecular events in the vascular tissue responsible for disease onset and progression. Our overall aim was to get an all-encompassing view of diabetes mellitus-induced key molecular changes in the vasculature. An integrative proteomic and bioinformatics analysis of data from aortic vessels in the low-dose streptozotocin-induced diabetic mouse model (10 animals) was performed. We observed pronounced dysregulation of molecules involved in myogenesis, vascularization, hypertension, hypertrophy (associated with thickening of the aortic wall), and a substantial reduction of fatty acid storage. A novel finding is the pronounced downregulation of glycogen synthase kinase-3β (Gsk3β) and upregulation of molecules linked to the tricarboxylic acid cycle (eg, aspartate aminotransferase [Got2] and hydroxyacid-oxoacid transhydrogenase [Adhfe1]). In addition, pathways involving primary alcohols and amino acid breakdown are altered, potentially leading to ketone-body production. A number of these findings were validated immunohistochemically. Collectively, the data support the hypothesis that in this diabetic model, there is an overproduction of ketone-bodies within the vessels using an alternative tricarboxylic acid cycle-associated pathway, ultimately leading to the development of atherosclerosis. Streptozotocin-induced diabetes mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an alternative ketone-body formation pathway. This working hypothesis could form the basis for the development of novel therapeutic intervention and disease management approaches.

  9. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia

    Science.gov (United States)

    Ferrari, Raffaele; Graziano, Francesca; Novelli, Valeria; Rossi, Giacomina; Galimberti, Daniela; Rainero, Innocenzo; Benussi, Luisa; Nacmias, Benedetta; Bruni, Amalia C.; Cusi, Daniele; Salvi, Erika; Borroni, Barbara; Grassi, Mario

    2017-01-01

    Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies. PMID:29020091

  10. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Fernando Palluzzi

    Full Text Available Frontotemporal Dementia (FTD is the form of neurodegenerative dementia with the highest prevalence after Alzheimer's disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72 have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.

  11. Significant differences in gene expression and key genetic components associated with high growth vigor in populus section tacamahaca as revealed by comparative transcriptome analysis

    International Nuclear Information System (INIS)

    Cheng, S.; Chen, M.; Li, Y.; Wang, J.; Sun, X.; Wang, J.

    2017-01-01

    To identify genetic components involved in high growth vigor in F1 Populus section Tacamahaca hybrid plants, high and low vigor plants showing significant differences in apical dominance during a rapid growth period were selected. Apical bud transcriptomes of high and low-growth-vigor hybrids and their parents were analyzed using high-throughput RNA sequencing on an Illumina HiSeq 2000 platform. A total of 5,542 genes were differently expressed between high growth vigor hybrid and its parents, the genes were significantly enriched in pathways related to processes such as photosynthesis, pyrimidine ribonucleotide biosynthetic processes and nucleoside metabolic processes. There were 1410 differentially expressed genes between high and low growth vigor hybrid, the genes were mainly involved in photosynthesis, chlorophyll biosynthetic process, carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolism and nitrogen metabolism. Moreover, a k-core of a gene co-expression network analysis was performed to identify the potential functions of genes related to high growth vigor. The functions of 8 selected candidate genes were associated mainly with circadian rhythm, water transport, cellulose catabolic processes, sucrose biosynthesis, pyrimidine ribonucleotide biosynthesis, purine nucleotide biosynthesis, meristem maintenance, and carbohydrate metabolism. Our results may contribute to a better understanding of the molecular basis of high growth vigor in hybrids and its regulation. (author)

  12. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887

  13. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye.

    Science.gov (United States)

    Zhou, Lei; Wei, Ruihua; Zhao, Ping; Koh, Siew Kwan; Beuerman, Roger W; Ding, Chuanqing

    2013-08-01

    Sjögren's syndrome (SS) is an autoimmune disease that results in pathological dryness of mouth and eye. The diagnosis of SS depends on both clinical evaluation and specific antibodies. The goal of this study was to use quantitative proteomics to investigate changes in tear proteins in a rabbit model of SS-associated dry eye, induced autoimmune dacryoadenitis (IAD). Proteomic analysis was performed by iTRAQ and nano LC-MS/MS on tears collected from the ocular surface, and specific proteins were verified by high resolution MRM. It was found that in the tears of IAD rabbits at 2 and 4 weeks after induction, S100 A6, S100 A9, and serum albumin were upregulated, whereas serotransferrin (TF), prolactin-inducible protein (PIP), polymeric immunoglobulin receptor (pIgR), and Ig gamma chain C region were downregulated. High resolution MRM with mTRAQ labeling verified the changes in S100 A6, TF, PIP, and pIgR. Our results indicated significant changes of tear proteins in IAD rabbits, suggesting these proteins could potentially be used as biomarkers for the diagnosis and prognosis of dry eye. Several of these proteins were also found in the tears of non-SS dry eye patients indicating a common basis of ocular surface pathology, however, pIgR appears to be unique to SS. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  15. Meta-analysis using a novel database, miRStress, reveals miRNAs that are frequently associated with the radiation and hypoxia stress-responses.

    Directory of Open Access Journals (Sweden)

    Laura Ann Jacobs

    Full Text Available Organisms are often exposed to environmental pressures that affect homeostasis, so it is important to understand the biological basis of stress-response. Various biological mechanisms have evolved to help cells cope with potentially cytotoxic changes in their environment. miRNAs are small non-coding RNAs which are able to regulate mRNA stability. It has been suggested that miRNAs may tip the balance between continued cytorepair and induction of apoptosis in response to stress. There is a wealth of data in the literature showing the effect of environmental stress on miRNAs, but it is scattered in a large number of disparate publications. Meta-analyses of this data would produce added insight into the molecular mechanisms of stress-response. To facilitate this we created and manually curated the miRStress database, which describes the changes in miRNA levels following an array of stress types in eukaryotic cells. Here we describe this database and validate the miRStress tool for analysing miRNAs that are regulated by stress. To validate the database we performed a cross-species analysis to identify miRNAs that respond to radiation. The analysis tool confirms miR-21 and miR-34a as frequently deregulated in response to radiation, but also identifies novel candidates as potentially important players in this stress response, including miR-15b, miR-19b, and miR-106a. Similarly, we used the miRStress tool to analyse hypoxia-responsive miRNAs. The most frequently deregulated miRNAs were miR-210 and miR-21, as expected. Several other miRNAs were also found to be associated with hypoxia, including miR-181b, miR-26a/b, miR-106a, miR-213 and miR-192. Therefore the miRStress tool has identified miRNAs with hitherto unknown or under-appreciated roles in the response to specific stress types. The miRStress tool, which can be used to uncover new insight into the biological roles of miRNAs, and also has the potential to unearth potential biomarkers for

  16. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Directory of Open Access Journals (Sweden)

    Andrea D Coviello

    Full Text Available Sex hormone-binding globulin (SHBG is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106, PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11, GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16, ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09, JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35, SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08, NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12, ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14, TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14, LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07, BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08, and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06. These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08, women p = 0.66, heterogeneity p = 0.003. Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion

  17. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biol...... revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs....

  18. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    DEFF Research Database (Denmark)

    Heid, Iris M; Jackson, Anne U; Randall, Joshua C

    2010-01-01

    and CPEB4 (P = 1.9 × 10¿¿ to P = 1.8 × 10¿4°) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10¿³ to P = 1.2 × 10¿¹³). These findings provide evidence for multiple loci that modulate...... body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions....

  19. Analysis of the mycotoxigenic fungi associated with southeastern U.S. winegrapes reveals a large population of Fusarium fujikuroi isolates producing high levels of fumonisins

    Science.gov (United States)

    Mycotoxins pose a serious challenge to a consistently safe food supply worldwide, and their threat is only expected to worsen with our changing climate. Species of Fusarium produce one or more of several mycotoxins, including tricothecenes, zearalenone, and fumonisins, which have been associated wi...

  20. Rangewide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America

    Science.gov (United States)

    Craig F. Barrett; John V. Freudenstein; D. Lee Taylor; Urmas. Koljalg

    2010-01-01

    Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from...

  1. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder

    DEFF Research Database (Denmark)

    Rajkumar, Anto P; Christensen, Jane H; Mattheisen, Manuel

    2015-01-01

    ,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213...

  2. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    DEFF Research Database (Denmark)

    Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L

    2017-01-01

    Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone...... as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total...

  3. Meta-analysis of genome wide association studies for the stature of cattle reveals numerous common genes that regulate size in mammals

    Science.gov (United States)

    Stature is affected by many polymorphisms of small effect in humans but in contrast variation in dogs, even within breeds is largely due to variants in six genes. Here we use data from cattle to compare genetic architecture of stature to that in humans and dogs. We conducted a meta-analysis for stat...

  4. Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus

    DEFF Research Database (Denmark)

    Medina-Gomez, Carolina; Kemp, John P; Dimou, Niki L

    2017-01-01

    bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well...

  5. A Comprehensive Analysis of Chromoplast Differentiation Reveals Complex Protein Changes Associated with Plastoglobule Biogenesis and Remodeling of Protein Systems in Sweet Orange Flesh1[OPEN

    Science.gov (United States)

    Wang, Lun; Deng, Xiuxin

    2015-01-01

    Globular and crystalloid chromoplasts were observed to be region specifically formed in sweet orange (Citrus sinensis) flesh and converted from amyloplasts during fruit maturation, which was associated with the composition of specific carotenoids and the expression of carotenogenic genes. Subsequent isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analyses of purified plastids from the flesh during chromoplast differentiation and senescence identified 1,386 putative plastid-localized proteins, 1,016 of which were quantified by spectral counting. The iTRAQ values reflecting the expression abundance of three identified proteins were validated by immunoblotting. Based on iTRAQ data, chromoplastogenesis appeared to be associated with three major protein expression patterns: (1) marked decrease in abundance of the proteins participating in the translation machinery through ribosome assembly; (2) increase in abundance of the proteins involved in terpenoid biosynthesis (including carotenoids), stress responses (redox, ascorbate, and glutathione), and development; and (3) maintenance of the proteins for signaling and DNA and RNA. Interestingly, a strong increase in abundance of several plastoglobule-localized proteins coincided with the formation of plastoglobules in the chromoplast. The proteomic data also showed that stable functioning of protein import, suppression of ribosome assembly, and accumulation of chromoplast proteases are correlated with the amyloplast-to-chromoplast transition; thus, these processes may play a collective role in chromoplast biogenesis and differentiation. By contrast, the chromoplast senescence process was inferred to be associated with significant increases in stress response and energy supply. In conclusion, this comprehensive proteomic study identified many potentially new plastid-localized proteins and provides insights into the potential developmental and molecular mechanisms underlying chromoplast

  6. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events.

    Directory of Open Access Journals (Sweden)

    Angela N Brooks

    Full Text Available Although recurrent somatic mutations in the splicing factor U2AF1 (also known as U2AF35 have been identified in multiple cancer types, the effects of these mutations on the cancer transcriptome have yet to be fully elucidated. Here, we identified splicing alterations associated with U2AF1 mutations across distinct cancers using DNA and RNA sequencing data from The Cancer Genome Atlas (TCGA. Using RNA-Seq data from 182 lung adenocarcinomas and 167 acute myeloid leukemias (AML, in which U2AF1 is somatically mutated in 3-4% of cases, we identified 131 and 369 splicing alterations, respectively, that were significantly associated with U2AF1 mutation. Of these, 30 splicing alterations were statistically significant in both lung adenocarcinoma and AML, including three genes in the Cancer Gene Census, CTNNB1, CHCHD7, and PICALM. Cell line experiments expressing U2AF1 S34F in HeLa cells and in 293T cells provide further support that these altered splicing events are caused by U2AF1 mutation. Consistent with the function of U2AF1 in 3' splice site recognition, we found that S34F/Y mutations cause preferences for CAG over UAG 3' splice site sequences. This report demonstrates consistent effects of U2AF1 mutation on splicing in distinct cancer cell types.

  7. Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells.

    Science.gov (United States)

    Karg, Elisabeth; Smets, Martha; Ryan, Joel; Forné, Ignasi; Qin, Weihua; Mulholland, Christopher B; Kalideris, Georgia; Imhof, Axel; Bultmann, Sebastian; Leonhardt, Heinrich

    2017-12-08

    Ubiquitination is a multifunctional posttranslational modification controlling the activity, subcellular localization and stability of proteins. The E3 ubiquitin ligase ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) is an essential epigenetic factor that recognizes repressive histone marks as well as hemi-methylated DNA and recruits DNA methyltransferase 1. To explore enzymatic functions of UHRF1 beyond epigenetic regulation, we conducted a comprehensive screen in mouse embryonic stem cells to identify novel ubiquitination targets of UHRF1 and its paralogue UHRF2. We found differentially ubiquitinated peptides associated with a variety of biological processes such as transcriptional regulation and DNA damage response. Most prominently, we identified PCNA-associated factor 15 (PAF15; also known as Pclaf, Ns5atp9, KIAA0101 and OEATC-1) as a specific ubiquitination target of UHRF1. Although the function of PAF15 ubiquitination in translesion DNA synthesis is well characterized, the respective E3 ligase had been unknown. We could show that UHRF1 ubiquitinates PAF15 at Lys 15 and Lys 24 and promotes its binding to PCNA during late S-phase. In summary, we identified novel ubiquitination targets that link UHRF1 to transcriptional regulation and DNA damage response. Copyright © 2017. Published by Elsevier Ltd.

  8. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Pchange in palmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all Presistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction.

    Science.gov (United States)

    Wu, Chen; Twort, Victoria G; Crowhurst, Ross N; Newcomb, Richard D; Buckley, Thomas R

    2017-11-16

    Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the

  10. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco.

    Science.gov (United States)

    Yang, Yuping; Yan, Pengcheng; Yi, Che; Li, Wenzheng; Chai, Yuhui; Fei, Lingling; Gao, Ping; Zhao, Heping; Wang, Yingdian; Timko, Michael P; Wang, Bingwu; Han, Shengcheng

    2017-08-01

    Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Analysis of homeobox gene action may reveal novel angiogenic pathways in normal placental vasculature and in clinical pregnancy disorders associated with abnormal placental angiogenesis.

    Directory of Open Access Journals (Sweden)

    Padma eMurthi

    2014-06-01

    Full Text Available Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterised by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia.

  12. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

    Science.gov (United States)

    Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-07-01

    The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Comparative analysis of the 5S rRNA and its associated proteins reveals unique primitive rather than parasitic features in Giardia lamblia.

    Science.gov (United States)

    Feng, Jin-Mei; Sun, Jun; Xin, De-Dong; Wen, Jian-Fan

    2012-01-01

    5S rRNA is a highly conserved ribosomal component. Eukaryotic 5S rRNA and its associated proteins (5S rRNA system) have become very well understood. Giardia lamblia was thought by some researchers to be the most primitive extant eukaryote while others considered it a highly evolved parasite. Previous reports have indicated that some aspects of its 5S rRNA system are simpler than that of common eukaryotes. We here explore whether this is true to its entire system, and whether this simplicity is a primitive or parasitic feature. By collecting and confirming pre-existing data and identifying new data, we obtained almost complete datasets of the system of three isolates of G. lamblia, two other parasitic excavates (Trichomonas vaginalis, Trypanosoma cruzi), and one free-living one (Naegleria gruberi). After comprehensively comparing each aspect of the system among these excavates and also with those of archaea and common eukaryotes, we found all the three Giardia isolates to harbor a same simplified 5S rRNA system, which is not only much simpler than that of common eukaryotes but also the simplest one among those of these excavates, and is surprisingly very similar to that of archaea; we also found among these excavates the system in parasitic species is not necessarily simpler than that in free-living species, conversely, the system of free-living species is even simpler in some respects than those of parasitic ones. The simplicity of Giardia 5S rRNA system should be considered a primitive rather than parasitically-degenerated feature. Therefore, Giardia 5S rRNA system might be a primitive system that is intermediate between that of archaea and the common eukaryotic model system, and it may reflect the evolutionary history of the eukaryotic 5S rRNA system from the archaeal form. Our results also imply G. lamblia might be a primitive eukaryote with secondary parasitically-degenerated features.

  14. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.

    Science.gov (United States)

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-10-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. © 2013 Ben-Gurion University The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes.

    Science.gov (United States)

    Tabaja, Nassif; Yuan, Zhenyu; Oswald, Franz; Kovall, Rhett A

    2017-06-23

    The Notch pathway is a cell-to-cell signaling mechanism that is essential for tissue development and maintenance, and aberrant Notch signaling has been implicated in various cancers, congenital defects, and cardiovascular diseases. Notch signaling activates the expression of target genes, which are regulated by the transcription factor CSL (CBF1/RBP-J, Su(H), Lag-1). CSL interacts with both transcriptional corepressor and coactivator proteins, functioning as both a repressor and activator, respectively. Although Notch activation complexes are relatively well understood at the structural level, less is known about how CSL interacts with corepressors. Recently, a new RBP-J (mammalian CSL ortholog)-interacting protein termed RITA has been identified and shown to export RBP-J out of the nucleus, thereby leading to the down-regulation of Notch target gene expression. However, the molecular details of RBP-J/RITA interactions are unclear. Here, using a combination of biochemical/cellular, structural, and biophysical techniques, we demonstrate that endogenous RBP-J and RITA proteins interact in cells, map the binding regions necessary for RBP-J·RITA complex formation, and determine the X-ray structure of the RBP-J·RITA complex bound to DNA. To validate the structure and glean more insights into function, we tested structure-based RBP-J and RITA mutants with biochemical/cellular assays and isothermal titration calorimetry. Whereas our structural and biophysical studies demonstrate that RITA binds RBP-J similarly to the RAM (RBP-J-associated molecule) domain of Notch, our biochemical and cellular assays suggest that RITA interacts with additional regions in RBP-J. Taken together, these results provide molecular insights into the mechanism of RITA-mediated regulation of Notch signaling, contributing to our understanding of how CSL functions as a transcriptional repressor of Notch target genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea

    Directory of Open Access Journals (Sweden)

    Wu Bin

    2012-01-01

    Full Text Available Abstract Background Digitalis purpurea is an important ornamental and medicinal plant. There is considerable interest in exploring its transcriptome. Results Through high-throughput 454 sequencing and subsequent assembly, we obtained 23532 genes, of which 15626 encode conserved proteins. We determined 140 unigenes to be candidates involved in cardiac glycoside biosynthesis. It could be grouped into 30 families, of which 29 were identified for the first time in D. purpurea. We identified 2660 mRNA-like npcRNA (mlncRNA candidates, an emerging class of regulators, using a computational mlncRNA identification pipeline and 13 microRNA-producing unigenes based on sequence conservation and hairpin structure-forming capability. Twenty five protein-coding unigenes were predicted to be targets of these microRNAs. Among the mlncRNA candidates, only 320 could be grouped into 140 families with at least two members in a family. The majority of D. purpurea mlncRNAs were species-specific and many of them showed tissue-specific expression and responded to cold and dehydration stresses. We identified 417 protein-coding genes with regions significantly homologous or complementary to 375 mlncRNAs. It includes five genes involved in secondary metabolism. A positive correlation was found in gene expression between protein-coding genes and the homologous mlncRNAs in response to cold and dehydration stresses, while the correlation was negative when protein-coding genes and mlncRNAs were complementary to each other. Conclusions Through comprehensive transcriptome analysis, we not only identified 29 novel gene families potentially involved in the biosynthesis of cardiac glycosides but also characterized a large number of mlncRNAs. Our results suggest the importance of mlncRNAs in secondary metabolism and stress response in D. purpurea.

  17. Reveal genes functionally associated with ACADS by a network study.

    Science.gov (United States)

    Chen, Yulong; Su, Zhiguang

    2015-09-15

    Establishing a systematic network is aimed at finding essential human gene-gene/gene-disease pathway by means of network inter-connecting patterns and functional annotation analysis. In the present study, we have analyzed functional gene interactions of short-chain acyl-coenzyme A dehydrogenase gene (ACADS). ACADS plays a vital role in free fatty acid β-oxidation and regulates energy homeostasis. Modules of highly inter-connected genes in disease-specific ACADS network are derived by integrating gene function and protein interaction data. Among the 8 genes in ACADS web retrieved from both STRING and GeneMANIA, ACADS is effectively conjoined with 4 genes including HAHDA, HADHB, ECHS1 and ACAT1. The functional analysis is done via ontological briefing and candidate disease identification. We observed that the highly efficient-interlinked genes connected with ACADS are HAHDA, HADHB, ECHS1 and ACAT1. Interestingly, the ontological aspect of genes in the ACADS network reveals that ACADS, HAHDA and HADHB play equally vital roles in fatty acid metabolism. The gene ACAT1 together with ACADS indulges in ketone metabolism. Our computational gene web analysis also predicts potential candidate disease recognition, thus indicating the involvement of ACADS, HAHDA, HADHB, ECHS1 and ACAT1 not only with lipid metabolism but also with infant death syndrome, skeletal myopathy, acute hepatic encephalopathy, Reye-like syndrome, episodic ketosis, and metabolic acidosis. The current study presents a comprehensible layout of ACADS network, its functional strategies and candidate disease approach associated with ACADS network. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility.

    Science.gov (United States)

    An, X-K; Fang, J; Yu, Z-Z; Lin, Q; Lu, C-X; Qu, H-L; Ma, Q-L

    2017-08-01

    Several genome-wide association studies (GWASs) in Caucasian populations have identified 12 loci that are significantly associated with migraine. More evidence suggests that serotonin receptors are also involved in migraine pathophysiology. In the present study, a case-control study was conducted in a cohort of 581 migraine cases and 533 ethnically matched controls among a Chinese population. Eighteen polymorphisms from serotonin receptors and GWASs were selected, and genotyping was performed using a Sequenom MALDI-TOF mass spectrometry iPLEX platform. The genotypic and allelic distributions of MEF2D rs2274316 and ASTN2 rs6478241 were significantly different between migraine patients and controls. Univariate and multivariate analysis revealed significant associations of polymorphisms in the MEF2D and ASTN2 genes with migraine susceptibility. MEF2D, PRDM16 and ASTN2 were also found to be associated with migraine without aura (MO) and migraine with family history. And, MEF2D and ASTN2 also served as genetic risk factors for the migraine without family history. The generalized multifactor dimensionality reduction analysis identified that MEF2D and HTR2E constituted the two-factor interaction model. Our study suggests that the MEF2D, PRDM16 and ASTN2 genes from GWAS are associated with migraine susceptibility, especially MO, among Chinese patients. It appears that there is no association with serotonin receptor related genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation.

    Science.gov (United States)

    Pasillas, Martina P; Shields, Sarah; Reilly, Rebecca; Strnadel, Jan; Behl, Christian; Park, Robin; Yates, John R; Klemke, Richard; Gonias, Steven L; Coppinger, Judith A

    2015-01-01

    Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Proteomic Analysis Reveals a Role for Bcl2-associated Athanogene 3 and Major Vault Protein in Resistance to Apoptosis in Senescent Cells by Regulating ERK1/2 Activation*

    Science.gov (United States)

    Pasillas, Martina P.; Shields, Sarah; Reilly, Rebecca; Strnadel, Jan; Behl, Christian; Park, Robin; Yates, John R.; Klemke, Richard; Gonias, Steven L.; Coppinger, Judith A.

    2015-01-01

    Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer. PMID:24997994

  1. Characteristics of the tomato chromoplast revealed by proteomic analysis

    OpenAIRE

    Barsan, Cristina; Sanchez-Bel, Paloma; Rombaldi, César Valmor; Egea, Isabel; Rossignol, Michel; Kuntz, Marcel; Zouine, Mohamed; Latché, Alain; Bouzayen, Mondher; Pech, Jean-Claude

    2010-01-01

    Chromoplasts are non-photosynthetic specialized plastids that are important in ripening tomato fruit (Solanum lycopersicum) since, among other functions, they are the site of accumulation of coloured compounds. Analysis of the proteome of red fruit chromoplasts revealed the presence of 988 proteins corresponding to 802 Arabidopsis unigenes, among which 209 had not been listed so far in plastidial databanks. These data revealed several features of the chromoplast. Proteins of lipid metabolism ...

  2. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    Science.gov (United States)

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  3. Metabolomics reveals distinct neurochemical profiles associated with stress resilience

    Directory of Open Access Journals (Sweden)

    Brooke N. Dulka

    2017-12-01

    Full Text Available Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which to investigate the biological basis of stress resilience. While there is growing interest in identifying biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice were subjected to acute social defeat, and tissues were immediately collected from the ventromedial prefrontal cortex (vmPFC, basolateral/central amygdala (BLA/CeA, nucleus accumbens (NAc, and dorsal hippocampus (dHPC. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS was used for the detection of water-soluble neurochemicals. In the second experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter, animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected from the vmPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker characterized stress-related phenotypes in both species, commonalities were found. For instance, in both model systems, animals resistant to social defeat stress also show increased concentration of molecules to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, unidentified spectral features were preliminarily annotated as potential targets for future experiments. Overall, these findings

  4. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level

    Directory of Open Access Journals (Sweden)

    Oostra Ben A

    2010-03-01

    Full Text Available Abstract Background Serum creatinine (SCR is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in SCR level is explicable by genetic factors. Methods We performed a meta-analysis of genome-wide association studies of SCR undertaken in five population isolates ('discovery cohorts', all of which are part of the European Special Population Network (EUROSPAN project. Genes showing the strongest evidence for an association with SCR (candidate loci were replicated in two additional population-based samples ('replication cohorts'. Results After the discovery meta-analysis, 29 loci were selected for replication. Association between SCR level and polymorphisms in the collagen type XXII alpha 1 (COL22A1 gene, on chromosome 8, and in the synaptotagmin-1 (SYT1 gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10-6 and 1.7 × 10-4, respectively. Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (GABRR2 gene and the ubiquitin-conjugating enzyme E2-J1 (UBE2J1 gene (replication p value = 3.6 × 10-3. Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (UMOD gene and in the schroom family member 3 (SCHROOM3 gene were also replicated. Conclusions While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes SYT1 and GABRR2 corroborate previous findings that highlighted a possible role of the neurotransmitters GABAA receptors in the regulation of the glomerular basement membrane and a possible interaction between GABAAreceptors and synaptotagmin-I at the podocyte level.

  5. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  6. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  7. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288.

    Science.gov (United States)

    Heng, Shuangping; Wei, Chao; Jing, Bing; Wan, Zhengjie; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Shen, Jinxiong

    2014-04-30

    Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line "J163-4" are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the

  8. Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms.

    Science.gov (United States)

    Poinar, George

    2017-07-01

    Ticks transmit a variety of pathogenic organisms to vertebrates, especially mammals. The fossil record of such associations is extremely rare. An engorged nymphal tick of the genus Ambylomma in Dominican amber was surrounded by erythrocytes from its mammalian host. Some of the exposed erythrocytes contained developmental stages of a hemoprotozoan resembling members of the Order Piroplasmida. The fossil piroplasm is described, its stages compared with those of extant piroplasms, and reasons provided why the mammalian host could have been a primate. The parasites were also found in the gut epithelial cells and body cavity of the fossil tick. Aside from providing the first fossil mammalian red blood cells and the first fossil intraerythrocytic hemoparasites, the present discovery shows that tick-piroplasm associations were already well established in the Tertiary. This discovery provides a timescale that can be used in future studies on the evolution of the Piroplasmida. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online March 20, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.

  9. Multicohort Genomewide Association Study Reveals a New Signal of Protection Against HIV-1 Acquisition

    Science.gov (United States)

    Limou, Sophie; Delaneau, Olivier; van Manen, Daniëlle; An, Ping; Sezgin, Efe; Le Clerc, Sigrid; Coulonges, Cédric; Troyer, Jennifer L.; Veldink, Jan H.; van den Berg, Leonard H.; Spadoni, Jean-Louis; Taing, Lieng; Labib, Taoufik; Montes, Matthieu; Delfraissy, Jean-François; Schachter, François; O’Brien, Stephen J.; Buchbinder, Susan; van Natta, Mark L.; Jabs, Douglas A.; Froguel, Philippe; Schuitemaker, Hanneke; Winkler, Cheryl A.

    2012-01-01

    Background. To date, only mutations in CCR5 have been shown to confer resistance to human immunodeficiency virus type 1 (HIV-1) infection, and these explain only a small fraction of the observed variability in HIV susceptibility. Methods. We performed a meta-analysis between 2 independent European genomewide association studies, each comparing HIV-1 seropositive cases with normal population controls known to be HIV uninfected, to identify single-nucleotide polymorphisms (SNPs) associated with the HIV-1 acquisition phenotype. SNPs exhibiting P < 10−5 in this first stage underwent second-stage analysis in 2 independent US cohorts of European descent. Results. After the first stage, a single highly significant association was revealed for the chromosome 8 rs6996198 with HIV-1 acquisition and was replicated in both second-stage cohorts. Across the 4 groups, the rs6996198-T allele was consistently associated with a significant reduced risk of HIV-1 infection, and the global meta-analysis reached genomewide significance: Pcombined = 7.76 × 10−8. Conclusions. We provide strong evidence of association for a common variant with HIV-1 acquisition in populations of European ancestry. This protective signal against HIV-1 infection is the first identified outside the CCR5 nexus. First clues point to a potential functional role for a nearby candidate gene, CYP7B1, but this locus warrants further investigation. PMID:22362864

  10. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks.

    Science.gov (United States)

    Wruck, Wasco; Schröter, Friederike; Adjaye, James

    2016-01-01

    Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.

  11. A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel

    Science.gov (United States)

    Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.

    2013-01-01

    Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647

  12. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia

    DEFF Research Database (Denmark)

    van Schijndel, Jessica E; van Loo, Karen M J; van Zweeden, Martine

    2009-01-01

    selected non-synonymous single-nucleotide polymorphisms (SNPs) in three independent Caucasian schizophrenia case-control cohorts (USA, Denmark and Norway). A meta-analysis revealed ten non-synonymous SNPs that were nominally associated with schizophrenia, nine of which have not been previously linked...... attractive candidate for further study concerns SNP rs6336 (q=0.12) that causes the substitution of an evolutionarily highly conserved amino acid residue in the kinase domain of the neurodevelopmentally important receptor TRKA. Thus, TRKA signaling may represent a novel susceptibility pathway...

  13. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression.

    LENUS (Irish Health Repository)

    Behan, A T

    2009-06-01

    The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS\\/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS\\/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one\\/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports

  14. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Jingwei Yuan

    Full Text Available Egg number (EN, egg laying rate (LR and age at first egg (AFE are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens.

  15. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    Science.gov (United States)

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  16. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  17. The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion.

    Science.gov (United States)

    Ramsubramaniam, Nikhil; Harris, Steven D; Marten, Mark R

    2014-11-01

    We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation.

    Directory of Open Access Journals (Sweden)

    Liman Wang

    Full Text Available Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA. Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development.

  19. Sensitization trajectories in childhood revealed by using a cluster analysis

    DEFF Research Database (Denmark)

    Schoos, Ann-Marie M.; Chawes, Bo L.; Melen, Erik

    2017-01-01

    Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent......BACKGROUND: Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more...... biologically and clinically relevant. OBJECTIVE: We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. METHODS: We investigated 398 children from the at-risk Copenhagen...

  20. Analysis reveals potential rangeland impacts if Williamson Act eliminated

    Directory of Open Access Journals (Sweden)

    William C. Wetzel

    2012-10-01

    Full Text Available California budget cuts have resulted in dramatic reductions in state funding for the Williamson Act, a land protection program that reduces property taxes for the owners of 15 million acres of California farms and rangeland. With state reimbursements to counties eliminated, the decision to continue Williamson Act contracts lies with individual counties. We investigated the consequences of eliminating the Williamson Act, using a geospatial analysis and a mail questionnaire asking ranchers for plans under a hypothetical elimination scenario. The geospatial analysis revealed that 72% of rangeland parcels enrolled in Williamson Act contracts contained habitat important for statewide conservation goals. Presented with the elimination scenario, survey respondents reported an intention to sell 20% of their total 496,889 acres. The tendency of survey participants to respond that they would sell land was highest among full-time ranchers with low household incomes and without off-ranch employment. A majority (76% of the ranchers who reported that they would sell land predicted that the buyers would develop it for nonagricultural uses, suggesting substantial changes to California's landscape in a future without the Williamson Act.

  1. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium.

    Science.gov (United States)

    Iskandar, Christelle F; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J; Hansen, Martin A; Sørensen, Søren J; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium .

  3. Identification of unstable network modules reveals disease modules associated with the progression of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Masataka Kikuchi

    Full Text Available Alzheimer's disease (AD, the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs, we identified the PINs expressed in three brain regions: the entorhinal cortex (EC, hippocampus (HIP and superior frontal gyrus (SFG. Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system.

  4. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota

    Science.gov (United States)

    Pereira-Marques, Joana; Pinto-Ribeiro, Ines; Costa, Jose L; Carneiro, Fatima; Machado, Jose C

    2018-01-01

    Objective Gastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma. Design The gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt. Results The gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins. Conclusions Detailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis. PMID:29102920

  5. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.

    Directory of Open Access Journals (Sweden)

    Michele Cavallari

    2011-04-01

    Full Text Available The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D, a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD was lower than control (1.50±0.04; p = 0.002. Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients.

  6. Revealing the underlying drivers of disaster risk: a global analysis

    Science.gov (United States)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL

  7. Analysis of histological and immunological parameters of metastatic lymph nodes from colon cancer patients reveals that T-helper 1 type immune response is associated with improved overall survival.

    Science.gov (United States)

    Nizri, Eran; Greenman-Maaravi, Nofar; Bar-David, Shoshi; Ben-Yehuda, Amir; Weiner, Gilad; Lahat, Guy; Klausner, Joseph

    2016-11-01

    Lymph node (LN) involvement in colonic carcinoma (CC) is a grave prognostic sign and mandates the addition of adjuvant treatment. However, in light of the histological variability and outcomes observed, we hypothesized that patients with LN metastases (LNM) comprise different subgroups.We retrospectively analyzed the histological sections of 82 patients with CC and LNM. We studied various histological parameters (such as tumor grade, desmoplasia, and preservation of LN architecture) as well as the prevalence of specific peritumoral immune cells (CD8, CD20, T-bet, and GATA-3). We correlated the histological and immunological data to patient outcome.Tumor grade was a significant prognostic factor even in patients with LNM. So was the number of LN involved (N1/N2 stage). From the morphological parameters tested (LN extracapsular invasion, desmoplasia in LN, LN architecture preservation, and mode of metastases distribution), none was found to be significantly associated with overall survival (OS). The mean OS of CD8 low patients was 66.6 ± 6.25 versus 71.4 ± 5.1 months for CD8 high patients (P = 0.79). However, T-helper (Th) 1 immune response skewing (measured by Th1/Th2 ratio >1) was significantly associated with improved OS. For patients with low ratio, the median OS was 35.5 ± 5 versus 83.5 months for patients with high Th1/Th2 ratio (P = 0.001).The histological presentation of LNM does not entail specific prognostic information. However, the finding of Th1 immune response in LN signifies a protective immune response. Future studies should be carried to verify this marker and develop a strategy that augments this immune response during subsequent adjuvant treatment.

  8. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    Science.gov (United States)

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  9. Quantitative flux analysis reveals folate-dependent NADPH production

    Science.gov (United States)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  10. Comparative analysis reveals that polyploidy does not decelerate diversification in fish.

    Science.gov (United States)

    Zhan, S H; Glick, L; Tsigenopoulos, C S; Otto, S P; Mayrose, I

    2014-02-01

    While the proliferation of the species-rich teleost fish has been ascribed to an ancient genome duplication event at the base of this group, the broader impact of polyploidy on fish evolution and diversification remains poorly understood. Here, we investigate the association between polyploidy and diversification in several fish lineages: the sturgeons (Acipenseridae: Acipenseriformes), the botiid loaches (Botiidae: Cypriniformes), Cyprininae fishes (Cyprinidae: Cypriniformes) and the salmonids (Salmonidae: Salmoniformes). Using likelihood-based evolutionary methodologies, we co-estimate speciation and extinction rates associated with polyploid vs. diploid fish lineages. Family-level analysis of Acipenseridae and Botiidae revealed no significant difference in diversification rates between polyploid and diploid relatives, while analysis of the subfamily Cyprininae revealed higher polyploid diversification. Additionally, order-level analysis of the polyploid Salmoniformes and its diploid sister clade, the Esociformes, did not support a significantly different net diversification rate between the two groups. Taken together, our results suggest that polyploidy is generally not associated with decreased diversification in fish - a pattern that stands in contrast to that previously observed in plants. While there are notable differences in the time frame examined in the two studies, our results suggest that polyploidy is associated with different diversification patterns in these two major branches of the eukaryote tree of life. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Willer, Cristen J; Berndt, Sonja I

    2010-01-01

    in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P SH2B1 and BDNF) map near key hypothalamic regulators...

  12. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation.

    Directory of Open Access Journals (Sweden)

    Brante P Sampey

    Full Text Available Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD to "Cafeteria diets" (CAF consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity

  13. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  14. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian'an; Maegi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segre, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpelaenen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tonu; Feitosa, Mary F.; Kutalik, Zoltan; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; van Meurs, Joyce B. J.

    2010-01-01

    Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of

  15. Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis.

    Science.gov (United States)

    Paes, Jéssica A; Lorenzatto, Karina R; de Moraes, Sofia N; Moura, Hercules; Barr, John R; Ferreira, Henrique B

    2017-02-10

    Mycoplasma hyopneumoniae and Mycoplasma flocculare cohabit the porcine respiratory tract. However, M. hyopneumoniae causes the porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. Comparative analyses demonstrated high similarity between these species, which includes the sharing of all predicted virulence factors. Nevertheless, studies related to soluble secretomes of mycoplasmas were little known, although they are important for bacterial-host interactions. The aim of this study was to perform a comparative analysis between the soluble secreted proteins repertoires of the pathogenic Mycoplasma hyopneumoniae and its closely related commensal Mycoplasma flocculare. For that, bacteria were cultured in medium with reduced serum concentration and secreted proteins were identified by a LC-MS/MS proteomics approach. Altogether, 62 and 26 proteins were identified as secreted by M. hyopneumoniae and M. flocculare, respectively, being just seven proteins shared between these bacteria. In M. hyopneumoniae secretome, 15 proteins described as virulence factors were found; while four putative virulence factors were identified in M. flocculare secretome. For the first time, clear differences related to virulence were found between these species, helping to elucidate the pathogenic nature of M. hyopneumoniae to swine hosts. For the first time, the secretomes of two porcine respiratory mycoplasmas, namely the pathogenic M. hyopneumoniae and the commensal M. flocculare were compared. The presented results revealed previously unknown differences between these two genetically related species, some of which are associated to the M. hyopneumoniae ability to cause porcine enzootic pneumonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  17. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  18. Allosteric effects in bacteriophage HK97 procapsids revealed directly from covariance analysis of cryo EM data.

    Science.gov (United States)

    Xu, Nan; Veesler, David; Doerschuk, Peter C; Johnson, John E

    2018-05-01

    The information content of cryo EM data sets exceeds that of the electron scattering potential (cryo EM) density initially derived for structure determination. Previously we demonstrated the power of data variance analysis for characterizing regions of cryo EM density that displayed functionally important variance anomalies associated with maturation cleavage events in Nudaurelia Omega Capensis Virus and the presence or absence of a maturation protease in bacteriophage HK97 procapsids. Here we extend the analysis in two ways. First, instead of imposing icosahedral symmetry on every particle in the data set during the variance analysis, we only assume that the data set as a whole has icosahedral symmetry. This change removes artifacts of high variance along icosahedral symmetry axes, but retains all of the features previously reported in the HK97 data set. Second we present a covariance analysis that reveals correlations in structural dynamics (variance) between the interior of the HK97 procapsid with the protease and regions of the exterior (not seen in the absence of the protease). The latter analysis corresponds well with hydrogen deuterium exchange studies previously published that reveal the same correlation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    Science.gov (United States)

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  20. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  1. Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-08-30

    genes with higher expression in infected leaf tissue, suggesting that they may play a role in pathogenicity. For two other scaffolds, no transcripts were detected in either condition, and PCR assays support the hypothesis that at least one of these scaffolds corresponds to a dispensable chromosome that is not required for survival or pathogenicity. Our study revealed major changes in the transcriptome of Mycosphaerella fijiensis, when associating with its host compared to during saprophytic growth in medium. This analysis identified putative pathogenicity genes and also provides support for the existence of dispensable chromosomes in this fungus.

  2. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...

  3. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  4. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis.

    Science.gov (United States)

    Davolos, Domenico; Pietrangeli, Biancamaria; Persiani, Anna Maria; Maggi, Oriana

    2012-02-01

    The morphology of three phenetically identical Penicillium isolates, collected from the bioaerosol in a restoration laboratory in Italy, displayed macro- and microscopic characteristics that were similar though not completely ascribable to Penicillium raistrickii. For this reason, a phylogenetic approach based on DNA sequencing analysis was performed to establish both the taxonomic status and the evolutionary relationships of these three peculiar isolates in relation to previously described species of the genus Penicillium. We used four nuclear loci (both rRNA and protein coding genes) that have previously proved useful for the molecular investigation of taxa belonging to the genus Penicillium at various evolutionary levels. The internal transcribed spacer region (ITS1-5.8S-ITS2), domains D1 and D2 of the 28S rDNA, a region of the tubulin beta chain gene (benA) and part of the calmodulin gene (cmd) were amplified by PCR and sequenced. Analysis of the rRNA genes and of the benA and cmd sequence data indicates the presence of three isogenic isolates belonging to a genetically distinct species of the genus Penicillium, here described and named Penicillium simile sp. nov. (ATCC MYA-4591(T)  = CBS 129191(T)). This novel species is phylogenetically different from P. raistrickii and other related species of the genus Penicillium (e.g. Penicillium scabrosum), from which it can be distinguished on the basis of morphological trait analysis.

  6. Subfield profitability analysis reveals an economic case for cropland diversification

    Science.gov (United States)

    Brandes, E.; McNunn, G. S.; Schulte, L. A.; Bonner, I. J.; Muth, D. J.; Babcock, B. A.; Sharma, B.; Heaton, E. A.

    2016-01-01

    Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in agricultural systems, but are limited by perceived conflicts between economic and ecosystem service goals and a lack of tools enabling effective operational management. Here we use Iowa—an agriculturally homogeneous state representative of the Maize Belt—to demonstrate an economic rationale for cropland diversification at the subfield scale. We used a novel computational framework that integrates disparate but publicly available data to map ˜3.3 million unique potential management polygons (9.3 Mha) and reveal subfield opportunities to increase overall field profitability. We analyzed subfield profitability for maize/soybean fields during 2010-2013—four of the most profitable years in recent history—and projected results for 2015. While cropland operating at a loss of US 250 ha-1 or more was negligible between 2010 and 2013 at 18 000-190 000 ha (profitable areas, incorporating conservation management that breaks even (e.g., planting low-input perennials), into low-yielding portions of fields could increase overall cropland profitability by 80%. This approach is applicable to the broader region and differs substantially from the status quo of ‘top-down’ land management for conservation by harnessing private interest to align profitability with the production of ecosystem services.

  7. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  8. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    Directory of Open Access Journals (Sweden)

    Qingzhu Hua

    2016-09-01

    Full Text Available Red dragon fruit or red pitaya (Hylocereus polyrhizus is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  9. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    Science.gov (United States)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  10. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  11. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    Science.gov (United States)

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  12. Multilocus sequence analysis of nectar pseudomonads reveals high genetic diversity and contrasting recombination patterns.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas 'sensu stricto' isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria.

  13. Multilocus Sequence Analysis of Nectar Pseudomonads Reveals High Genetic Diversity and Contrasting Recombination Patterns

    Science.gov (United States)

    Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  14. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  15. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  16. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    David P Hall

    Full Text Available Acute mountain sickness (AMS is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS, we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25. These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  17. Demographic analysis reveals gradual senescence in the flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Braeckman Bart P

    2009-07-01

    Full Text Available Abstract Free-living flatworms ("Turbellaria" are appropriate model organisms to gain better insight into the role of stem cells in ageing and rejuvenation. Ageing research in flatworms is, however, still scarce. This is partly due to culture difficulties and the lack of a complete set of demographic data, including parameters such as median lifespan and age-specific mortality rate. In this paper, we report on the first flatworm survival analysis. We used the species Macrostomum lignano, which is an emerging model for studying the reciprocal influence between stem cells, ageing and rejuvenation. This species has a median lifespan of 205 ± 13 days (average ± standard deviation [SD] and a 90th percentile lifespan of 373 ± 32 days. The maximum lifespan, however, is more than 745 days, and the average survival curve is characterised by a long tail because a small number of individuals lives twice as long as 90% of the population. Similar to earlier observations in a wide range of animals, in M. lignano the age-specific mortality rate increases exponentially, but levels off at the oldest ages. To compare the senescence of M. lignano with that of other ageing models, we determined the mortality rate doubling time, which is 0.20 ± 0.02 years. As a result, we can conclude that M. lignano shows gradual senescence at a rate similar to the vertebrate ageing models Rattus norvegicus and Mus musculus. We argue that M. lignano is a suitable model for ageing and rejuvenation research, and especially for the role of stem cells in these processes, due to its accessible stem cell system and regeneration capacity, and the possibility of combining stem cell studies with demographic analyses.

  18. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  19. Network analysis reveals multiscale controls on streamwater chemistry.

    Science.gov (United States)

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  20. Revealing Students' Cognitive Structure about Physical and Chemical Change: Use of a Word Association Test

    Science.gov (United States)

    Yildirir, Hasene Esra; Demirkol, Hatice

    2018-01-01

    The current study aimed at examining the utility of a word association test in revealing students' cognitive structure in a specific chemistry topic through a word association test. The participants were 153 6th graders in a western Turkish city. The results revealed that the word association test serves a useful purpose in exploring the students'…

  1. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  2. The Hidden Diversity of Zanclea Associated with Scleractinians Revealed by Molecular Data.

    Directory of Open Access Journals (Sweden)

    Simone Montano

    Full Text Available Scleractinian reef corals have recently been acknowledged as the most numerous host group found in association with hydroids belonging to the Zanclea genus. However, knowledge of the molecular phylogenetic relationships among Zanclea species associated with scleractinians is just beginning. This study, using the nuclear 28S rDNA region and the fast-evolving mitochondrial 16S rRNA and COI genes, provides the most comprehensive phylogenetic reconstruction of the genus Zanclea with a particular focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a combined mitochondrial 16S and COI phylogenetic tree revealed a multitude of hidden molecular lineages within this group (Clades I, II, III, V, VI, VII, and VIII, suggesting the existence of both host-generalist and genus-specific lineages of Zanclea associated with scleractinians. In addition to Z. gallii living in association with the genus Acropora, we discovered four well-supported lineages (Clades I, II, III, and VII, each one forming a strict association with a single scleractinian genus, including sequences of Zanclea associated with Montipora from two geographically separated areas (Maldives and Taiwan. Two host-generalist Zanclea lineages were also observed, and one of them was formed by Zanclea specimens symbiotic with seven scleractinian genera (Clade VIII. We also found that the COI gene allows the recognition of separated hidden lineages in agreement with the commonly recommended mitochondrial 16S as a DNA barcoding gene for Hydrozoa and shows reasonable potential for phylogenetic and evolutionary analyses in the genus Zanclea. Finally, as no DNA sequences are available for the majority of the nominal Zanclea species known, we note that they will be necessary to elucidate the diversity of the

  3. Association mapping in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching.

    Science.gov (United States)

    Nambeesan, Savithri U; Mandel, Jennifer R; Bowers, John E; Marek, Laura F; Ebert, Daniel; Corbi, Jonathan; Rieseberg, Loren H; Knapp, Steven J; Burke, John M

    2015-03-11

    Shoot branching is an important determinant of plant architecture and influences various aspects of growth and development. Selection on branching has also played an important role in the domestication of crop plants, including sunflower (Helianthus annuus L.). Here, we describe an investigation of the genetic basis of variation in branching in sunflower via association mapping in a diverse collection of cultivated sunflower lines. Detailed phenotypic analyses revealed extensive variation in the extent and type of branching within the focal population. After correcting for population structure and kinship, association analyses were performed using a genome-wide collection of SNPs to identify genomic regions that influence a variety of branching-related traits. This work resulted in the identification of multiple previously unidentified genomic regions that contribute to variation in branching. Genomic regions that were associated with apical and mid-apical branching were generally distinct from those associated with basal and mid-basal branching. Homologs of known branching genes from other study systems (i.e., Arabidopsis, rice, pea, and petunia) were also identified from the draft assembly of the sunflower genome and their map positions were compared to those of associations identified herein. Numerous candidate branching genes were found to map in close proximity to significant branching associations. In sunflower, variation in branching is genetically complex and overall branching patterns (i.e., apical vs. basal) were found to be influenced by distinct genomic regions. Moreover, numerous candidate branching genes mapped in close proximity to significant branching associations. Although the sunflower genome exhibits localized islands of elevated linkage disequilibrium (LD), these non-random associations are known to decay rapidly elsewhere. The subset of candidate genes that co-localized with significant associations in regions of low LD represents the most

  4. The Hidden Diversity of Zanclea Associated with Scleractinians Revealed by Molecular Data

    KAUST Repository

    Montano, Simone

    2015-07-24

    Scleractinian reef corals have recently been acknowledged as the most numerous host group found in association with hydroids belonging to the Zanclea genus. However, knowledge of the molecular phylogenetic relationships among Zanclea species associated with scleractinians is just beginning. This study, using the nuclear 28S rDNA region and the fast-evolving mitochondrial 16S rRNA and COI genes, provides the most comprehensive phylogenetic reconstruction of the genus Zanclea with a particular focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a combined mitochondrial 16S and COI phylogenetic tree revealed a multitude of hidden molecular lineages within this group (Clades I, II, III, V, VI, VII, and VIII), suggesting the existence of both host-generalist and genus-specific lineages of Zanclea associated with scleractinians. In addition to Z. gallii living in association with the genus Acropora, we discovered four well-supported lineages (Clades I, II, III, and VII), each one forming a strict association with a single scleractinian genus, including sequences of Zanclea associated with Montipora from two geographically separated areas (Maldives and Taiwan). Two host-generalist Zanclea lineages were also observed, and one of them was formed by Zanclea specimens symbiotic with seven scleractinian genera (Clade VIII). We also found that the COI gene allows the recognition of separated hidden lineages in agreement with the commonly recommended mitochondrial 16S as a DNA barcoding gene for Hydrozoa and shows reasonable potential for phylogenetic and evolutionary analyses in the genus Zanclea. Finally, as no DNA sequences are available for the majority of the nominal Zanclea species known, we note that they will be necessary to elucidate the diversity of the Zanclea

  5. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  6. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  7. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing.

    Science.gov (United States)

    Sfanos, Karen Sandell; Bruno, Tullia C; Maris, Charles H; Xu, Lauren; Thoburn, Christopher J; DeMarzo, Angelo M; Meeker, Alan K; Isaacs, William B; Drake, Charles G

    2008-06-01

    Pathologic examination of prostate glands removed from patients with prostate cancer commonly reveals infiltrating CD4+ and CD8+ T cells. Little is known about the phenotype of these cells, despite accumulating evidence suggesting a potential role for chronic inflammation in the etiology of prostate cancer. We developed a technique that samples the majority of the peripheral prostate through serial needle aspirates. CD4+ prostate-infiltrating lymphocytes (PIL) were isolated using magnetic beads and analyzed for subset skewing using both flow cytometry and quantitative reverse transcription-PCR. The transcriptional profile of fluorescence-activated cell sorted prostate-infiltrating regulatory T cells (CD4+, CD25+, GITR+) was compared with naïve, peripheral blood T cells using microarray analysis. CD4+ PIL showed a paucity of TH2 (interleukin-4-secreting) cells, a surprising finding given the generally accepted association of these cells with chronic, smoldering inflammation. Instead, CD4+ PIL seemed to be skewed towards a regulatory Treg phenotype (FoxP3+) as well as towards the TH17 phenotype (interleukin-17+). We also found that a preponderance of TH17-mediated inflammation was associated with a lower pathologic Gleason score. These protein level data were reflected at the message level, as analyzed by quantitative reverse transcription-PCR. Microarray analysis of pooled prostate-infiltrating T(reg) revealed expected Treg-associated transcripts (FoxP3, CTLA-4, GITR, LAG-3) as well as a number of unique cell surface markers that may serve as additional Treg markers. Taken together, these data suggest that TH17 and/or Treg CD4+ T cells (rather than TH2 T cells) may be involved in the development or progression of prostate cancer.

  8. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  9. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia.

    Science.gov (United States)

    Leavey, Katherine; Bainbridge, Shannon A; Cox, Brian J

    2015-01-01

    Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting 3-5% of all pregnancies. To date, PE has no cure, early detection markers, or effective treatments short of the removal of what is thought to be the causative organ, the placenta, which may necessitate a preterm delivery. Additionally, numerous small placental microarray studies attempting to identify "PE-specific" genes have yielded inconsistent results. We therefore hypothesize that preeclampsia is a multifactorial disease encompassing several pathology subclasses, and that large cohort placental gene expression analysis will reveal these groups. To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 microarray data sets across multiple platforms in order to generate a large data set of 173 patient samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples revealed three distinct molecular subclasses of PE. This included a "canonical" PE subclass demonstrating elevated expression of known PE markers and genes associated with poor oxygenation and increased secretion, as well as two other subclasses potentially representing a poor maternal response to pregnancy and an immunological presentation of preeclampsia. Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional avenues for future investigation. Hopefully, our subclassification of preeclampsia based on molecular diversity will finally lead to the development of robust diagnostics and patient-based treatments for this disorder.

  11. Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates

    Science.gov (United States)

    Börlin, Marine; Venet, Pauline; Claisse, Olivier; Salin, Franck

    2016-01-01

    ABSTRACT Three wine estates (designated A, B, and C) were sampled in Sauternes, a typical appellation of the Bordeaux wine area producing sweet white wine. From those wine estates, 551 yeast strains were collected between 2012 and 2014, added to 102 older strains from 1992 to 2011 from wine estate C. All the strains were analyzed through 15 microsatellite markers, resulting in 503 unique Saccharomyces cerevisiae genotypes, revealing high genetic diversity and a low presence of commercial yeast starters. Population analysis performed using Fst genetic distance or ancestry profiles revealed that the two closest wine estates, B and C, which have juxtaposed vineyard plots and common seasonal staff, share more related isolates with each other than with wine estate A, indicating exchange between estates. The characterization of isolates collected 23 years ago at wine estate C in relation to recent isolates obtained at wine estate B revealed the long-term persistence of isolates. Last, during the 2014 harvest period, a temporal succession of ancestral subpopulations related to the different batches associated with the selective picking of noble rotted grapes was highlighted. IMPORTANCE High genetic diversity of S. cerevisiae isolates from spontaneous fermentation on wine estates in the Sauternes appellation of Bordeaux was revealed. Only 7% of all Sauternes strains were considered genetically related to specific commercial strains. The long-term persistence (over 20 years) of S. cerevisiae profiles on a given wine estate is highlighted. PMID:26969698

  12. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  13. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    Full Text Available Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio, neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate, the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.

  14. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    Science.gov (United States)

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  15. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  16. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Directory of Open Access Journals (Sweden)

    Cristian Pattaro

    Full Text Available Chronic kidney disease (CKD is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR, the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  17. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Wainstein Julio

    2009-06-01

    Full Text Available Abstract Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM, the association of mitochondrial DNA (mtDNA sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively. Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035. These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.

  18. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup.

    Science.gov (United States)

    Kim, Taehyeung; Park, Ah Yeon; Baek, Younghwa; Cha, Seongwon

    2017-01-01

    Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS) and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG) to HDL cholesterol (HDLC), LDL cholesterol (LDLC) to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC), LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated variants, two LDLC

  19. Genome-Wide Association Study Reveals Four Loci for Lipid Ratios in the Korean Population and the Constitutional Subgroup.

    Directory of Open Access Journals (Sweden)

    Taehyeung Kim

    Full Text Available Circulating lipid ratios are considered predictors of cardiovascular risks and metabolic syndrome, which cause coronary heart diseases. One constitutional type of Korean medicine prone to weight accumulation, the Tae-Eum type, predisposes the consumers to metabolic syndrome, hypertension, diabetes mellitus, etc. Here, we aimed to identify genetic variants for lipid ratios using a genome-wide association study (GWAS and followed replication analysis in Koreans and constitutional subgroups. GWASs in 5,292 individuals of the Korean Genome and Epidemiology Study and replication analyses in 2,567 subjects of the Korea medicine Data Center were performed to identify genetic variants associated with triglyceride (TG to HDL cholesterol (HDLC, LDL cholesterol (LDLC to HDLC, and non-HDLC to HDLC ratios. For subgroup analysis, a computer-based constitution analysis tool was used to categorize the constitutional types of the subjects. In the discovery stage, seven variants in four loci, three variants in three loci, and two variants in one locus were associated with the ratios of log-transformed TG:HDLC (log[TG]:HDLC, LDLC:HDLC, and non-HDLC:HDLC, respectively. The associations of the GWAS variants with lipid ratios were replicated in the validation stage: for the log[TG]:HDLC ratio, rs6589566 near APOA5 and rs4244457 and rs6586891 near LPL; for the LDLC:HDLC ratio, rs4420638 near APOC1 and rs17445774 near C2orf47; and for the non-HDLC:HDLC ratio, rs6589566 near APOA5. Five of these six variants are known to be associated with TG, LDLC, and/or HDLC, but rs17445774 was newly identified to be involved in lipid level changes in this study. Constitutional subgroup analysis revealed effects of variants associated with log[TG]:HDLC and non-HDLC:HDLC ratios in both the Tae-Eum and non-Tae-Eum types, whereas the effect of the LDLC:HDLC ratio-associated variants remained only in the Tae-Eum type. In conclusion, we identified three log[TG]:HDLC ratio-associated

  20. Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2018-01-01

    In the past few years, many studies investigated the anaerobic digestion microbiome by means of 16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other without taking into consideration the followed procedure for amplicons preparation and data analysis...... specifically, the microbial compositions of three laboratory scale biogas reactors were analyzed before and after addition of sodium oleate by sequencing the microbiome with three different approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis revealed that......, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results obtained was also influenced by the number of hypervariable regions under investigation. Finally, amplicon sequencing...

  1. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    Science.gov (United States)

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  2. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  3. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  4. The Immersive Virtual Reality Experience: A Typology of Users Revealed Through Multiple Correspondence Analysis Combined with Cluster Analysis Technique.

    Science.gov (United States)

    Rosa, Pedro J; Morais, Diogo; Gamito, Pedro; Oliveira, Jorge; Saraiva, Tomaz

    2016-03-01

    Immersive virtual reality is thought to be advantageous by leading to higher levels of presence. However, and despite users getting actively involved in immersive three-dimensional virtual environments that incorporate sound and motion, there are individual factors, such as age, video game knowledge, and the predisposition to immersion, that may be associated with the quality of virtual reality experience. Moreover, one particular concern for users engaged in immersive virtual reality environments (VREs) is the possibility of side effects, such as cybersickness. The literature suggests that at least 60% of virtual reality users report having felt symptoms of cybersickness, which reduces the quality of the virtual reality experience. The aim of this study was thus to profile the right user to be involved in a VRE through head-mounted display. To examine which user characteristics are associated with the most effective virtual reality experience (lower cybersickness), a multiple correspondence analysis combined with cluster analysis technique was performed. Results revealed three distinct profiles, showing that the PC gamer profile is more associated with higher levels of virtual reality effectiveness, that is, higher predisposition to be immersed and reduced cybersickness symptoms in the VRE than console gamer and nongamer. These findings can be a useful orientation in clinical practice and future research as they help identify which users are more predisposed to benefit from immersive VREs.

  5. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  6. Sheep skeletal muscle transcriptome analysis reveals muscle growth regulatory lncRNAs.

    Science.gov (United States)

    Chao, Tianle; Ji, Zhibin; Hou, Lei; Wang, Jin; Zhang, Chunlan; Wang, Guizhi; Wang, Jianmin

    2018-01-01

    As widely distributed domestic animals, sheep are an important species and the source of mutton. In this study, we aimed to evaluate the regulatory lncRNAs associated with muscle growth and development between high production mutton sheep (Dorper sheep and Qianhua Mutton Merino sheep) and low production mutton sheep (Small-tailed Han sheep). In total, 39 lncRNAs were found to be differentially expressed. Using co-expression analysis and functional annotation, 1,206 co-expression interactions were found between 32 lncRNAs and 369 genes, and 29 of these lncRNAs were found to be associated with muscle development, metabolism, cell proliferation and apoptosis. lncRNA-mRNA interactions revealed 6 lncRNAs as hub lncRNAs. Moreover, three lncRNAs and their associated co-expressed genes were demonstrated by cis-regulatory gene analyses, and we also found a potential regulatory relationship between the pseudogene lncRNA LOC101121401 and its parent gene FTH1. This study provides a genome-wide resolution of lncRNA and mRNA regulation in muscles from mutton sheep.

  7. A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.

    Directory of Open Access Journals (Sweden)

    Jing Qian

    Full Text Available Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT, to identify protein-coding gene association with 14 cardiometabolic (CMD related traits across 6 publicly available genome wide association (GWA meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and

  8. Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Francy L. García-Arias

    2018-03-01

    Full Text Available Association mapping has been proposed as an efficient approach to assist plant breeding programs to investigate the genetic basis of agronomic traits. In this study, we evaluated 18 traits related to yield, (FWP, NF, FWI, and FWII, fruit size-shape (FP, FA, MW, WMH, MH, HMW, DI, FSI, FSII, OVO, OBO, and fruit quality (FIR, CF, and SST, in a diverse collection of 100 accessions of Physalis peruviana including wild, landraces, and anther culture derived lines. We identified seven accessions with suitable traits: fruit weight per plant (FWP > 7,000 g/plant and cracked fruits (CF < 4%, to be used as parents in cape gooseberry breeding program. In addition, the accessions were also characterized using Genotyping By Sequencing (GBS. We discovered 27,982 and 36,142 informative SNP markers based on the alignment against the two cape gooseberry references transcriptomes. Besides, 30,344 SNPs were identified based on alignment to the tomato reference genome. Genetic structure analysis showed that the population could be divided into two or three sub-groups, corresponding to landraces-anther culture and wild accessions for K = 2 and wild, landraces, and anther culture plants for K = 3. Association analysis was carried out using a Mixed Linear Model (MLM and 34 SNP markers were significantly associated. These results reveal the basis of the genetic control of important agronomic traits and may facilitate marker-based breeding in P. peruviana.

  9. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    Science.gov (United States)

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  10. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol.

    Science.gov (United States)

    Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen

    2015-01-14

    Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.

  11. Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat (Triticum aestivum, L.

    Directory of Open Access Journals (Sweden)

    Simerjeet Kaur

    2017-11-01

    Full Text Available Plant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic biofuel industry. To reduce culm lodging in wheat and for improved ethanol production, delineation of the variation for stem cellulose content could prove useful. We present results on the analysis of the stem cellulose content of 288 diverse wheat accessions and its genome-wide association study (GWAS. Cellulose concentration ranged from 35 to 52% (w/w. Cellulose content was normally distributed in the accessions around a mean and median of 45% (w/w. Genome-wide marker-trait association study using 21,073 SNPs helped identify nine SNPs that were associated (p < 1E-05 with cellulose content. Four strongly associated (p < 8.17E-05 SNP markers were linked to wheat unigenes, which included β-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane protein of unknown function. These genes may be directly or indirectly involved in the formation of cellulose in wheat culms. GWAS results from this study have the potential for genetic manipulation of cellulose content in bread wheat and other small grain cereals to enhance culm strength and improve biofuel production.

  12. Association studies and legume synteny reveal haplotypes determining seed size in Vigna unguiculata

    Directory of Open Access Journals (Sweden)

    Mitchell R Lucas

    2013-04-01

    Full Text Available Highly specific seed market classes for cowpea and other grain legumes exists because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large-seeded lines. In this work we applied SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker based selection approaches to increase the frequency of progeny with large seed. For ~800 samples derived from eight bi-parental populations, QTL analysis was used to identify markers linked to ten trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total ten QTL were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  13. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans.To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure.The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry.Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders.High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  14. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.

    Science.gov (United States)

    Lucas, Mitchell R; Huynh, Bao-Lam; da Silva Vinholes, Patricia; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J

    2013-01-01

    Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  15. Infection Reveals a Modification of SIRT2 Critical for Chromatin Association

    Directory of Open Access Journals (Sweden)

    Jorge M. Pereira

    2018-04-01

    Full Text Available Summary: Sirtuin 2 is a nicotinamide-adenine-dinucleotide-dependent deacetylase that regulates cell processes such as carcinogenesis, cell cycle, DNA damage, and infection. Subcellular localization of SIRT2 is crucial for its function but is poorly understood. Infection with the bacterial pathogen Listeria monocytogenes, which relocalizes SIRT2 from the cytoplasm to the chromatin, provides an ideal stimulus for the molecular study of this process. In this report, we provide a map of SIRT2 post-translational modification sites and focus on serine 25 phosphorylation. We show that infection specifically induces dephosphorylation of S25, an event essential for SIRT2 chromatin association. Furthermore, we identify a nuclear complex formed by the phosphatases PPM1A and PPM1B, with SIRT2 essential for controlling H3K18 deacetylation and SIRT2-mediated gene repression during infection and necessary for a productive Listeria infection. This study reveals a molecular mechanism regulating SIRT2 function and localization, paving the way for understanding other SIRT2-regulated cellular processes. : Sirtuins are enzymes critical for various processes, including genomic stability, metabolism, and aging. Through study of Listeria monocytogenes, a bacterial pathogen that exploits SIRT2 for productive infection, Pereira et al. uncover a SIRT2 modification necessary for chromatin association and function. Keywords: chromatin, sirtuin, Listeria monocytogenes, phosphorylation, PPM1, histone acetylation, H3K18, infection, subcellular localization

  16. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ulrike Esslinger

    Full Text Available Dilated cardiomyopathy (DCM is an important cause of heart failure with a strong familial component. We performed an exome-wide array-based association study (EWAS to assess the contribution of missense variants to sporadic DCM.116,855 single nucleotide variants (SNVs were analyzed in 2796 DCM patients and 6877 control subjects from 6 populations of European ancestry. We confirmed two previously identified associations with SNVs in BAG3 and ZBTB17 and discovered six novel DCM-associated loci (Q-value<0.01. The lead-SNVs at novel loci are common and located in TTN, SLC39A8, MLIP, FLNC, ALPK3 and FHOD3. In silico fine mapping identified HSPB7 as the most likely candidate at the ZBTB17 locus. Rare variant analysis (MAF<0.01 demonstrated significant association for TTN variants only (P = 0.0085. All candidate genes but one (SLC39A8 exhibit preferential expression in striated muscle tissues and mutations in TTN, BAG3, FLNC and FHOD3 are known to cause familial cardiomyopathy. We also investigated a panel of 48 known cardiomyopathy genes. Collectively, rare (n = 228, P = 0.0033 or common (n = 36, P = 0.019 variants with elevated in silico severity scores were associated with DCM, indicating that the spectrum of genes contributing to sporadic DCM extends beyond those identified here.We identified eight loci independently associated with sporadic DCM. The functions of the best candidate genes at these loci suggest that proteostasis regulation might play a role in DCM pathophysiology.

  17. Family-based Association Analyses of Imputed Genotypes Reveal Genome-Wide Significant Association of Alzheimer’s disease with OSBPL6, PTPRG and PDCL3

    Science.gov (United States)

    Herold, Christine; Hooli, Basavaraj V.; Mullin, Kristina; Liu, Tian; Roehr, Johannes T; Mattheisen, Manuel; Parrado, Antonio R.; Bertram, Lars; Lange, Christoph; Tanzi, Rudolph E.

    2015-01-01

    The genetic basis of Alzheimer's disease (AD) is complex and heterogeneous. Over 200 highly penetrant pathogenic variants in the genes APP, PSEN1 and PSEN2 cause a subset of early-onset familial Alzheimer's disease (EOFAD). On the other hand, susceptibility to late-onset forms of AD (LOAD) is indisputably associated to the ε4 allele in the gene APOE, and more recently to variants in more than two-dozen additional genes identified in the large-scale genome-wide association studies (GWAS) and meta-analyses reports. Taken together however, although the heritability in AD is estimated to be as high as 80%, a large proportion of the underlying genetic factors still remain to be elucidated. In this study we performed a systematic family-based genome-wide association and meta-analysis on close to 15 million imputed variants from three large collections of AD families (~3,500 subjects from 1,070 families). Using a multivariate phenotype combining affection status and onset age, meta-analysis of the association results revealed three single nucleotide polymorphisms (SNPs) that achieved genome-wide significance for association with AD risk: rs7609954 in the gene PTPRG (P-value = 3.98·10−08), rs1347297 in the gene OSBPL6 (P-value = 4.53·10−08), and rs1513625 near PDCL3 (P-value = 4.28·10−08). In addition, rs72953347 in OSBPL6 (P-value = 6.36·10−07) and two SNPs in the gene CDKAL1 showed marginally significant association with LOAD (rs10456232, P-value: 4.76·10−07; rs62400067, P-value: 3.54·10−07). In summary, family-based GWAS meta-analysis of imputed SNPs revealed novel genomic variants in (or near) PTPRG, OSBPL6, and PDCL3 that influence risk for AD with genome-wide significance. PMID:26830138

  18. Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis

    Science.gov (United States)

    Kim, J. W.; Lu, Z.; QU, F.

    2014-12-01

    The landslide is a process that results in the downward and outward movement of slope-reshaping materials including rocks and soils and annually causes the loss of approximately $3.5 billion and tens of casualties in the United States. The 2014 Oso mudslide was an extreme event costing nearly 40 deaths and damaging civilian properties. Landslides are often unpredictable, but in many cases, catastrophic events are repetitive. Historic record in the Oso mudslide site indicates that there have been serial events in decades, though the extent of sliding events varied from time to time. In our study, the combination of multi-source DEMs, InSAR, and time-series InSAR analysis has enabled to characterize the Oso mudslide. InSAR results from ALOS PALSAR show that there was no significant deformation between mid-2006 and 2011. The combination of time-series InSAR analysis and old-dated DEM indicated revealed topographic changes associated the 2006 sliding event, which is confirmed by the difference of multiple LiDAR DEMs. Precipitation and discharge measurements before the 2006 and 2014 landslide events did not exhibit extremely anomalous records, suggesting the precipitation is not the controlling factor in determining the sliding events at Oso. The lack of surface deformation during 2006-2011 and weak correlation between the precipitation and the sliding event, suggest other factors (such as porosity) might play a critical role on the run-away events at this Oso and other similar landslides.

  19. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  20. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Science.gov (United States)

    Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  1. Social phenotype extended to communities: expanded multilevel social selection analysis reveals fitness consequences of interspecific interactions.

    Science.gov (United States)

    Campobello, Daniela; Hare, James F; Sarà, Maurizio

    2015-04-01

    In social species, fitness consequences are associated with both individual and social phenotypes. Social selection analysis has quantified the contribution of conspecific social traits to individual fitness. There has been no attempt, however, to apply a social selection approach to quantify the fitness implications of heterospecific social phenotypes. Here, we propose a novel social selection based approach integrating the role of all social interactions at the community level. We extended multilevel selection analysis by including a term accounting for the group phenotype of heterospecifics. We analyzed nest activity as a model social trait common to two species, the lesser kestrel (Falco naumanni) and jackdaw (Corvus monedula), nesting in either single- or mixed-species colonies. By recording reproductive outcome as a measure of relative fitness, our results reveal an asymmetric system wherein only jackdaw breeding performance was affected by the activity phenotypes of both conspecific and heterospecific neighbors. Our model incorporating heterospecific social phenotypes is applicable to animal communities where interacting species share a common social trait, thus allowing an assessment of the selection pressure imposed by interspecific interactions in nature. Finally, we discuss the potential role of ecological limitations accounting for random or preferential assortments among interspecific social phenotypes, and the implications of such processes to community evolution. © 2015 The Author(s).

  2. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS and Lan10 (L10 are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes. Nine enriched gene ontology (GO terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.

  3. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community

    Directory of Open Access Journals (Sweden)

    Meili eXie

    2016-02-01

    Full Text Available Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.

  4. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  5. Autonomous gliders reveal features of the water column associated with foraging by adelie penguins.

    Science.gov (United States)

    Kahl, L Alex; Schofield, Oscar; Fraser, William R

    2010-12-01

    Despite their strong dependence on the pelagic environment, seabirds and other top predators in polar marine ecosystems are generally studied during their reproductive phases in terrestrial environments. As a result, a significant portion of their life history is understudied which in turn has led to limited understanding. Recent advances in autonomous underwater vehicle (AUV) technologies have allowed satellite-tagged Adélie penguins to guide AUV surveys of the marine environment at the Palmer Long-Term Ecological Research (LTER) site on the western Antarctic Peninsula. Near real-time data sent via Iridium satellites from the AUVs to a centralized control center thousands of miles away allowed scientists to adapt AUV sampling strategies to meet the changing conditions of the subsurface. Such AUV data revealed the water masses and fine-scale features associated with Adélie penguin foraging trips. During this study, the maximum concentration of chlorophyll was between 30 and 50 m deep. Encompassing this peak in the chlorophyll concentration, within the water-column, was a mixture of nutrient-laden Upper Circumpolar Deep (UCDW) and western Antarctic Peninsula winter water (WW). Together, data from the AUV survey and penguin dives reveal that 54% of foraging by Adélie penguins occurs immediately below the chlorophyll maximum. These data demonstrate how bringing together emerging technologies, such as AUVs, with established methods such as the radio-tagging of penguins can provide powerful tools for monitoring and hypothesis testing of previously inaccessible ecological processes. Ocean and atmosphere temperatures are expected to continue increasing along the western Antarctic Peninsula, which will undoubtedly affect regional marine ecosystems. New and emerging technologies such as unmanned underwater vehicles and individually mounted satellite tracking devices will provide the tools critical to documenting and understanding the widespread ecological change

  6. Aspirin exposure reveals novel genes associated with platelet function and cardiovascular events.

    Science.gov (United States)

    Voora, Deepak; Cyr, Derek; Lucas, Joseph; Chi, Jen-Tsan; Dungan, Jennifer; McCaffrey, Timothy A; Katz, Richard; Newby, L Kristin; Kraus, William E; Becker, Richard C; Ortel, Thomas L; Ginsburg, Geoffrey S

    2013-10-01

    The aim of this study was to develop ribonucleic acid (RNA) profiles that could serve as novel biomarkers for the response to aspirin. Aspirin reduces death and myocardial infarction (MI), suggesting that aspirin interacts with biological pathways that may underlie these events. Aspirin was administered, followed by whole-blood RNA microarray profiling, in a discovery cohort of healthy volunteers (HV1) (n = 50) and 2 validation cohorts of healthy volunteers (HV2) (n = 53) and outpatient cardiology patients (OPC) (n = 25). Platelet function was assessed using the platelet function score (PFS) in HV1 and HV2 and the VerifyNow Aspirin Test (Accumetrics, Inc., San Diego, California) in OPC. Bayesian sparse factor analysis identified sets of coexpressed transcripts, which were examined for associations with PFS in HV1 and validated in HV2 and OPC. Proteomic analysis confirmed the association of validated transcripts in platelet proteins. Validated gene sets were tested for association with death or MI in 2 patient cohorts (n = 587 total) from RNA samples collected at cardiac catheterization. A set of 60 coexpressed genes named the "aspirin response signature" (ARS) was associated with PFS in HV1 (r = -0.31, p = 0.03), HV2 (r = -0.34, Bonferroni p = 0.03), and OPC (p = 0.046). Corresponding proteins for the 17 ARS genes were identified in the platelet proteome, of which 6 were associated with PFS. The ARS was associated with death or MI in both patient cohorts (odds ratio: 1.2 [p = 0.01]; hazard ratio: 1.5 [p = 0.001]), independent of cardiovascular risk factors. Compared with traditional risk factors, reclassification (net reclassification index = 31% to 37%, p ≤ 0.0002) was improved by including the ARS or 1 of its genes, ITGA2B. RNA profiles of platelet-specific genes are novel biomarkers for identifying patients who do not respond adequately to aspirin and who are at risk for death or MI. Copyright © 2013 American College of Cardiology Foundation. Published by

  7. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  8. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    KAUST Repository

    Lee, O. O.; Yang, J.; Bougouffa, S.; Wang, Y.; Batang, Zenon B.; Tian, R.; Al-Suwailem, A.; Qian, P.-Y.

    2012-01-01

    -pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than

  9. A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia

    Science.gov (United States)

    Liu, Feng; Sun, Fei; Xia, Jun Hong; Li, Jian; Fu, Gui Hong; Lin, Grace; Tu, Rong Jian; Wan, Zi Yi; Quek, Delia; Yue, Gen Hua

    2014-01-01

    Growth is an important trait in animal breeding. However, the genetic effects underpinning fish growth variability are still poorly understood. QTL mapping and analysis of candidate genes are effective methods to address this issue. We conducted a genome-wide QTL analysis for growth in tilapia. A total of 10, 7 and 8 significant QTLs were identified for body weight, total length and standard length at 140 dph, respectively. The majority of these QTLs were sex-specific. One major QTL for growth traits was identified in the sex-determining locus in LG1, explaining 71.7%, 67.2% and 64.9% of the phenotypic variation (PV) of body weight, total length and standard length, respectively. In addition, a candidate gene GHR2 in a QTL was significantly associated with body weight, explaining 13.1% of PV. Real-time qPCR revealed that different genotypes at the GHR2 locus influenced the IGF-1 expression level. The markers located in the major QTL for growth traits could be used in marker-assisted selection of tilapia. The associations between GHR2 variants and growth traits suggest that the GHR2 gene should be an important gene that explains the difference in growth among tilapia species. PMID:25435025

  10. Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves

    Directory of Open Access Journals (Sweden)

    Fabyano Fonseca e Silva

    Full Text Available ABSTRACT: Genome association analyses have been successful in identifying quantitative trait loci (QTLs for pig body weights measured at a single age. However, when considering the whole weight trajectories over time in the context of genome association analyses, it is important to look at the markers that affect growth curve parameters. The easiest way to consider them is via the two-step method, in which the growth curve parameters and marker effects are estimated separately, thereby resulting in a reduction of the statistical power and the precision of estimates. One efficient solution is to adopt nonlinear mixed models (NMM, which enables a joint modeling of the individual growth curves and marker effects. Our aim was to propose a genome association analysis for growth curves in pigs based on NMM as well as to compare it with the traditional two-step method. In addition, we also aimed to identify the nearest candidate genes related to significant SNP (single nucleotide polymorphism markers. The NMM presented a higher number of significant SNPs for adult weight (A and maturity rate (K, and provided a direct way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all significant SNPs from the two-step method were also reported in the NMM analysis. The ontology of the three candidate genes (SH3BGRL2, MAPK14, and MYL9 derived from significant SNPs (simultaneously affecting A and K allows us to make inferences with regards to their contribution to the pig growth process in the population studied.

  11. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2017-06-01

    Full Text Available Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.

  12. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    Science.gov (United States)

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  13. High Diversity Revealed in Leaf-Associated Protists (Rhizaria: Cercozoa) of Brassicaceae.

    Science.gov (United States)

    Ploch, Sebastian; Rose, Laura E; Bass, David; Bonkowski, Michael

    2016-09-01

    The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf-inhabiting microorganisms, recently termed "phyllosphere microbiome". Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning-based approach. The generated sequences revealed a broad diversity of leaf-associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants. © 2016 The Authors. The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  14. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).

    Science.gov (United States)

    Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu

    2018-02-24

    Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  16. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  17. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  18. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  19. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma.

    Science.gov (United States)

    Xi, W-D; Liu, Y-J; Sun, X-B; Shan, J; Yi, L; Zhang, T-T

    2017-07-01

    RNA-seq data of colon adenocarcinoma (COAD) were analyzed with bioinformatics tools to discover critical genes in the disease. Relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. RNA-seq data of COAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. False positive discovery (FDR) 1 were set as the cut-offs to screen out differentially expressed genes (DEGs). Gene coexpression network was constructed with package Ebcoexpress. GO enrichment analysis was performed for the DEGs in the gene coexpression network with DAVID. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was also performed for the genes with KOBASS 2.0. Modules were identified with MCODE of Cytoscape. Relevant small molecules drugs were predicted by Connectivity map. Relevant miRNAs and TFs were searched by WebGestalt. A total of 457 DEGs, including 255 up-regulated and 202 down-regulated genes, were identified from 437 COAD and 39 control samples. A gene coexpression network was constructed containing 40 DEGs and 101 edges. The genes were mainly associated with collagen fibril organization, extracellular matrix organization and translation. Two modules were identified from the gene coexpression network, which were implicated in muscle contraction and extracellular matrix organization, respectively. Several critical genes were disclosed, such as MYH11, COL5A2 and ribosomal proteins. Nine relevant small molecule drugs were identified, such as scriptaid and STOCK1N-35874. Accordingly, a total of 17 TFs and 10 miRNAs related to COAD were acquired, such as ETS2, NFAT, AP4, miR-124A, MiR-9, miR-96 and let-7. Several critical genes and relevant drugs, TFs and miRNAs were revealed in COAD. These findings could advance the understanding of the disease and benefit therapy development.

  20. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage

    Directory of Open Access Journals (Sweden)

    Cole Alexander M

    2008-09-01

    Full Text Available Abstract Background Nasal carriage of Staphylococcus aureus is a major risk factor in clinical and community settings due to the range of etiologies caused by the organism. We have identified unique immunological and ultrastructural properties associated with nasal carriage isolates denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level characterizations by several groups suggesting factors necessary for colonization on nasal epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic foundation for unraveling the bacterial determinants of nasal carriage in S. aureus. Results MLST analysis revealed no lineage specific differences between carrier and non-carrier strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier isolate (D30 and a model non-carrier strain (930918-3 to identify differential gene content. Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests a role for Type VII secretion systems in nasal carriage. These genes, along with a putative pathogenicity island (SaPIBov present uniquely in the carrier strains are likely important in affecting carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84 genes raise the possibility of nasal carriage being caused by multiple gene sets. Conclusion Our data suggest that carriage is likely a heterogeneic phenotypic trait and implies a role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal carriage.

  1. Systems-level analysis of risk genes reveals the modular nature of schizophrenia.

    Science.gov (United States)

    Liu, Jiewei; Li, Ming; Luo, Xiong-Jian; Su, Bing

    2018-05-19

    Schizophrenia (SCZ) is a complex mental disorder with high heritability. Genetic studies (especially recent genome-wide association studies) have identified many risk genes for schizophrenia. However, the physical interactions among the proteins encoded by schizophrenia risk genes remain elusive and it is not known whether the identified risk genes converge on common molecular networks or pathways. Here we systematically investigated the network characteristics of schizophrenia risk genes using the high-confidence protein-protein interactions (PPI) from the human interactome. We found that schizophrenia risk genes encode a densely interconnected PPI network (P = 4.15 × 10 -31 ). Compared with the background genes, the schizophrenia risk genes in the interactome have significantly higher degree (P = 5.39 × 10 -11 ), closeness centrality (P = 7.56 × 10 -11 ), betweeness centrality (P = 1.29 × 10 -11 ), clustering coefficient (P = 2.22 × 10 -2 ), and shorter average shortest path length (P = 7.56 × 10 -11 ). Based on the densely interconnected PPI network, we identified 48 hub genes and 4 modules formed by highly interconnected schizophrenia genes. We showed that the proteins encoded by schizophrenia hub genes have significantly more direct physical interactions. Gene ontology (GO) analysis revealed that cell adhesion, cell cycle, immune system response, and GABR-receptor complex categories were enriched in the modules formed by highly interconnected schizophrenia risk genes. Our study reveals that schizophrenia risk genes encode a densely interconnected molecular network and demonstrates the modular nature of schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  3. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    Science.gov (United States)

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  4. A genome-wide association study by ImmunoChip reveals potential modifiers in myelodysplastic syndromes.

    Science.gov (United States)

    Danjou, Fabrice; Fozza, Claudio; Zoledziewska, Magdalena; Mulas, Antonella; Corda, Giovanna; Contini, Salvatore; Dore, Fausto; Galleu, Antonio; Di Tucci, Anna Angela; Caocci, Giovanni; Gaviano, Eleonora; Latte, Giancarlo; Gabbas, Attilio; Casula, Paolo; Delogu, Lucia Gemma; La Nasa, Giorgio; Angelucci, Emanuele; Cucca, Francesco; Longinotti, Maurizio

    2016-11-01

    Because different findings suggest that an immune dysregulation plays a role in the pathogenesis of myelodysplastic syndrome (MDS), we analyzed a large cohort of patients from a homogeneous Sardinian population using ImmunoChip, a genotyping array exploring 147,954 single-nucleotide polymorphisms (SNPs) localized in genomic regions displaying some degree of association with immune-mediated diseases or pathways. The population studied included 133 cases and 3,894 controls, and a total of 153,978 autosomal markers and 971 non-autosomal markers were genotyped. After association analysis, only one variant passed the genome-wide significance threshold: rs71325459 (p = 1.16 × 10 -12 ), which is situated on chromosome 20. The variant is in high linkage disequilibrium with rs35640778, an untested missense variant situated in the RTEL1 gene, an interesting candidate that encodes for an ATP-dependent DNA helicase implicated in telomere-length regulation, DNA repair, and maintenance of genomic stability. The second most associated signal is composed of five variants that fall slightly below the genome-wide significance threshold but point out another interesting gene candidate. These SNPs, with p values between 2.53 × 10 -6 and 3.34 × 10 -6 , are situated in the methylene tetrahydrofolate reductase (MTHFR) gene. The most associated of these variants, rs1537514, presents an increased frequency of the derived C allele in cases, with 11.4% versus 4.4% in controls. MTHFR is the rate-limiting enzyme in the methyl cycle and genetic variations in this gene have been strongly associated with the risk of neoplastic diseases. The current understanding of the MDS biology, which is based on the hypothesis of the sequential development of multiple subclonal molecular lesions, fits very well with the demonstration of a possible role for RTEL1 and MTHFR gene polymorphisms, both of which are related to a variable risk of genomic instability. Copyright © 2016 ISEH - International

  5. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    Science.gov (United States)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  6. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  7. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  8. Neural Correlates Associated with Successful Working Memory Performance in Older Adults as Revealed by Spatial ICA

    Science.gov (United States)

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.

    2014-01-01

    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016

  9. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

    Directory of Open Access Journals (Sweden)

    Julia I Tandberg

    Full Text Available Membrane vesicles (MVs are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89, Norway (NVI 5692 and Canada (NVI 5892, respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.

  10. Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.

    Science.gov (United States)

    Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka

    2017-01-01

    Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.

  11. Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis.

    Science.gov (United States)

    Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping

    2014-02-28

    Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.

  12. B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies.

    Science.gov (United States)

    Maroofian, Reza; Riemersma, Moniek; Jae, Lucas T; Zhianabed, Narges; Willemsen, Marjolein H; Wissink-Lindhout, Willemijn M; Willemsen, Michèl A; de Brouwer, Arjan P M; Mehrjardi, Mohammad Yahya Vahidi; Ashrafi, Mahmoud Reza; Kusters, Benno; Kleefstra, Tjitske; Jamshidi, Yalda; Nasseri, Mojila; Pfundt, Rolph; Brummelkamp, Thijn R; Abbaszadegan, Mohammad Reza; Lefeber, Dirk J; van Bokhoven, Hans

    2017-12-22

    The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.

  13. Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces

    Directory of Open Access Journals (Sweden)

    Jones Huw

    2011-11-01

    Full Text Available Abstract Background Understanding the evolution of cultivated barley is important for two reasons. First, the evolutionary relationships between different landraces might provide information on the spread and subsequent development of barley cultivation, including the adaptation of the crop to new environments and its response to human selection. Second, evolutionary information would enable landraces with similar traits but different genetic backgrounds to be identified, providing alternative strategies for the introduction of these traits into modern germplasm. Results The evolutionary relationships between 651 barley landraces were inferred from the genotypes for 24 microsatellites. The landraces could be divided into nine populations, each with a different geographical distribution. Comparisons with ear row number, caryopsis structure, seasonal growth habit and flowering time revealed a degree of association between population structure and phenotype, and analysis of climate variables indicated that the landraces are adapted, at least to some extent, to their environment. Human selection and/or environmental adaptation may therefore have played a role in the origin and/or maintenance of one or more of the barley landrace populations. There was also evidence that at least some of the population structure derived from geographical partitioning set up during the initial spread of barley cultivation into Europe, or reflected the later introduction of novel varieties. In particular, three closely-related populations were made up almost entirely of plants with the daylength nonresponsive version of the photoperiod response gene PPD-H1, conferring adaptation to the long annual growth season of northern Europe. These three populations probably originated in the eastern Fertile Crescent and entered Europe after the initial spread of agriculture. Conclusions The discovery of population structure, combined with knowledge of associated phenotypes and

  14. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  15. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  16. Comparative Genomics of Campylobacter fetus from Reptilesand Mammals Reveals Divergent Evolution in Host-Associated Lineages

    NARCIS (Netherlands)

    Gilbert, Maarten J.; Miller, William G.; Yee, Emma; Zomer, Aldert; Graaf-Van Bloois, Van Der Linda; Fitzgerald, C.; Forbes, Ken J.; Méric, Guillaume; Sheppard, S.; Wagenaar, J.A.; Duim, Birgitta

    2016-01-01

    Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C. fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C. fetus subsp. testudinum is primarily associated

  17. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein.

    Science.gov (United States)

    Wartenberg, Dirk; Lapp, Katrin; Jacobsen, Ilse D; Dahse, Hans-Martin; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2011-11-01

    Surface-associated and secreted proteins represent primarily exposed components of Aspergillus fumigatus during host infection. Several secreted proteins are known to be involved in defense mechanisms or immune evasion, thus, probably contributing to pathogenicity. Furthermore, several secreted antigens were identified as possible biomarkers for the verification of diseases caused by Aspergillus species. Nevertheless, there is only limited knowledge about the composition of the secretome and about molecular functions of particular proteins. To identify secreted proteins potentially essential for virulence, the core secretome of A. fumigatus grown in minimal medium was determined. Two-dimensional gel electrophoretic separation and subsequent MALDI-TOF-MS/MS analyses resulted in the identification of 64 different proteins. Additionally, secretome analyses of A. fumigatus utilizing elastin, collagen or keratin as main carbon and nitrogen source were performed. Thereby, the alkaline serine protease Alp1 was identified as the most abundant protein and hence presumably represents an important protease during host infection. Interestingly, the Asp-hemolysin (Asp-HS), which belongs to the protein family of aegerolysins and which was often suggested to be involved in fungal virulence, was present in the secretome under all growth conditions tested. In addition, a second, non-secreted protein with an aegerolysin domain annotated as Asp-hemolysin-like (HS-like) protein can be found to be encoded in the genome of A. fumigatus. Generation and analysis of Asp-HS and HS-like deletion strains revealed no differences in phenotype compared to the corresponding wild-type strain. Furthermore, hemolysis and cytotoxicity was not altered in both single-deletion and double-deletion mutants lacking both aegerolysin genes. All mutant strains showed no attenuation in virulence in a mouse infection model for invasive pulmonary aspergillosis. Overall, this study provides a comprehensive

  18. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    Science.gov (United States)

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-04-21

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA 2 s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA 2 s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not

  19. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.

    2010-01-01

    A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis...... intermediates, were upregulated during antibiotic production. qRT-PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub...

  20. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    OpenAIRE

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the exis...

  1. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    OpenAIRE

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...

  2. Revealing the equivalence of two clonal survival models by principal component analysis

    International Nuclear Information System (INIS)

    Lachet, Bernard; Dufour, Jacques

    1976-01-01

    The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr

  3. Deep sequencing reveals a novel closterovirus associated with wild rose leaf rosette disease.

    Science.gov (United States)

    He, Yan; Yang, Zuokun; Hong, Ni; Wang, Guoping; Ning, Guogui; Xu, Wenxing

    2015-06-01

    A bizarre virus-like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as 'wild rose leaf rosette disease' (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named 'rose leaf rosette-associated virus' (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17,653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  4. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit.

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamwork and leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams.

  5. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    Science.gov (United States)

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  6. Detection of copy number variants reveals association of cilia genes with neural tube defects.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    Full Text Available BACKGROUND: Neural tube defects (NTDs are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs. METHODS: The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined. RESULTS: Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV. Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05. Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87. Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05, corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01. Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways. CONCLUSIONS: Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.

  7. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  8. Borneo stalagmites reveal climatic excursions associated with Toba ash layers prior to Greenland Stadial 20

    Science.gov (United States)

    Cobb, K. M.; Orland, I. J.; Carolin, S.; Adkins, J. F.; Valley, J. W.; Jersild, A.; LeGrande, A. N.; Colose, C.

    2017-12-01

    The Toba super-eruption occurred in close association with an abrupt climate transition from Greenland Interstadial (GI-) 20 to Greenland Stadial (GS-) 20, roughly 74 thousand years ago. However, recent attempts to characterize either the regional or global climate response to Toba have been limited by a lack of age control, geographic proximity, and/or convincing marker of the major eruption in most high-resolution paleoclimate archives. Here, we use a suite of micro-scale analytical techniques to evaluate the oxygen isotopic and geochemical composition of multiple stalagmites that grew across the Toba interval in Gunung Mulu National Park, northern Borneo. New timeseries of stalagmite d18O at 50-micron scales across the Toba horizon revleal a large (>1‰), rapid (<200 yr) increase in d18O values within age-error of the 40Ar/39Ar age of the Youngest Toba Tuff (73.9±0.6 ky BP; Storey et al., 2012). We supplement these traditional mass spectrometric measurements with d18O timeseries made on 9-micron spots using the WiscSIMS CAMECA ims 1280 ion microprobe in time-transgressive segments across the Toba horizon in two well-dated stalagmites previously published in Carolin et al., 2013 and Caroline et al., 2014. The SIMS d18O data reveal high-frequency d18O excursions of +2 and -2 per mil during the transition from GI-20 (warm conditions) to Greenland Stadial GS-20 (cool conditions), suggesting that this period was characterized by large fluctuations in regional hydroclimate in the western tropical Pacific, with potentially profound impacts on global atmospheric circulation. We also present results from synchrotron analyses of ash-related elements (S, P, Si, and Al) to resolve the number and relative magnitude of Toba-related eruptions as recorded in several different stalagmites from Borneo, where ash layers likely exceeded 2cm on the overlying terrain. Together, these results indicate that large, rapid ( 10yr-long) environmental changes with marked effects on both

  9. Historical data reveal 30-year persistence of benthic fauna associations in heavily modified waterbody

    Directory of Open Access Journals (Sweden)

    Ruth Callaway

    2016-08-01

    Full Text Available Baseline surveys form the cornerstone of coastal impact studies where altered conditions, for example through new infrastructure development, are assessed against a temporal reference state. They are snapshots taken before construction. Due to scarcity of relevant data prior to baseline surveys long-term trends can often not be taken into account. Particularly in heavily modified waterbodies this would however be desirable to control for changes in anthropogenic use over time as well as natural ecological variation. Here, the benthic environment of an industrialized embayment was investigated (Swansea Bay, Wales, UK where it is proposed to build a tidal lagoon that would generate marine renewable energy from the tidal range. Since robust long-term baseline data was not available, the value of unpublished historical benthos information from 1984 by a regional water company was assessed with the aim to improve certainty about the persistence of current benthic community patterns. A survey of 101 positions in 2014 identified spatially discrete benthic communities with areas of high and low diversity. Habitat characteristics including sediment properties and the proximity to a sewage outfall explained 17-35% of the variation in the community structure. Comparing the historical information from 1984 with 2014 revealed striking similarity in the benthic communities between those years, not just in their spatial distribution but also to a large extent in the species composition. The 30-year-old information confirmed spatial boundaries of discrete species associations and pinpointed a similar diversity hotspot. A group of five common species was found to be particularly persistent over time (Nucula nitidosa, Spisula elliptica, Spiophanes bombyx, Nephtys hombergii, Diastylis rathkei. According to the Infauna Quality Index (IQI linked to the EU Water Framework Directive (WFD the average ecological status for 2014 was ‘moderate’, but eleven samples

  10. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    Science.gov (United States)

    Viollet, Coralie; Davis, David A.; Tekeste, Shewit S.; Reczko, Martin; Pezzella, Francesco; Ragoussis, Jiannis

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases. PMID:28046107

  11. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.

    Science.gov (United States)

    Greenblum, Sharon; Turnbaugh, Peter J; Borenstein, Elhanan

    2012-01-10

    The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.

  12. PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrPsc.

    Science.gov (United States)

    Serra, Fabienne; Müller, Joachim; Gray, John; Lüthi, Ramona; Dudas, Sandor; Czub, Stefanie; Seuberlich, Torsten

    2017-03-15

    Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrP res ). In this study, we report and analyze yet another PrP res type (PrP res-2011 ), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011. Analysis of brain tissues from these animals by PK titration and PK inhibitor assays ruled out the process of autolysis as the cause for the aberrant PrP res profile. Immunochemical characterization of the PrP fragments present in the 2011 cases by epitope mapping indicated that PrP res-2011 corresponds in its primary sequence to the physiologically occurring PrP-C1 fragment. However, high speed centrifugation, sucrose gradient assay and NaPTA precipitation revealed biochemical similarities between PrP res-2011 and the disease-associated prion protein found in BSE affected cattle in terms of detergent insolubility, PK resistance and PrP aggregation. Although it remains to be established whether PrP res-2011 is associated with a transmissible disease, our results point out the need of further research on the role the PrP-C1 aggregation and misfolding in health and disease. Copyright © 2017. Published by Elsevier B.V.

  13. The Hidden Diversity of Zanclea Associated with Scleractinians Revealed by Molecular Data

    KAUST Repository

    Montano, Simone; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Puce, Stefania; Galli, Paolo

    2015-01-01

    focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a

  14. Multi-element analysis of emeralds and associated rocks by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k 0 method (k 0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method

  15. Revealing Significant Relations between Chemical/Biological Features and Activity: Associative Classification Mining for Drug Discovery

    Science.gov (United States)

    Yu, Pulan

    2012-01-01

    Classification, clustering and association mining are major tasks of data mining and have been widely used for knowledge discovery. Associative classification mining, the combination of both association rule mining and classification, has emerged as an indispensable way to support decision making and scientific research. In particular, it offers a…

  16. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups

    Directory of Open Access Journals (Sweden)

    Guillermo Nourdin-Galindo

    2017-10-01

    Full Text Available Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these

  17. EXPLORATORY DATA ANALYSIS AND MULTIVARIATE STRATEGIES FOR REVEALING MULTIVARIATE STRUCTURES IN CLIMATE DATA

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available This paper is on data analysis strategy in a complex, multidimensional, and dynamic domain. The focus is on the use of data mining techniques to explore the importance of multivariate structures; using climate variables which influences climate change. Techniques involved in data mining exercise vary according to the data structures. The multivariate analysis strategy considered here involved choosing an appropriate tool to analyze a process. Factor analysis is introduced into data mining technique in order to reveal the influencing impacts of factors involved as well as solving for multicolinearity effect among the variables. The temporal nature and multidimensionality of the target variables is revealed in the model using multidimensional regression estimates. The strategy of integrating the method of several statistical techniques, using climate variables in Nigeria was employed. R2 of 0.518 was obtained from the ordinary least square regression analysis carried out and the test was not significant at 5% level of significance. However, factor analysis regression strategy gave a good fit with R2 of 0.811 and the test was significant at 5% level of significance. Based on this study, model building should go beyond the usual confirmatory data analysis (CDA, rather it should be complemented with exploratory data analysis (EDA in order to achieve a desired result.

  18. Circular RNA expression profiling of human granulosa cells during maternal aging reveals novel transcripts associated with assisted reproductive technology outcomes.

    Directory of Open Access Journals (Sweden)

    Jing Cheng

    Full Text Available Circular RNAs (circRNAs are a unique class of endogenous RNAs which could be used as potential diagnostic and prognostic biomarkers of many diseases. Our study aimed to investigate circRNA profiles in human granulosa cells (GCs during maternal aging and to uncover age-related circRNA variations that potentially reflect decreased oocyte competence. CircRNAs in GCs from in vitro fertilization (IVF patients with young age (YA, ≤ 30 years and advanced age (AA, ≥ 38 years were profiled by microarray, and validated in 20 paired samples. The correlation between circRNAs expression and clinical characteristics was analyzed in additional 80 samples. Chip-based analysis revealed 46 up-regulated and 11 down-regulated circRNAs in AA samples (fold change > 2.0. Specifically, circRNA_103829, circRNA_103827 and circRNA_104816 were validated to be up-regulated, while circRNA_101889 was down-regulated in AA samples. After adjustment for gonadotropin treatment, only circRNA_103827 and circRNA_104816 levels were positively associated with maternal age (partial r = 0.332, P = 0.045; partial r = 0.473, P = 0.003; respectively. Moreover, circRNA_103827 and circRNA_104816 expressions in GCs were negatively correlated with the number of top quality embryos (r = -0.235, P = 0.036; r = -0.221, P = 0.049; respectively. Receiver operating characteristic (ROC curve analysis indicated that the performance of circRNA_103827 for live birth prediction reached 0.698 [0.570-0.825], with 77.2% sensitivity and 60.9% specificity (P = 0.006, and that of circRNA_104816 was 0.645 [0.507-0.783] (P = 0.043. Bioinformatics analysis revealed that both circRNAs were potentially involved in glucose metabolism, mitotic cell cycle, and ovarian steroidogenesis. Therefore, age-related up-regulation of circRNA_103827 and circRNA_104816 might be potential indicators of compromised follicular micro-environment which could be used to predict IVF prognosis, and improve female infertility

  19. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers.

    Directory of Open Access Journals (Sweden)

    Michelle Davison

    Full Text Available The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2-13, Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838 domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.

  20. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation

    Directory of Open Access Journals (Sweden)

    Rismani-Yazdi Hamid

    2012-09-01

    Full Text Available Abstract Background The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG biofuel precursor. Results After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases—presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and

  1. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  2. Analysis of Schizosaccharomyces pombe mediator reveals a set of essential subunits conserved between yeast and metazoan cells

    DEFF Research Database (Denmark)

    Spåhr, H; Samuelsen, C O; Baraznenok, V

    2001-01-01

    . cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10...... essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated....

  3. Relationships between Association of Research Libraries (ARL) Statistics and Bibliometric Indicators: A Principal Components Analysis

    Science.gov (United States)

    Hendrix, Dean

    2010-01-01

    This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…

  4. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta.

    Science.gov (United States)

    Li, Yukuo; Fang, Jinbao; Qi, Xiujuan; Lin, Miaomiao; Zhong, Yunpeng; Sun, Leiming; Cui, Wen

    2018-05-15

    To assess the interrelation between the change of metabolites and the change of fruit color, we performed a combined metabolome and transcriptome analysis of the flesh in two different Actinidia arguta cultivars: "HB" ("Hongbaoshixing") and "YF" ("Yongfengyihao") at two different fruit developmental stages: 70d (days after full bloom) and 100d (days after full bloom). Metabolite and transcript profiling was obtained by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. The identification and quantification results of metabolites showed that a total of 28,837 metabolites had been obtained, of which 13,715 were annotated. In comparison of HB100 vs. HB70, 41 metabolites were identified as being flavonoids, 7 of which, with significant difference, were identified as bracteatin, luteolin, dihydromyricetin, cyanidin, pelargonidin, delphinidin and (-)-epigallocatechin. Association analysis between metabolome and transcriptome revealed that there were two metabolic pathways presenting significant differences during fruit development, one of which was flavonoid biosynthesis, in which 14 structural genes were selected to conduct expression analysis, as well as 5 transcription factor genes obtained by transcriptome analysis. RT-qPCR results and cluster analysis revealed that AaF3H , AaLDOX , AaUFGT , AaMYB , AabHLH , and AaHB2 showed the best possibility of being candidate genes. A regulatory network of flavonoid biosynthesis was established to illustrate differentially expressed candidate genes involved in accumulation of metabolites with significant differences, inducing red coloring during fruit development. Such a regulatory network linking genes and flavonoids revealed a system involved in the pigmentation of all-red-fleshed and all-green-fleshed A. arguta , suggesting this conjunct analysis approach is not only useful in understanding the relationship between genotype and phenotype

  5. Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera.

    Science.gov (United States)

    Whittington, Emma; Forsythe, Desiree; Borziak, Kirill; Karr, Timothy L; Walters, James R; Dorus, Steve

    2017-12-02

    Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Our results identify a burst of genetic novelty

  6. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  7. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses.

    Science.gov (United States)

    Zai, Xiaodong; Yang, Qiaoling; Yin, Ying; Li, Ruihua; Qian, Mengying; Zhao, Taoran; Li, Yaohui; Zhang, Jun; Fu, Ling; Xu, Junjie; Chen, Wei

    2017-01-01

    Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic

  8. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Xiaodong Zai

    2017-11-01

    Full Text Available Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular

  9. Biogeographic Comparison of Lophelia-Associated Bacterial Communities in the Western Atlantic Reveals Conserved Core Microbiome

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2017-05-01

    Full Text Available Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM. However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%. At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core

  10. Why Are Home Literacy Environment and Children's Reading Skills Associated? What Parental Skills Reveal

    NARCIS (Netherlands)

    van Bergen, Elsje; Van Zuijen, Titia L.; Bishop, Dorothy; de Jong, Peter F.

    2017-01-01

    Associations between home literacy environment and children's reading ability are often assumed to reflect a direct influence. However, heritability could account for the association between parent and child literacy-related measures. We used data from 101 mother/father/child triads to consider the

  11. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels

    NARCIS (Netherlands)

    J.B. Richards (Brent); D. Waterworth (Dawn); S. O'Rahilly (Stephen); M.-F. Hivert (Marie-France); R.J.F. Loos (Ruth); J.R.B. Perry (John); T. Tanaka (Toshiko); N.J. Timpson (Nicholas); R.K. Semple (Robert); N. Soranzo (Nicole); K. Song (Kijoung); N. Rocha (Nuno); E. Grundberg (Elin); J. Dupuis (Josée); J.C. Florez (Jose); C. Langenberg (Claudia); I. Prokopenko (Inga); R. Saxena (Richa); R. Sladek (Rob); Y.S. Aulchenko (Yurii); D.M. Evans (David); G. Waeber (Gérard); M.S. Burnett; N. Sattar (Naveed); J. Devaney (Joseph); C. Willenborg (Christina); A. Hingorani (Aroon); J.C.M. Witteman (Jacqueline); P. Vollenweider (Peter); B. Glaser (Beate); C. Hengstenberg (Christian); L. Ferrucci (Luigi); D. Melzer (David); K. Stark (Klaus); J. Deanfield (John); J. Winogradow (Janina); M. Grassl (Martina); A.S. Hall (Alistair); J.M. Egan (Josephine); J.R. Thompson (John); S.L. Ricketts (Sally); I.R. König (Inke); W. Reinhard (Wibke); S.M. Grundy (Scott); H.E. Wichmann (Heinz Erich); P. Barter (Phil); R. Mahley (Robert); Y.A. Kesaniemi (Antero); D.J. Rader (Daniel); M.P. Reilly (Muredach); S.E. Epstein (Stephen); A.F.R. Stewart (Alexandre); P. Tikka-Kleemola (Päivi); H. Schunkert (Heribert); K.A. Burling (Keith); J. Erdmann (Jeanette); P. Deloukas (Panagiotis); T. Pastinen (Tomi); N.J. Samani (Nilesh); R. McPherson (Ruth); G.D. Smith; T.M. Frayling (Timothy); N.J. Wareham (Nick); J.B. Meigs (James); V. Mooser (Vincent); T.D. Spector (Timothy)

    2009-01-01

    textabstractThe adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of

  12. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  13. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  14. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    OpenAIRE

    Joshua, CJ; Simmons, BA; Singer, SW

    2016-01-01

    © 2016 The Royal Society of Chemistry. This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than...

  15. Genome-Wide Association Mapping Reveals Multiple QTLs Governing Tolerance Response for Seedling Stage Chilling Stress in Indica Rice

    Directory of Open Access Journals (Sweden)

    Sharat K. Pradhan

    2017-04-01

    Full Text Available Rice crop is sensitive to cold stress at seedling stage. A panel of population representing 304 shortlisted germplasm lines was studied for seedling stage chilling tolerance in indica rice. Six phenotypic classes were exposed to six low temperature stress regimes under control phenotyping facility to investigate response pattern. A panel of 66 genotypes representing all phenotypic classes was used for ensuring genetic diversity, population structure and association mapping for the trait using 58 simple sequence repeat (SSR and 2 direct trait linked markers. A moderate level of genetic diversity was detected in the panel population for the trait. Deviation of Hardy-Weinberg's expectation was detected in the studied population using Wright's F statistic. The panel showed 30% variation among population and 70% among individuals. The entire population was categorized into three sub-populations through STRUCTURE analysis. This revealed tolerance for the trait had a common primary ancestor for each sub-population with few admix individuals. The panel population showed the presence of many QTLs for cold stress tolerance in the individuals representing like genome-wide expression of the trait. Nineteen SSR markers were significantly associated at chilling stress of 8°C to 4°C for 7–21 days duration. Thus, the primers linked to the seedling stage cold tolerance QTLs namely qCTS9, qCTS-2, qCTS6.1, qSCT2, qSCT11, qSCT1a, qCTS-3.1, qCTS11.1, qCTS12.1, qCTS-1b, and CTB2 need to be pyramided for development of strongly chilling tolerant variety.

  16. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  17. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Ribosome profiling reveals features of normal and disease-associated mitochondrial translation

    NARCIS (Netherlands)

    Rooijers, K.; Loayza-Puch, F.; Nijtmans, L.G.J.; Agami, R.

    2013-01-01

    Mitochondria are essential cellular organelles for generation of energy and their dysfunction may cause diabetes, Parkinson's disease and multi-systemic failure marked by failure to thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-associated mitochondrial mutations

  19. Ribosome profiling reveals features of normal and disease-associated mitochondrial translation

    NARCIS (Netherlands)

    K. Rooijers (Koos); F. Loayza-Puch (Fabricio); L.G.J. Nijtmans (Leo); R. Agami (Reuven)

    2013-01-01

    textabstractMitochondria are essential cellular organelles for generation of energy and their dysfunction may cause diabetes, Parkinson's disease and multi-systemic failure marked by failure to thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-associated mitochondrial

  20. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria

    KAUST Repository

    van de Water, Jeroen A J M; Melkonian, Ré my; Voolstra, Christian R.; Junca, Howard; Beraud, Eric; Allemand, Denis; Ferrier-Pagè s, Christine

    2016-01-01

    overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome

  1. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    Science.gov (United States)

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  3. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Raees Khan

    Full Text Available The substantial use of triclosan (TCS has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231 and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17, and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79% and soil-borne plant pathogenic bacteria (98%. These included a variety of enoyl-acyl carrier protein reductase (ENRs homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously

  4. Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links

    Science.gov (United States)

    Nicholls, Andrew W.; Salek, Reza M.; Marques-Vidal, Pedro; Morya, Edgard; Sameshima, Koichi; Montoliu, Ivan; Da Silva, Laeticia; Collino, Sebastiano; Martin, François-Pierre; Rezzi, Serge; Steinbeck, Christoph; Waterworth, Dawn M.; Waeber, Gérard; Vollenweider, Peter; Beckmann, Jacques S.; Le Coutre, Johannes; Mooser, Vincent; Bergmann, Sven; Genick, Ulrich K.; Kutalik, Zoltán

    2014-01-01

    Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on 1H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10−8) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10−44) and lysine (rs8101881, P = 1.2×10−33), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers. PMID:24586186

  5. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels.

    Directory of Open Access Journals (Sweden)

    J Brent Richards

    2009-12-01

    Full Text Available The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D and coronary heart disease (CHD. We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531 and sought validation of the lead single nucleotide polymorphisms (SNPs in 5 additional cohorts (n = 6,202. Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8. We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19 for lead SNP, rs266717, n = 14,733. A novel variant in the ARL15 (ADP-ribosylation factor-like 15 gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8, n = 14,733. This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6, n = 22,421 more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3, n = 10,128, and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.

  6. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults.

    Science.gov (United States)

    Rauschert, Sebastian; Uhl, Olaf; Koletzko, Berthold; Kirchberg, Franca; Mori, Trevor A; Huang, Rae-Chi; Beilin, Lawrence J; Hellmuth, Christian; Oddy, Wendy H

    2016-03-01

    Obesity and related diseases have become a global public health burden. Identifying biomarkers will lead to a better understanding of the underlying mechanisms associated with obesity and the pathways leading to insulin resistance (IR) and diabetes. This study aimed to identify the lipidomic biomarkers associated with obesity and IR using plasma samples from a population-based cohort of young adults. The Western Australian Pregnancy Cohort (Raine) study enrolled 2900 pregnant women from 1989 to 1991. The 20-year follow-up was conducted between March 2010 and April 2012. Participants and Samples: Plasma samples from 1176 subjects aged 20 years were analyzed using mass spectrometry-based metabolomics. Associations of analytes with markers of obesity and IR including body mass index, waist circumference, homeostasis model assessment (HOMA-IR), and insulin were examined. Analyses were stratified by body mass index and adjusted for lifestyle and other factors. Waist circumference was positively associated with seven sphingomyelins and five diacylphosphatidylcholines and negatively associated with two lysophosphatidylcholines. HOMA-IR was negatively associated with two diacylphosphatidylcholines and positively with one lysophosphatidylcholine and one diacylphosphatidylcholine. No significant association was found in the obese/overweight group of the HOMA-IR model. In the normal-weight group, one lysophosphatidylcholine was increased. A possible discriminative effect of sphingomyelins, particularly those with two double bonds, and lysophosphatidylcholines was identified between subjects with normal weight and obesity independent of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol concentrations. Our results suggest weight status-dependent mechanisms for the development of IR with lysophosphatidylcholine C14:0 as a key metabolite in nonobese IR.

  7. Pyrosequencing reveals diverse microbial community associated with the zoanthid Palythoa australiae from the South China Sea.

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Li, Zhiyong

    2014-05-01

    Diverse sessile organisms inhabit the coral reef ecosystems, including corals, sponges, and sea anemones. In the past decades, scleractinian corals (Cnidaria, Anthozoa, Scleractinia) and their associated microorganisms have attracted much attention. Zoanthids (Cnidaria, Anthozoa, Zoanthidea) are commonly found in coral reefs. However, little is known about the community structure of zoanthid-associated microbiota. In this study, the microbial community associated with the zoanthid Palythoa australiae in the South China Sea was investigated by 454 pyrosequencing. As a result, 2,353 bacterial, 583 archaeal, and 36 eukaryotic microbial ribotypes were detected, respectively. A total of 22 bacterial phyla (16 formally described phyla and six candidate phyla) were recovered. Proteobacteria was the most abundant group, followed by Chloroflexi and Actinobacteria. High-abundance Rhizobiales and diverse Chloroflexi were observed in the bacterial community. The archaeal population was composed of Crenarchaeota and Euryarchaeota, with Marine Group I as the dominant lineage. In particular, Candidatus Nitrosopumilus dominated the archaeal community. Besides bacteria and archaea, the zoanthid harbored eukaryotic microorganisms including fungi and algae though their diversity was very low. This study provided the first insights into the microbial community associated with P. australiae by 454 pyrosequencing, consequently laid a basis for the understanding of the association of P. australiae-microbes symbioses.

  8. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  9. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...... phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest....

  10. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot.

    Science.gov (United States)

    García-Guzmán, Olimpia Mariana; Garibay-Orijel, Roberto; Hernández, Edith; Arellano-Torres, Elsa; Oyama, Ken

    2017-11-01

    Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.

  11. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  12. The Revealed Competitiveness of Major Ports in the East Asian Region: An Additive Market Share Analysis

    Directory of Open Access Journals (Sweden)

    Tae Seung Kim

    2015-12-01

    Full Text Available In the single cargo market, the ordinary market share analysis method has been the representative tool for revealed competitiveness analysis. This paper develops and employs an applied market share index called the additive market share (AMS. Data are collected from 15 major container ports for the 1998-2013 period. In comparison to the results of an ordinary market share analysis, the highest AMS is observed for the Bohai Rim port cluster from 2008, not for the Yangtze River cluster or the Pearl River cluster. There are substitutable relationships between Yangtze River and non-Chinese ports and between Pearl River and Bohai Rim ports from 2001. Finally, there is an internal competition at Pearl River and Yangtze River ports, whereas Bohai Rim and non-Chinese ports show internally complementary relationships.

  13. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.

    Science.gov (United States)

    Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang

    2018-02-15

    Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through

  14. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria

    KAUST Repository

    van de Water, Jeroen A J M

    2016-10-10

    Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.

  15. Epizoanthus spp. associations revealed using DNA markers: a case study from Kochi, Japan.

    Science.gov (United States)

    Reimer, James Davis; Hirose, Mamiko; Nishisaka, Taiki; Sinniger, Frederic; Itani, Gyo

    2010-09-01

    Zoanthids (Cnidaria, Hexacorallia) of the genus Epizoanthus are often found in association with other marine invertebrates, including gastropods and hermit crabs. However, little information exists on the specificity and nature of these associations due to a lack of investigation into Epizoanthus species diversity, and the taxonomy of Epizoanthus is therefore confused. In this study, analyses of morphological data (tentacle number, polyp size, etc) and molecular data (mitochondrial cytochrome oxidase subunit 1 = COI, 16S ribosomal DNA = 16S rDNA) were used to examine Epizoanthus specimens from Tosa Bay, Kochi, Japan. The Epizoanthus specimens were found on both live gastropods (Gemmula unedo) and hermit crabs (Paguristes palythophilus) inhabiting G. unedo and G. cosmoi shells. While morphological analyses did not show clear differences between examined specimens, both COI and mt 16S rDNA clearly divided the specimens into two groups, one associated only with hermit crabs (= Epizoanthus sp. C), and another associated only with living gastropods (= Epizoanthus sp. S). Unexpectedly, DNA sequences from both groups did not match with two previously reported Epizoanthus species from Japan (E. indicus, E. ramosus), indicating they both may be undescribed species. These results highlight the utility of DNA "barcoding" of unknown zoanthids, and will provide a foundation for re-examinations of Epizoanthus species diversity and specificity, which will be critical in understanding the evolution of these unique marine invertebrates.

  16. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond K.; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura M.; Hinney, Anke; Daly, Mark J.; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M.; Adan, RAH

    2017-01-01

    Objective: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method: Following uniformquality control and imputation procedures using the 1000 Genomes Project (phase 3) in

  17. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M; Kas, Martinus J.H.

    2017-01-01

    OBJECTIVE: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. METHOD: Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3)

  18. Revealed preferences towards the appraisal of orphan drugs in Poland - multi criteria decision analysis.

    Science.gov (United States)

    Kolasa, Katarzyna; Zwolinski, Krzysztof Miroslaw; Zah, Vladimir; Kaló, Zoltán; Lewandowski, Tadeusz

    2018-04-27

    A Multi Criteria Decision Analysis (MCDA) technique was adopted to reveal the preferences of the Appraisal Body of the Polish HTA agency towards orphan drugs (OMPs). There were 34 positive and 23 negative HTA recommendations out of 54 distinctive drug-indication pairs. The MCDA matrix consisted of 13 criteria, seven of which made the most impact on the HTA process. Appraisal of clinical evidence, cost of therapy, and safety considerations were the main contributors to the HTA guidance, whilst advancement of technology and manufacturing costs made the least impact. MCDA can be regarded as a valuable tool for revealing decision makers' preferences in the healthcare sector. Given that only roughly half of all criteria included in the MCDA matrix were deemed to make an impact on the HTA process, there is certainly some room for improvement with respect to the adaptation of a new approach towards the value assessment of OMPs in Poland.

  19. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    Science.gov (United States)

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    Background & Aims Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. Methodology/Principal Findings Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis

  20. Rhabdovirus matrix protein structures reveal a novel mode of self-association.

    Directory of Open Access Journals (Sweden)

    Stephen C Graham

    2008-12-01

    Full Text Available The matrix (M proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus and from Lagos bat virus (genus: Lyssavirus, revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

  1. Using means-end chain analysis to reveal consumers' motivation for buying local foods: An exploratory study

    Directory of Open Access Journals (Sweden)

    Poppy Arsil

    2016-11-01

    Full Text Available This article utilizes and discusses specific aspects of Means-End Chain (MEC analysis for understanding of the motives of Indonesian consumers who are involved in purchasing local foods. The MEC theory is used as a measure of attributes, consequences, and values of locally produced products involving specific aspects of this theory namely laddering methods of administration, content analysis procedure, constructing and interpreting Hierarchy Value Map (HVM. The results of the study indicate that MEC approach is a powerful method to reveal consumer motivation of local foods when associated with the various cultural groupings identified by the study particular between Javanese and Non-Javanese consumers. This study offers a practical implication and source of knowledge for other future studies and policies in term of (a a new approach for understanding the motives behind purchasing local foods for Indonesia consumers, and (b developing new categories of attributes, consequences and values of local foods.

  2. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.

    Science.gov (United States)

    Nakashima, Yu; Egami, Yoko; Kimura, Miki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-01

    Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an 'Entotheonella' sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.

  3. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  4. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility

    NARCIS (Netherlands)

    Bush, W.S.; McCauley, J.L.; DeJager, P.L.; Dudek, S.M.; Hafler, D.A.; Gibson, R.A.; Matthews, P.M.; Kappos, L.; Naegelin, Y.; Polman, C.H.; Hauser, S.L.; Oksenberg, J.; Haines, J.L.; Ritchie, M.D.

    2011-01-01

    Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also

  5. Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs.

    Directory of Open Access Journals (Sweden)

    Markus Drag

    Full Text Available Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed to identify expression quantitative trait loci (eQTLs with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS were slaughtered at ~100 kg. Gene expression profiles were obtained by RNA-Seq, and genotype data were obtained by an Illumina 60K Porcine SNP chip. Following quality control and filtering, 10,545 and 12,731 genes from liver and testis were included in the eQTL analysis, together with 20,827 SNP variants. A total of 205 and 109 single-tissue eQTLs associated with 102 and 58 unique genes were identified in liver and testis, respectively. By employing a multivariate Bayesian hierarchical model, 26 eQTLs were identified as significant multi-tissue eQTLs. The highest densities of eQTLs were found on pig chromosomes SSC12, SSC1, SSC13, SSC9 and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits curated by the Animal Genome PigQTL database to be significantly overlapped by the genomic coordinates of cis-acting eQTLs. Finally, a subset of 35 cis-acting eQTLs overlapped with known boar taint QTL traits. These eQTLs could be useful in the development of a DNA test for boar taint but careful monitoring of other overlapping QTL traits should be performed to avoid any negative consequences of selection.

  6. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.

    Science.gov (United States)

    Morfopoulou, Sofia; Mee, Edward T; Connaughton, Sarah M; Brown, Julianne R; Gilmour, Kimberly; Chong, W K 'Kling'; Duprex, W Paul; Ferguson, Deborah; Hubank, Mike; Hutchinson, Ciaran; Kaliakatsos, Marios; McQuaid, Stephen; Paine, Simon; Plagnol, Vincent; Ruis, Christopher; Virasami, Alex; Zhan, Hong; Jacques, Thomas S; Schepelmann, Silke; Qasim, Waseem; Breuer, Judith

    2017-01-01

    Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV JL5 ) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV JL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV JL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.

  7. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1.

    Science.gov (United States)

    Yee, S W; Giacomini, M M; Hsueh, C-H; Weitz, D; Liang, X; Goswami, S; Kinchen, J M; Coelho, A; Zur, A A; Mertsch, K; Brian, W; Kroetz, D L; Giacomini, K M

    2016-11-01

    Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  8. Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory.

    Science.gov (United States)

    Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan

    2017-08-01

    Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A large study reveals no Association between APOE and Parkinson’s disease

    Science.gov (United States)

    Federoff, Monica; Jimenez-Rolando, Belen; Nalls, Michael A; Singleton, Andrew B

    2012-01-01

    Background Research focusing on the role of APOE in Parkinson’s disease (PD) has been largely inconclusive, creating a broad discrepancy in association studies. Objective To elucidate the role of APOE alleles in PD risk by studying a large sample size and controlling for population substructure. Patients and Methods In total, 3465 case and control samples were genotyped, obtained from the NINDS Neurogenetics repository. Results No significant differences in ε4 dosages exist between PD cases and controls. The frequency of ε4 carriers differed slightly between cases and controls at 24% (580/2412) and 26% (270/1053), respectively. Likewise, mean dosages of APOE ε2 were not significantly different between cases and controls. APOE ε2 carriers were observed at a frequency of 13.6% (329/2412) among cases and 15% (158/1053) among controls. Logistic regression models evaluating PD as possibly associated with ε4 or ε2 carrier status and allele dosages yielded no significant results. The mean MMSE score among all PD cases was 28.35 (SD = 2.58) and memory loss was reported in only 11.9% (105/879) of cases. Linear regression models comparing MMSE scores as predicted by ε4 or ε2 carrier status and allele dosages were not significant. Conclusions There is no association between APOE epsilon alleles and Parkinson’s disease. PMID:22349451

  10. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  11. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    Science.gov (United States)

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Tatsuke, Tsuneyuki; Zhu, Li; Xu, Jian; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2012-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  12. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Zhiqing Li

    Full Text Available Polycomb group (PcG proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1, Polycomb repressive complex 2 (PRC2, and Pleiohomeotic repressive complex (PhoRC, to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524 and BmScm (331 out of 532, and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  14. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin

    DEFF Research Database (Denmark)

    Hoadley, Katherine A; Yau, Christina; Wolf, Denise M

    2014-01-01

    Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform...... on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset...

  15. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  16. Analysis of renal anomalies in VACTERL association.

    Science.gov (United States)

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  17. EDARV370A associated facial characteristics in Uyghur population revealing further pleiotropic effects.

    Science.gov (United States)

    Peng, Qianqian; Li, Jinxi; Tan, Jingze; Yang, Yajun; Zhang, Manfei; Wu, Sijie; Liu, Yu; Zhang, Juan; Qin, Pengfei; Guan, Yaqun; Jiao, Yi; Zhang, Zhaoxia; Sabeti, Pardis C; Tang, Kun; Xu, Shuhua; Jin, Li; Wang, Sijia

    2016-01-01

    An adaptive variant of human Ectodysplasin receptor, EDARV370A, had undergone strong positive selection in East Asia. In mice and humans, EDARV370A was found to affect ectodermal-derived characteristics, including hair thickness, hair shape, active sweat gland density and teeth formation. Facial characteristics are also largely ectodermal derived. In this study, taking advantage of an admixed population of East Asian and European ancestry-the Uyghur, we aim to test whether EDARV370A is affecting facial characteristics and to investigate its pleiotropic nature and genetic model. In a sample of 1027 Uyghurs, we discover that EDARV370A is significantly associated with several facial characteristics, in particular shape of earlobe (P = 3.64 × 10 (-6) ) and type of chin (P = 9.23 × 10 (-5) ), with successful replication in other East Asian populations. Additionally, in this Uyghur population, we replicate previous association findings of incisors shoveling (P = 1.02 × 10 (-7) ), double incisors shoveling (P = 1.86 × 10 (-12) ) and hair straightness (P = 3.99 × 10 (-16) ), providing strong evidence supporting an additive model for the EDARV370A associations. Partial least square path model confirms EDARV370A systematically affect these weakly related ectodermal-derived characteristics, suggesting the pleiotropic effect of EDARV370A mainly plays roles in early embryo development. This study extends our knowledge about the pleiotropic nature of EDARV370A and provides potential clues to its adaptation fitness in human evolution.

  18. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks

    Directory of Open Access Journals (Sweden)

    Kohane Isaac S

    2005-09-01

    Full Text Available Abstract Background Biological processes are carried out by coordinated modules of interacting molecules. As clustering methods demonstrate that genes with similar expression display increased likelihood of being associated with a common functional module, networks of coexpressed genes provide one framework for assigning gene function. This has informed the guilt-by-association (GBA heuristic, widely invoked in functional genomics. Yet although the idea of GBA is accepted, the breadth of GBA applicability is uncertain. Results We developed methods to systematically explore the breadth of GBA across a large and varied corpus of expression data to answer the following question: To what extent is the GBA heuristic broadly applicable to the transcriptome and conversely how broadly is GBA captured by a priori knowledge represented in the Gene Ontology (GO? Our study provides an investigation of the functional organization of five coexpression networks using data from three mammalian organisms. Our method calculates a probabilistic score between each gene and each Gene Ontology category that reflects coexpression enrichment of a GO module. For each GO category we use Receiver Operating Curves to assess whether these probabilistic scores reflect GBA. This methodology applied to five different coexpression networks demonstrates that the signature of guilt-by-association is ubiquitous and reproducible and that the GBA heuristic is broadly applicable across the population of nine hundred Gene Ontology categories. We also demonstrate the existence of highly reproducible patterns of coexpression between some pairs of GO categories. Conclusion We conclude that GBA has universal value and that transcriptional control may be more modular than previously realized. Our analyses also suggest that methodologies combining coexpression measurements across multiple genes in a biologically-defined module can aid in characterizing gene function or in characterizing

  19. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation

    DEFF Research Database (Denmark)

    Mortuza, Gulnahar B; Cavazza, Tommaso; Garcia-Mayoral, Maria Flor

    2014-01-01

    215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215...... molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP...

  20. Re-Analysis of Metagenomic Sequences from Acute Flaccidmyelitis Patients Reveals Alternatives to Enterovirus D68 Infection

    Science.gov (United States)

    2015-07-13

    caused in some cases by infection with enterovirus D68. We found that among the patients whose symptoms were previously attributed to enterovirus D68...distribution is unlimited. Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus D68...Street Baltimore, MD 21218 -2685 ABSTRACT Re-analysis of metagenomic sequences from acute flaccidmyelitis patients reveals alternatives to enterovirus

  1. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  2. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Science.gov (United States)

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  3. VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia

    Directory of Open Access Journals (Sweden)

    Ayling Roger D

    2008-11-01

    Full Text Available Abstract Background Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation. Results We have developed variable number tandem repeat (VNTR analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320. We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE and random amplified polymorphic DNA (RAPD analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates. Conclusion VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.

  4. Protein profiles of CCL5, HPGDS, and NPSR1 in plasma reveal association with childhood asthma.

    Science.gov (United States)

    Hamsten, C; Häggmark, A; Grundström, J; Mikus, M; Lindskog, C; Konradsen, J R; Eklund, A; Pershagen, G; Wickman, M; Grunewald, J; Melén, E; Hedlin, G; Nilsson, P; van Hage, M

    2016-09-01

    Asthma is a common chronic childhood disease with many different phenotypes that need to be identified. We analyzed a broad range of plasma proteins in children with well-characterized asthma phenotypes to identify potential markers of childhood asthma. Using an affinity proteomics approach, plasma levels of 362 proteins covered by antibodies from the Human Protein Atlas were investigated in a total of 154 children with persistent or intermittent asthma and controls. After screening, chemokine ligand 5 (CCL5) hematopoietic prostaglandin D synthase (HPGDS) and neuropeptide S receptor 1 (NPSR1) were selected for further investigation. Significantly lower levels of both CCL5 and HPGDS were found in children with persistent asthma, while NPSR1 was found at higher levels in children with mild intermittent asthma compared to healthy controls. In addition, the protein levels were investigated in another respiratory disease, sarcoidosis, showing significantly higher NPSR1 levels in sera from sarcoidosis patients compared to healthy controls. Immunohistochemical staining of healthy tissues revealed high cytoplasmic expression of HPGDS in mast cells, present in stroma of both airway epithelia, lung as well as in other organs. High expression of NPSR1 was observed in neuroendocrine tissues, while no expression was observed in airway epithelia or lung. In conclusion, we have utilized a broad-scaled affinity proteomics approach to identify three proteins with altered plasma levels in asthmatic children, representing one of the first evaluations of HPGDS and NPSR1 protein levels in plasma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans.

    Science.gov (United States)

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P

    2015-11-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  7. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis

    International Nuclear Information System (INIS)

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2015-01-01

    EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. This metaanalysis suggests that ‘combination therapies’ can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding

  8. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Science.gov (United States)

    Pannekoek, Yvonne; Dickx, Veerle; Beeckman, Delphine S A; Jolley, Keith A; Keijzers, Wendy C; Vretou, Evangelia; Maiden, Martin C J; Vanrompay, Daisy; van der Ende, Arie

    2010-12-02

    Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  9. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Directory of Open Access Journals (Sweden)

    Yvonne Pannekoek

    2010-12-01

    Full Text Available Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  10. Co-occurrence correlations of heavy metals in sediments revealed using network analysis.

    Science.gov (United States)

    Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong

    2015-01-01

    In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  12. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    Science.gov (United States)

    2013-01-01

    Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747

  13. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  14. Pro-survival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Liviu Aron

    2010-04-01

    Full Text Available The mechanisms underlying the selective death of substantia nigra (SN neurons in Parkinson disease (PD remain elusive. While inactivation of DJ-1, an oxidative stress suppressor, causes PD, animal models lacking DJ-1 show no overt dopaminergic (DA neuron degeneration in the SN. Here, we show that aging mice lacking DJ-1 and the GDNF-receptor Ret in the DA system display an accelerated loss of SN cell bodies, but not axons, compared to mice that only lack Ret signaling. The survival requirement for DJ-1 is specific for the GIRK2-positive subpopulation in the SN which projects exclusively to the striatum and is more vulnerable in PD. Using Drosophila genetics, we show that constitutively active Ret and associated Ras/ERK, but not PI3K/Akt, signaling components interact genetically with DJ-1. Double loss-of-function experiments indicate that DJ-1 interacts with ERK signaling to control eye and wing development. Our study uncovers a conserved interaction between DJ-1 and Ret-mediated signaling and a novel cell survival role for DJ-1 in the mouse. A better understanding of the molecular connections between trophic signaling, cellular stress and aging could uncover new targets for drug development in PD.

  15. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  16. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia.

    Science.gov (United States)

    Li, Wenliang; Kessler, Patricia; Williams, Bryan R G

    2005-01-13

    Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.

  17. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  18. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Science.gov (United States)

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds. Copyright © 2017 the American Physiological Society.

  19. Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.

    Science.gov (United States)

    Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B

    2015-12-01

    Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods.

    Science.gov (United States)

    Huys, Rony; Suárez-Morales, Eduardo; Serrano-Sánchez, María de Lourdes; Centeno-García, Elena; Vega, Francisco J

    2016-10-12

    Copepods are aquatic microcrustaceans and represent the most abundant metazoans on Earth, outnumbering insects and nematode worms. Their position of numerical world predominance can be attributed to three principal radiation events, i.e. their major habitat shift into the marine plankton, the colonization of freshwater and semiterrestrial environments, and the evolution of parasitism. Their variety of life strategies has generated an incredible morphological plasticity and disparity in body form and shape that are arguably unrivalled among the Crustacea. Although their chitinous exoskeleton is largely resistant to chemical degradation copepods are exceedingly scarce in the geological record with limited body fossil evidence being available for only three of the eight currently recognized orders. The preservation of aquatic arthropods in amber is unusual but offers a unique insight into ancient subtropical and tropical ecosystems. Here we report the first discovery of amber-preserved harpacticoid copepods, represented by ten putative species belonging to five families, based on Early Miocene (22.8 million years ago) samples from Chiapas, southeast Mexico. Their close resemblance to Recent mangrove-associated copepods highlights the antiquity of the specialized harpacticoid fauna living in this habitat. With the taxa reported herein, the Mexican amber holds the greatest diversity of fossil copepods worldwide.

  1. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    Science.gov (United States)

    Ren, Wen; Yang, Fengling; He, Hang; Zhao, Jiuran

    2015-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize. PMID:26599013

  2. Evolution in the lineament patterns associated to strong earthquakes revealed by satellite observations

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2011-12-01

    We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).

  3. An Angiotensin II type 1 receptor activation switch patch revealed through Evolutionary Trace analysis

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong

    2010-01-01

    to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues......) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates...

  4. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    Directory of Open Access Journals (Sweden)

    Jeremiah Athmer

    2017-01-01

    Full Text Available Coronavirus (CoV replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER membranes in replication/transcription complexes (RTC. Many of the CoV nonstructural proteins (nsps are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV. In MHV, nsp15 contains the genomic RNA packaging signal (P/S, a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses.

  5. Complete physical mapping of IL6 reveals a new marker associated with chronic periodontitis.

    Science.gov (United States)

    Farhat, S B; de Souza, C M; Braosi, A P R; Kim, S H; Tramontina, V A; Papalexiou, V; Olandoski, M; Mira, M T; Luczyszyn, S M; Trevilatto, P C

    2017-04-01

    Interleukin-6 (IL-6) is a powerful stimulator of osteoclast differentiation and bone resorption. Production of IL-6 is modulated by polymorphisms, and higher levels of this cytokine are found locally in patients with chronic periodontitis. In this study we performed a modern approach - Complete physical mapping of the IL6 gene - to identify the polymorphisms associated with chronic periodontitis in a southern Brazilian population sample. One-hundred and nine individuals of both genders (mean age: 41.5 ± 8.5 years) were divided into a study group (56 participants with periodontitis) and a control group (53 individuals without periodontitis). After collection and purification of DNA, nine tag single nucleotide polymorphisms (SNPs; rs1524107, rs2069835, rs2069837, rs2069838, rs2069840, rs2069842, rs2069843, rs2069845 and rs2069849) covering the entire gene were selected according to the information available on the International HapMap Project website and evaluated using real-time PCR. Differences in the distribution of the following parameters were statistically significant between study and control groups: number of teeth (p = 0.030); probing depth (p chronic periodontitis in a Brazilian population in the presence of clinical variables, such as visible plaque, dentist visit frequency and dental floss use, and was suggested for the first time as a marker of susceptibility to chronic periodontitis. Complete physical mapping of IL6 (using tag SNPs) was carried out for the first time, unveiling allele G of polymorphism rs2069837 (located in the second intron of IL6) as a suggestive marker of protection against chronic periodontitis in a Brazilian population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  7. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    Science.gov (United States)

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  8. Heterogeneity revealed through meta-analysis might link geographical differences with nasopharyngeal carcinoma incidence in Han Chinese populations

    International Nuclear Information System (INIS)

    Su, Wen-Hui; Chiu, Chi-Cking; Yao Shugart, Yin

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is an epithelial malignancy highly prevalent in southern China, and incidence rates among Han Chinese people vary according to geographic region. Recently, three independent genome-wide association studies (GWASs) confirmed that HLA-A is the main risk gene for NPC. However, the results of studies conducted in regions with dissimilar incidence rates contradicted the claims that HLA-A is the sole risk gene and that the association of rs29232 is independent of the HLA-A effect in the chromosome 6p21.3 region. We performed a meta-analysis, selecting five single-nucleotide polymorphisms (SNPs) in chromosome 6p21.3 mapped in three published GWASs and four case–control studies. The studies involved 8994 patients with NPC and 11,157 healthy controls, all of whom were Han Chinese. The rs2517713 SNP located downstream of HLA-A was significantly associated with NPC (P = 1.08 × 10 −91 , odds ratio [OR] = 0.58, 95 % confidence interval [CI] = 0.55–0.61). The rs29232 SNP exhibited a moderate level of heterogeneity (I 2 = 47 %) that disappeared (I 2 = 0 %) after stratification by moderate- and high-incidence NPC regions. Our results suggested that the HLA-A gene is strongly associated with NPC risk. In addition, the heterogeneity revealed by the meta-analysis of rs29232 might be associated with regional differences in NPC incidence among Han Chinese people. The higher OR of rs29232 and the fact that rs29232 was independent of the HLA-A effect in the moderate-incidence population suggested that rs29232 might have greater relevance to NPC incidence in a moderate-incidence population than in a high-incidence population. The online version of this article (doi:10.1186/s12885-015-1607-0) contains supplementary material, which is available to authorized users

  9. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    Directory of Open Access Journals (Sweden)

    Nina So

    Full Text Available Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing

  10. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    Directory of Open Access Journals (Sweden)

    Richard Allen White III

    2015-09-01

    Full Text Available Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid and chlorophyll biosynthesis and carbon fixation (e.g., CO dehydrogenase. The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 0.900. These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

  11. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    Science.gov (United States)

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  12. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  13. Epidemiology of exertional rhabdomyolysis susceptibility in standardbred horses reveals associated risk factors and underlying enhanced performance.

    Directory of Open Access Journals (Sweden)

    Cajsa M Isgren

    Full Text Available BACKGROUND: Exertional rhabdomyolysis syndrome is recognised in many athletic horse breeds and in recent years specific forms of the syndrome have been identified. However, although Standardbred horses are used worldwide for racing, there is a paucity of information about the epidemiological and performance-related aspects of the syndrome in this breed. The objectives of this study therefore were to determine the incidence, risk factors and performance effects of exertional rhabdomyolysis syndrome in Standardbred trotters and to compare the epidemiology and genetics of the syndrome with that in other breeds. METHODOLOGY/PRINCIPAL FINDINGS: A questionnaire-based case-control study (with analysis of online race records was conducted following identification of horses that were determined susceptible to exertional rhabdomyolysis (based on serum biochemistry from a total of 683 horses in 22 yards. Thirty six exertional rhabdomyolysis-susceptible horses were subsequently genotyped for the skeletal muscle glycogen synthase (GYS1 mutation responsible for type 1 polysaccharide storage myopathy. A total of 44 susceptible horses was reported, resulting in an annual incidence of 6.4 (95% CI 4.6-8.2% per 100 horses. Female horses were at significantly greater risk than males (odds ratio 7.1; 95% CI 2.1-23.4; p = 0.001 and nervous horses were at a greater risk than horses with calm or average temperaments (odds ratio 7.9; 95% CI 2.3-27.0; p = 0.001. Rhabdomyolysis-susceptible cases performed better from standstill starts (p = 0.04 than controls and had a higher percentage of wins (p = 0.006. All exertional rhabdomyolysis-susceptible horses tested were negative for the R309H GYS1 mutation. CONCLUSIONS/SIGNIFICANCE: Exertional rhabdomyolysis syndrome in Standardbred horses has a similar incidence and risk factors to the syndrome in Thoroughbred horses. If the disorder has a genetic basis in Standardbreds, improved performance in susceptible animals may be

  14. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Anna Koczula

    2017-02-01

    Full Text Available Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq. In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism. In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  15. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

    Directory of Open Access Journals (Sweden)

    Xiaodong Fang

    2014-09-01

    Full Text Available Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber. Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.

  16. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  17. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    Directory of Open Access Journals (Sweden)

    Koen Illeghems

    Full Text Available This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni. Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  18. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  19. Stratification by smoking status reveals an association of CHRNA5-A3-B4 genotype with body mass index in never smokers.

    Directory of Open Access Journals (Sweden)

    Amy E Taylor

    2014-12-01

    Full Text Available We previously used a single nucleotide polymorphism (SNP in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00 × 10(-10, but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38 × 10(-5. An interaction test confirmed that these estimates differed from each other (P = 4.95 × 10(-13. This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.

  20. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations

    Science.gov (United States)

    Bossini-Castillo, Lara; Martin, Jose-Ezequiel; Broen, Jasper; Gorlova, Olga; Simeón, Carmen P.; Beretta, Lorenzo; Vonk, Madelon C.; Luis Callejas, Jose; Castellví, Ivan; Carreira, Patricia; José García-Hernández, Francisco; Fernández Castro, Mónica; Coenen, Marieke J.H.; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jörg H.W.; Koeleman, Bobby P.; Voskuyl, Alexandre E.; Schuerwegh, Annemie J.; Palm, Øyvind; Hesselstrand, Roger; Nordin, Annika; Airó, Paolo; Lunardi, Claudio; Scorza, Raffaella; Shiels, Paul; van Laar, Jacob M.; Herrick, Ariane; Worthington, Jane; Denton, Christopher; Tan, Filemon K.; Arnett, Frank C.; Agarwal, Sandeep K.; Assassi, Shervin; Fonseca, Carmen; Mayes, Maureen D.; Radstake, Timothy R.D.J.; Martin, Javier

    2012-01-01

    A single-nucleotide polymorphism (SNP) at the IL12RB2 locus showed a suggestive association signal in a previously published genome-wide association study (GWAS) in systemic sclerosis (SSc). Aiming to reveal the possible implication of the IL12RB2 gene in SSc, we conducted a follow-up study of this locus in different Caucasian cohorts. We analyzed 10 GWAS-genotyped SNPs in the IL12RB2 region (2309 SSc patients and 5161 controls). We then selected three SNPs (rs3790567, rs3790566 and rs924080) based on their significance level in the GWAS, for follow-up in an independent European cohort comprising 3344 SSc and 3848 controls. The most-associated SNP (rs3790567) was further tested in an independent cohort comprising 597 SSc patients and 1139 controls from the USA. After conditional logistic regression analysis of the GWAS data, we selected rs3790567 [PMH= 1.92 × 10−5 odds ratio (OR) = 1.19] as the genetic variant with the firmest independent association observed in the analyzed GWAS peak of association. After the first follow-up phase, only the association of rs3790567 was consistent (PMH= 4.84 × 10−3 OR = 1.12). The second follow-up phase confirmed this finding (Pχ2 = 2.82 × 10−4 OR = 1.34). After performing overall pooled-analysis of all the cohorts included in the present study, the association found for the rs3790567 SNP in the IL12RB2 gene region reached GWAS-level significant association (PMH= 2.82 × 10−9 OR = 1.17). Our data clearly support the IL12RB2 genetic association with SSc, and suggest a relevant role of the interleukin 12 signaling pathway in SSc pathogenesis. PMID:22076442

  1. Potential relationship between phenotypic and molecular characteristics in revealing livestock-associated Staphylococcus aureus in Chinese humans without occupational livestock contact

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    2016-09-01

    Full Text Available While some studies have defined Staphylococcus aureus based on its clonal complex and resistance pattern, few have explored the relations between the genetic lineages and antibiotic resistance patterns and immune evasion cluster (IEC genes. Our aim was to investigate the potential relationship between phenotypic and molecular characteristics so as to reveal livestock-associated S. aureus in humans. The study participants were interviewed, and they provided two nasal swabs for S. aureus analysis. All S. aureus and methicillin-resistant S. aureus (MRSA were tested for antibiotic susceptibility, multilocus sequence type and IEC genes. Of the 1162 participants, 9.3% carried S. aureus, including MRSA (1.4% and multidrug-resistant S. aureus (MDRSA, 2.8%. The predominant multidrug-resistant pattern among MDRSA isolates was nonsusceptibility to erythromycin, clindamycin and tetracycline. The most common S. aureus genotypes were ST7, ST6, ST188 and ST59, and the predominant MRSA genotype was ST7. Notably, the livestock-associated S. aureus isolates (IEC-negative CC9, IEC-negative tetracycline-resistant CC398, and IEC-negative tetracycline-resistant CC5 were found in people with no occupational livestock contact. These findings reveal a potential relationship between S. aureus CCs and IEC genes and antibiotic resistance patterns in defining livestock-associated S. aureus in humans and support growing concern about the potential livestock-to-human transmission of livestock-associated S. aureus by non-occupational livestock contact.

  2. Parametric mapping using spectral analysis for 11C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects.

    Science.gov (United States)

    Fan, Zhen; Dani, Melanie; Femminella, Grazia D; Wood, Melanie; Calsolaro, Valeria; Veronese, Mattia; Turkheimer, Federico; Gentleman, Steve; Brooks, David J; Hinz, Rainer; Edison, Paul

    2018-07-01

    Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11 C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11 C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11 C-PBR28 parametric maps. These maps were then compared with regional 11 C-PBR28 V T (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18 F-Flutemetamol PET. With SA, three component peaks were identified in addition to blood volume. The 11 C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11 C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11 C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.

  3. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  4. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  5. REVEAL - A tool for rule driven analysis of safety critical software

    International Nuclear Information System (INIS)

    Miedl, H.; Kersken, M.

    1998-01-01

    As the determination of ultrahigh reliability figures for safety critical software is hardly possible, national and international guidelines and standards give mainly requirements for the qualitative evaluation of software. An analysis whether all these requirements are fulfilled is time and effort consuming and prone to errors, if performed manually by analysts, and should instead be dedicated to tools as far as possible. There are many ''general-purpose'' software analysis tools, both static and dynamic, which help analyzing the source code. However, they are not designed to assess the adherence to specific requirements of guidelines and standards in the nuclear field. Against the background of the development of I and C systems in the nuclear field which are based on digital techniques and implemented in high level language, it is essential that the assessor or licenser has a tool with which he can automatically and uniformly qualify as many aspects as possible of the high level language software. For this purpose the software analysis tool REVEAL has been developed at ISTec and the Halden Reactor Project. (author)

  6. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

    Science.gov (United States)

    Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K

    2017-03-03

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 5 to 1 × 10 6  cells/mm 3 . Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

  7. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  8. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    Science.gov (United States)

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  9. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    Science.gov (United States)

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  10. Principal component analysis reveals gender-specific predictors of cardiometabolic risk in 6th graders

    Directory of Open Access Journals (Sweden)

    Peterson Mark D

    2012-11-01

    Full Text Available Abstract Background The purpose of this study was to determine the sex-specific pattern of pediatric cardiometabolic risk with principal component analysis, using several biological, behavioral and parental variables in a large cohort (n = 2866 of 6th grade students. Methods Cardiometabolic risk components included waist circumference, fasting glucose, blood pressure, plasma triglycerides levels and HDL-cholesterol. Principal components analysis was used to determine the pattern of risk clustering and to derive a continuous aggregate score (MetScore. Stratified risk components and MetScore were analyzed for association with age, body mass index (BMI, cardiorespiratory fitness (CRF, physical activity (PA, and parental factors. Results In both boys and girls, BMI and CRF were associated with multiple risk components, and overall MetScore. Maternal smoking was associated with multiple risk components in girls and boys, as well as MetScore in boys, even after controlling for children’s BMI. Paternal family history of early cardiovascular disease (CVD and parental age were associated with increased blood pressure and MetScore for girls. Children’s PA levels, maternal history of early CVD, and paternal BMI were also indicative for various risk components, but not MetScore. Conclusions Several biological and behavioral factors were independently associated with children’s cardiometabolic disease risk, and thus represent a unique gender-specific risk profile. These data serve to bolster the independent contribution of CRF, PA, and family-oriented healthy lifestyles for improving children’s health.

  11. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

    Science.gov (United States)

    Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela

    2015-01-01

    Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950

  12. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    Science.gov (United States)

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid

    Directory of Open Access Journals (Sweden)

    Daniel Fraher

    2016-02-01

    Full Text Available The role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.

  14. Conformational Dynamics of apo-GlnBP Revealed by Experimental and Computational Analysis

    KAUST Repository

    Feng, Yitao

    2016-10-13

    The glutamine binding protein (GlnBP) binds l-glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo- and holo-GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single-molecule FRET techniques to decipher the conformational dynamics of apo-GlnBP. The NMR residual dipolar couplings of apo-GlnBP were in good agreement with a MD-derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four-state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Conformational Dynamics of apo-GlnBP Revealed by Experimental and Computational Analysis

    KAUST Repository

    Feng, Yitao; Zhang, Lu; Wu, Shaowen; Liu, Zhijun; Gao, Xin; Zhang, Xu; Liu, Maili; Liu, Jianwei; Huang, Xuhui; Wang, Wenning

    2016-01-01

    The glutamine binding protein (GlnBP) binds l-glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo- and holo-GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single-molecule FRET techniques to decipher the conformational dynamics of apo-GlnBP. The NMR residual dipolar couplings of apo-GlnBP were in good agreement with a MD-derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four-state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. Distribution patterns of firearm discharge residues as revealed by neutron activation analysis

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Driscoll, D.C.; Jester, W.A.

    1975-01-01

    A systematic investigation using a variety of handguns has revealed the existence of distinguisable distribution patterns of firearm discharge residues on surfaces below the flight path of a bullet. The residues are identificable even at distances of 12 meters from the gun using nondestructive neutron activation analysis. The results of these investigations show that the distribution pattern for a gun is reproducible using similar ammunition and that there exist two distinct regions to the patterns developed between the firearm and the target-one with respect to the position of the gun and the other in the vicinity of the target. The judicious applications of these findings could be of significant value in criminal investigations. (T.G.)

  17. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo

    2017-06-12

    virulence genes lecA, lasB, quorum sensing regulators LasI/R, and the type I, III and VI secretion systems were observed in the two strains.The complete genome sequence of P. aeruginosa ATCC 27853 reveals the comprehensive genetic background of the strain, and provides genetic basis for several interesting findings about the functions of surface associated proteins, prophages, and genomic islands. Comparative transcriptome analysis of P. aeruginosa ATCC 27853 and PAO1 revealed several classes of differentially expressed genes in the two strains, underlying the genetic and molecular details of several known and yet to be explored morphological and physiological potentials of P. aeruginosa ATCC 27853.

  18. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

    Directory of Open Access Journals (Sweden)

    Max Lam

    2017-11-01

    Full Text Available Here, we present a large (n = 107,207 genome-wide association study (GWAS of general cognitive ability (“g”, further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum. Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.

  19. Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets.

    Science.gov (United States)

    Agarwal, Rahul; Narayan, Jitendra; Bhattacharyya, Amitava; Saraswat, Mayank; Tomar, Anil Kumar

    2017-10-01

    A very low 5-year survival rate among hepatocellular carcinoma (HCC) patients is mainly due to lack of early stage diagnosis, distant metastasis and high risk of postoperative recurrence. Hence ascertaining novel biomarkers for early diagnosis and patient specific therapeutics is crucial and urgent. Here, we have performed a comprehensive analysis of the expression data of 423 HCC patients (373 tumors and 50 controls) downloaded from The Cancer Genome Atlas (TCGA) followed by pathway enrichment by gene ontology annotations, subtype classification and overall survival analysis. The differential gene expression analysis using non-parametric Wilcoxon test revealed a total of 479 up-regulated and 91 down-regulated genes in HCC compared to controls. The list of top differentially expressed genes mainly consists of tumor/cancer associated genes, such as AFP, THBS4, LCN2, GPC3, NUF2, etc. The genes over-expressed in HCC were mainly associated with cell cycle pathways. In total, 59 kinases associated genes were found over-expressed in HCC, including TTK, MELK, BUB1, NEK2, BUB1B, AURKB, PLK1, CDK1, PKMYT1, PBK, etc. Overall four distinct HCC subtypes were predicted using consensus clustering method. Each subtype was unique in terms of gene expression, pathway enrichment and median survival. Conclusively, this study has exposed a number of interesting genes which can be exploited in future as potential markers of HCC, diagnostic as well as prognostic and subtype classification may guide for improved and specific therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria.

    Science.gov (United States)

    Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Menna, Pâmela; Bangel, Eliane Villamil; Hungria, Mariangela

    2012-04-01

    Symbiotic association of several genera of bacteria collectively called as rhizobia and plants belonging to the family Leguminosae (=Fabaceae) results in the process of biological nitrogen fixation, playing a key role in global N cycling, and also bringing relevant contributions to the agriculture. Bradyrhizobium is considered as the ancestral of all nitrogen-fixing rhizobial species, probably originated in the tropics. The genus encompasses a variety of diverse bacteria, but the diversity captured in the analysis of the 16S rRNA is often low. In this study, we analyzed twelve Bradyrhizobium strains selected from previous studies performed by our group for showing high genetic diversity in relation to the described species. In addition to the 16S rRNA, five housekeeping genes (recA, atpD, glnII, gyrB and rpoB) were analyzed in the MLSA (multilocus sequence analysis) approach. Analysis of each gene and of the concatenated housekeeping genes captured a considerably higher level of genetic diversity, with indication of putative new species. The results highlight the high genetic variability associated with Bradyrhizobium microsymbionts of a variety of legumes. In addition, the MLSA approach has proved to represent a rapid and reliable method to be employed in phylogenetic and taxonomic studies, speeding the identification of the still poorly known diversity of nitrogen-fixing rhizobia in the tropics.