WorldWideScience

Sample records for analysis quantitative chemical

  1. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  2. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD

    Directory of Open Access Journals (Sweden)

    Sanawar Mansur

    2016-12-01

    Full Text Available A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa. Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA of China. In quantitative analysis, the five compounds showed good regression (R2 = 0.9995 within the test ranges, and the recovery of the method was in the range of 94.2%–103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa. Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa.

  3. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  4. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  5. An extended chemical analysis of gallstone

    OpenAIRE

    Chandran, P.; Kuchhal, N. K.; Garg, P.; Pundir, C. S.

    2007-01-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble prot...

  6. A chemical profiling strategy for semi-quantitative analysis of flavonoids in Ginkgo extracts.

    Science.gov (United States)

    Yang, Jing; Wang, An-Qi; Li, Xue-Jing; Fan, Xue; Yin, Shan-Shan; Lan, Ke

    2016-05-10

    Flavonoids analysis in herbal products is challenged by their vast chemical diversity. This work aimed to develop a chemical profiling strategy for the semi-quantification of flavonoids using extracts of Ginkgo biloba L. (EGB) as an example. The strategy was based on the principle that flavonoids in EGB have an almost equivalent molecular absorption coefficient at a fixed wavelength. As a result, the molecular-contents of flavonoids were able to be semi-quantitatively determined by the molecular-concentration calibration curves of common standards and recalculated as the mass-contents with the characterized molecular weight (MW). Twenty batches of EGB were subjected to HPLC-UV/DAD/MS fingerprinting analysis to test the feasibility and reliability of this strategy. The flavonoid peaks were distinguished from the other peaks with principle component analysis and Pearson correlation analysis of the normalized UV spectrometric dataset. Each flavonoid peak was subsequently tentatively identified by the MS data to ascertain their MW. It was highlighted that the flavonoids absorption at Band-II (240-280 nm) was more suitable for the semi-quantification purpose because of the less variation compared to that at Band-I (300-380 nm). The semi-quantification was therefore conducted at 254 nm. Beyond the qualitative comparison results acquired by common chemical profiling techniques, the semi-quantitative approach presented the detailed compositional information of flavonoids in EGB and demonstrated how the adulteration of one batch was achieved. The developed strategy was believed to be useful for the advanced analysis of herbal extracts with a high flavonoid content without laborious identification and isolation of individual components. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Quantitative Moessbauer analysis

    International Nuclear Information System (INIS)

    Collins, R.L.

    1978-01-01

    The quantitative analysis of Moessbauer data, as in the measurement of Fe 3+ /Fe 2+ concentration, has not been possible because of the different mean square velocities (x 2 ) of Moessbauer nuclei at chemically different sites. A method is now described which, based on Moessbauer data at several temperatures, permits the comparison of absorption areas at (x 2 )=0. (Auth.)

  8. GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil.

    Science.gov (United States)

    Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua

    2015-01-01

    Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  10. Quantitative analysis of abused drugs in physiological fluids by gas chromatography/chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Foltz, R.L.

    1978-01-01

    Methods have been developed for quantitative analysis of commonly abused drugs in physiological fluids using gas chromatography/chemical ionization mass spectrometry. The methods are being evaluated in volunteer analytical and toxicological laboratories, and analytical manuals describing the methods are being prepared. The specific drug and metabolites included in this program are: Δ 9 -tetrahydrocannabinol, methadone, phencyclidine, methaqualone, morphine, amphetamine, methamphetamine, mescaline, 2,5-dimethoxy-4-methyl amphetamine, cocaine, benzoylecgonine, diazepam, and N-desmethyldiazepam. The current analytical methods utilize relatively conventional instrumentation and procedures, and are capable of measuring drug concentrations as low as 1 ng/ml. Various newer techniques such as sample clean-up by high performance liquid chromatography, separation by glass capillary chromatography, and ionization by negative ion chemical ionization are being investigated with respect to their potential for achieving higher sensitivity and specificity, as well as their ability to facilitate simultaneous analysis of more than one drug and metabolite. (Auth.)

  11. Quantitative anomalous small-angle X-ray scattering - The determination of chemical concentrations in nano-scale phases

    International Nuclear Information System (INIS)

    Goerigk, G.; Huber, K.; Mattern, N.; Williamson, D.L.

    2012-01-01

    In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nano-structures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed. (authors)

  12. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    Science.gov (United States)

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  13. An extended chemical analysis of gallstone.

    Science.gov (United States)

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  14. Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2011-01-01

    Full Text Available Chemical modification of single-walled carbon nanotubes (SWNT has been found to be an excellent method to promote SWNT dispersion, and possibly to improve interaction with matrices via covalent bonding. It is thus a quite promising technique to enhance the mechanical properties of SWNT-reinforced nanocomposites. However, the underlying mechanism of SWNT chemical functionalization effects on interfacial strength is not quantitatively understood, limiting their usefulness in the design of nanocomposites. In this work, an atomic force microscopy (AFM- based adhesive force mapping technique combined with a statistical analysis method were developed and implemented to study adhesive interactions of small SWNT bundles functionalized by amino, epoxide, and hydroperoxide groups as compared to SDS-treated SWNT in controlled environment. Finally, the importance of such localized quantitative measurements in SWNT-reinforced nanocomposites design and fabrication was also discussed.

  15. Chemical Fingerprint and Quantitative Analysis for the Quality Evaluation of Platycladi cacumen by Ultra-performance Liquid Chromatography Coupled with Hierarchical Cluster Analysis.

    Science.gov (United States)

    Shan, Mingqiu; Li, Sam Fong Yau; Yu, Sheng; Qian, Yan; Guo, Shuchen; Zhang, Li; Ding, Anwei

    2018-01-01

    Platycladi cacumen (dried twigs and leaves of Platycladus orientalis (L.) Franco) is a frequently utilized Chinese medicinal herb. To evaluate the quality of the phytomedcine, an ultra-performance liquid chromatographic method with diode array detection was established for chemical fingerprinting and quantitative analysis. In this study, 27 batches of P. cacumen from different regions were collected for analysis. A chemical fingerprint with 20 common peaks was obtained using Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A). Among these 20 components, seven flavonoids (myricitrin, isoquercitrin, quercitrin, afzelin, cupressuflavone, amentoflavone and hinokiflavone) were identified and determined simultaneously. In the method validation, the seven analytes showed good regressions (R ≥ 0.9995) within linear ranges and good recoveries from 96.4% to 103.3%. Furthermore, with the contents of these seven flavonoids, hierarchical clustering analysis was applied to distinguish the 27 batches into five groups. The chemometric results showed that these groups were almost consistent with geographical positions and climatic conditions of the production regions. Integrating fingerprint analysis, simultaneous determination and hierarchical clustering analysis, the established method is rapid, sensitive, accurate and readily applicable, and also provides a significant foundation for quality control of P. cacumen efficiently. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Analytical robustness of quantitative NIR chemical imaging for Islamic paper characterization

    Science.gov (United States)

    Mahgoub, Hend; Gilchrist, John R.; Fearn, Thomas; Strlič, Matija

    2017-07-01

    Recently, spectral imaging techniques such as Multispectral (MSI) and Hyperspectral Imaging (HSI) have gained importance in the field of heritage conservation. This paper explores the analytical robustness of quantitative chemical imaging for Islamic paper characterization by focusing on the effect of different measurement and processing parameters, i.e. acquisition conditions and calibration on the accuracy of the collected spectral data. This will provide a better understanding of the technique that can provide a measure of change in collections through imaging. For the quantitative model, special calibration target was devised using 105 samples from a well-characterized reference Islamic paper collection. Two material properties were of interest: starch sizing and cellulose degree of polymerization (DP). Multivariate data analysis methods were used to develop discrimination and regression models which were used as an evaluation methodology for the metrology of quantitative NIR chemical imaging. Spectral data were collected using a pushbroom HSI scanner (Gilden Photonics Ltd) in the 1000-2500 nm range with a spectral resolution of 6.3 nm using a mirror scanning setup and halogen illumination. Data were acquired at different measurement conditions and acquisition parameters. Preliminary results showed the potential of the evaluation methodology to show that measurement parameters such as the use of different lenses and different scanning backgrounds may not have a great influence on the quantitative results. Moreover, the evaluation methodology allowed for the selection of the best pre-treatment method to be applied to the data.

  17. Physico-chemical studies of laser-induced plasmas for quantitative analysis of materials in nuclear systems

    International Nuclear Information System (INIS)

    Saad, Rawad

    2014-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique very well suited for analysis in hostile environments particularly in the nuclear industry. Quantitative measurements are frequently performed on liquid or solid samples but in some cases, atypical signal behaviors were observed in the LIBS experiment. To avoid or minimize any impact on measurement accuracy, it is necessary to improve the understanding of these phenomena. In the framework of a three-year PhD thesis, the objective was to study the chemical reactions occurring within laser-generated plasma in a LIBS analysis. Experiments on a model material (pure aluminum sample) highlighted the dynamics of molecular recombination according to different ambient gas. The temporal evolution of Al I atomic emission lines and molecular bands of AlO and AlN were studied. A collisional excitation effect was identified for a peculiar electronic energy level of aluminum in the case of a nitrogen atmosphere. This effect disappeared in air. The aluminum plasma was also imaged during its expansion under the different atmospheres in order to localize the areas in which the molecular recombination process takes place. Spectacular particle projections have been highlighted. (author) [fr

  18. Objective, Quantitative, Data-Driven Assessment of Chemical Probes.

    Science.gov (United States)

    Antolin, Albert A; Tym, Joseph E; Komianou, Angeliki; Collins, Ian; Workman, Paul; Al-Lazikani, Bissan

    2018-02-15

    Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Quantitative standard-less XRF analysis

    International Nuclear Information System (INIS)

    Ulitzka, S.

    2002-01-01

    Full text: For most analytical tasks in the mining and associated industries matrix-matched calibrations are used for the monitoring of ore grades and process control. In general, such calibrations are product specific (iron ore, bauxite, alumina, mineral sands, cement etc.) and apply to a relatively narrow concentration range but give the best precision and accuracy for those materials. A wide range of CRMs is available and for less common materials synthetic standards can be made up from 'pure' chemicals. At times, analysis of materials with varying matrices (powders, scales, fly ash, alloys, polymers, liquors, etc.) and diverse physical shapes (non-flat, metal drillings, thin layers on substrates etc.) is required that could also contain elements which are not part of a specific calibration. A qualitative analysis can provide information about the presence of certain elements and the relative intensities of element peaks in a scan can give a rough idea about their concentrations. More often however, quantitative values are required. The paper will look into the basics of quantitative standardless analysis and show results for some well-defined CRMs. Copyright (2002) Australian X-ray Analytical Association Inc

  20. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    Science.gov (United States)

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  2. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  3. Chemical fingerprinting and quantitative analysis of a Panax notoginseng preparation using HPLC-UV and HPLC-MS

    Directory of Open Access Journals (Sweden)

    Shao Qing

    2011-02-01

    Full Text Available Abstract Background Xuesaitong (XST injection, consisting of total saponins from Panax notoginseng, was widely used for the treatment of cardio- and cerebro-vascular diseases in China. This study develops a simple and global quality evaluation method for the quality control of XST. Methods High performance liquid chromatography-ultraviolet detection (HPLC-UV was used to identify and quantify the chromatographic fingerprints of the XST injection. Characteristic common peaks were identified using HPLC with photo diode array detection/electrospray ionization tandem mass spectrometry (HPLC-PDA/ESI-MSn. Results Representative fingerprints from ten batches of samples showed 27 'common saponins' all of which were identified and quantified using ten reference saponins. Conclusion Chemical fingerprinting and quantitative analysis identified most of the common saponins for the quality control of P. notoginseng products such as the XST injection.

  4. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  5. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    Directory of Open Access Journals (Sweden)

    Stanley Fields

    2006-03-01

    Full Text Available Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999. Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

  6. The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.J.; Kim, B.J. [Department of chemical Engineering, Soongsil University, Seoul (Korea)

    1999-04-01

    Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion (UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree burn, 2nd degree burn, and death distances are 450, 280, 260m, respectively. the simulation results showed the good agreement with the result from SAFER PROGRAM made by DuPont. 13 refs., 4 figs., 2 tabs.

  7. Rapid identification and quantitative analysis of chemical constituents of Gentiana veitchiorum by UHPLC-PDA-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available ABSTRACT Gentiana veitchiorum Hemsl., Gentianaceae, a traditional Tibetan medicine, was used for the treatment of liver jaundice with damp-heat pathogen, as well as for headache and chronic pharyngitis. A rapid ultra-performance liquid chromatography, photodiode array detector, quadrupole time-of-flight mass spectrometry method was developed for the fast and accurate identification and quantification of the chemical constituents of G. veitchiorum. In fact, eighteen compounds were detected and identified on the basis of their mass spectra, fragment characteristics and comparison with published data. Especially, the MS fragmentation pathways of iridoid glycosides and flavone C-glycosides were illustrated. Five compounds among them were quantified by UHPLC-PDA, including swertiamarin, gentiopicroside, sweroside, isoorientin, and isovitexin. The proposed method was then validated based on the analyses of linearity, accuracy, precision, and recovery. The overall recoveries for the five analytes ranged from 96.54% to 100.81%, with RSD from 1.05% to 1.82%. In addition, ten batches of G. veitchiorum from different areas were also analyzed. The developed method was rapid and reliable for both identification and quantification of the chemical constituents of G. veitchiorum, especially for simultaneous qualitative and quantitative analysis of iridoid glycosides and flavone C-glycosides.

  8. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples

    International Nuclear Information System (INIS)

    Bousquet, B.; Sirven, J.-B.; Canioni, L.

    2007-01-01

    A quantitative analysis of chromium in soil samples is presented. Different emission lines related to chromium are studied in order to select the best one for quantitative features. Important matrix effects are demonstrated from one soil to the other, preventing any prediction of concentration in different soils on the basis of a univariate calibration curve. Finally, a classification of the LIBS data based on a series of Principal Component Analyses (PCA) is applied to a reduced dataset of selected spectral lines related to the major chemical elements in the soils. LIBS data of heterogeneous soils appear to be widely dispersed, which leads to a reconsideration of the sampling step in the analysis process

  9. Quantitative investment analysis

    CERN Document Server

    DeFusco, Richard

    2007-01-01

    In the "Second Edition" of "Quantitative Investment Analysis," financial experts Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle outline the tools and techniques needed to understand and apply quantitative methods to today's investment process.

  10. Quantitative analysis of chemical elements in single cells using nuclear microprobe and nano-probe

    International Nuclear Information System (INIS)

    Deves, Guillaume

    2010-01-01

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (μg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng. The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment. Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. (author)

  11. Quantiprot - a Python package for quantitative analysis of protein sequences.

    Science.gov (United States)

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  12. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  13. Quantitative phase analysis using the whole-powder-pattern decomposition method. Pt. 1. Solution from knowledge of chemical compositions

    International Nuclear Information System (INIS)

    Toraya, H.; Tusaka, S.

    1995-01-01

    A new procedure for quantitative phase analysis using the whole-powder-pattern decomposition method is proposed. The procedure consists of two steps. In the first, the whole powder patterns of single-component materials are decomposed separately. The refined parameters of integrated intensity, unit cell and profile shape for respective phases are stored in computer data files. In the second step, the whole powder pattern of a mixture sample is fitted, where the parameters refined in the previous step are used to calculate the profile intensity. The integrated intensity parameters are, however, not varied during the least-squares fitting, while the scale factors for the profile intensities of individual phases are adjusted instead. Weight fractions are obtained by solving simultaneous equations, coefficients of which include the scale factors and the mass-absorption coefficients calculated from chemical formulas of respective phases. The procedure can be applied to all mixture samples, including those containing an amorphous material, if single-component samples with known chemical compositions and their approximate unit-cell parameters are provided. The procedure has been tested by using two-to five-component samples, giving average deviations of 1 to 1.5%. Optimum refinement conditions are discussed in connection with the accuracy of the procedure. (orig.)

  14. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  15. Quantitative and qualitative analysis of common peaks in chemical fingerprint of Yuanhu Zhitong tablet by HPLC-DAD–MS/MS

    Directory of Open Access Journals (Sweden)

    Dao-Quan Tang

    2014-04-01

    Full Text Available A quality control (QC strategy for quantitative and qualitative analysis of “common peaks” in chemical fingerprint was proposed to analyze Yuanhu Zhitong tablet (YZT, using high performance liquid chromatography with diode array detector and tandem mass spectrometry (HPLC-DAD–MS/MS. The chromatographic separation was achieved on an Agilent Eclipse plus C18 column with a gradient elution using a mixture of 0.4‰ ammonium acetate aqueous (pH 6.0 adjusted with glacial acetic acid and acetonitrile. In chemical fingerprint, 40 peaks were assigned as the “common peaks”. For quantification of “common peaks”, the detection wavelength was set at 254 nm, 270 nm, 280 nm and 345 nm, respectively. The method was validated and good results were obtained to simultaneously determine 10 analytes (protopine, jatrorrhizine, coptisine, palmatine, berberine, xanthotoxin, bergapten, tetrahydropalmatine, imperatorin and isoimperatorin. For qualification of “common peaks”, 33 compounds including 10 quantitative analytes were identified or tentatively characterized using LC–MS/MS. These results demonstrated that the present approach may be a powerful and useful tool to tackle the complex quality issue of YZT. Keywords: Yuanhu Zhitong tablet, Alkaloids, Coumarins, Quality control, HPLC-DAD–MS/MS

  16. Chemical purity using quantitative "1H-nuclear magnetic resonance: a hierarchical Bayesian approach for traceable calibrations

    International Nuclear Information System (INIS)

    Toman, Blaza; Nelson, Michael A.; Lippa, Katrice A.

    2016-01-01

    Chemical purity assessment using quantitative "1H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material. (authors)

  17. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    International Nuclear Information System (INIS)

    Fernandez-Ruiz, R.; Garcia-Heras, M.

    2008-01-01

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies

  18. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Grupo de Arqueometria de Vidrios y Materiales Ceramicos, Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/ Albasanz, 26-28, 28037 Madrid (Spain)

    2008-09-15

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.

  19. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  20. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  1. Quantitative risk analysis as a basis for emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, Regiane Tiemi Teruya [Bureau Veritas do Brasil, Rio de Janeiro, RJ (Brazil); Macedo, Eduardo Soares de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Several environmental accidents happened in Brazil and in the world during the 70's and 80's. This strongly motivated the preparation for emergencies in the chemical and petrochemical industries. Environmental accidents affect the environment and the communities that are neighbor to the industrial facilities. The present study aims at subsidizing and providing orientation to develop Emergency Planning from the data obtained on Quantitative Risk Analysis, elaborated according to the Technical Standard P4.261/03 from CETESB (Sao Paulo Environmental Agency). It was observed, during the development of the research, that the data generated on these studies need a complementation and a deeper analysis, so that it is possible to use them on the Emergency Plans. The main issues that were analyzed and discussed on this study were the reevaluation of hazard identification for the emergency plans, the consequences and vulnerability analysis for the response planning, the risk communication, and the preparation to respond to the emergencies of the communities exposed to manageable risks. As a result, the study intends to improve the interpretation and use of the data deriving from the Quantitative Risk Analysis to develop the emergency plans. (author)

  2. Analysis of Ingredient Lists to Quantitatively Characterize ...

    Science.gov (United States)

    The EPA’s ExpoCast program is developing high throughput (HT) approaches to generate the needed exposure estimates to compare against HT bioactivity data generated from the US inter-agency Tox21 and the US EPA ToxCast programs. Assessing such exposures for the thousands of chemicals in consumer products requires data on product composition. This is a challenge since quantitative product composition data are rarely available. We developed methods to predict the weight fractions of chemicals in consumer products from weight fraction-ordered chemical ingredient lists, and curated a library of such lists from online manufacturer and retailer sites. The probabilistic model predicts weight fraction as a function of the total number of reported ingredients, the rank of the ingredient in the list, the minimum weight fraction for which ingredients were reported, and the total weight fraction of unreported ingredients. Weight fractions predicted by the model compared very well to available quantitative weight fraction data obtained from Material Safety Data Sheets for products with 3-8 ingredients. Lists were located from the online sources for 5148 products containing 8422 unique ingredient names. A total of 1100 of these names could be located in EPA’s HT chemical database (DSSTox), and linked to 864 unique Chemical Abstract Service Registration Numbers (392 of which were in the Tox21 chemical library). Weight fractions were estimated for these 864 CASRN. Using a

  3. Comparison of CT and chemical-shift MRI for differentiating thymoma from non-thymomatous conditions in myasthenia gravis: value of qualitative and quantitative assessment

    International Nuclear Information System (INIS)

    Priola, A.M.; Priola, S.M.; Gned, D.; Giraudo, M.T.; Fornari, A.; Veltri, A.

    2016-01-01

    Aim: To evaluate the usefulness of computed tomography (CT) and chemical-shift magnetic resonance imaging (MRI) in patients with myasthenia gravis (MG) for differentiating thymoma (THY) from thymic lymphoid hyperplasia (TLH) and normal thymus (NT), and to determine which technique is more accurate. Materials and methods: Eighty-three patients with generalised MG who underwent surgery were divided into the TLH/NT group (A; 65 patients) and THY group (B; 24 patients). Differences in qualitative characteristics and quantitative data (CT: radiodensity in Hounsfield units; MRI: signal intensity index [SII]) between groups were tested using Fisher's exact test and Student's t-test. Logistic regression models were estimated for both qualitative and quantitative analyses. At quantitative analysis, discrimination abilities were determined according to the area under the receiver operating characteristic (ROC) curve (AUROC) with computation of optimal cut-off points. The diagnostic accuracies of CT and MRI were compared using McNemar's test. Results: At qualitative assessment, MRI had higher accuracy than CT (96.4%, 80/83 and 86.7%, 72/83, respectively). At quantitative analysis, both the radiodensity and SII were significantly different between groups (p<0.0001). For CT, at quantitative assessment, the AUROC of the radiodensity in discriminating between groups was 0.904 (optimal cut-off point, 20 HU) with an accuracy of 77.1% (64/83). For MRI, the AUROC of the SII was 0.989 (optimal cut-off point, 7.766%) with an accuracy of 96.4% (80/83), which was significantly higher than CT (p<0.0001). By using optimal cut-off points for cases with an erroneous diagnosis at qualitative assessment, accuracy improved both for CT (89.2%, 74/83) and MRI (97.6%, 81/83). Conclusion: Quantitative analysis is useful in evaluating patients with MG and improves the diagnostic accuracy of CT and MRI based on qualitative assessment. Chemical-shift MRI is more reliable than CT in differentiating

  4. An approach to quantitate and control the mutagenic hazards of environmental chemical and radioactive pollutants

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1977-01-01

    Human population, both at the occupational and non-occupational levels, is exposed to the environment polluted by man-made chemicals and radiation sources. The parameters required for quantitating mutagenic hazards of any agent are listed and it has been pointed out that though sufficient information of this nature is available in the case of radiations, it is almost impossible to collect similar information for chemical substances due to their number running into astronomical figures. A short-cut approach, therefore, is suggested to quantitate and control the mutagenic hazards of these pollutants. It is to express the mutagenic hazards of a chemical substance in terms of equivalent radiation units. The unit proposed for this purpose is called as Rem-Equivalent Chemical (REC). Total mutagenic burden to the society should take account of exposure from both chemicals and radiations. Advantages and limitation of this approach are discussed. (M.G.B.)

  5. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images.

  6. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho; Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo

    2015-01-01

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images

  7. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  8. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  9. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    Science.gov (United States)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  10. Chemical analysis by X-ray fluorescence, of niobium in high-strength plate steels

    International Nuclear Information System (INIS)

    Iozzi, F.B.; Dias, M.J.P.

    1981-01-01

    The use of X-ray fluorescence spectrometry in quantitative analysis of niobium in steels, as an alternative solution for optical emission spectrometry, in the rapid chemical control of steel fabrication by LD type converters, is presented. (M.C.K.) [pt

  11. Analysis of abused drugs by selected ion monitoring: quantitative comparison of electron impact and chemical ionization

    International Nuclear Information System (INIS)

    Foltz, R.L.; Knowlton, D.A.; Lin, D.C.K.; Fentiman, A.F. Jr.

    1975-01-01

    A comparison was made of the relative sensitivities of electron impact and chemical ionization when used for selected ion monitoring analysis of commonly abused drugs. For most of the drugs examined chemical ionization using ammonia as the reactant gas gave the largest single m/e ion current response per unit weight of sample. However, if maximum sensitivity is desired it is important to evaluate electron impact and chemical ionization with respect to both maximum response and degree of interference from background and endogenous materials

  12. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.

    Science.gov (United States)

    Wang, Jigang; Gao, Liqian; Lee, Yew Mun; Kalesh, Karunakaran A; Ong, Yong Siang; Lim, Jaehong; Jee, Joo-Eun; Sun, Hongyan; Lee, Su Seong; Hua, Zi-Chun; Lin, Qingsong

    2016-06-01

    Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects. Chemical proteomics makes use of affinity chromatography approaches coupled with mass spectrometry to systematically identify small molecule-protein interactions. Although traditional affinity-based chemical proteomics approaches have made great progress in the identification of cellular targets and elucidation of MOAs of many bioactive molecules, nonspecific binding remains a major issue which may reduce the accuracy of target identification and may hamper the drug development process. Recently, quantitative proteomics approaches, namely, metabolic labeling, chemical labeling, or label-free approaches, have been implemented in target identification to overcome such limitations. In this review, we will summarize and discuss the recent advances in the application of various quantitative chemical proteomics approaches for the identification of targets of natural and traditional medicines. Copyright © 2016. Published by Elsevier Inc.

  13. The approach to risk analysis in three industries: nuclear power, space systems, and chemical process

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1988-01-01

    The aerospace, nuclear power, and chemical processing industries are providing much of the incentive for the development and application of advanced risk analysis techniques to engineered systems. Risk analysis must answer three basic questions: What can go wrong? How likely is it? and What are the consequences? The result of such analyses is not only a quantitative answer to the question of 'What is the risk', but, more importantly, a framework for intelligent and visible risk management. Because of the societal importance of the subject industries and the amount of risk analysis activity involved in each, it is interesting to look for commonalities, differences, and, hopefully, a basis for some standardization. Each industry has its strengths: the solid experience base of the chemical industry, the extensive qualification and testing procedures of the space industry, and the integrative and quantitative risk and reliability methodologies developed for the nuclear power industry. In particular, most advances in data handling, systems interaction modeling, and uncertainty analysis have come from the probabilistic risk assessment work in the nuclear safety field. In the final analysis, all three industries would greatly benefit from a more deliberate technology exchange program in the rapidly evolving discipline of quantitative risk analysis. (author)

  14. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  15. Comprehensive Quantitative Analysis of 32 Chemical Ingredients of a Chinese Patented Drug Sanhuang Tablet.

    Science.gov (United States)

    Fung, Hau-Yee; Lang, Yan; Ho, Hing-Man; Wong, Tin-Long; Ma, Dik-Lung; Leung, Chung-Hang; Han, Quan-Bin

    2017-01-12

    Sanhuang Tablet (SHT) is a Chinese patented drug commonly used for the treatment of inflammations of the respiratory tract, gastrointestinal tract, and skin. It contains a special medicinal composition including the single compound berberine hydrochloride, extracts of Scutellariae Radix and Rhei Radix et Rhizoma, as well as the powder of Rhei Radix et Rhizoma. Despite advances in analytical techniques, quantitative evaluation of a Chinese patented drug like SHT remains a challenge due to the complexity of its chemical profile. In this study, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to simultaneously quantify 29 non-sugar small molecule components of SHT (11 flavonoids, two isoflavonoids, one flavanone, five anthraquinones, two dianthranones, five alkaloids, two organic acids and one stilbene). Three major saccharide components, namely fructose, glucose, and sucrose, were also quantitatively determined using high performance liquid chromatography-charged aerosol detector (HPLC-CAD) on an Asahipak NH₂P-50 4E amino column. The established methods were validated in terms of linearity, sensitivity, precision, accuracy, and stability, and then successfully applied to analyze 27 batches of commercial SHT products. A total of up to 57.61% ( w / w ) of SHT could be quantified, in which the contents of the determined non-saccharide small molecules varied from 5.91% to 16.83% ( w / w ) and three saccharides accounted for 4.41% to 48.05% ( w / w ). The results showed that the quality of the commercial products was inconsistent, and only four of those met Chinese Pharmacopoeia criteria.

  16. Comprehensive Quantitative Analysis of 32 Chemical Ingredients of a Chinese Patented Drug Sanhuang Tablet

    Directory of Open Access Journals (Sweden)

    Hau-Yee Fung

    2017-01-01

    Full Text Available Sanhuang Tablet (SHT is a Chinese patented drug commonly used for the treatment of inflammations of the respiratory tract, gastrointestinal tract, and skin. It contains a special medicinal composition including the single compound berberine hydrochloride, extracts of Scutellariae Radix and Rhei Radix et Rhizoma, as well as the powder of Rhei Radix et Rhizoma. Despite advances in analytical techniques, quantitative evaluation of a Chinese patented drug like SHT remains a challenge due to the complexity of its chemical profile. In this study, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS was used to simultaneously quantify 29 non-sugar small molecule components of SHT (11 flavonoids, two isoflavonoids, one flavanone, five anthraquinones, two dianthranones, five alkaloids, two organic acids and one stilbene. Three major saccharide components, namely fructose, glucose, and sucrose, were also quantitatively determined using high performance liquid chromatography-charged aerosol detector (HPLC-CAD on an Asahipak NH2P-50 4E amino column. The established methods were validated in terms of linearity, sensitivity, precision, accuracy, and stability, and then successfully applied to analyze 27 batches of commercial SHT products. A total of up to 57.61% (w/w of SHT could be quantified, in which the contents of the determined non-saccharide small molecules varied from 5.91% to 16.83% (w/w and three saccharides accounted for 4.41% to 48.05% (w/w. The results showed that the quality of the commercial products was inconsistent, and only four of those met Chinese Pharmacopoeia criteria.

  17. Role of quantitative chemical shift magnetic resonance imaging and chemical shift subtraction technique in discriminating adenomatous from non adenomatous adrenal solid lesions

    Directory of Open Access Journals (Sweden)

    Ahmed H. Afifi

    2017-03-01

    Conclusion: The signal intensity index and adrenal to spleen ratio are the most reliable quantitative chemical shift MRI methods in differentiation of adrenal adenomas from other non-adenomatous adrenal solid lesions. Chemical shift subtraction MRI is a recent technique that gives highly confident discrimination between two categories of pathology without using of any reference organ.

  18. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy: Application to Hydrotreating Catalysts

    Directory of Open Access Journals (Sweden)

    Beccat P.

    1999-07-01

    Full Text Available XPS is an ideal technique to provide the chemical composition of the extreme surface of solid materials, vastly applied to the study of catalysts. In this article, we will show that a quantitative approach, based upon fundamental expression of the XPS signal, has enabled us to obtain a consistent set of response factors for the elements of the periodic table. In-depth spadework has been necessary to know precisely the transmission function of the spectrometer used at IFP. The set of response factors obtained enables to perform, on a routine basis, a quantitative analysis with approximately 20% relative accuracy, which is quite acceptable for an analysis of such a nature. While using this quantitative approach, we have developed an analytical method specific to hydrotreating catalysts that allows obtaining the sulphiding degree of molybdenum quite reliably and reproducibly. The usage of this method is illustrated by two examples for which XPS spectroscopy has provided with information sufficiently accurate and quantitative to help understand the reactivity differences between certain MoS2/Al2O3 or NiMoS/Al2O3-type hydrotreating catalysts.

  19. Quantitative mineralogical analysis of sandstones using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Ward, C.R.; Taylor, J.C.

    1999-01-01

    Full text: X-ray diffraction has long been used as a definitive technique for mineral identification based on the measuring the internal atomic or crystal structures present in powdered rocks; soils and other mineral mixtures. Recent developments in data gathering and processing, however, have provided an improved basis for its use as a quantitative tool, determining not only the nature of the minerals but also the relative proportions of the different minerals present. The mineralogy of a series of sandstone samples from the Sydney and Bowen Basins of eastern Australia has been evaluated by X-ray diffraction (XRD) on a quantitative basis using the Australian-developed SIROQUANT data processing technique. Based on Rietveld principles, this technique generates a synthetic X-ray diffractogram by adjusting and combining full-profile patterns of minerals nominated as being present in the sample and interactively matches the synthetic diffractogram under operator instructions to the observed diffractogram of the sample being analysed. The individual mineral patterns may be refined in the process, to allow for variations in crystal structure of individual components or for factors such as preferred orientation in the sample mount. The resulting output provides mass percentages of the different minerals in the mixture, and an estimate of the error associated with each individual percentage determination. The chemical composition of the mineral mixtures indicated by SIROQUANT for each individual sandstone studied was estimated using a spreadsheet routine, and the indicated proportion of each oxide in each sample compared to the actual chemical analysis of the same sandstone as determined independently by X-ray fluorescence spectrometry. The results show a high level of agreement for all major chemical constituents, indicating consistency between the SIROQUANT XRD data and the whole-rock chemical composition. Supplementary testing with a synthetic corundum spike further

  20. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  1. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Mo, Shunyan; Dong, Linlin; Hurst, W. Jeffrey; van Breemen, Richard B.

    2014-01-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. PMID:23884629

  2. Development of a robotics system for automated chemical analysis of sediments, sludges, and soils

    International Nuclear Information System (INIS)

    McGrail, B.P.; Dodson, M.G.; Skorpik, J.R.; Strachan, D.M.; Barich, J.J.

    1989-01-01

    Adaptation and use of a high-reliability robot to conduct a standard laboratory procedure for soil chemical analysis are reported. Results from a blind comparative test were used to obtain a quantitative measure of the improvement in precision possible with the automated test method. Results from the automated chemical analysis procedure were compared with values obtained from an EPA-certified lab and with results from a more extensive interlaboratory round robin conducted by the EPA. For several elements, up to fivefold improvement in precision was obtained with the automated test method

  3. Quantitative image analysis for investigating cell-matrix interactions

    Science.gov (United States)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  4. Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions

    International Nuclear Information System (INIS)

    Dimitrievska, Mirjana; Gurieva, Galina; Xie, Haibing; Carrete, Alex; Cabot, Andreu; Saucedo, Edgardo; 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, Alejandro

    2015-01-01

    Highlights: • An optical method for the quantitative measurement of [S]/([S] + [Se]) in CZTSSe is presented. • It is based on Raman spectroscopy and covers whole S–Se range of compositions. • The proposed method is independent of crystal quality, experimental conditions and type of material. • The validity of the technique is proven by comparison with independent composition measurements (XRD and EQE). • Test of the method on the data published in the literature has given satisfactory results. - Abstract: A simple and non destructive optical methodology for the quantitative measurement of [S]/([S] + [Se]) anion composition in kesterite Cu 2 ZnSn(S x Se 1−x ) 4 (CZTSSe) solid solutions by means of Raman spectroscopy in the whole S–Se range of compositions has been developed. This methodology is based on the dependence of the integral intensity ratio of Raman bands sensitive to anion vibrations with the [S]/([S] + [Se]) composition of the kesterite solid solutions. The calibration of the parameters used in this analysis involved the synthesis of a set of CZTSSe powders by solid state reaction method, spanning the range from pure Cu 2 ZnSnS 4 to pure Cu 2 ZnSnSe 4 . The validity of the methodology has been tested on different sets of independent samples, including also non-stoichiometric device grade CZTSSe layers with different compositions and films that were synthesized by solution based processes with different crystalline quality. In all cases, the comparison of the results obtained from the analysis of the intensity of the Raman bands with independent composition measurements performed by different techniques as X-ray diffraction and external quantum efficiency has confirmed the satisfactory performance of the developed methodology for the quantitative analysis of these compounds, independently on the crystal quality or the method of synthesis. Further strong support on the methodology performance has been obtained from the analysis of a wider

  5. A new quantitative analysis on nitriding kinetics in the oxidized Zry-4 at 900-1200 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggi [ACT Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    Two major roles of nitrogen on the zirconium based cladding degradation were identified: mechanical degradation of the cladding, and the additional chemical heat release. It has long been known that accelerated oxidation can occur in air due to the nitrogen. In addition, significant uptake of nitrogen can also occur. The nitriding of pre-oxidized zirconium based alloys leads to micro porous and less coherent oxide scales. This paper aims to quantitatively investigate the nitriding mechanism and kinetics by proposing a new methodology that is coupled with the mass balance analysis and the optical microscope image processing analysis. A new quantitative analysis methodology is described in chapter 2 and the investigation of the nitriding kinetics is performed in chapter 3. The experimental details are previously reported in. Previously only qualitative analysis was performed in, and hence the quantitative analysis will be performed in this paper. In this paper, the nitriding kinetics and mechanism were quantitatively analyzed by the new proposed analysis methods: the mass balance analysis and the optical microscope image processing analysis. Using these combined methods, the mass gain curves and the optical microscopes are analyzed in very detail, and the mechanisms of nitriding accelerated, stabilized and saturated behaviors were well understood. This paper has two very distinctive achievements as follows: 1) Development of very effective quantitative analysis methods only using two main results of oxidation tests: No detailed analytical sample measurements (e.g. TEM, EPMA and so on.) were required. These methods can effectively reduce the cost and effort of the post-test investigation. 2) The first identification of the nitriding behaviors and its very accurate analysis in a quantitative way. Based on this quantitative analysis results on the nitriding kinetics, these new findings will contribute significantly the understanding the air oxidation behaviors and model

  6. Quantitative mapping of chemical compositions with MRI using compressed sensing.

    Science.gov (United States)

    von Harbou, Erik; Fabich, Hilary T; Benning, Martin; Tayler, Alexander B; Sederman, Andrew J; Gladden, Lynn F; Holland, Daniel J

    2015-12-01

    In this work, a magnetic resonance (MR) imaging method for accelerating the acquisition time of two dimensional concentration maps of different chemical species in mixtures by the use of compressed sensing (CS) is presented. Whilst 2D-concentration maps with a high spatial resolution are prohibitively time-consuming to acquire using full k-space sampling techniques, CS enables the reconstruction of quantitative concentration maps from sub-sampled k-space data. First, the method was tested by reconstructing simulated data. Then, the CS algorithm was used to reconstruct concentration maps of binary mixtures of 1,4-dioxane and cyclooctane in different samples with a field-of-view of 22mm and a spatial resolution of 344μm×344μm. Spiral based trajectories were used as sampling schemes. For the data acquisition, eight scans with slightly different trajectories were applied resulting in a total acquisition time of about 8min. In contrast, a conventional chemical shift imaging experiment at the same resolution would require about 17h. To get quantitative results, a careful weighting of the regularisation parameter (via the L-curve approach) or contrast-enhancing Bregman iterations are applied for the reconstruction of the concentration maps. Both approaches yield relative errors of the concentration map of less than 2mol-% without any calibration prior to the measurement. The accuracy of the reconstructed concentration maps deteriorates when the reconstruction model is biased by systematic errors such as large inhomogeneities in the static magnetic field. The presented method is a powerful tool for the fast acquisition of concentration maps that can provide valuable information for the investigation of many phenomena in chemical engineering applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Combination and Integration of Qualitative and Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Philipp Mayring

    2001-02-01

    Full Text Available In this paper, I am going to outline ways of combining qualitative and quantitative steps of analysis on five levels. On the technical level, programs for the computer-aided analysis of qualitative data offer various combinations. Where the data are concerned, the employment of categories (for instance by using qualitative content analysis allows for combining qualitative and quantitative forms of data analysis. On the individual level, the creation of types and the inductive generalisation of cases allow for proceeding from individual case material to quantitative generalisations. As for research design, different models can be distinguished (preliminary study, generalisation, elaboration, triangulation which combine qualitative and quantitative steps of analysis. Where the logic of research is concerned, it can be shown that an extended process model which combined qualitative and quantitative research can be appropriate and thus lead to an integration of the two approaches. URN: urn:nbn:de:0114-fqs010162

  8. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  9. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  10. Quantitative Survey and Structural Classification of Fracking Chemicals Reported in Unconventional Gas Exploitation

    Science.gov (United States)

    Elsner, Martin; Schreglmann, Kathrin

    2015-04-01

    Few technologies are being discussed in such controversial terms as hydraulic fracturing ("fracking") in the recovery of unconventional gas. Particular concern regards the chemicals that may return to the surface as a result of hydraulic fracturing. These are either "fracking chemicals" - chemicals that are injected together with the fracking fluid to optimize the fracturing performance or geogenic substances which may turn up during gas production, in the so-called produced water originating from the target formation. Knowledge about them is warranted for several reasons. (1) Monitoring. Air emissions are reported to arise from well drilling, the gas itself or condensate tanks. In addition, potential spills and accidents bear the danger of surface and shallow groundwater contaminations. Monitoring strategies are therefore warranted to screen for "indicator" substances of potential impacts. (2) Chemical Analysis. To meet these analytical demands, target substances must be defined so that adequate sampling approaches and analytical methods can be developed. (3) Transformation in the Subsurface. Identification and classification of fracking chemicals (aromatics vs. alcohols vs. acids, esters, etc.) is further important to assess the possibility of subsurface reactions which may potentially generate new, as yet unidentified transformation products. (4) Wastewater Treatment. For the same reason chemical knowledge is important for optimized wastewater treatment strategies. (5) Human and Ecosystem Health. Knowledge of the most frequent fracking chemicals is further essential for risk assessment (environmental behavior, toxicity) (6) Public Discussions. Finally, an overview of reported fracking chemicals can provide unbiased scientific into current public debates and enable critical reviews of Green Chemistry approaches. Presently, however, such information is not readily available. We aim to close this knowledge gap by providing a quantitative overview of chemical

  11. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  12. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    Science.gov (United States)

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p plot for quantitative analysis of DIACEST MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Quantitative chemical analysis for the standardization of copaiba oil by high resolution gas chromatography

    International Nuclear Information System (INIS)

    Tappin, Marcelo R.R.; Pereira, Jislaine F.G.; Lima, Lucilene A.; Siani, Antonio C.; Mazzei, Jose L.; Ramos, Monica F.S.

    2004-01-01

    Quantitative GC-FID was evaluated for analysis of methylated copaiba oils, using trans-(-)-caryophyllene or methyl copalate as external standards. Analytical curves showed good linearity and reproducibility in terms of correlation coefficients (0.9992 and 0.996, respectively) and relative standard deviation (< 3%). Quantification of sesquiterpenes and diterpenic acids were performed with each standard, separately. When compared with the integrator response normalization, the standardization was statistically similar for the case of methyl copalate, but the response of trans-(-)-caryophyllene was statistically (P < 0.05) different. This method showed to be suitable for classification and quality control of commercial samples of the oils. (author)

  14. Quantitative Data Analysis--In the Graduate Curriculum

    Science.gov (United States)

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  15. Original methods of quantitative analysis developed for diverse samples in various research fields. Quantitative analysis at NMCC

    International Nuclear Information System (INIS)

    Sera, Koichiro

    2003-01-01

    Nishina Memorial Cyclotron Center (NMCC) has been opened for nationwide-common utilization of positron nuclear medicine (PET) and PIXE since April 1993. At the present time, nearly 40 subjects of PIXE in various research fields are pursued here, and more than 50,000 samples have been analyzed up to the present. In order to perform quantitative analyses of diverse samples, technical developments in sample preparation, measurement and data analysis have been continuously carried out. Especially, a standard-free method for quantitative analysis'' made it possible to perform analysis of infinitesimal samples, powdered samples and untreated bio samples, which could not be well analyzed quantitatively in the past. The standard-free method'' and a ''powdered internal standard method'' made the process for target preparation quite easier. It has been confirmed that results obtained by these methods show satisfactory accuracy and reproducibility preventing any ambiguity coming from complicated target preparation processes. (author)

  16. CRAFT (complete reduction to amplitude frequency table)--robust and time-efficient Bayesian approach for quantitative mixture analysis by NMR.

    Science.gov (United States)

    Krishnamurthy, Krish

    2013-12-01

    The intrinsic quantitative nature of NMR is increasingly exploited in areas ranging from complex mixture analysis (as in metabolomics and reaction monitoring) to quality assurance/control. Complex NMR spectra are more common than not, and therefore, extraction of quantitative information generally involves significant prior knowledge and/or operator interaction to characterize resonances of interest. Moreover, in most NMR-based metabolomic experiments, the signals from metabolites are normally present as a mixture of overlapping resonances, making quantification difficult. Time-domain Bayesian approaches have been reported to be better than conventional frequency-domain analysis at identifying subtle changes in signal amplitude. We discuss an approach that exploits Bayesian analysis to achieve a complete reduction to amplitude frequency table (CRAFT) in an automated and time-efficient fashion - thus converting the time-domain FID to a frequency-amplitude table. CRAFT uses a two-step approach to FID analysis. First, the FID is digitally filtered and downsampled to several sub FIDs, and secondly, these sub FIDs are then modeled as sums of decaying sinusoids using the Bayesian approach. CRAFT tables can be used for further data mining of quantitative information using fingerprint chemical shifts of compounds of interest and/or statistical analysis of modulation of chemical quantity in a biological study (metabolomics) or process study (reaction monitoring) or quality assurance/control. The basic principles behind this approach as well as results to evaluate the effectiveness of this approach in mixture analysis are presented. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    Science.gov (United States)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  18. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  19. Quali- and quantitative analysis of commercial coffee by NMR

    International Nuclear Information System (INIS)

    Tavares, Leila Aley; Ferreira, Antonio Gilberto

    2006-01-01

    Coffee is one of the beverages most widely consumed in the world and the 'cafezinho' is normally prepared from a blend of roasted powder of two species, Coffea arabica and Coffea canephora. Each one exhibits differences in their taste and in the chemical composition, especially in the caffeine percentage. There are several procedures proposed in the literature for caffeine determination in different samples like soft drinks, coffee, medicines, etc but most of them need a sample workup which involves at least one step of purification. This work describes the quantitative analysis of caffeine using 1 H NMR and the identification of the major components in commercial coffee samples using 1D and 2D NMR techniques without any sample pre-treatment. (author)

  20. [Methods of quantitative proteomics].

    Science.gov (United States)

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  1. Quantitative analysis of untreated bio-samples

    International Nuclear Information System (INIS)

    Sera, K.; Futatsugawa, S.; Matsuda, K.

    1999-01-01

    A standard-free method of quantitative analysis for untreated samples has been developed. For hair samples, measurements were performed by irradiating with a proton beam a few hairs as they are, and quantitative analysis was carried out by means of a standard-free method developed by ourselves. First, quantitative values of concentration of zinc were derived, then concentration of other elements was obtained by regarding zinc as an internal standard. As the result, values of concentration of sulphur for 40 samples agree well with the average value for a typical Japanese and also with each other within 20%, and validity of the present method could be confirmed. Accuracy was confirmed by comparing the results with those obtained by the usual internal standard method, too. For the purpose of a surface analysis of a bone sample, a very small incidence angle of the proton beam was used, so that both energy loss of the projectile and self-absorption of X-rays become negligible. As the result, consistent values of concentration for many elements were obtained by the standard-free method

  2. Quantitative Analysis of Chemically Modified Starches by 1H-NMR Spectroscopy

    NARCIS (Netherlands)

    Graaf, R.A. de; Lammers, G.; Janssen, L.P.B.M.; Beenackers, A.A.C.M.

    1995-01-01

    A quantitative 1H-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  3. Quantitative analysis of chemically modified starches by H-1-NMR spectroscopy

    NARCIS (Netherlands)

    de Graaf, R.A.; Lammers, G; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    A quantitative H-1-NMR method for the determination of the Molar Substitution (MS) of acetylated and hydroxypropylated starches was developed and tested for MS ranging from 0.09 to 0.5. Results were checked using the Johnson method and a titration method for hydroxypropylated and acetylated starch,

  4. Controlling the accuracy of chemical analysis

    International Nuclear Information System (INIS)

    Suschny, O.; Danesi, P.R.

    1991-01-01

    The involvement of the IAEA in quantitative analysis began in the early 1960's with radiochemical work connected with the environment. It than expanded to cover analysis (mostly by nuclear techniques) of samples for projects associated with human health, agriculture, hydrology and international safeguards. This article highlights the IAEA activities in the field of quality control in quantitative analysis

  5. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  6. Quantitative image analysis of synovial tissue

    NARCIS (Netherlands)

    van der Hall, Pascal O.; Kraan, Maarten C.; Tak, Paul Peter

    2007-01-01

    Quantitative image analysis is a form of imaging that includes microscopic histological quantification, video microscopy, image analysis, and image processing. Hallmarks are the generation of reliable, reproducible, and efficient measurements via strict calibration and step-by-step control of the

  7. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  8. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  9. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  10. [Quality evaluation of rhubarb dispensing granules based on multi-component simultaneous quantitative analysis and bioassay].

    Science.gov (United States)

    Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2017-07-01

    This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (Panalysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.

  11. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Juan D Chavez

    Full Text Available Chemical cross-linking mass spectrometry (XL-MS provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  12. [Quantitative data analysis for live imaging of bone.

    Science.gov (United States)

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  13. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    Science.gov (United States)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  16. Reactor applications of quantitative diffraction analysis

    International Nuclear Information System (INIS)

    Feguson, I.F.

    1976-09-01

    Current work in quantitative diffraction analysis was presented under the main headings of: thermal systems, fast reactor systems, SGHWR applications and irradiation damage. Preliminary results are included on a comparison of various new instrumental methods of boron analysis as well as preliminary new results on Zircaloy corrosion, and materials transfer in liquid sodium. (author)

  17. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality spanish aged red wines.

    Science.gov (United States)

    Culleré, Laura; Escudero, Ana; Cacho, Juan; Ferreira, Vicente

    2004-03-24

    The aroma of six premium quality Spanish red wines has been studied by quantitative gas chromatography-olfactometry (GC-O) and techniques of quantitative chemical analysis. The GC-O study revealed the presence of 85 aromatic notes in which 78 odorants were identified, two of which-1-nonen-3-one (temptatively) and 2-acetylpyrazine-are reported in wine for the first time. Forty out of the 82 quantified odorants may be present at concentrations above their odor threshold. The components with the greatest capacity to introduce differences between these wines are ethyl phenols produced by Brettanomyces yeasts (4-ethylphenol, 4-ethyl-2-methoxyphenol, and 4-propyl-2-methoxyphenol), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (furaneol), (Z)-3-hexenol, thiols derived from cysteinic precursors (4-methyl-4-mercaptopentan-2-one, 3-mercaptohexyl acetate, and 3-mercaptohexanol), some components yielded by the wood [(E)-isoeugenol, 4-allyl-2-methoxyphenol, vanillin, 2-methoxyphenol (guaiacol), and (Z)-whiskylactone], and compounds related to the metabolism (2-phenylethanol, ethyl esters of isoacids, 3-methylbutyl acetate) or oxidative degradation of amino acids [phenylacetaldehyde and 4,5-dimethyl-3-hydroxy-2(5H)-furanone (sotolon)]. The correlation between the olfactometric intensities and the quantitative data is, in general, satisfactory if olfactometric differences between the samples are high. However, GC-O fails in detecting quantitative differences in those cases in which the olfactive intensity is very high or if odors elute in areas in which the odor chromatogram is too complex.

  18. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Thomas Jensen

    2016-01-01

    Full Text Available Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

  19. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    of the exchanging species can be determined independently of the relaxation rates. The applicability of the approach is demonstrated by a detailed analysis of the conformational exchange processes previously observed in the reduced form of the blue copper protein, plastocyanin from the cyanobacteria Anabaena......An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  20. Quantitative chemical method for the determination of the disordered carbon component in pyrocarbon coatings of fuel particles

    International Nuclear Information System (INIS)

    Wolfrum, E.A.; Nickel, H.

    1977-01-01

    The chemical behavior of the surface of pyrocarbon (PyC) coatings of nuclear fuel particles was investigated in aqueous suspension by reaction with oxygen at room temperature. The concentration of the disordered material component, which has a large internal surface, can be identified by means of a pH change. Using this fact, a chemical method was developed that can be used for the quantitative determination of the concentration of this carbon component in the PyC coating

  1. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    Science.gov (United States)

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Quantitative magnetometry analysis and structural characterization of multisegmented cobalt–nickel nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Valle, Jesus [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Díaz Barriga-Castro, Enrique [Centro de Investigación de Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Vega, Víctor; García, Javier [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); Mendoza-Reséndez, Raquel [Facultad de Ingeniería Mecánica y Eléctrica. Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Luna, Carlos [Centro de Investigación de Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Manuel Prida, Víctor [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); and others

    2015-04-01

    Understanding and measuring the magnetic properties of an individual nanowire and their relationship with crystalline structure and geometry are of scientific and technological great interest. In this work, we report the localized study of the magnetic flux distribution and the undisturbed magnetization of a single ferromagnetic nanowire that poses a bar-code like structure using off-axis electron holography (EH) under Lorentz conditions. The nanowires were grown by template-assisted electrodeposition, using AAO templates. Electron holography allows the visualization of the magnetic flux distribution within and surroundings as well as its quantification. The magnetic analysis performed at individual nanowires was correlated with the chemical composition and crystalline orientation of the nanowires. - Highlights: • The structure-magnetic property relationship of CoNi nanowires is determined. • Off axis electron holography for the magnetic nanowires is used for the analysis. • The magnetization is quantitatively obtained from the retrieved phase images. • These results lead to a better comprehension of the magneto-crystalline phenomena.

  3. Quantitative magnetometry analysis and structural characterization of multisegmented cobalt–nickel nanowires

    International Nuclear Information System (INIS)

    Cantu-Valle, Jesus; Díaz Barriga-Castro, Enrique; Vega, Víctor; García, Javier; Mendoza-Reséndez, Raquel; Luna, Carlos; Manuel Prida, Víctor

    2015-01-01

    Understanding and measuring the magnetic properties of an individual nanowire and their relationship with crystalline structure and geometry are of scientific and technological great interest. In this work, we report the localized study of the magnetic flux distribution and the undisturbed magnetization of a single ferromagnetic nanowire that poses a bar-code like structure using off-axis electron holography (EH) under Lorentz conditions. The nanowires were grown by template-assisted electrodeposition, using AAO templates. Electron holography allows the visualization of the magnetic flux distribution within and surroundings as well as its quantification. The magnetic analysis performed at individual nanowires was correlated with the chemical composition and crystalline orientation of the nanowires. - Highlights: • The structure-magnetic property relationship of CoNi nanowires is determined. • Off axis electron holography for the magnetic nanowires is used for the analysis. • The magnetization is quantitatively obtained from the retrieved phase images. • These results lead to a better comprehension of the magneto-crystalline phenomena

  4. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures.

    Science.gov (United States)

    Geith, Tobias; Schmidt, Gerwin; Biffar, Andreas; Dietrich, Olaf; Dürr, Hans Roland; Reiser, Maximilian; Baur-Melnyk, Andrea

    2012-11-01

    The objective of our study was to compare the diagnostic value of qualitative diffusion-weighted imaging (DWI), quantitative DWI, and chemical-shift imaging in a single prospective cohort of patients with acute osteoporotic and malignant vertebral fractures. The study group was composed of patients with 26 osteoporotic vertebral fractures (18 women, eight men; mean age, 69 years; age range, 31 years 6 months to 86 years 2 months) and 20 malignant vertebral fractures (nine women, 11 men; mean age, 63.4 years; age range, 24 years 8 months to 86 years 4 months). T1-weighted, STIR, and T2-weighted sequences were acquired at 1.5 T. A DW reverse fast imaging with steady-state free precession (PSIF) sequence at different delta values was evaluated qualitatively. A DW echo-planar imaging (EPI) sequence and a DW single-shot turbo spin-echo (TSE) sequence at different b values were evaluated qualitatively and quantitatively using the apparent diffusion coefficient. Opposed-phase sequences were used to assess signal intensity qualitatively. The signal loss between in- and opposed-phase images was determined quantitatively. Two-tailed Fisher exact test, Mann-Whitney test, and receiver operating characteristic analysis were performed. Sensitivities, specificities, and accuracies were determined. Qualitative DW-PSIF imaging (delta = 3 ms) showed the best performance for distinguishing between benign and malignant fractures (sensitivity, 100%; specificity, 88.5%; accuracy, 93.5%). Qualitative DW-EPI (b = 50 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.50]) and DW single-shot TSE imaging (b = 100 s/mm(2) [p = 1.00]; b = 250 s/mm(2) [p = 0.18]; b = 400 s/mm(2) [p = 0.18]; b = 600 s/mm(2) [p = 0.39]) did not indicate significant differences between benign and malignant fractures. DW-EPI using a b value of 500 s/mm(2) (p = 0.01) indicated significant differences between benign and malignant vertebral fractures. Quantitative DW-EPI (p = 0.09) and qualitative opposed-phase imaging (p = 0

  5. Quantitative risk analysis of a space shuttle subsystem

    International Nuclear Information System (INIS)

    Frank, M.V.

    1989-01-01

    This paper reports that in an attempt to investigate methods for risk management other than qualitative analysis techniques, NASA has funded pilot study quantitative risk analyses for space shuttle subsystems. The authors performed one such study of two shuttle subsystems with McDonnell Douglas Astronautics Company. The subsystems were the auxiliary power units (APU) on the orbiter, and the hydraulic power units on the solid rocket booster. The technology and results of the APU study are presented in this paper. Drawing from a rich in-flight database as well as from a wealth of tests and analyses, the study quantitatively assessed the risk of APU-initiated scenarios on the shuttle during all phases of a flight mission. Damage states of interest were loss of crew/vehicle, aborted mission, and launch scrub. A quantitative risk analysis approach to deciding on important items for risk management was contrasted with the current NASA failure mode and effects analysis/critical item list approach

  6. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    Science.gov (United States)

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana, E-mail: mdimitrievska@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Gurieva, Galina [Helmholtz Centre Berlin for Materials and Energy, Department Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Xie, Haibing; Carrete, Alex [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Cabot, Andreu [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats – ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., 08930 Sant Adrià del Besòs, Barcelona (Spain); IN" 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain); and others

    2015-04-15

    Highlights: • An optical method for the quantitative measurement of [S]/([S] + [Se]) in CZTSSe is presented. • It is based on Raman spectroscopy and covers whole S–Se range of compositions. • The proposed method is independent of crystal quality, experimental conditions and type of material. • The validity of the technique is proven by comparison with independent composition measurements (XRD and EQE). • Test of the method on the data published in the literature has given satisfactory results. - Abstract: A simple and non destructive optical methodology for the quantitative measurement of [S]/([S] + [Se]) anion composition in kesterite Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} (CZTSSe) solid solutions by means of Raman spectroscopy in the whole S–Se range of compositions has been developed. This methodology is based on the dependence of the integral intensity ratio of Raman bands sensitive to anion vibrations with the [S]/([S] + [Se]) composition of the kesterite solid solutions. The calibration of the parameters used in this analysis involved the synthesis of a set of CZTSSe powders by solid state reaction method, spanning the range from pure Cu{sub 2}ZnSnS{sub 4} to pure Cu{sub 2}ZnSnSe{sub 4}. The validity of the methodology has been tested on different sets of independent samples, including also non-stoichiometric device grade CZTSSe layers with different compositions and films that were synthesized by solution based processes with different crystalline quality. In all cases, the comparison of the results obtained from the analysis of the intensity of the Raman bands with independent composition measurements performed by different techniques as X-ray diffraction and external quantum efficiency has confirmed the satisfactory performance of the developed methodology for the quantitative analysis of these compounds, independently on the crystal quality or the method of synthesis. Further strong support on the methodology performance has been

  8. Letters from China: A History of the Origins of the Chemical Analysis of Ceramics.

    Science.gov (United States)

    Pollard, A M

    2015-02-01

    This paper is an attempt to document the early history of the quantitative chemical analysis of ceramic materials in Europe, with a specific interest in the analysis of archaeological ceramics. This inevitably leads to a study of the attempts made in Europe to imitate the miraculous material--porcelain--imported from China from the fourteenth century onwards. It is clear that before the end of the eighteenth century progress was made in this endeavor by systematic but essentially trial-and-error firing of various raw materials, culminating in the successful production of European porcelain by Böttger and von Tschirnhaus in 1709. Shortly after this, letters describing the Chinese manufacture of porcelain, and, more importantly, samples of raw and fired material, began to arrive in Europe from French Jesuit missionaries, which were subjected to intense study. Following the perfection of gravimetric methods of chemical analysis in the late eighteenth century, these Chinese samples, and samples of porcelain from various European factories, were regularly analysed, particularly by Brongniart at Sèvres. Similar work was carried out on English porcelain by Simeon Shaw and Sir Arthur Church. The origins of the chemical analysis of archaeological ceramics are still somewhat obscure, but must date to the late eighteenth or early nineteenth centuries, by the likes of Vauquelin and Chaptal.

  9. The use of rapid quantitative x-ray fluorescence analysis in paper manufacturing and construction materials industry

    International Nuclear Information System (INIS)

    Kocman, V.; Foley, L.; Woodger, S.C.

    1985-01-01

    A modern analytical laboratory of a large corporation manufacturing paper, construction materials and chemicals must be sufficiently diversified in methodology to provide accurate results in the shortest possible time. Among other techniques the implementation of an automated ''menu'' driven wavelength dispersive spectrometer allowed for the setting-up of a variety of quantitative X-ray fluorescence methods. An overview of these methods is given as presented at the 33rd. Annual Conference on the Application of X-ray Fluorescence Analysis in Denver, Colorado, 1984

  10. Quantitative Analysis of cardiac SPECT

    International Nuclear Information System (INIS)

    Nekolla, S.G.; Bengel, F.M.

    2004-01-01

    The quantitative analysis of myocardial SPECT images is a powerful tool to extract the highly specific radio tracer uptake in these studies. If compared to normal data bases, the uptake values can be calibrated on an individual basis. Doing so increases the reproducibility of the analysis substantially. Based on the development over the last three decades starting from planar scinitigraphy, this paper discusses the methods used today incorporating the changes due to tomographic image acquisitions. Finally, the limitations of these approaches as well as consequences from most recent hardware developments, commercial analysis packages and a wider view of the description of the left ventricle are discussed. (orig.)

  11. Good practices for quantitative bias analysis.

    Science.gov (United States)

    Lash, Timothy L; Fox, Matthew P; MacLehose, Richard F; Maldonado, George; McCandless, Lawrence C; Greenland, Sander

    2014-12-01

    Quantitative bias analysis serves several objectives in epidemiological research. First, it provides a quantitative estimate of the direction, magnitude and uncertainty arising from systematic errors. Second, the acts of identifying sources of systematic error, writing down models to quantify them, assigning values to the bias parameters and interpreting the results combat the human tendency towards overconfidence in research results, syntheses and critiques and the inferences that rest upon them. Finally, by suggesting aspects that dominate uncertainty in a particular research result or topic area, bias analysis can guide efficient allocation of sparse research resources. The fundamental methods of bias analyses have been known for decades, and there have been calls for more widespread use for nearly as long. There was a time when some believed that bias analyses were rarely undertaken because the methods were not widely known and because automated computing tools were not readily available to implement the methods. These shortcomings have been largely resolved. We must, therefore, contemplate other barriers to implementation. One possibility is that practitioners avoid the analyses because they lack confidence in the practice of bias analysis. The purpose of this paper is therefore to describe what we view as good practices for applying quantitative bias analysis to epidemiological data, directed towards those familiar with the methods. We focus on answering questions often posed to those of us who advocate incorporation of bias analysis methods into teaching and research. These include the following. When is bias analysis practical and productive? How does one select the biases that ought to be addressed? How does one select a method to model biases? How does one assign values to the parameters of a bias model? How does one present and interpret a bias analysis?. We hope that our guide to good practices for conducting and presenting bias analyses will encourage

  12. Quantitative phase analysis in industrial research

    International Nuclear Information System (INIS)

    Ahmad Monshi

    1996-01-01

    X-Ray Diffraction (XRD) is the only technique able to identify phase and all the other analytical techniques give information about the elements. Quantitative phase analysis of minerals and industrial products is logically the next step after a qualitative examination and is of great importance in industrial research. Since the application of XRD in industry, early in this century, workers were trying to develop quantitative XRD methods. In this paper some of the important methods are briefly discussed and partly compared. These methods are Internal Standard, Known Additions, Double Dilution, External Standard, Direct Comparison, Diffraction Absorption and Ratio of Slopes

  13. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  14. Qualitative and quantitative laser-induced breakdown spectroscopy of bronze objects

    International Nuclear Information System (INIS)

    Tankova, V; Blagoev, K; Grozeva, M; Malcheva, G; Penkova, P

    2016-01-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique for qualitative and quantitative elemental analysis of solids, liquids and gases. In this work, the method was applied for investigation of archaeological bronze objects. The analytical information obtained by LIBS was used for qualitative determination of the elements in the material used for manufacturing of the objects under study. Quantitative chemical analysis was also performed after generating calibration curves with standard samples of similar matrix composition. Quantitative estimation of the elemental concentration of the bulk of the samples was performed, together with investigation of the surface layer of the objects. The results of the quantitative analyses gave indications about the manufacturing process of the investigated objects. (paper)

  15. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data

    Directory of Open Access Journals (Sweden)

    Dommisse Roger

    2011-10-01

    Full Text Available Abstract Background Nuclear magnetic resonance spectroscopy (NMR is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. Results We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA. The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. Conclusions The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear

  16. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data.

    Science.gov (United States)

    Vu, Trung N; Valkenborg, Dirk; Smets, Koen; Verwaest, Kim A; Dommisse, Roger; Lemière, Filip; Verschoren, Alain; Goethals, Bart; Laukens, Kris

    2011-10-20

    Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other methods, and the down

  17. Micro-computer system for quantitative image analysis of damage microstructure

    International Nuclear Information System (INIS)

    Kohyama, A.; Kohno, Y.; Satoh, K.; Igata, N.

    1984-01-01

    Quantitative image analysis of radiation induced damage microstructure is very important in evaluating material behaviors in radiation environment. But, quite a few improvement have been seen in quantitative analysis of damage microstructure in these decades. The objective of this work is to develop new system for quantitative image analysis of damage microstructure which could improve accuracy and efficiency of data sampling and processing and could enable to get new information about mutual relations among dislocations, precipitates, cavities, grain boundaries, etc. In this system, data sampling is done with X-Y digitizer. The cavity microstructure in dual-ion irradiated 316 SS is analyzed and the effectiveness of this system is discussed. (orig.)

  18. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  19. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  20. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  1. Quantitative Structure-Activity Relationship Analysis of the ...

    African Journals Online (AJOL)

    Erah

    Quantitative Structure-Activity Relationship Analysis of the Anticonvulsant ... Two types of molecular descriptors, including the 2D autocorrelation ..... It is based on the simulation of natural .... clustering anticonvulsant, antidepressant, and.

  2. Analysis of radiation and chemical factors which define the ecological situation of environment

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    A new method of large information set statistical analysis is proposed. It permits to define the main directions of work in a given field in the world or in a particular country, to find the most important investigated problems and to evaluate the role each of them quantitatively, as well as to study the dynamics of work development in time, the methods of research used, the centres in which this research is mostly developed, authors of publications etc. Statistical analysis may be supplemented with subject analysis of selected publications. Main factors which influence on different environment components and on public health are presented as an example of this method use, and the role of radiation and chemical factors is evaluated. 18 refs., 6 tab

  3. Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu

    2017-03-01

    Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. Keywords: Spleen, Rat, Protein extraction, Label-free quantitative proteomics

  5. Quantitative data analysis in education a critical introduction using SPSS

    CERN Document Server

    Connolly, Paul

    2007-01-01

    This book provides a refreshing and user-friendly guide to quantitative data analysis in education for students and researchers. It assumes absolutely no prior knowledge of quantitative methods or statistics. Beginning with the very basics, it provides the reader with the knowledge and skills necessary to be able to undertake routine quantitative data analysis to a level expected of published research. Rather than focusing on teaching statistics through mathematical formulae, the book places an emphasis on using SPSS to gain a real feel for the data and an intuitive grasp of t

  6. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  7. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  8. Quantitative analysis method for ship construction quality

    Directory of Open Access Journals (Sweden)

    FU Senzong

    2017-03-01

    Full Text Available The excellent performance of a ship is assured by the accurate evaluation of its construction quality. For a long time, research into the construction quality of ships has mainly focused on qualitative analysis due to a shortage of process data, which results from limited samples, varied process types and non-standardized processes. Aiming at predicting and controlling the influence of the construction process on the construction quality of ships, this article proposes a reliability quantitative analysis flow path for the ship construction process and fuzzy calculation method. Based on the process-quality factor model proposed by the Function-Oriented Quality Control (FOQC method, we combine fuzzy mathematics with the expert grading method to deduce formulations calculating the fuzzy process reliability of the ordinal connection model, series connection model and mixed connection model. The quantitative analysis method is applied in analyzing the process reliability of a ship's shaft gear box installation, which proves the applicability and effectiveness of the method. The analysis results can be a useful reference for setting key quality inspection points and optimizing key processes.

  9. Quantitative X-ray analysis of pigments

    International Nuclear Information System (INIS)

    Araujo, M. Marrocos de

    1987-01-01

    The 'matrix-flushing' and the 'adiabatic principle' methods have been applied for the quantitative analysis through X-ray diffraction patterns of pigments and extenders mixtures, frequently used in paint industry. The results obtained have shown the usefulness of these methods, but still ask for improving their accuracy. (Author) [pt

  10. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione

    International Nuclear Information System (INIS)

    Si Hongzong; Wang Tao; Zhang Kejun; Duan Yunbo; Yuan Shuping; Fu Aiping; Hu Zhide

    2007-01-01

    A quantitative model was developed to predict the depletion percentage of glutathione (DPG) compounds by gene expression programming (GEP). Each kind of compound was represented by several calculated structural descriptors involving constitutional, topological, geometrical, electrostatic and quantum-chemical features of compounds. The GEP method produced a nonlinear and five-descriptor quantitative model with a mean error and a correlation coefficient of 10.52 and 0.94 for the training set, 22.80 and 0.85 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones, better than those of the heuristic method

  11. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  12. Novel approach in quantitative analysis of shearography method

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah

    2002-01-01

    The application of laser interferometry in industrial non-destructive testing and material characterization is becoming more prevalent since this method provides non-contact full-field inspection of the test object. However their application only limited to the qualitative analysis, current trend has changed to the development of this method by the introduction of quantitative analysis, which attempts to detail the defect examined. This being the design feature for a ranges of object size to be examined. The growing commercial demand for quantitative analysis for NDT and material characterization is determining the quality of optical and analysis instrument. However very little attention is currently being paid to understanding, quantifying and compensating for the numerous error sources which are a function of interferometers. This paper presents a comparison of measurement analysis using the established theoretical approach and the new approach, taken into account the factor of divergence illumination and other geometrical factors. The difference in the measurement system could be associated in the error factor. (Author)

  13. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).

    Science.gov (United States)

    Cohen, Ouri; Huang, Shuning; McMahon, Michael T; Rosen, Matthew S; Farrar, Christian T

    2018-05-13

    To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N α -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T 1 and T 2 relaxation times. The chemical exchange rates of the N α -amine protons of L-Arg were significantly (P exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P exchange rate was well fit (R 2  = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CEST-MRF provides a method for fast, quantitative CEST imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  15. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  16. Quantitative produced water analysis using mobile 1H NMR

    International Nuclear Information System (INIS)

    Wagner, Lisabeth; Fridjonsson, Einar O; May, Eric F; Stanwix, Paul L; Graham, Brendan F; Carroll, Matthew R J; Johns, Michael L; Kalli, Chris

    2016-01-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1 H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1 H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1 H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1–30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography. (paper)

  17. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  18. Mass spectrometry as a quantitative tool in plant metabolomics

    Science.gov (United States)

    Jorge, Tiago F.; Mata, Ana T.

    2016-01-01

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644967

  19. Small unilamellar vesicles as reagents: a chemically defined, quantitative assay for lectins

    Energy Technology Data Exchange (ETDEWEB)

    Rando, R.R.

    1981-01-01

    Samll unilamellar vesicles containing synthetic glycolipids can be prepared. These vesicles are aggregated by the appropriate lectin (Orr et al., 1979; Rando and Bangerter, 1979; Slama and Rando, 1980). It is shown here that extent of aggregation of these vesicles as measured by light scattering at 360 nm, is, under certain conditions, linear with amount of lectin added. This forms the basis of a rapid and simple quantitative assay for lectins using the modified vesicles as a defined chemical substrate. The assay is sensitive to lectin concentrations in the low ..mu..g range. The assay is applied here to studies on concanavalin A, Ricinus communis agglutinin and the ..cap alpha..-fucosyl binding lectin from Ulex europaeus (Type I).

  20. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  1. Parameter determination for quantitative PIXE analysis using genetic algorithms

    International Nuclear Information System (INIS)

    Aspiazu, J.; Belmont-Moreno, E.

    1996-01-01

    For biological and environmental samples, PIXE technique is in particular advantage for elemental analysis, but the quantitative analysis implies accomplishing complex calculations that require the knowledge of more than a dozen parameters. Using a genetic algorithm, the authors give here an account of the procedure to obtain the best values for the parameters necessary to fit the efficiency for a X-ray detector. The values for some variables involved in quantitative PIXE analysis, were manipulated in a similar way as the genetic information is treated in a biological process. The authors carried out the algorithm until they reproduce, within the confidence interval, the elemental concentrations corresponding to a reference material

  2. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  3. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  4. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  5. Modern quantitative microstructure analysis on the example of aicu5mg1 alloys

    Directory of Open Access Journals (Sweden)

    Zlatičanin Biljana V.

    2002-01-01

    Full Text Available Using an automatic, QUANTIMET 500 MC, device for quantitative picture analysis and applying linear method of measurement on the example of AlCu5Mg1 alloys, the grain size (min, max and medium values, as well as relative standard measuring errors (RSE, dendrite arm spacing (DAS and length eutectic (Le and also distribution by size (histogram and volume participation of -hard solution and eutectic have been determined. We have also studied the influence of grain-refining additives AlTi5B1 for the same chemical composition of the aluminium-capper-magnesium alloy. It has been concluded that with the increase of titanium content, the mean value of grain size decreases. We have also examined hardness and pressure strength.

  6. Study of resolution enhancement methods for impurities quantitative analysis in uranium compounds by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clayton P.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Scapin, Marcos A., E-mail: clayton.pereira.silva@usp.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2011-07-01

    X-ray fluorescence analysis is a technique widely used for the determination of both major and trace elements related to interaction between the sample and radiation, allowing direct and nondestructive analysis. However, in uranium matrices these devices are inefficient because the characteristic emission lines of elements like S, Cl, Zn, Zr, Mo and other overlap characteristic emission lines of uranium. Thus, chemical procedures to separation of uranium are needed to perform this sort of analysis. In this paper the deconvolution method was used to increase spectra resolution and correct the overlaps. The methodology was tested according to NBR ISO 17025 using a set of seven certified reference materials for impurities present in U3O8 (New Brunswick Laboratory - NBL). The results showed that this methodology allows quantitative determination of impurities such as Zn, Zr, Mo and others, in uranium compounds. The detection limits were shorter than 50{mu}g. g{sup -1} and uncertainty was shorter than 10% for the determined elements. (author)

  7. Study of resolution enhancement methods for impurities quantitative analysis in uranium compounds by XRF

    International Nuclear Information System (INIS)

    Silva, Clayton P.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Scapin, Marcos A.

    2011-01-01

    X-ray fluorescence analysis is a technique widely used for the determination of both major and trace elements related to interaction between the sample and radiation, allowing direct and nondestructive analysis. However, in uranium matrices these devices are inefficient because the characteristic emission lines of elements like S, Cl, Zn, Zr, Mo and other overlap characteristic emission lines of uranium. Thus, chemical procedures to separation of uranium are needed to perform this sort of analysis. In this paper the deconvolution method was used to increase spectra resolution and correct the overlaps. The methodology was tested according to NBR ISO 17025 using a set of seven certified reference materials for impurities present in U3O8 (New Brunswick Laboratory - NBL). The results showed that this methodology allows quantitative determination of impurities such as Zn, Zr, Mo and others, in uranium compounds. The detection limits were shorter than 50μg. g -1 and uncertainty was shorter than 10% for the determined elements. (author)

  8. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method.

    Science.gov (United States)

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-02-01

    To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  9. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...

  10. Quantitative scenario analysis of low and intermediate level radioactive repository

    International Nuclear Information System (INIS)

    Lee, Keon Jae; Lee, Sang Yoon; Park, Keon Baek; Song, Min Cheon; Lee, Ho Jin

    1998-03-01

    Derivation of hypothetical radioactive waste disposal facility os conducted through sub-component characteristic analysis and conceptual modeling. It is studied that quantitative analysis of constructed scenario in terms of annual effective dose equivalent. This study is sequentially conducted according to performance assessment of radioactive waste disposal facility such as : ground water flow analysis, source term analysis, ground water transport, surface water transport, dose and pathways. The routine program module such as VAM2D-PAGAN-GENII is used for quantitative scenario analysis. Detailed data used in this module are come from experimental data of Korean territory and default data given within this module. Is case of blank data for code execution, it is estimated through reasonable engineering sense

  11. Microchromatography of hemoglobins. VIII. A general qualitative and quantitative method in plastic drinking straws and the quantitative analysis of Hb-F.

    Science.gov (United States)

    Schroeder, W A; Pace, L A

    1978-03-01

    The microchromatographic procedure for the quantitative analysis of the hemoglobin components in a hemolysate uses columns of DEAE-cellulose in a plastic drinking straw with a glycine-KCN-NaCl developer. Not only may the method be used for the quantitative analysis of Hb-F but also for the analysis of the varied components in mixtures of hemoglobins.

  12. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  13. Quantitative genetic analysis of total glucosinolate, oil and protein ...

    African Journals Online (AJOL)

    Quantitative genetic analysis of total glucosinolate, oil and protein contents in Ethiopian mustard ( Brassica carinata A. Braun) ... Seeds were analyzed using HPLC (glucosinolates), NMR (oil) and NIRS (protein). Analyses of variance, Hayman's method of diallel analysis and a mixed linear model of genetic analysis were ...

  14. The usefulness of 3D quantitative analysis with using MRI for measuring osteonecrosis of the femoral head

    International Nuclear Information System (INIS)

    Hwang, Ji Young; Lee, Sun Wha; Park, Youn Soo

    2006-01-01

    We wanted to evaluate the usefulness of MRI 3D quantitative analysis for measuring osteonecrosis of the femoral head in comparison with MRI 2D quantitative analysis and quantitative analysis of the specimen. For 3 months at our hospital, 14 femoral head specimens with osteonecrosis were obtained after total hip arthroplasty. The patients preoperative MRIs were retrospectively reviewed for quantitative analysis of the size of the necrosis. Each necrotic fraction of the femoral head was measured by 2D quantitative analysis with using mid-coronal and mid-sagittal MRIs, and by 3D quantitative analysis with using serial continuous coronal MRIs and 3D reconstruction software. The necrotic fraction of the specimen was physically measured by the fluid displacement method. The necrotic fraction according to MRI 2D or 3D quantitative analysis was compared with that of the specimen by using Spearman's correlation test. On the correlative analysis, the necrotic fraction by MRI 2D quantitative analysis and quantitative analysis of the specimen showed moderate correlation (r = 0.657); on the other hand, the necrotic fraction by MRI 3D quantitative analysis and quantitative analysis of the specimen demonstrated a strong correlation (r = 0.952) (ρ < 0.05). MRI 3D quantitative analysis was more accurate than 2D quantitative analysis using MRI for measuring osteonecrosis of the femoral head. Therefore, it may be useful for predicting the clinical outcome and deciding the proper treatment option

  15. What Really Happens in Quantitative Group Research? Results of a Content Analysis of Recent Quantitative Research in "JSGW"

    Science.gov (United States)

    Boyle, Lauren H.; Whittaker, Tiffany A.; Eyal, Maytal; McCarthy, Christopher J.

    2017-01-01

    The authors conducted a content analysis on quantitative studies published in "The Journal for Specialists in Group Work" ("JSGW") between 2012 and 2015. This brief report provides a general overview of the current practices of quantitative group research in counseling. The following study characteristics are reported and…

  16. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  17. Chemical characterization of archaeological ceramics by neutron activation analysis: A study in the production and distribution of middle horizon pottery from Cuzco, Peru

    International Nuclear Information System (INIS)

    Montoya, Eduardo; Mendoza, Pablo; Zapata, Julinho

    2009-01-01

    The k 0 based instrumental neutron activation analysis has been used, as a quantitative characterization tool, to establish the provenience of the Wari pottery found in Middle Horizon archaeological sites at Cuzco, Peru. The results indicate a bidirectional exchange of pottery between Ayacucho and Cuzco along the Middle Horizon Period. Other archaeological inferences from the results of the chemical analysis are discussed. (author).

  18. Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ho Jin; Yoon, Ik Keun [Korea Gas Corporation, Ansan (Korea, Republic of); Choi, Soo Hyoung [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-15

    Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than 10{sup -4}/yr. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

  19. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  20. The additivity of radionuclide and chemical risk estimates in performance evaluation of mixed-waste sites

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, K.R.

    1990-01-01

    Methods for assessing radioactive waste sites that contain chemical constituents are in the formative stages. In evaluating these sites, a key concern will be the hazard to personnel involved in cleanup work and to the general population. This paper focuses on what we have learned from pathway analysis and risk assessment about providing a combined estimate of risk from exposure to both chemicals and radionuclides. Quantitative radiation risk assessment involves a high degree of uncertainty. Chemical risk assessment generally does not provide quantitative results. Thus, it is not currently possible to develop a useful, quantitative combined risk assessment for mixed-waste sites

  1. Quantitative analysis of some brands of chloroquine tablets ...

    African Journals Online (AJOL)

    Quantitative analysis of some brands of chloroquine tablets marketed in Maiduguri using spectrophotometric ... and compared with that of the standard, wavelength of maximum absorbance at 331nm for chloroquine. ... HOW TO USE AJOL.

  2. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  3. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  4. Full quantitative phase analysis of hydrated lime using the Rietveld method

    International Nuclear Information System (INIS)

    Lassinantti Gualtieri, Magdalena; Romagnoli, Marcello; Miselli, Paola; Cannio, Maria; Gualtieri, Alessandro F.

    2012-01-01

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2–15 wt.%.

  5. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    Science.gov (United States)

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  6. Quantitative possibility analysis. Present status in ESCA

    International Nuclear Information System (INIS)

    Brion, D.

    1981-01-01

    A short review of the recent developments in quantification of X-ray photoelectron spectroscopy or ESCA is presented. The basic equations are reminded. Each involved parameter (photoionisation, inelastic mean free paths, 'response function' of the instruments, intensity measurement) is separately discussed in relation with the accuracy and the precision of the method. Other topics are considered such as roughness, surface contamination, matrix effect and inhomogeneous composition. Some aspects of the quantitative ESCA analysis and AES analysis are compared [fr

  7. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    Science.gov (United States)

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  8. Uncertainties in elemental quantitative analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.

    1979-01-01

    The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)

  9. Qualitative and Quantitative Analysis of the Major Constituents in Chinese Medical Preparation Lianhua-Qingwen Capsule by UPLC-DAD-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Weina Jia

    2015-01-01

    Full Text Available Lianhua-Qingwen capsule (LQC is a commonly used Chinese medical preparation to treat viral influenza and especially played a very important role in the fight against severe acute respiratory syndrome (SARS in 2002-2003 in China. In this paper, a rapid ultraperformance liquid chromatography coupled with diode-array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS method was established for qualitative and quantitative analysis of the major constituents of LQC. A total of 61 compounds including flavonoids, phenylpropanoids, anthraquinones, triterpenoids, iridoids, and other types of compounds were unambiguously or tentatively identified by comparing the retention times and accurate mass measurement with reference compounds or literature data. Among them, twelve representative compounds were further quantified as chemical markers in quantitative analysis, including salidroside, chlorogenic acid, forsythoside E, cryptochlorogenic acid, amygdalin, sweroside, hyperin, rutin, forsythoside A, phillyrin, rhein, and glycyrrhizic acid. The UPLC-DAD method was evaluated with linearity, limit of detection (LOD, limit of quantification (LOQ, precision, stability, repeatability, and recovery tests. The results showed that the developed quantitative method was linear, sensitive, and precise for the quality control of LQC.

  10. Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range

    Science.gov (United States)

    Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.

    2012-06-01

    Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.

  11. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    OpenAIRE

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective: To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods: TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results: Both assays provided good linearity, accuracy, reproducibility and selectivity for dete...

  12. Evaluation of breast lesions by contrast enhanced ultrasound: Qualitative and quantitative analysis

    International Nuclear Information System (INIS)

    Wan Caifeng; Du Jing; Fang Hua; Li Fenghua; Wang Lin

    2012-01-01

    Objective: To evaluate and compare the diagnostic performance of qualitative, quantitative and combined analysis for characterization of breast lesions in contrast enhanced ultrasound (CEUS), with histological results used as the reference standard. Methods: Ninety-one patients with 91 breast lesions BI-RADS 3–5 at US or mammography underwent CEUS. All lesions underwent qualitative and quantitative enhancement evaluation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of different analytical method for discrimination between benign and malignant breast lesions. Results: Histopathologic analysis of the 91 lesions revealed 44 benign and 47 malignant. For qualitative analysis, benign and malignant lesions differ significantly in enhancement patterns (p z1 ), 0.768 (A z2 ) and 0.926(A z3 ) respectively. The values of A z1 and A z3 were significantly higher than that for A z2 (p = 0.024 and p = 0.008, respectively). But there was no significant difference between the values of A z1 and A z3 (p = 0.625). Conclusions: The diagnostic performance of qualitative and combined analysis was significantly higher than that for quantitative analysis. Although quantitative analysis has the potential to differentiate benign from malignant lesions, it has not yet improved the final diagnostic accuracy.

  13. New Approach to Quantitative Analysis by Laser-induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Lee, D. H.; Kim, T. H.; Yun, J. I.; Jung, E. C.

    2009-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been studied as the technique of choice in some particular situations like screening, in situ measurement, process monitoring, hostile environments, etc. Especially, LIBS can fulfill the qualitative and quantitative analysis for radioactive high level waste (HLW) glass in restricted experimental conditions. Several ways have been suggested to get quantitative information from LIBS. The one approach is to use the absolute intensities of each element. The other approach is to use the elemental emission intensities relative to the intensity of the internal standard element whose concentration is known already in the specimen. But these methods are not applicable to unknown samples. In the present work, we introduce new approach to LIBS quantitative analysis by using H α (656.28 nm) emission line as external standard

  14. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-03-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  15. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Sun, Jin; Mok, FloraSy; Liu, Lingli; Qiu, Jianwen; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  16. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Elio Desimoni

    2015-04-01

    Full Text Available The characterization of chemically modified sensors and biosensors is commonly performed by cyclic voltammetry and electron microscopies, which allow verifying electrode mechanisms and surface morphologies. Among other techniques, X-ray photoelectron spectroscopy (XPS plays a unique role in giving access to qualitative, quantitative/semi-quantitative and speciation information concerning the sensor surface. Nevertheless, XPS remains rather underused in this field. The aim of this paper is to review selected articles which evidence the useful performances of XPS in characterizing the top surface layers of chemically modified sensors and biosensors. A concise introduction to X-ray Photoelectron Spectroscopy gives to the reader the essential background. The application of XPS for characterizing sensors suitable for food and environmental analysis is highlighted.

  17. A Quantitative ADME-base Tool for Exploring Human ...

    Science.gov (United States)

    Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It

  18. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    Science.gov (United States)

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  19. Simultaneous Qualitative and Quantitative Analysis of Multiple Chemical Constituents in YiQiFuMai Injection by Ultra-Fast Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Chunhua Liu

    2016-05-01

    Full Text Available YiQiFuMai injection (YQFM is a modern lyophilized powder preparation derived from the traditional Chinese medicine Sheng-mai san (SMS used for treating cardiovascular diseases, such as chronic heart failure. However, its chemical composition has not been fully elucidated, particularly for the preparation derived from Ophiopogon japonicus. This study aimed to establish a systematic and reliable method to quickly and simultaneously analyze the chemical constituents in YQFM by ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry (UFLC-IT-TOF/MS. Sixty-five compounds in YQFM were tentatively identified by comparison with reference substances or literature data. Furthermore, twenty-one compounds, including three ophiopogonins, fifteen ginsenosides and three lignans were quantified by UFLC-IT-TOF/MS. Notably, this is the first determination of steroidal saponins from O. japonicus in YQFM. The relative standard deviations (RSDs of intra- and inter-day precision, reproducibility and stability were <4.9% and all analytes showed good linearity (R2 ≥ 0.9952 and acceptable recovery of 91.8%–104.2% (RSD ≤ 5.4%, indicating that the methods were reliable. These methods were successfully applied to quantitative analysis of ten batches of YQFM. The developed approach can provide useful and comprehensive information for quality control, further mechanistic studies in vivo and clinical application of YQFM.

  20. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li; Branford-White, Christopher J.; Wang Zhengtao; Bligh, S.W. Annie

    2007-01-01

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL -1 and the limit of quantitation is 0.79 nmol mL -1 . The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported

  1. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); Branford-White, Christopher J. [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom); Wang Zhengtao [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210038 (China)], E-mail: wangzt@shutcm.edu.cn; Bligh, S.W. Annie [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom)], E-mail: a.bligh@londonmet.ac.uk

    2007-12-12

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL{sup -1} and the limit of quantitation is 0.79 nmol mL{sup -1}. The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported.

  2. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    Science.gov (United States)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  3. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    International Nuclear Information System (INIS)

    Ryan, C.G.; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-01-01

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  4. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G., E-mail: chris.ryan@csiro.au; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-11-15

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  5. Vibrational spectroscopy and chemometrics for rapid, quantitative analysis of bitter acids in hops (Humulus lupulus).

    Science.gov (United States)

    Killeen, Daniel P; Andersen, David H; Beatson, Ron A; Gordon, Keith C; Perry, Nigel B

    2014-12-31

    Hops, Humulus lupulus, are grown worldwide for use in the brewing industry to impart characteristic flavor and aroma to finished beer. Breeders produce many varietal crosses with the aim of improving and diversifying commercial hops varieties. The large number of crosses critical to a successful breeding program imposes high demands on the supporting chemical analytical laboratories. With the aim of reducing the analysis time associated with hops breeding, quantitative partial least-squares regression (PLS-R) models have been produced, relating reference data acquired by the industrial standard HPLC and UV methods, to vibrational spectra of the same, chemically diverse hops sample set. These models, produced from rapidly acquired infrared (IR), near-infrared (NIR), and Raman spectra, were appraised using standard statistical metrics. Results demonstrated that all three spectroscopic methods could be used for screening hops for α-acid, total bitter acids, and cohumulone concentrations in powdered hops. Models generated from Raman and IR spectra also showed potential for use in screening hops varieties for xanthohumol concentrations. NIR analysis was performed using both a standard benchtop spectrometer and a portable NIR spectrometer, with comparable results obtained by both instruments. Finally, some important vibrational features of cohumulone, colupulone, and xanthohumol were assigned using DFT calculations, which allow more insightful interpretation of PLS-R latent variable plots.

  6. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Wan, Xiong; Wang, Peng

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.

  7. Qualitative and Quantitative Analysis of Lignan Constituents in Caulis Trachelospermi by HPLC-QTOF-MS and HPLC-UV

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2015-05-01

    Full Text Available A high-performance liquid chromatography coupled with quadrupole tandem time-of-flight mass (HPLC-QTOF-MS and ultraviolet spectrometry (HPLC-UV was established for simultaneous qualitative and quantitative analysis of the major chemical constituents in Caulis Trachelospermi, respectively. The analysis was performed on an Agilent Zorbax Eclipse Plus C18 column (4.6 mm × 150 mm, 5 μm using a binary gradient system of water and methanol, with ultraviolet absorption at 230 nm. Based on high-resolution ESI-MS/MS fragmentation behaviors of the reference standards, the characteristic cleavage patterns of lignano-9, 9'-lactones and lignano-8'-hydroxy-9, 9'-lactones were obtained. The results demonstrated that the characteristic fragmentation patterns are valuable for identifying and differentiating lignano-9,9'-lactones and lignano-8'-hydroxy-9,9'-lactones. As such, a total of 25 compounds in Caulis Trachelospermi were unambiguously or tentatively identified via comparisons with reference standards or literature. In addition, 14 dibenzylbutyrolatone lignans were simultaneously quantified in Caulis Trachelospermi by HPLC-UV method. The method is suitable for the qualitative and quantitative analyses of dibenzylbutyrolatone lignans in Caulis Trachelospermi.

  8. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  9. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  10. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  11. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    microspectroscopy (CLRM. Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members.

  12. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge.

    Science.gov (United States)

    Ye, Xiaoyun; Zhou, Xiaoliu; Hennings, Ryan; Kramer, Joshua; Calafat, Antonia M

    2013-03-01

    Biomonitoring studies are conducted to assess internal dose (i.e., body burden) to environmental chemicals. However, because of the ubiquitous presence in the environment of some of these chemicals, such as bisphenol A (BPA), external contamination during handling and analysis of the biospecimens collected for biomonitoring evaluations could compromise the reported concentrations of such chemicals. We examined the contamination with the target analytes during analysis of biological specimens in biomonitoring laboratories equipped with state-of-the-art analytical instrumentation. We present several case studies using the quantitative determination of BPA and other organic chemicals (i.e., benzophenone-3, triclosan, parabens) in human urine, milk, and serum to identify potential contamination sources when the biomarkers measured are ubiquitous environmental contaminants. Contamination with target analytes during biomonitoring analysis could result from solvents and reagents, the experimental apparatus used, the laboratory environment, and/or even the analyst. For biomonotoring data to be valid-even when obtained from high-quality analytical methods and good laboratory practices-the following practices must be followed to identify and track unintended contamination with the target analytes during analysis of the biological specimens: strict quality control measures including use of laboratory blanks; replicate analyses; engineering controls (e.g., clean rooms, biosafety cabinets) as needed; and homogeneous matrix-based quality control materials within the expected concentration ranges of the study samples.

  13. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  14. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  15. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  16. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    Science.gov (United States)

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  17. Towards quantitative analysis of core-shell catalyst nano-particles by aberration corrected high angle annular dark field STEM and EDX

    International Nuclear Information System (INIS)

    Haibo, E; Nellist, P D; Lozano-Perez, S; Ozkaya, D

    2010-01-01

    Core-shell structured heterogeneous catalyst nano-particles offer the promise of more efficient precious metal usage and also novel functionalities but are as yet poorly characterised due to large compositional variations over short ranges. High angle annular dark field detector in a scanning transmission electron microscope is frequently used to image at high resolution because of its Z-contrast and incoherent imaging process, but generally little attention is paid to quantification. Energy dispersive X-ray analysis provides information on thickness and chemical composition and, used in conjunction with HAADF-STEM, aids interpretation of imaged nano-particles. We present important calibrations and initial data for truly quantitative high resolution analysis.

  18. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    DEFF Research Database (Denmark)

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H

    2016-01-01

    to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including...... staining may benefit. METHODS: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm......BACKGROUND: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar...

  19. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    Science.gov (United States)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  20. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  1. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van

    2003-01-01

    Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms.

  2. Role of image analysis in quantitative characterisation of nuclear fuel materials

    International Nuclear Information System (INIS)

    Dubey, J.N.; Rao, T.S.; Pandey, V.D.; Majumdar, S.

    2005-01-01

    Image analysis is one of the important techniques, widely used for materials characterization. It provides the quantitative estimation of the microstructural features present in the material. This information is very much valuable for finding out the criteria for taking up the fuel for high burn up. Radiometallurgy Division has been carrying out development and fabrication of plutonium related fuels for different type of reactors viz. Purnima, Fast Breeder Test Reactor (FBTR), Prototype Fast Breeder Reactor (PFBR), Boiling Water Reactor (BWR), Advanced Heavy Water Reactor (AHWR), Pressurised Heavy Water Reactor (PHWR) and KAMINI Reactor. Image analysis has been carried out on microstructures of PHWR, AHWR, FBTR and KAMINI fuels. Samples were prepared as per standard ASTM metallographic procedure. Digital images of the microstructure of these specimens were obtained using CCD camera, attached to the optical microscope. These images are stores on computer and used for detection and analysis of features of interest with image analysis software. Quantitative image analysis technique has been standardised and used for finding put type of the porosity, its size, shape and distribution in the above sintered oxide and carbide fuels. This technique has also been used for quantitative estimation of different phases present in KAMINI fuel. Image analysis results have been summarised and presented in this paper. (author)

  3. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  4. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  5. [Rapid analysis of suppositories by quantitative 1H NMR spectroscopy].

    Science.gov (United States)

    Abramovich, R A; Kovaleva, S A; Goriainov, S V; Vorob'ev, A N; Kalabin, G A

    2012-01-01

    Rapid analysis of suppositories with ibuprofen and arbidol by quantitative 1H NMR spectroscopy was performed. Optimal conditions for the analysis were developed. The results are useful for design of rapid methods for quality control of suppositories with different components

  6. Quantitative EDXS analysis of organic materials using the ζ-factor method

    International Nuclear Information System (INIS)

    Fladischer, Stefanie; Grogger, Werner

    2014-01-01

    In this study we successfully applied the ζ-factor method to perform quantitative X-ray analysis of organic thin films consisting of light elements. With its ability to intrinsically correct for X-ray absorption, this method significantly improved the quality of the quantification as well as the accuracy of the results compared to conventional techniques in particular regarding the quantification of light elements. We describe in detail the process of determining sensitivity factors (ζ-factors) using a single standard specimen and the involved parameter optimization for the estimation of ζ-factors for elements not contained in the standard. The ζ-factor method was then applied to perform quantitative analysis of organic semiconducting materials frequently used in organic electronics. Finally, the results were verified and discussed concerning validity and accuracy. - Highlights: • The ζ-factor method is used for quantitative EDXS analysis of light elements. • We describe the process of determining ζ-factors from a single standard in detail. • Organic semiconducting materials are successfully quantified

  7. Comments on some of the physical chemical questions associated with the analysis of water in earth materials

    International Nuclear Information System (INIS)

    Catalano, Edward

    1970-01-01

    A discussion of various physical chemical questions which are associated with the quantitative analysis of water in earth materials is presented. A pseudothermodynamic approach to the binding of water in various types of earth materials is also presented. Emphasis is placed on the fact that as pore, crack, or hole sizes approach molecular dimensions, the interaction energy of water with the host material can become very large. A scale of interaction energies is suggested which would be useful for specifying operationally relevant analyses in earth materials. (author)

  8. Comments on some of the physical chemical questions associated with the analysis of water in earth materials

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Edward [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    A discussion of various physical chemical questions which are associated with the quantitative analysis of water in earth materials is presented. A pseudothermodynamic approach to the binding of water in various types of earth materials is also presented. Emphasis is placed on the fact that as pore, crack, or hole sizes approach molecular dimensions, the interaction energy of water with the host material can become very large. A scale of interaction energies is suggested which would be useful for specifying operationally relevant analyses in earth materials. (author)

  9. Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva

    International Nuclear Information System (INIS)

    Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.; Campbell, James A.; Lin, Yuehe

    2004-01-01

    There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. The system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk

  10. Quantitative analysis by computer controlled X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Balasubramanian, T.V.; Angelo, P.C.

    1981-01-01

    X-ray fluorescence spectroscopy has become a widely accepted method in the metallurgical field for analysis of both minor and major elements. As encountered in many other analytical techniques, the problem of matrix effect generally known as the interelemental effects is to be dealt with effectively in order to make the analysis accurate. There are several methods by which the effects of matrix on the analyte are minimised or corrected for and the mathematical correction is one among them. In this method the characteristic secondary X-ray intensities are measured from standard samples and correction coefficients. If any, for interelemental effects are evaluated by mathematical calculations. This paper describes attempts to evaluate the correction coefficients for interelemental effects by multiple linear regression programmes using a computer for the quantitative analysis of stainless steel and a nickel base cast alloy. The quantitative results obtained using this method for a standard stainless steel sample are compared with the given certified values. (author)

  11. Comprehensive Quantitative Analysis of 32 Chemical Ingredients of a Chinese Patented Drug Sanhuang Tablet

    OpenAIRE

    Hau-Yee Fung; Yan Lang; Hing-Man Ho; Tin-Long Wong; Dik-Lung Ma; Chung-Hang Leung; Quan-Bin Han

    2017-01-01

    Sanhuang Tablet (SHT) is a Chinese patented drug commonly used for the treatment of inflammations of the respiratory tract, gastrointestinal tract, and skin. It contains a special medicinal composition including the single compound berberine hydrochloride, extracts of Scutellariae Radix and Rhei Radix et Rhizoma, as well as the powder of Rhei Radix et Rhizoma. Despite advances in analytical techniques, quantitative evaluation of a Chinese patented drug like SHT remains a challenge due to the ...

  12. PIQMIe: A web server for semi-quantitative proteomics data management and analysis

    NARCIS (Netherlands)

    A. Kuzniar (Arnold); R. Kanaar (Roland)

    2014-01-01

    textabstractWe present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates

  13. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  14. Critical appraisal of semi-quantitative analysis of 2-deoxyglucose autoradiograms

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P T; McCulloch, J [Glasgow Univ. (UK)

    1983-06-13

    Semi-quantitative analysis (e.g. optical density ratios) of (/sup 14/C)2-deoxyglucose autoradiograms is widely used in neuroscience research. The authors demonstrate that a fixed ratio of /sup 14/C-concentrations in the CNS does not yield a constant optical density ratio but is dependent upon the exposure time in the preparation of the autoradiograms and the absolute amounts of /sup 14/C from which the concentration ratio is derived. The failure of a fixed glucose utilization ratio to result in a constant optical density ratio represents a major interpretative difficulty in investigations where only semi-quantitative analysis of (/sup 14/C)2-deoxyglucose autoradiograms is undertaken.

  15. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    lines; Procrustes analysis; wing shape; wing size. ... Models of stochastic gene expression pre- dict that intrinsic noise ... Quantitative parameters of wing size and shape asymmetries ..... the residuals of a regression on centroid size produced.

  16. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    FIRST LADY

    The importance of data analysis in quantitative assessment of natural resources .... Data collection design is an important process in complex forest statistical ... Ideally, the sample size should be equal among groups and sufficiently large.

  17. Transportation and quantitative analysis of socio-economic development of relations

    Science.gov (United States)

    Chen, Yun

    2017-12-01

    Transportation has a close relationship with socio-economic. This article selects the indicators which can measure the development of transportation and socio-economic, using the method of correlation analysis, regression analysis, intensity of transportation analysis and transport elastic analysis, to analyze the relationship between them quantitatively, so that it has the fact guiding sense in the national development planning for the future.

  18. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  19. Quantitative Proteomic Analysis of Sulfolobus solfataricus Membrane Proteins

    NARCIS (Netherlands)

    Pham, T.K.; Sierocinski, P.; Oost, van der J.; Wright, P.C.

    2010-01-01

    A quantitative proteomic analysis of the membrane of the archaeon Sulfolobus solfataricus P2 using iTRAQ was successfully demonstrated in this technical note. The estimated number of membrane proteins of this organism is 883 (predicted based on Gravy score), corresponding to 30 % of the total

  20. Qualitative and quantitative chemical investigation of orthopedic alloys by combining wet digestion, spectro analytical methods and direct solid analysis

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Caio M.; Castro, Jeyne P.; Sperança, Marco A.; Fialho, Lucimar L.; Nóbrega, Joaquim A.; Pereira-Filho, Edenir R., E-mail: erpf@ufscar.br [Universidade Federal de São Carlos (GAIA/UFSCar), SP (Brazil). Grupo de Análise Instrumental Aplicada

    2018-05-01

    In this study, two laser-based techniques, laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) were used for analytical signal evaluation of Ti, Al, and V and investigation of possible harmful elements eventually present as minor elements in Ti alloys. Due to the lack of certified reference materials, samples were also analyzed by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted digestion. To maximize the efficiency of LIBS and LA-ICP-MS, operational conditions were adjusted aiming to find optimal analytical performance. LIBS showed several Ti emission lines and few signals for Al and V. LA-ICP-MS was able to detect all three major constituents. For quantitative analysis, the correlation of intensity signals from LIBS analysis with reference values obtained by ICP OES was not successful, showing that there are still difficulties for quantification using solid samples. Measurements using ICP OES showed that additionally to major constituents, only Fe was present in concentrations around 0.2%. Analysis by WDXRF confirmed the presence of Fe. Results using both methods, i.e., ICP OES and WDXRF, were in good agreement. (author)

  1. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  2. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  3. Quantitative X-ray analysis of biological fluids: the microdroplet technique

    International Nuclear Information System (INIS)

    Roinel, N.

    1988-01-01

    X-ray microanalysis can be used to quantitatively determine the elemental composition of microvolumes of biological fluids. This article describes the various steps in preparation of microdroplets for analysis: The manufacturing of micropipettes, the preparation of the specimen support, the deposition of droplets on the support, shock-freezing, and lyophilization. Examples of common artifacts (incomplete rehydration prior to freezing or partial rehydration after lyophilization) are demonstrated. Analysis can be carried out either by wavelength-dispersive analysis, which is the most sensitive method, or by energy-dispersive analysis, which is more commonly available. The minimum detectable concentration is 0.05 mmol.liter-1 for 0.1-nl samples analyzed by wavelength-dispersive spectrometry and 0.5-1 mmol.liter-1 for samples analyzed by energy-dispersive spectrometry. A major problem, especially in wavelength-dispersive analysis, where high beam currents are used, is radiation damage to the specimen; in particular chloride (but also other elements) can be lost. Quantitative analysis requires the use of standard solutions with elemental concentration in the same range as those present in the specimen

  4. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  5. Method of quantitative x-ray diffractometric analysis of Ta-Ta2C system

    International Nuclear Information System (INIS)

    Gavrish, A.A.; Glazunov, M.P.; Korolev, Yu.M.; Spitsyn, V.I.; Fedoseev, G.K.

    1976-01-01

    The syste86 Ta-Ta 2 C has beemonsidered because of specific features of diffraction patterns of the components, namely, overlapping of the most intensive reflexes of both phases. The method of standard binary system has been used for quantitative analysis. Because of overlapping of the intensive reflexes dsub(1/01)=2.36(Ta 2 C) and dsub(110)=2.33(Ta), the other, most intensive, reflexes have been used for quantitative determination of Ta 2 C and Ta: dsub(103)=1.404 A for tantalum subcarbide and dsub(211)=1.35A for tantalum. Besides, the TaTa 2 C phases have been determined quantitatively with the use of another pair of reflexes: dsub(102)=1.82 A for Ta 2 C and dsub(200)=1.65 A for tantalum. The agreement between the results obtained while performing the quantitative phase analysis is good. To increase reliability and accuracy of the quantitative determination of Ta and Ta 2 C, it is expedient to carry out the analysis with the use of two above-mentioned pairs of reflexes located in different regions of the diffraction spectrum. Thus, the procedure of quantitative analysis of Ta and Ta 2 C in different ratios has been developed taking into account the specific features of the diffraction patterns of these components as well as the ability of Ta 2 C to texture in the process of preparation

  6. A new and improved methodology for qualitative and quantitative mineralogical analysis of Boom Clay

    International Nuclear Information System (INIS)

    Zeelmaekers, E.; Vandenberghe, N.; Honty, M.; De Craen, M.; Derkowski, A.; Van Geet, M.

    2010-01-01

    ;Quanta' (Chevron proprietary software). The Quanta results were further refined with bulk rock chemical analysis (major oxides and trace elements), CEC and water adsorption at 110 deg. C using the 'BestRock' software (Chevron proprietary software). Bestrock provided mineral structural formulae, trace element distributions over the minerals and a set of petrophysical parameters of the individual minerals (e.g. vol.%, mineral density, dry mineral matrix density, hydrogen index, oxygen index) as an output. A quantification of amorphous phases (organic matter, and poorly crystallized Al, Fe and Mn oxy-hydroxides) was carried out by independent techniques as well. (2) The clay fraction (< 2 μm and < 0.2 μm) was studied in order to further refine the clay mineralogical composition. The oriented slides of air-dried and ethylene glycolated clays in Ca-form were used for conventional XRD analysis. In addition, K-, Mg- and Li- saturation and heating to 550 deg. C was also applied in order to discriminate between various clay species. Sybilla software (Chevron proprietary software) was used as a quantification tool in order to model the experimental air-dried and ethylene glycolated diffraction patterns of the basal reflections (001). In addition, as an independent check the theoretical wt% K 2 O and water loss at 200 deg. C for the model was compared to the actual measured values on the clay fraction. Altogether, an integration of the data from Quanta, Bestrock, Sybilla and chemical analysis of bulk rock and clay separates allowed for an up-date of the qualitative and quantitative mineralogical composition of the Boom Clay

  7. Quantitative EDX microanalysis of Bi2Te3 in the TEM

    International Nuclear Information System (INIS)

    Peranio, N.; Eibl, O.

    2007-01-01

    Quantitative chemical analysis by energy dispersive X-ray spectrometry (EDX) in a transmission electron microscope (TEM) Zeiss912 and ohm; was applied to p-type (Bi,Sb) 2 Te 3 and n-type Bi 2 (Te,Se) 3 thermoelectric materials. Preliminary results yielded artifacts due to Bi spurious X-rays and hole-counts significantly beyond zero. A stray aperture was inserted in the TEM to absorb the stray radiation. With this aperture inserted a high-accuracy quantitative chemical analysis was established. The hole-counts decreased by a factor of 5 and the scatter of data decreased by a factor of 4 with respect to no aperture inserted. The mole fractions of Te and Se were 54.4 at% and 5.5 at% and varied by 0.5 at% for n-type material. A similar behaviour was found for Sb and Bi in p-type material. The variation in stoichiometry is smaller on the sub-micrometer scale and increases with increasing length scale for both, n-type and p-type Bi 2 Te 3 . Measurements in the TEM confirmed the inhomogeneous chemical composition found by wavelength dispersive X-ray spectrometry. The improved accuracy of the quantitative EDX analysis is also important for other compounds with unique physical properties. This was demonstrated on thin foils containing heavy elements and on powders of light elements dispersed on Cu-grids, i.e., the high-T C superconductor Bi 2 Sr 2 CaCu 2 O 8 and the mineral salt hydroxyapatite Ca 10 (PO 4 ) 6 OH 2 . (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A Quantitative Analysis of the Behavioral Checklist of the Movement ABC Motor Test

    Science.gov (United States)

    Ruiz, Luis Miguel; Gomez, Marta; Graupera, Jose Luis; Gutierrez, Melchor; Linaza, Jose Luis

    2007-01-01

    The fifth section of the Henderson and Sugden's Movement ABC Checklist is part of the general Checklist that accompanies The Movement ABC Battery. The authors maintain that the analysis of this section must be mainly qualitative instead of quantitative. The main objective of this study was to employ a quantitative analysis of this behavioural…

  9. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  10. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    International Nuclear Information System (INIS)

    Michalska, J; Chmiela, B

    2014-01-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods

  11. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  12. Comparative study of standard space and real space analysis of quantitative MR brain data.

    Science.gov (United States)

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  13. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    Science.gov (United States)

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    Science.gov (United States)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  15. Quantitative analysis of background parenchymal enhancement in whole breast on MRI: Influence of menstrual cycle and comparison with a qualitative analysis.

    Science.gov (United States)

    Jung, Yongsik; Jeong, Seong Kyun; Kang, Doo Kyoung; Moon, Yeorae; Kim, Tae Hee

    2018-06-01

    We quantitatively analyzed background parenchymal enhancement (BPE) in whole breast according to menstrual cycle and compared it with a qualitative analysis method. A data set of breast magnetic resonance imaging (MRI) from 273 breast cancer patients was used. For quantitative analysis, we used semiautomated in-house software with MATLAB. From each voxel of whole breast, the software calculated BPE using following equation: [(signal intensity [SI] at 1 min 30 s after contrast injection - baseline SI)/baseline SI] × 100%. In total, 53 patients had minimal, 108 mild, 87 moderate, and 25 marked BPE. On quantitative analysis, mean BPE values were 33.1% in the minimal, 42.1% in the mild, 59.1% in the moderate, and 81.9% in the marked BPE group showing significant difference (p = .009 for minimal vs. mild, p quantitative BPE (r = 0.63, p Quantitative analysis of BPE correlated well with the qualitative BPE grade. Quantitative BPE values were lowest in the second week and highest in the fourth week. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  17. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  18. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Kristensen, D.; Nielsen, J. H.

    2006-01-01

    products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...... and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary...... oxidation products (i.e., lipid hydroperoxides) and even the tendency of formation of radicals as measured by electron spin resonance spectroscopy were also highly correlated to the sensory descriptors for oxidation. Electron spin resonance spectroscopy should accordingly be further explored as a routine...

  19. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  20. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  1. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  2. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  3. Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring

    Science.gov (United States)

    Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham

    2011-09-01

    A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.

  4. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    Science.gov (United States)

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  5. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  6. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    Science.gov (United States)

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  8. Quantitative analysis of thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Kanemoto, Nariaki; Hoer, G.; Johost, S.; Maul, F.-D.; Standke, R.

    1981-01-01

    The method of quantitative analysis of thallium-201 myocardial scintigraphy using computer assisted technique was described. Calculated indices are washout factor, vitality index and redistribution factor. Washout factor is the ratio of counts at certain period of time after exercise and immediately after exercise. This value is neccessary for the evaluation of redistribution to the ischemic areas in serial imagings to correct the Tl-201 washout from the myocardium under the assumption that the washout is constant in the whole myocardium. Vitality index is the ratio between the Tl-201 uptake in the region of interest and that of the maximum. Redistribution factor is the ratio of the redistribution in the region of interest in serial imagings after exercise to that of immediately after exercise. Four examples of exercise Tl-201 myocardial scintigrams and the quantitative analyses before and after the percutaneous transluminal coronary angioplasty were presented. (author)

  9. Quantitative analysis of untreated human nails for monitoring human exposure to heavy metals

    International Nuclear Information System (INIS)

    Sera, Koichiro; Futatsugawa, Shouji; Murao, Satoshi; Clemente, E.

    2002-01-01

    In order to address global environmental issues, a standard-free method developed by ourselves has been successfully applied to various kinds of bio-samples. Especially, a method for untreated hairs has been applied in many polluted areas to study human exposure to toxic elements. In addition to hair, nail is expected to give us valuable information about human exposure to toxic elements. However, the analysis requires relatively large amounts of samples and laborious sample preparation techniques which necessitate internal standards. In this work, we have developed a quantitative method for untreated human-nail analysis based on the standard-free method. It requires neither large amounts of nails nor complicated target preparation procedure. Furthermore, it is perfectly free from any ambiguity in target preparation such as volatilization of certain elements and contamination of the sample during chemical ashing. The optimum conditions of irradiating nail samples are established, and accuracy and reproducibility of the present method are confirmed. It is found that ultrasonic washing in distilled water is effective for many nail samples preventing the loss of elements from the sample. It is also found that elemental concentration in nails strongly depends on their sampling positions. (author)

  10. Solvent Effects on Oxygen-17 Chemical Shifts in Amides. Quantitative Linear Solvation Shift Relationships

    Science.gov (United States)

    Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.

    1997-01-01

    A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.

  11. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  12. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  13. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis.

    Science.gov (United States)

    Nissen, Lise R; Byrne, Derek V; Bertelsen, Grete; Skibsted, Leif H

    2004-11-01

    Antioxidative efficiency of extracts of rosemary, green tea, coffee and grape skin in precooked pork patties was investigated during storage under retail conditions (10 days, 4 °C, atmospheric air), using descriptive sensory profiling following reheating and quantitative measurements of hexanal, thiobarbituric acid reactive substances (TBARS) and vitamin E as indicators of lipid oxidation. The initial oxidative status of pork patties (evaluated by ANOVA) showed a significant lower level of secondary oxidation products and higher levels of vitamin E in patties with extracts incorporated, indicating that the extracts retarded lipid oxidation during processing of the meat. Data analysis for the storage study was based on qualitative overview of sensory/chemical variation by principal component analysis (PCA) and quantitative ANOVA-PLSR for determination of the relationship between design variables (days of chill-storage, extract treatment) versus sensory-chemical variables and PLSR for elucidating the predictive ability of the chemical methods for sensory terms. Lipid oxidation was seen to involve a decrease in perception of meat flavour/odour and a concomitant increase in the off-flavour/odours linseed, rancid. TBARS, hexanal and vitamin E were all significant predictive indices (Pfresh meat flavour/odour. The effect of the various extracts incorporated in the product was clearly related to the degree of lipid oxidation and an overall ranking of the antioxidative efficiency of extracts in declining order became apparent: Rosemary>Grape skin>Tea>Coffee>Reference. Furthermore, the relation between extracts and vitamin E indicated that the extracts, to some extent, interacted with the vitamin and prevented it from degrading. In conclusion, the rosemary extract displayed potential for maintaining sensory eating quality in processed pork products.

  14. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  15. Quantitative pulsed eddy current analysis

    International Nuclear Information System (INIS)

    Morris, R.A.

    1975-01-01

    The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)

  16. Quantitative surface analysis using deuteron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Afarideh, Hossein

    1991-01-01

    The nuclear reaction analysis (NRA) technique consists of looking at the energies of the reaction products which uniquely define the particular elements present in the sample and it analysis the yield/energy distribution to reveal depth profiles. A summary of the basic features of the nuclear reaction analysis technique is given, in particular emphasis is placed on quantitative light element determination using (d,p) and (d,alpha) reactions. The experimental apparatus is also described. Finally a set of (d,p) spectra for the elements Z=3 to Z=17 using 2 MeV incident deutrons is included together with example of more applications of the (d,alpha) spectra. (author)

  17. Qualitative and Quantitative Analysis of Rhizoma Smilacis glabrae by Ultra High Performance Liquid Chromatography Coupled with LTQ OrbitrapXL Hybrid Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Shao-Dan Chen

    2014-07-01

    Full Text Available Rhizoma Smilacis glabrae, a traditional Chinese medicine (TCM as well as a functional food, has been commonly used for detoxification treatments, relieving dampness and as a diuretic. In order to quickly define the chemical profiles and control the quality of Smilacis glabrae, ultra high performance liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole orbitrap mass spectrometry (UHPLC-ESI/LTQ-Orbitrap-MS was applied for simultaneous identification and quantification of its bioactive constituents. A total of 56 compounds, including six new compounds, were identified or tentatively deduced on the basis of their retention behaviors, mass spectra, or by comparison with reference substances and literature data. The identified compounds belonged to flavonoids, phenolic acids and phenylpropanoid glycosides. In addition, an optimized UHPLC-ESI/LTQ-Orbitrap-MS method was established for quantitative determination of six marker compounds from five batches. The validation of the method, including linearity, sensitivity (LOQ, precision, repeatability and spike recoveries, was carried out and demonstrated to be satisfied the requirements of quantitative analysis. The results suggested that the established method would be a powerful and reliable analytical tool for the characterization of multi-constituent in complex chemical system and quality control of TCM.

  18. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  19. DEVELOPMENT OF TECHNIQUES FOR QUANTITATIVE ANALYSIS OF LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2016-03-01

    Full Text Available Introduction. The article is devoted to the development of techniques for quantitative analysis of lime flower in order to make amendments to existing pharmacopoeian monographs for this herbal drug. Lime inflorescences contain lipophilic biologically active substances (BAS causing notable antimicrobial and anti-inflammatory effects and also more polar phenolic compounds with antiulcer activity. Considering this, it’s necessary to regulate all these groups of BAS quantitatively. Materials and methods. For this study six batches of lime flowers harvested in 2008-2009 yrs. in Kharkiv, Rivno and Zhitomir regions were used as crude herbal drug. Loss on drying was determined by routine pharmacopoeian procedures. Total content of lipophilic substances was determined gravimetrically after Soxhlet extraction of samples 1, 5, 7 and 10 g in weight with methylene chloride, considering that by its extracting ability this solvent is close to liquefied difluorochloromethane (freon R22 used by us for obtaining of lipophilic complexes. The duration of complete analytical extraction was determined by infusion of six 10 g assays of lime flowers during 1, 2, 3, 4, 5, 6 hours, then quantity of lipophilic extractives was revealed gravimetrically. Quantity of essential oil in lime flowers was evaluated under the procedure of ЕР7, 2.8.12. Weight of the herbal drug sample was 200 g, distillation rate – 2,5- 3,5 ml/min, volume of distillation liquid (water – 500 ml, volume of xylene in the graduated tube – 0,50 ml. Total flavonoid content recalculated to quercetin was determined after hydrolysis with acidified acetone, withdrawing of flavonoid aglycones with ethylacetate and by further spectrophotometry of their complexes with aluminium chloride. All quantitative determinations were replicated five times for each assay. All chemicals and reagents were of analytical grade. Results and discussion. It was found that adequate accuracy of the analysis of lipophilic

  20. Evaluation of shear wave elastography for differential diagnosis of breast lesions: A new qualitative analysis versus conventional quantitative analysis.

    Science.gov (United States)

    Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong

    2018-04-13

    To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.

  1. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    International Nuclear Information System (INIS)

    Neuland, M B; Riedo, A; Tulej, M; Wurz, P; Grimaudo, V; Moreno-García, P; Mezger, K

    2016-01-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface. (paper)

  2. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  3. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.

    Science.gov (United States)

    Sonoda, T; Ona, T; Yokoi, H; Ishida, Y; Ohtani, H; Tsuge, S

    2001-11-15

    Detailed quantitative analysis of lignin monomer composition comprising p-coumaryl, coniferyl, and sinapyl alcohol and p-coumaraldehyde, coniferaldehyde, and sinapaldehyde in plant has not been studied from every point mainly because of artifact formation during the lignin isolation procedure, partial loss of the lignin components inherent in the chemical degradative methods, and difficulty in the explanation of the complex spectra generally observed for the lignin components. Here we propose a new method to quantify lignin monomer composition in detail by pyrolysis-gas chromatography (Py-GC) using acetylated lignin samples. The lignin acetylation procedure would contribute to prevent secondary formation of cinnamaldehydes from the corresponding alcohol forms during pyrolysis, which are otherwise unavoidable in conventional Py-GC process to some extent. On the basis of the characteristic peaks on the pyrograms of the acetylated sample, lignin monomer compositions in various dehydrogenative polymers (DHP) as lignin model compounds were determined, taking even minor components such as cinnamaldehydes into consideration. The observed compositions by Py-GC were in good agreement with the supplied lignin monomer contents on DHP synthesis. The new Py-GC method combined with sample preacetylation allowed us an accurate quantitative analysis of detailed lignin monomer composition using a microgram order of extractive-free plant samples.

  4. Quantitative descriptive analysis of Italian polenta produced with different corn cultivars.

    Science.gov (United States)

    Zeppa, Giuseppe; Bertolino, Marta; Rolle, Luca

    2012-01-30

    Polenta is a porridge-like dish, generally made by mixing cornmeal with salt water and stirring constantly while cooking over a low heat. It can be eaten plain, straight from the pan, or topped with various foods (cheeses, meat, sausages, fish, etc.). It is most popular in northern Italy but can also be found in Switzerland, Austria, Croatia, Argentina and other countries in Eastern Europe and South America. Despite this diffusion, there are no data concerning the sensory characteristics of this product. A research study was therefore carried out to define the lexicon for a sensory profile of polenta and relationships with corn cultivars. A lexicon with 13 sensory parameters was defined and validated before references were determined. After panel training, the sensory profiles of 12 autochthonous maize cultivars were defined. The results of this research highlighted that quantitative descriptive analysis can also be used for the sensory description of polenta, and that the defined lexicon can be used to describe the sensory qualities of polenta for both basic research, such as maize selection, and product development. Copyright © 2011 Society of Chemical Industry.

  5. MCM - 2 and Ki - 67 as proliferation markers in renal cell carcinoma: A quantitative and semi - quantitative analysis.

    Science.gov (United States)

    Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia

    2016-01-01

    Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they

  6. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  7. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    Science.gov (United States)

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  8. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    Science.gov (United States)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  9. A critical appraisal of semi-quantitative analysis of 2-deoxyglucose autoradiograms

    International Nuclear Information System (INIS)

    Kelly, P.T.; McCulloch, J.

    1983-01-01

    Semi-quantitative analysis (e.g. optical density ratios) of [ 14 C]2-deoxyglucose autoradiograms is widely used in neuroscience research. The authors demonstrate that a fixed ratio of 14 C-concentrations in the CNS does not yield a constant optical density ratio but is dependent upon the exposure time in the preparation of the autoradiograms and the absolute amounts of 14 C from which the concentration ratio is derived. The failure of a fixed glucose utilization ratio to result in a constant optical density ratio represents a major interpretative difficulty in investigations where only semi-quantitative analysis of [ 14 C]2-deoxyglucose autoradiograms is undertaken. (Auth.)

  10. Quantitative analysis of culture using millions of digitized books.

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

  11. Quantitative analysis of culture using millions of digitized books

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  12. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  13. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  14. Quantitative analysis of macro-ARG using IP system

    International Nuclear Information System (INIS)

    Nakajima, Eiichi; Kawai, Kenji; Furuta, Yoshitake

    1997-01-01

    Recent progress in imaging plate (IP) system allow us to analyze autoradiographic images quantitatively. In the 'whole-body autoradiography', a method clarify the distribution of radioisotope or labeled compounds in the tissues and organs in a freeze-dried whole-body section of small animals such as rats and mice, the sections are pressed against a IP for exposure and the IP is scanned by Bio-Imaging Analyzer (Fuji Photo Film Co., Ltd) and a digital autoradiographic image is given. Quantitative data concerning the activity in different tissues can be obtained using an isotope scale as a reference source. Fading effect, application of IP system for distribution of receptor binding ARG, analysis of radio-spots on TLC and radioactive concentration in liquid such as blood are also discussed. (author)

  15. Potential Application of Quantitative Prostate-specific Antigen Analysis in Forensic Examination of Seminal Stains

    Directory of Open Access Journals (Sweden)

    Zhenping Liu

    2015-01-01

    Full Text Available The aims of this study are to use quantitative analysis of the prostate-specific antigen (PSA in the seminal stain examination and to explore the practical value of this analysis in forensic science. For a comprehensive analysis, vaginal swabs from 48 rape cases were tested both by a PSA fluorescence analyzer (i-CHROMA Reader and by a conventional PSA strip test. To confirm the results of these PSA tests, seminal DNA was tested following differential extraction. Compared to the PSA strip test, the PSA rapid quantitative fluorescence analyzer provided the more accurate and sensitive results. More importantly, individualized schemes based on quantitative PSA results of samples can be developed to improve the quality and procedural efficiency in the forensic seminal inspection of samples prior to DNA analysis.

  16. Optimization of the quantitative direct solid total-reflection X-ray fluorescence analysis of glass microspheres functionalized with Zr organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, Ramon, E-mail: ramon.fernandez@uam.e [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid (Spain); Andres, Roman; Jesus, Ernesto de [Departamento de Quimica Inorganica, Universidad de Alcala, Campus Universitario, 28871, Alcala de Henares, Madrid (Spain); Terreros, Pilar [Instituto de Catalisis y Petroleo-Quimica, CSIC, Cantoblanco, 28049, Madrid (Spain)

    2010-06-15

    Quantitative determination of Zr in the system constituted by quartz microspheres functionalized with two kinds of organometallic compounds has been studied due to the importance of the correct quantization of the Zr from a catalytic point of view. Two parallel approximations were done, i.e. acid leaching and direct solid quantization. To validate the acid leaching TXRF measures, ICP-MS analysis were carried out. The results obtained by means of the optimization of the quantitative direct solid procedure show that, with a previous particle size distribution modification, TXRF obtain the same analytical results as ICP-MS and TXRF by acid leaching way but without previous chemical acid manipulation. This fact implies an important improvement for the analysis time, reagents costs and analysis facility and it proves again the versatility of TXRF to solve analytical problems in an easy, quick and accurate way. Additionally and for the direct solid TXRF measurements, a deeper study was done to evaluate the intrinsic analytical parameters of the Zr TXRF analysis of this material. So, the influence of the particle size distributions (modified by means of a high power ultrasound probe) with respect to uncertainty and detection limits for Zr were developed. The main analytical conclusion was the strong correlation between the average particle sizes and the TXRF analytical parameters of Zr measurements, i.e. concentration, accuracy, uncertainty and detection limits.

  17. On the Need for Quantitative Bias Analysis in the Peer-Review Process.

    Science.gov (United States)

    Fox, Matthew P; Lash, Timothy L

    2017-05-15

    Peer review is central to the process through which epidemiologists generate evidence to inform public health and medical interventions. Reviewers thereby act as critical gatekeepers to high-quality research. They are asked to carefully consider the validity of the proposed work or research findings by paying careful attention to the methodology and critiquing the importance of the insight gained. However, although many have noted problems with the peer-review system for both manuscripts and grant submissions, few solutions have been proposed to improve the process. Quantitative bias analysis encompasses all methods used to quantify the impact of systematic error on estimates of effect in epidemiologic research. Reviewers who insist that quantitative bias analysis be incorporated into the design, conduct, presentation, and interpretation of epidemiologic research could substantially strengthen the process. In the present commentary, we demonstrate how quantitative bias analysis can be used by investigators and authors, reviewers, funding agencies, and editors. By utilizing quantitative bias analysis in the peer-review process, editors can potentially avoid unnecessary rejections, identify key areas for improvement, and improve discussion sections by shifting from speculation on the impact of sources of error to quantification of the impact those sources of bias may have had. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Fragrance chemicals in domestic and occupational products

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Heydorn, S; Johansen, J D

    2001-01-01

    Epidemiological studies have described an increasing prevalence of fragrance allergy and indicated an association with hand eczema. 59 domestic and occupational products intended for hand exposure were subjected to gas chromatography-mass spectrometric (GC-MS) analyses to test the hypothesis...... that fragrance chemicals known to have the potential to cause contact allergy but not included in fragrance mix (FM) may be common ingredients in these products. A quantitative analysis of 19 selected fragrances was performed by GC-MS. Further analysis of GC-MS data revealed the presence of 43 other fragrance...... chemicals/groups of fragrance chemicals in the products investigated. Among the 19 target substances the most commonly detected were limonene in 78%, linalool in 61% and citronellol in 47% of the products investigated. The FM ingredients were present in these products with the following frequencies: oak...

  19. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method

  20. Chemical and Microbiological Analysis of Certain Water Sources and Industrial Wastewater Samples in Dakahlia Governorate

    International Nuclear Information System (INIS)

    El-Fadaly, H.; El-Defrawy, M.M.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The chemical analysis included quantitative measurement of electrical conductivity, alkalinity , hardness sulphate, ph, total dissolved solids, chloride, as well as dissolved oxygen was carried out. The microbiological examination for different water sources and industrial wastewater samples was also conducted. some of heavy metals, Co 2+ Cu 2+ Fe 3+ and Mn 2+ were determined in fresh water, while other metals, such as Cr 6+ , Co 2+ , Zn 2+ and Ni 2+ were measured in industrial wastewater. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or international law, except some samples which showed higher values than the permissible limits for some measured parameters. The microbiological analysis exhibited presence of yeasts, fungi and bacteria. Most bacterial isolates were short rod, spore formers as well as coccoid shaped bacteria. The efficiency of water treatment process on the reduction of microbial load was also calculated. Regarding the pathogenic bacteria, data showed that neither water samples nor industrial wastewater contain pathogens when using specific cultivation media for the examination. Furthermore, data proved the possibility of recycling of the tested industrial wastewater on which some microorganisms can grow. Data showed that the percent of heavy metals removal can reach to more than 70% in some cases as a result to bacterial treatment of industrial wastewater

  1. Immune adherence: a quantitative and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, T [National Cancer Center, Tokyo (Japan). Research Inst.

    1978-09-01

    Quantitative and kinetic analysis of the immune-adherence reaction (IA) between C3b fragments and IA receptors as an agglutination reaction is difficult. Analysis is possible, however, by use of radio-iodinated bovine serum albumin as antigen at low concentrations (less than 200 ng/ml) and optimal concentration of antibody to avoid precipitation of antigen-antibody complexes with human erythrocytes without participation of complement. Antigen and antibody are reacted at 37/sup 0/C, complement is added, the mixture incubated and human erythrocytes added; after further incubation, ice-cold EDTA containing buffer is added and the erythrocytes centrifuged and assayed for radioactivity. Control cells reacted with heated guinea pig serum retained less than 5% of the added radioactivity. The method facilitates measurement of IA reactivity and permits more detailed analysis of the mechanism underlying the reaction.

  2. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era.

    Science.gov (United States)

    Chiu, Weihsueh A; Euling, Susan Y; Scott, Cheryl Siegel; Subramaniam, Ravi P

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA)--i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on "augmentation" of weight of evidence--using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards "integration" of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for "expansion" of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual "reorientation" of QRA towards approaches that more directly link environmental exposures to human outcomes. Published by Elsevier Inc.

  3. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Weihsueh A., E-mail: chiu.weihsueh@epa.gov [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P. [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  4. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    International Nuclear Information System (INIS)

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-01-01

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes

  5. Comparative analysis of the aroma chemicals of Melissa officinalis using hydrodistillation and HS-SPME techniques

    Directory of Open Access Journals (Sweden)

    Shakeel-u- Rehman

    2017-05-01

    Full Text Available Headspace solid-phase micro extraction (HS-SPME coupled with gas chromatography–mass spectrometry (GC–MS has been used for the chemical analysis of Melissa officinalis (leaves cultivated in Institute Germplasm. The HS-SPME analysis led to the identification of 22 components constituting 99.1% of the total volatile constituents present in the leaves whereas its hydrodistillate led to the identification of 24 volatile constituents constituting 98.1% of the volatile material. The chemical composition of the SPME and hydrodistilled extract of M. officinalis leaves comprised mainly of oxygenated monoterpenes (78.5% and 57.8% respectively and sesquiterpene hydrocarbons (14.9% and 29.7% respectively. The major components identified in the HS-SPME extract were citronellal (31.1%, citronellol (18.3%, β-caryophyllene (12.0%, (E-citral (11.9%, (Z-citral (9.6%, geraniol (3.6%, (Z-β-ocimene (3.1% and 1-octen-3-ol (2.0% whereas hydrodistilled essential oil was rich in (Z-citral (19.6%, β-caryophyllene (13.2%, (E-citral (11.2%, citronellal (10.2%, germacrene-d (8.3%, δ-3-carene (5.0%, 6-methyl-5-hepten-2-one (3.7% and citronellyl acetate (3.7%. The comparative analysis of volatile constituents of M. officinalis leaf extract using HS-SPME and hydrodistillation techniques shows both qualitative as well as quantitative differences. The current study is the first report involving rapid analysis of volatile components of M. officinalis by HS-SPME.

  6. Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Sivakumar, Bellie; Zheng, Yi; Wang, Peng

    2018-05-01

    Field monitoring strategy is critical for disaster preparedness and watershed emergency environmental management. However, development of such is also highly challenging. Despite the efforts and progress thus far, no definitive guidelines or solutions are available worldwide for quantitatively designing a monitoring network in response to river chemical spill incidents, except general rules based on administrative divisions or arbitrary interpolation on routine monitoring sections. To address this gap, a novel framework for spatial-temporal network design was proposed in this study. The framework combines contaminant transport modelling with discrete entropy theory and spectral analysis. The water quality model was applied to forecast the spatio-temporal distribution of contaminant after spills and then corresponding information transfer indexes (ITIs) and Fourier approximation periodic functions were estimated as critical measures for setting sampling locations and times. The results indicate that the framework can produce scientific preparedness plans of emergency monitoring based on scenario analysis of spill risks as well as rapid design as soon as the incident happened but not prepared. The framework was applied to a hypothetical spill case based on tracer experiment and a real nitrobenzene spill incident case to demonstrate its suitability and effectiveness. The newly-designed temporal-spatial monitoring network captured major pollution information at relatively low costs. It showed obvious benefits for follow-up early-warning and treatment as well as for aftermath recovery and assessment. The underlying drivers of ITIs as well as the limitations and uncertainty of the approach were analyzed based on the case studies. Comparison with existing monitoring network design approaches, management implications, and generalized applicability were also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Quantitative Determination of Aluminum in Deodorant Brands: A Guided Inquiry Learning Experience in Quantitative Analysis Laboratory

    Science.gov (United States)

    Sedwick, Victoria; Leal, Anne; Turner, Dea; Kanu, A. Bakarr

    2018-01-01

    The monitoring of metals in commercial products is essential for protecting public health against the hazards of metal toxicity. This article presents a guided inquiry (GI) experimental lab approach in a quantitative analysis lab class that enabled students' to determine the levels of aluminum in deodorant brands. The utility of a GI experimental…

  8. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian-Fei Qin

    2013-09-01

    Full Text Available A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.9995 within the test ranges. The overall limits of detection (LODs and limits of quantification (LOQs were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  9. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  10. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  11. Quantitative data analysis with SPSS release 8 for Windows a guide for social scientists

    CERN Document Server

    Bryman, Alan

    2002-01-01

    The latest edition of this best-selling introduction to Quantitative Data Analysis through the use of a computer package has been completely updated to accommodate the needs of users of SPSS Release 8 for Windows. Like its predecessor, it provides a non-technical approach to quantitative data analysis and a user-friendly introduction to the widely used SPSS for Windows. It assumes no previous familiarity with either statistics or computing but takes the reader step-by-step through the techniques, reinforced by exercises for further practice. Techniques explained in Quantitative Data Analysis with SPSS Release 8 for Windows include: * correlation * simple and multiple regression * multivariate analysis of variance and covariance * factor analysis The book also covers issues such as sampling, statistical significance, conceptualization and measurement and the selection of appropriate tests. For further information or to download the book's datasets, please visit the webstite: http://www.routledge.com/textbooks/...

  12. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  13. Quantitative XPS analysis of high Tc superconductor surfaces

    International Nuclear Information System (INIS)

    Jablonski, A.; Sanada, N.; Suzuki, Y.; Fukuda, Y.; Nagoshi, M.

    1993-01-01

    The procedure of quantitative XPS analysis involving the relative sensitivity factors is most convenient to apply to high T c superconductor surfaces because this procedure does not require standards. However, a considerable limitation of such an approach is its relatively low accuracy. In the present work, a proposition is made to use for this purpose a modification of the relative sensitivity factor approach accounting for the matrix and the instrumental effects. The accuracy of this modification when applied to the binary metal alloys is 2% or better. A quantitative XPS analysis was made for surfaces of the compounds Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 , and YBa 2 Cu 3 O Y . The surface composition determined for the polycrystalline samples corresponds reasonably well to the bulk stoichiometry. Slight deficiency of oxygen was found for the Bi-based compounds. The surface exposed on cleavage of the Bi 2 Sr 2 CaCu 2 O 8 single crystal was found to be enriched with bismuth, which indicates that the cleavage occurs along the BiO planes. This result is in agreement with the STM studies published in the literature

  14. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  15. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    International Nuclear Information System (INIS)

    Han, Jun; Lin, Karen; Sequeira, Carita; Borchers, Christoph H.

    2015-01-01

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • 13 C 6 analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C 2 –C 6 SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C 18 column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from 13 C 6 -3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a clinically diagnosed type 2

  16. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Lin, Karen; Sequeira, Carita [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Borchers, Christoph H., E-mail: christoph@proteincentre.com [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada)

    2015-01-07

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • {sup 13}C{sub 6} analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C{sub 2}–C{sub 6} SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C{sub 18} column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from {sup 13}C{sub 6}-3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a

  17. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    The importance of data analysis in quantitative assessment of natural resources remains significant in the sustainable management of complex tropical forest resources. Analyses of data from complex tropical forest stands have not been easy or clear due to improper data management. It is pivotal to practical researches ...

  18. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  19. On the quantification of the effects of organizational and management factors in chemical installations

    International Nuclear Information System (INIS)

    Papazoglou, Ioannis A.; Aneziris, Olga

    1999-01-01

    The quantitative effects of organizational and management factors in chemical installations are assessed through a linking of the results of a safety management audit with the basic events of a quantified risk assessment (QRA). A safety management audit establishes the relative position of the organizational and management aspects of a particular chemical installation with respect to an ideal management scheme, and for a number of failure causes and failure prevention combinations. A quantitative risk analysis including detailed system analysis offers a plant-specific decomposition of the plant-damage-state frequencies into events like hardware failures, maintenance-related failures, operation-related failures and so on. The basic events incorporated in the QRA are then categorized into classes similar to those explored by the management audit and are quantitatively linked to the audit results. Knowledge of these quantitative links would allow for the reflection of the deficiencies or strengths that might exist in the safety management system on the quantitative risk indices. A case study of an ammonia storage facility that has been audited demonstrates that the sensitivity of the risk indices to the value of the quantitative links is extremely high and that hence great care should be exercised in assessing these links

  20. Sampling and chemical analysis of smoke gas components from the SP Industry Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maansson, M.; Blomqvist, P.; Isaksson, I.; Rosell, L.

    1995-12-31

    This report describes the sampling and chemical analyses of smoke gas components for combustion performed in the SP Industry Calorimeter, where continuous measurements of oxygen, carbon dioxide and carbon monoxide are an integrated part of the Calorimeter system. On-line measurements of nitrogen oxides and total amounts of unburnt hydrocarbons were performed. Hydrogen cyanide, hydrogen chloride and ammonia in the smoke were sampled and absorbed in impinger bottles and subsequently analyzed using wet chemical techniques. An adsorbent sampling system was designed to allow the identification and quantitative analysis of individual organic compounds in the smoke. Gas chromatography was utilized with a mass spectrometric detector for the identification and a FID for quantification of the total amounts as well as individual components. A procedure for cleaning the smoke gas duct in between the combustion experiments was designed and found to be effective. The materials studied were Nylon 66, polypropylene, polystyrene (with and without fire retardant), PVC, and chlorobenzene. A total of 19 large-scale tests were carried out. The mass of sample burnt ranged from 20 kg to 125 kg in an experiment. 14 refs, 11 tabs

  1. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Dybczynski, R.

    2001-01-01

    The physical basis and analytical possibilities of neutron activation analysis have been performed. The number of applications in material engineering, geology, cosmology, oncology, criminology, biology, agriculture, environment protection, archaeology, history of art and especially in chemical analysis have been presented. The place of the method among other methods of inorganic quantitative chemical analysis for trace elements determination has been discussed

  2. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    International Nuclear Information System (INIS)

    Ortega, R.

    2013-01-01

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  3. Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes

    International Nuclear Information System (INIS)

    Geng, ZhiQiang; Dong, JunGen; Han, YongMing; Zhu, QunXiong

    2017-01-01

    Highlights: •An improved environment DEA cross-model method is proposed. •Energy and environment efficiency analysis framework of complex chemical processes is obtained. •This proposed method is efficient in energy-saving and emission reduction of complex chemical processes. -- Abstract: The complex chemical process is a high pollution and high energy consumption industrial process. Therefore, it is very important to analyze and evaluate the energy and environment efficiency of the complex chemical process. Data Envelopment Analysis (DEA) is used to evaluate the relative effectiveness of decision-making units (DMUs). However, the traditional DEA method usually cannot genuinely distinguish the effective and inefficient DMU due to its extreme or unreasonable weight distribution of input and output variables. Therefore, this paper proposes an energy and environment efficiency analysis method based on an improved environment DEA cross-model (DEACM) method. The inputs of the complex chemical process are divided into energy and non-energy inputs. Meanwhile, the outputs are divided into desirable and undesirable outputs. And then the energy and environment performance index (EEPI) based on the cross evaluation is used to represent the overall performance of each DMU. Moreover, the improvement direction of energy-saving and carbon emission reduction of each inefficiency DMU is quantitatively obtained based on the self-evaluation model of the improved environment DEACM. The results show that the improved environment DEACM method has a better effective discrimination than the original DEA method by analyzing the energy and environment efficiency of the ethylene production process in complex chemical processes, and it can obtain the potential of energy-saving and carbon emission reduction of ethylene plants, especially the improvement direction of inefficient DMUs to improve energy efficiency and reduce carbon emission.

  4. Quantitative analysis of eyes and other optical systems in linear optics.

    Science.gov (United States)

    Harris, William F; Evans, Tanya; van Gool, Radboud D

    2017-05-01

    To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  5. Quantitative proteomic analysis of intact plastids.

    Science.gov (United States)

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.

  6. Quantitative analysis of elastography images in the detection of breast cancer

    International Nuclear Information System (INIS)

    Landoni, V.; Francione, V.; Marzi, S.; Pasciuti, K.; Ferrante, F.; Saracca, E.; Pedrini, M.; Strigari, L.; Crecco, M.; Di Nallo, A.

    2012-01-01

    Purpose: The aim of this study was to develop a quantitative method for breast cancer diagnosis based on elastosonography images in order to reduce whenever possible unnecessary biopsies. The proposed method was validated by correlating the results of quantitative analysis with the diagnosis assessed by histopathologic exam. Material and methods: 109 images of breast lesions (50 benign and 59 malignant) were acquired with the traditional B-mode technique and with elastographic modality. Images in Digital Imaging and COmmunications in Medicine format (DICOM) were exported into a software, written in Visual Basic, especially developed to perform this study. The lesion was contoured and the mean grey value and softness inside the region of interest (ROI) were calculated. The correlations between variables were investigated and receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of the proposed method. Pathologic results were used as standard reference. Results: Both the mean grey value and the softness inside the ROI resulted statistically different at the t test for the two populations of lesions (i.e., benign versus malignant): p < 0.0001. The area under the curve (AUC) was 0.924 (0.834–0.973) and 0.917 (0.826–0.970) for the mean grey value and for the softness respectively. Conclusions: Quantitative elastosonography is a promising ultrasound technique in the detection of breast cancer but large prospective trials are necessary to determine whether quantitative analysis of images can help to overcome some pitfalls of the methodic.

  7. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    Science.gov (United States)

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  8. Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections.

    Science.gov (United States)

    Li, Yizhou; Zimmermann, Gunther; Scheuermann, Jörg; Neri, Dario

    2017-05-04

    Phage-display libraries and DNA-encoded chemical libraries (DECLs) represent useful tools for the isolation of specific binding molecules from large combinatorial sets of compounds. With both methods, specific binders are recovered at the end of affinity capture procedures by using target proteins of interest immobilized on a solid support. However, although the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DECL selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency by using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provided rapid information about the performance of selections, thus facilitating the optimization of experimental conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11

    DEFF Research Database (Denmark)

    Almeida, Barbara; Kjeldal, Henrik; Lolas, Ihab Bishara Yousef

    2013-01-01

    was identified and quantified by gel based shotgun-proteomics. In total 251 unique proteins were quantitated using this approach. Biological process and pathway analysis indicated a number of proteins that were up-regulated in response to active degradation of ibuprofen, some of them are known to be involved...... in the degradation of aromatic compounds. Data analysis revealed that several of these proteins are likely involved in ibuprofen degradation by Patulibacter sp. strain I11.......Ibuprofen is the third most consumed pharmaceutical drug in the world. Several isolates have been shown to degrade ibuprofen, but very little is known about the biochemistry of this process. This study investigates the degradation of ibuprofen by Patulibacter sp. strain I11 by quantitative...

  10. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...... a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under...... the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic...

  11. Quantitative X-ray microanalysis of biological specimens

    International Nuclear Information System (INIS)

    Roomans, G.M.

    1988-01-01

    Qualitative X-ray microanalysis of biological specimens requires an approach that is somewhat different from that used in the materials sciences. The first step is deconvolution and background subtraction on the obtained spectrum. The further treatment depends on the type of specimen: thin, thick, or semithick. For thin sections, the continuum method of quantitation is most often used, but it should be combined with an accurate correction for extraneous background. However, alternative methods to determine local mass should also be considered. In the analysis of biological bulk specimens, the ZAF-correction method appears to be less useful, primarily because of the uneven surface of biological specimens. The peak-to-local background model may be a more adequate method for thick specimens that are not mounted on a thick substrate. Quantitative X-ray microanalysis of biological specimens generally requires the use of standards that preferably should resemble the specimen in chemical and physical properties. Special problems in biological microanalysis include low count rates, specimen instability and mass loss, extraneous contributions to the spectrum, and preparative artifacts affecting quantitation. A relatively recent development in X-ray microanalysis of biological specimens is the quantitative determination of local water content

  12. Microbial and chemical analysis of illicit drugs samples confiscated from different areas of PakistanMicrobial and chemical analysis of illicit drugs samples confiscated from different areas of Pakistan.

    Science.gov (United States)

    Hussain, Shahzad; Khattak, Zainab; Mahmood, Sidra; Malik, Farnaz; Riaz, Humayun; Raza, Syed Atif; Khan, Samiullah

    2016-09-01

    The microbial and chemical analysis of illicit drug samples from different areas of Pakistan i.e. Quetta, Karachi, Lahore and Islamabad was conducted in a cross-sectional study at National Institute of Health, Islamabad. The drug samples were confiscated by Anti Narcotics Force (ANF), Pakistan. Microbial analysis was done by estimating bioburden which revealed the presence of gram negative and positive bacteria's, fungus, Streptococcus, Staphylococcus species. Trypton soya agar was used for total aerobic count, MacConkey agar for gram-negative bacteria, Sabouraud dextrose agar for fungus and Vogel-Johnson agar for Streptococcus and Staphylococcus species. Colour tests were applied to identify the drug samples. Qualitative and quantitative analysis of suspected samples of Heroin, morphine, cocaine and acetic anhydride was made by employing different chromatographic techniques i.e. Thin-layer chromatography (TLC) and High-performance liquid chromatography (HPLC). The samples were found to be adulterated with paracetamol, diazepam and Dextromethorphen. Acetic anhydride was adulterated with hydrochloric acid (HCl). There is lack of information providing structured advice on responses to the consequences of illicit drug adulteration. Robust and rehearsed interventions and communication strategies would provide a basis for response for a wide variety of organisations. Research into the usefulness of media warnings about adulteration of illicit drugs is required.

  13. Analysis association of milk fat and protein percent in quantitative ...

    African Journals Online (AJOL)

    Analysis association of milk fat and protein percent in quantitative trait locus ... African Journal of Biotechnology ... Protein and fat percent as content of milk are high-priority criteria for financial aims and selection of programs in dairy cattle.

  14. Chemical, physical-chemical, and sensory characteristics of lychee (Litchi chinensis Sonn) wines.

    Science.gov (United States)

    Alves, Juliana Alvarenga; de Oliveira Lima, Luiz Carlos; Nunes, Cleiton Antônio; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    2011-01-01

    Four lychee (Litchi chinensis Sonn) wines (prepared with 3 yeast strains [UFLA CA11, UFLA CA1183, and UFLA CA1174]) and a spontaneous fermentation (SPON) were done in order to add value to the fruit while preventing waste arising from the short shelf life of lychee. The fermentation was monitored daily by analyzing the soluble solids, pH, acidity, ethanol, and sugar. At the end of fermentation, the wines were subjected to chemical, physical-chemical, and sensory analysis. The wines prepared showed greater variations in the qualitative than in the quantitative analysis of their constituents. The sensory analysis indicated that the wines fermented by yeast UFLA CA1183 and UFLA CA11 had rates of acceptance above 75%. The principal components analysis separated the wines into 2 groups according to the analyzed compounds. Based on these analyses, the wine produced by inoculation with UFLA CA1183 proved to be the most suitable for the production of lychee wines. Development of new products and adding value to fruits. Importance of selection of specific yeasts for production of fruit wine. © 2011 Institute of Food Technologists®

  15. Contribution of the surface contamination of uranium-materials on the quantitative analysis results by electron probe microbeam analysis

    International Nuclear Information System (INIS)

    Bonino, O.; Fournier, C.; Fucili, C.; Dugne, O.; Merlet, C.

    2000-01-01

    The analytical testing of uranium materials is necessary for quality research and development in nuclear industry applications (enrichment, safety studies, fuel, etc). Electron Probe Microbeam Analysis Wavelength Dispersive Spectrometry (EPMA-WDS) is a dependable non-destructive analytical technology. The characteristic X-ray signal is measured to identify and quantify the sample components, and the analyzed volume is about one micron cube. The surface contamination of uranium materials modifies and contributes to the quantitative analysis results of EPMA-WDS. This contribution is not representative of the bulk. A thin oxidized layer appears in the first instants after preparation (burnishing, cleaning) as well as a carbon contamination layer, due to metallographic preparation and carbon cracking under the impact of the electron probe. Several analytical difficulties subsequently arise, including an overlapping line between the carbon Ka ray and the Uranium U NIVOVI ray. Sensitivity and accuracy of the quantification of light elements like carbon and oxygen are also reduced by the presence of uranium. The aim of this study was to improve the accuracy of quantitative analysis on uranium materials by EPMA-WDS by taking account of the contribution of surface contamination. The first part of this paper is devoted to the study of the contaminated surface of the uranium materials U, UFe 2 and U 6 Fe a few hours after preparation. These oxidation conditions are selected so as to reproduce the same contamination surfaces occurring in microprobe analytical conditions. Surface characterization techniques were SIMS and Auger spectroscopy. The contaminated surfaces are shown. They consist of successive layers: a carbon layer, an oxidized iron layer, followed by an iron depletion layer (only in UFe 2 and U 6 Fe), and a ternary oxide layer (U-Fe-O for UFe 2 et U 6 Fe and UO 2+x for uranium). The second part of the paper addresses the estimation of the errors in quantitative

  16. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    Science.gov (United States)

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  17. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  18. X-ray chemical analyzer for field applications

    International Nuclear Information System (INIS)

    Gamba, O.O.M.

    1977-01-01

    A self-supporting portable field multichannel x-ray chemical analyzer system is claimed. It comprises a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an x-ray energy dispersive spectrometry technique

  19. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  20. Quantitative analysis of γ–oryzanol content in cold pressed rice bran oil by TLC–image analysis method

    Directory of Open Access Journals (Sweden)

    Apirak Sakunpak

    2014-02-01

    Conclusions: The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  1. All-Russia conference on chemical analysis of substances and materials. Abstracts of reports

    International Nuclear Information System (INIS)

    2000-01-01

    Collection contains abstracts of reports on chemical analysis of foods, drugs, environmental materials. Methods of chemical analysis used in such regions as chemical control in agriculture, criminology, art and archaeology, biotechnology, geology, chemistry and petrochemistry, metallurgy, metrology are presented. Theoretical, methodological and applied aspects of chemical analysis are considered [ru

  2. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  3. Optimal climate policy is a utopia. From quantitative to qualitative cost-benefit analysis

    International Nuclear Information System (INIS)

    Van den Bergh, Jeroen C.J.M.

    2004-01-01

    The dominance of quantitative cost-benefit analysis (CBA) and optimality concepts in the economic analysis of climate policy is criticised. Among others, it is argued to be based in a misplaced interpretation of policy for a complex climate-economy system as being analogous to individual inter-temporal welfare optimisation. The transfer of quantitative CBA and optimality concepts reflects an overly ambitious approach that does more harm than good. An alternative approach is to focus the attention on extreme events, structural change and complexity. It is argued that a qualitative rather than a quantitative CBA that takes account of these aspects can support the adoption of a minimax regret approach or precautionary principle in climate policy. This means: implement stringent GHG reduction policies as soon as possible

  4. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  5. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  6. Meta-analysis for quantitative microbiological risk assessments and benchmarking data

    NARCIS (Netherlands)

    Besten, den H.M.W.; Zwietering, M.H.

    2012-01-01

    Meta-analysis studies are increasingly being conducted in the food microbiology area to quantitatively integrate the findings of many individual studies on specific questions or kinetic parameters of interest. Meta-analyses provide global estimates of parameters and quantify their variabilities, and

  7. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    Science.gov (United States)

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  8. Visual and Quantitative Analysis Methods of Respiratory Patterns for Respiratory Gated PET/CT.

    Science.gov (United States)

    Son, Hye Joo; Jeong, Young Jin; Yoon, Hyun Jin; Park, Jong-Hwan; Kang, Do-Young

    2016-01-01

    We integrated visual and quantitative methods for analyzing the stability of respiration using four methods: phase space diagrams, Fourier spectra, Poincaré maps, and Lyapunov exponents. Respiratory patterns of 139 patients were grouped based on the combination of the regularity of amplitude, period, and baseline positions. Visual grading was done by inspecting the shape of diagram and classified into two states: regular and irregular. Quantitation was done by measuring standard deviation of x and v coordinates of Poincaré map (SD x , SD v ) or the height of the fundamental peak ( A 1 ) in Fourier spectrum or calculating the difference between maximal upward and downward drift. Each group showed characteristic pattern on visual analysis. There was difference of quantitative parameters (SD x , SD v , A 1 , and MUD-MDD) among four groups (one way ANOVA, p = 0.0001 for MUD-MDD, SD x , and SD v , p = 0.0002 for A 1 ). In ROC analysis, the cutoff values were 0.11 for SD x (AUC: 0.982, p quantitative indices of respiratory stability and determining quantitative cutoff value for differentiating regular and irregular respiration.

  9. Validation and assessment of uncertainty of chemical tests as a tool for the reliability analysis of wastewater IPEN

    International Nuclear Information System (INIS)

    Silva, Renan A.; Martins, Elaine A.J.; Furusawa, Helio A.

    2011-01-01

    The validation of analytical methods has become an indispensable tool for the analysis in chemical laboratories, including being required for such accreditation. However, even if a laboratory using validated methods of analysis there is the possibility that these methods generate results discrepant with reality by making necessary the addition of a quantitative attribute (a value) which indicates the degree of certainty the extent or the analytical method used. This measure assigned to the result of measurement is called measurement uncertainty. We estimate this uncertainty with a level of confidence both direction, an analytical result has limited significance if not carried out proper assessment of its uncertainty. One of the activities of this work was to elaborate a program to help the validation and evaluation of uncertainty in chemical analysis. The program was developed with Visual Basic programming language and method of evaluation of uncertainty introduced the following concepts based on the GUM (Guide to the Expression of Uncertainty in Measurement). This evaluation program uncertainty measurement will be applied to chemical analysis in support of the characterization of the Nuclear Fuel Cycle developed by IPEN and the study of organic substances in wastewater associated with professional activities of the Institute. In the first case, primarily for the determination of total uranium and the second case for substances that were generated by human activities and that are contained in resolution 357/2005. As strategy for development of this work was considered the PDCA cycle to improve the efficiency of each step and minimize errors while performing the experimental part. The program should be validated to meet requirements of standards such as, for example, the standard ISO/IEC 17025. The application, it is projected to use in other analytical procedures of both the Nuclear Fuel Cycle and in the control program and chemical waste management of IPEN

  10. Validation and assessment of uncertainty of chemical tests as a tool for the reliability analysis of wastewater IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renan A.; Martins, Elaine A.J.; Furusawa, Helio A., E-mail: elaine@ipen.br, E-mail: helioaf@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The validation of analytical methods has become an indispensable tool for the analysis in chemical laboratories, including being required for such accreditation. However, even if a laboratory using validated methods of analysis there is the possibility that these methods generate results discrepant with reality by making necessary the addition of a quantitative attribute (a value) which indicates the degree of certainty the extent or the analytical method used. This measure assigned to the result of measurement is called measurement uncertainty. We estimate this uncertainty with a level of confidence both direction, an analytical result has limited significance if not carried out proper assessment of its uncertainty. One of the activities of this work was to elaborate a program to help the validation and evaluation of uncertainty in chemical analysis. The program was developed with Visual Basic programming language and method of evaluation of uncertainty introduced the following concepts based on the GUM (Guide to the Expression of Uncertainty in Measurement). This evaluation program uncertainty measurement will be applied to chemical analysis in support of the characterization of the Nuclear Fuel Cycle developed by IPEN and the study of organic substances in wastewater associated with professional activities of the Institute. In the first case, primarily for the determination of total uranium and the second case for substances that were generated by human activities and that are contained in resolution 357/2005. As strategy for development of this work was considered the PDCA cycle to improve the efficiency of each step and minimize errors while performing the experimental part. The program should be validated to meet requirements of standards such as, for example, the standard ISO/IEC 17025. The application, it is projected to use in other analytical procedures of both the Nuclear Fuel Cycle and in the control program and chemical waste management of IPEN

  11. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    Science.gov (United States)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  12. Study on methods of quantitative analysis of the biological thin samples in EM X-ray microanalysis

    International Nuclear Information System (INIS)

    Zhang Detian; Zhang Xuemin; He Kun; Yang Yi; Zhang Sa; Wang Baozhen

    2000-01-01

    Objective: To study the methods of quantitative analysis of the biological thin samples. Methods: Hall theory was used to study the qualitative analysis, background subtraction, peel off overlap peaks; external radiation and aberrance of spectra. Results: The results of reliable qualitative analysis and precise quantitative analysis were achieved. Conclusion: The methods for analysis of the biological thin samples in EM X-ray microanalysis can be used in biomedical research

  13. Quantitative x-ray fractographic analysis of fatigue fractures

    International Nuclear Information System (INIS)

    Saprykin, Yu.V.

    1983-01-01

    The study deals with quantitative X-ray fractographic investigation of fatigue fractures of samples with sharp notches tested at various stresses and temperatures with the purpose of establishing a connection between material crack resistance parameters and local plastic instability zones restraining and controlling the crack growth. At fatigue fractures of notched Kh18N9T steel samples tested at +20 and -196 deg C a zone of sharp ring notch effect being analogous to the zone in which crack growth rate is controlled by the microshifting mechanisms is singled out. The size of the notched effect zone in the investigate steel is unambiguosly bound to to the stress amplitude. This provides the possibility to determine the stress value by the results of quantitative fractographic analysis of notched sample fractures. A possibility of determining one of the threshold values of cyclic material fracture toughness by the results of fatigue testing and fractography of notched sample fractures is shown. Correlation between the size of the hsub(s) crack effect zone in the notched sample, delta material yield limit and characteristic of cyclic Ksub(s) fracture toughness has been found. Such correlation widens the possibilities of quantitative diagnostics of fractures by the methods of X-ray fractography

  14. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    Science.gov (United States)

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  15. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  16. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x......-ray diffraction for both the substrate layer and the electrodeposits yielded experimental evidence for epitaxy between Cu and Au. An orientation relation between film and substrate was discussed with respect to various concepts of epitaxy. While the conventional mode of epitaxy fails for the Cu...

  17. Detection and quantitation analysis of cocaine and metabolites in fixed liver tissue and formalin solutions.

    Science.gov (United States)

    Cingolani, Mariano; Cippitelli, Marcello; Froldi, Rino; Gambaro, Veniero; Tassoni, Giovanna

    2004-01-01

    This study reports the results of the detection and quantitation of cocaine and its metabolites in liver tissues fixed in formalin and in the formalin solutions in which the same tissues were fixed. Toxicological analyses were performed on formalin-fixed liver samples from four cases of death of cocaine abusers and on formalin solutions (10% buffered, pH 7) in which the samples were preserved. Analyses carried out at the time of autopsy on body fluids and tissues allowed identification of cocaine and the metabolite benzoylecgonine. Liver tissue samples were preserved in formalin solutions for four weeks before analysis. Results only showed the presence of benzoylecgonine in the studied materials. The mean levels of recovery of benzoylecgonine in fixed tissues were 12.31% in liver and 84.47% in formalin from liver. Results indicated that benzoylecgonine has good stability, even in biological specimens subjected to chemical fixation.

  18. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  19. Antifeedant effect of polygodial and drimenol derivatives against Spodoptera frugiperda and Epilachna paenulata and quantitative structure-activity analysis.

    Science.gov (United States)

    Montenegro, Iván J; Del Corral, Soledad; Diaz Napal, Georgina N; Carpinella, María C; Mellado, Marco; Madrid, Alejandro M; Villena, Joan; Palacios, Sara M; Cuellar, Mauricio A

    2018-01-08

    The antifeedant activity of 18 sesquiterpenoids of the drimane family (polygodial, drimenol and derivatives) was investigated. Polygodial, drimanic and nordrimanic derivatives were found to exert antifeedant effects against two insect species, Spodoptera frugiperda and Epilachna paenulata, which are pests of agronomic interest, indicating that they have potential as biopesticide agents. Among the 18 compounds tested, the epoxynordrimane compound (11) and isonordrimenone (4) showed the highest activity [50% effective concentration (EC 50 ) = 23.28 and 25.63 nmol cm - 2 , respectively, against S. frugiperda, and 50.50 and 59.00 nmol/cm 2 , respectively, against E. paenulata]. The results suggest that drimanic compounds have potential as new agents against S. frugiperda and E. paenulata. A quantitative structure-activity relationship (QSAR) analysis of the whole series, supported by electronic studies, suggested that drimanic compounds have structural features necessary for increasing antifeedant activity, namely a C-9 carbonyl group and an epoxide at C-8 and C-9. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity

    Science.gov (United States)

    Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA

    2018-03-01

    The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.

  1. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.

    Science.gov (United States)

    Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.

  2. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  3. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    Science.gov (United States)

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  4. Investment appraisal using quantitative risk analysis.

    Science.gov (United States)

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  5. Quantitative and qualitative changes in the lymphocytes of rats chronically exposed to radiation and chemical factors

    International Nuclear Information System (INIS)

    Ivanov, V.V.

    1986-01-01

    Quantitative and qualitative characteristics of lymphocytes in peripheral blood, thymus and spleen of rats chronically exposed to combined external γ-radiation trichlorfon pesticide effect have been studied. It is shown that chronical combined trichlorfon and γ irradiation effect is accompanied by suppression of lymphopoiesis already at the early stages of the experience. The observed effects are formed depending on both daily and cumulative doses of the effect. The development of the combined effect is based on the summation of effects of chronical effect of ionizing radiation and pesticide. The revealed changes in lymphocytes population exposed to radiation and chemical factors can lead to substantial decrease of natural immunity thereby decreasing to various diseases

  6. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  7. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-01-01

    -friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface...... such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical...... displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics...

  8. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    Science.gov (United States)

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  9. Quantitative analysis of minerals by X-ray diffraction

    International Nuclear Information System (INIS)

    Pietroluongo, L.R.V.; Veiga, M.M. da

    1982-01-01

    Considerations about the X-ray diffraction technique for quantitative analyses are made; some experiments carried out at CETEM - Centro de Tecnologia Mineral (Rio de Janeiro, Brazil) with synthetic samples and real samples of diatomites (from northeastern region of Brazil) are described. Quartz quantification has been a problem for analytical chemists and is of great importance to the industries which use this raw material. Comments are made about the main factors influencing the intensity of diffracted X-rays, such as: the crystallinity of the mineral phase; the granulometry, the preferential orientation; sample preparation and pressing, the chemical composition of standards and experimental analytical conditions. Several analytical methods used are described: direct measurement of the height or area of a peak resulting from a particular reflection and comparison with a pre-calibrated curve; method of sequential addition of the mineral of interest in the sample and extrapolation of results for ZERO addition; methods of external and internal standards. (C.L.B.) [pt

  10. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  11. Limitations for qualitative and quantitative neutron activation analysis using reactor neutrons

    International Nuclear Information System (INIS)

    El-Abbady, W.H.; El-Tanahy, Z.H.; El-Hagg, A.A.; Hassan, A.M.

    1999-01-01

    In this work, the most important limitations for qualitative and quantitative analysis using reactor neutrons for activation are reviewed. Each limitation is discussed using different examples of activated samples. Photopeak estimation, nuclear reactions interference and neutron flux measurements are taken into consideration. Solutions for high accuracy evaluation in neutron activation analysis applications are given. (author)

  12. Views on chemical safety information and influences on chemical disposal behaviour in the UK

    International Nuclear Information System (INIS)

    Hinks, J.; Bush, J.; Andras, P.; Garratt, J.; Pigott, G.; Kennedy, A.; Pless-Mulloli, T.

    2009-01-01

    This study examined how groups representing four tiers in the chemical supply chain (manufacturers, vendors, workers and consumers) understood safety information, and the factors that influenced disposal behaviour. Data from seven, semi-structured, focus groups was analysed both qualitatively (textual analysis) and quantitatively (network analysis). Such combined analytical methods enabled us to achieve both detailed insights into perceptions and behaviour and an objective understanding of the prevailing opinions that occurred within and between the focus group discussions. We found issues around awareness, trust, access and disposal behaviours differed between groups within the supply chain. Participants from the lower tiers perceived chemical safety information to be largely inaccessible. Labels were the main source of information on chemical risks for the middle and bottom tiers of the supply chain. Almost all of the participants were aware of the St Andrew's Cross and skull and crossbones symbols but few were familiar with the Volatile Organic Compound logo or the fish and tree symbol. Both the network and thematic analysis demonstrated that whilst frequent references to health risks associated with chemicals were made environmental risks were usually only articulated after prompting. It is clear that the issues surrounding public understanding of chemical safety labels are highly complex and this is compounded by inconsistencies in the cognitive profiles of chemical users. Substantially different cognitive profiles are likely to contribute towards communication difficulties between different tiers of the supply chain. Further research is needed to examine the most effective ways of communicating chemical hazards information to the public. The findings demonstrate a need to improve and simplify disposal guidance to members of the public, to raise public awareness of the graphic symbols in the CHIP 3.1, 2005 regulations and to improve access to disposal guidance

  13. Effects of Single and Combined Application of Organic, Biological and Chemical Fertilizers on Quantitative and Qualitative Yield of Coriander (Coriandrum sativum

    Directory of Open Access Journals (Sweden)

    M. Aghhavani Shajari

    2016-07-01

    Full Text Available Introduction: Medicinal plants were one of the main natural resources of Iran from ancient times. Coriander (Coriandrum sativum L. is from Apiaceae family that it has cultivated extensively in the world. Management and environmental factors such as nutritional management has a significant impact on the quantity and quality of plants. Application of organic fertilizers in conventional farming systems is not common and most of the nutritional need of plants supply through chemical fertilizers for short period. Excessive and unbalanced use of fertilizers in the long period, reduce crop yield and soil biological activity, accumulation of nitrates and heavy metals, and finally cause negative environmental effects and increase the cost of production. The use of bio-fertilizers and organic matter are taken into consideration to reduce the use of chemical fertilizers and increase the quality of most crops. Stability and soil fertility through the use of organic fertilizers are important due to having most of the elements required by plants and beneficial effects on physical, chemical, biological and soil fertility. Therefore, the aim of this research was to evaluate the effects of organic, biological and chemical fertilizers on quality and quantity characteristics of coriander. Materials and Methods: In order to study the effects of single and combined applications of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of Coriander (Coriandrum sativum, an experiment was conducted based on a randomized complete block design with three replications and 12 treatments at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in - 2011. Treatments included: (1 mycorrhizae (Glomus mosseae (2 biosulfur (Thiobacillus sp., (3 chemical fertilizer (NPK, (4 cow manure, 5( vermin compost, 6( mycorrhizae + chemical fertilizer, 7( mycorrhizae + cow manure, 8( mycorrhizae + vermicompost, 9( biosulfur

  14. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  15. Program for the quantitative and qualitative analysis of

    International Nuclear Information System (INIS)

    Tepelea, V.; Purice, E.; Dan, R.; Calcev, G.; Domnisan, M.; Galis, V.; Teodosiu, G.; Debert, C.; Mocanu, N.; Nastase, M.

    1985-01-01

    A computer code for processing of data from neutron activation analysis is described. The code is capable of qualitative and quantitative analysis of regular spectra from neutron irradiated samples, measured by a Ge(li) detector. Multichannel analysers with 1024 channels, such as TN 1705 or a Romanian made MCA 79, and an ITC interface can be used. The code is implemented on FELIX M118 and FELIX M216 microcomputers. Spectrum processing is performed off line, after storing the data on a floppy disk. The background is assumed to be a polynomial of first, second or third degree. Qualitative analysis is performed by recursive least square, Gaussian curve fitting. The elements are identified using a polynomial relation between energy and channel, obtained by calibration with a standard sample

  16. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    Science.gov (United States)

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  17. Chemical analysis of geological samples

    International Nuclear Information System (INIS)

    Malhotra, R.K.

    1997-01-01

    Most of the analytical methodology used in geochemical exploration has been based on molecular absorption, atomic absorption, and ICP-AES, ICPMAS etc. Detection limit and precision are factors in the choice of methodology in search of metallic ores and are related to the accuracy of data. A brief outline of the various chemical analysis techniques explaining essentially the basics of measurement principles and instrumentation is discussed

  18. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  19. Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm

    Directory of Open Access Journals (Sweden)

    Jankulovska Mirjana

    2014-01-01

    Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods

  20. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  1. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 1. Structures of DNA

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The proceedings for the 47th Annual Cold Spring Harbor Symposia on Quantitative Biology are presented. This symposium focused on the Structure of DNA. Topics presented covered research in the handedness of DNA, conformational analysis, chemically modified DNA, chemical synthesis of DNA, DNA-protein interactions, DNA within nucleosomes, DNA methylation, DNA replication, gyrases and topoisomerases, recombining and mutating DNA, transcription of DNA and its regulation, the organization of genes along DNA, repetitive DNA and pseudogenes, and origins of replication, centromeres, and teleomeres

  2. Application of magnetic carriers to two examples of quantitative cell analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen; Qian, Zhixi; Choi, Young Suk; David, Allan E. [Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849 (United States); Todd, Paul, E-mail: pwtodd@hotmail.com [Techshot, Inc., 7200 Highway 150, Greenville, IN 47124 (United States); Hanley, Thomas R. [Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2017-04-01

    The use of magnetophoretic mobility as a surrogate for fluorescence intensity in quantitative cell analysis was investigated. The objectives of quantitative fluorescence flow cytometry include establishing a level of labeling for the setting of parameters in fluorescence activated cell sorters (FACS) and the determination of levels of uptake of fluorescently labeled substrates by living cells. Likewise, the objectives of quantitative magnetic cytometry include establishing a level of labeling for the setting of parameters in flowing magnetic cell sorters and the determination of levels of uptake of magnetically labeled substrates by living cells. The magnetic counterpart to fluorescence intensity is magnetophoretic mobility, defined as the velocity imparted to a suspended cell per unit of magnetic ponderomotive force. A commercial velocimeter available for making this measurement was used to demonstrate both applications. Cultured Gallus lymphoma cells were immunolabeled with commercial magnetic beads and shown to have adequate magnetophoretic mobility to be separated by a novel flowing magnetic separator. Phagocytosis of starch nanoparticles having magnetic cores by cultured Chinese hamster ovary cells, a CHO line, was quantified on the basis of magnetophoretic mobility. - Highlights: • Commercial particle tracking velocimetry measures magnetophoretic mobility of labeled cells. • Magnetically labeled tumor cells were shown to have adequate mobility for capture in a specific sorter. • The kinetics of nonspecific endocytosis of magnetic nanomaterials by CHO cells was characterized. • Magnetic labeling of cells can be used like fluorescence flow cytometry for quantitative cell analysis.

  3. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    Science.gov (United States)

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  4. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    Science.gov (United States)

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  5. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Science.gov (United States)

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  6. Quantitative analysis method for niobium in lead zirconate titanate

    International Nuclear Information System (INIS)

    Hara, Hideo; Hashimoto, Toshio

    1986-01-01

    Lead zirconate titanate (PZT) is a strong dielectric ceramic having piezoelectric and pyroelectric properties, and is used most as a piezoelectric material. Also it is a main component of lead lanthanum zirconate titanate (PLZT), which is a typical electrical-optical conversion element. Since these have been developed, the various electronic parts utilizing the piezoelectric characteristics have been put in practical use. The characteristics can be set up by changing the composition of PZT and the kinds and amount of additives. Among the additives, niobium has the action to make metallic ion vacancy in crystals, and by the formation of this vacancy, to ease the movement of domain walls in crystal grains, and to increase resistivity. Accordingly, it is necessary to accurately determine the niobium content for the research and development, quality control and process control. The quantitative analysis methods for niobium used so far have respective demerits, therefore, the authors examined the quantitative analysis of niobium in PZT by using an inductively coupled plasma emission spectro-analysis apparatus which has remarkably developed recently. As the result, the method of dissolving a specimen with hydrochloric acid and hydrofluoric acid, and masking unstable lead with ethylene diamine tetraacetic acid 2 sodium and fluoride ions with boric acid was established. The apparatus, reagents, the experiment and the results are reported. (Kako, I.)

  7. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  8. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  9. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai; Tian, Yuan; Liu, Tao; Thomas, Stefani N.; Chen, Li; Schnaubelt, Michael; Boja, Emily; Hiltket, Tara; Kinsinger, Christopher; Rodriguez, Henry; Davies, Sherri; Li, Shunqiang; Snider, Jacqueline E.; Erdmann-Gilmore, Petra; Tabb, David L.; Townsend, Reid; Ellis, Matthew; Rodland, Karin D.; Smith, Richard D.; Carr, Steven A.; Zhang, Zhen; Chan, Daniel W.; Zhang, Hui

    2017-09-21

    The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.

  10. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  11. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  12. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  13. Chemical analysis of Zam Zam water of Saudi Arabia and drinking water supplies of Atomic Energy Research Establishment, Bangladesh

    International Nuclear Information System (INIS)

    Khan, M.A.; Sharif, A.K.M.; Idriss A, K.M.; Alamgir, M.

    1991-01-01

    The quality of water plays an important role to the living beings. Chemical analysis have been performed on Zam Zam water of Saudi Arabia and drinking water of the Atomic Energy Research Establishment, Bangladesh. Quantitative measurements of some essential elements (Ca, Mg, Na, K, Fe, Cu, Zn, Co and Ni) and toxic elements (Pb and Cd) were carried out using atomic absorption spectrometric method. Tests indicate that all three samples (Zam Zam, tap and solar pump water) are drinkable and palatable. pH measurements show that Zam Zam water is alkaline whereas both tap and solar pump water are slightly acidic

  14. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  15. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  16. Qualitative and quantitative reliability analysis of safety systems

    International Nuclear Information System (INIS)

    Karimi, R.; Rasmussen, N.; Wolf, L.

    1980-05-01

    A code has been developed for the comprehensive analysis of a fault tree. The code designated UNRAC (UNReliability Analysis Code) calculates the following characteristics of an input fault tree: (1) minimal cut sets; (2) top event unavailability as point estimate and/or in time dependent form; (3) quantitative importance of each component involved; and, (4) error bound on the top event unavailability. UNRAC can analyze fault trees, with any kind of gates (EOR, NAND, NOR, AND, OR), up to a maximum of 250 components and/or gates. The code is benchmarked against WAMCUT, MODCUT, KITT, BIT-FRANTIC, and PL-MODT. The results showed that UNRAC produces results more consistent with the KITT results than either BIT-FRANTIC or PL-MODT. Overall it is demonstrated that UNRAC is an efficient easy-to-use code and has the advantage of being able to do a complete fault tree analysis with this single code. Applications of fault tree analysis to safety studies of nuclear reactors are considered

  17. Quantitative analysis of regional myocardial performance in coronary artery disease

    Science.gov (United States)

    Stewart, D. K.; Dodge, H. T.; Frimer, M.

    1975-01-01

    Findings from a group of subjects with significant coronary artery stenosis are given. A group of controls determined by use of a quantitative method for the study of regional myocardial performance based on the frame-by-frame analysis of biplane left ventricular angiograms are presented. Particular emphasis was placed upon the analysis of wall motion in terms of normalized segment dimensions, timing and velocity of contraction. The results were compared with the method of subjective assessment used clinically.

  18. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  19. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    Science.gov (United States)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of 30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  20. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  1. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  2. Scientific aspects of urolithiasis: quantitative stone analysis and crystallization experiments

    International Nuclear Information System (INIS)

    Wandt, M.A.E.

    1986-03-01

    The theory, development and results of three quantitative analytical procedures are described and the crystallization experiments in a rotary evaporator are presented. Of the different methods of quantitative X-ray powder diffraction analyses, the 'internal standard method' and a microanalytical technique were identified as the two most useful procedures for the quantitative analysis of urinary calculi. 'Reference intensity ratios' for 6 major stone phases were determined and were used in the analysis of 20 calculi by the 'internal standard method'. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) methods were also investigated, developed and used in this study. Various procedures for the digestion of calculi were tested and a mixture of HNO 3 and HC1O 4 was eventually found to be the most successful. The major elements Ca, Mg, and P in 41 calculi were determined. For the determination of trace elements, a new microwave-assisted digestion procedure was developed and used for the digestion of 100 calculi. Fluoride concentrations in two stone collections were determined using a fluoride-ion sensitive electrode and the HNO 3 /HC1O 4 digestion prodecure used for the ICP study. A series of crystallization experiments involving a standard reference artificial urine was carried out in a rotary evaporator. The effect of pH and urine composition was studied by varying the former and by including uric acid, urea, creatinine, MgO, methylene blue, chondroitin sulphate A, and fluoride in the reference solution. Crystals formed in these experiments were subjected to qualitative and semi-quantitative X-ray powder diffraction analyses. Scanning electron microscopy of several deposits was also carried out. Similar deposits to those observed in calculi were obtained with the fast evaporator. The results presented suggest that this system provides a simple, yet very useful means for studying the crystallization characteristics of urine solutions

  3. Quantitative analysis of food and feed samples with droplet digital PCR.

    Directory of Open Access Journals (Sweden)

    Dany Morisset

    Full Text Available In this study, the applicability of droplet digital PCR (ddPCR for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs. Real-time quantitative polymerase chain reaction (qPCR is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  4. Differentiation of Cuscuta chinensis and Cuscuta australis by HPLC-DAD-MS analysis and HPLC-UV quantitation.

    Science.gov (United States)

    He, Xianghui; Yang, Wenzhi; Ye, Min; Wang, Qing; Guo, Dean

    2011-11-01

    Cuscuta chinensis and Cuscuta australis, the two botanical sources of the Chinese herbal medicine Tu-Si-Zi, were distinguished from each other based on qualitative and quantitative chemical analysis. By HPLC‑DAD‑MS, a total of 36 compounds were characterized from these two Cuscuta species, including 14 flavonoids, 17 quinic acid derivatives, and 5 lignans. In addition, HPLC‑UV was applied to determine seven major compounds (6 flavonoids plus chlorogenic acid) in 27 batches of Tu-Si-Zi. The results revealed that the amounts of the three classes of compounds varied significantly between the species. C. australis contained more flavonoids but less quinic acid derivatives and lignans than C. chinensis. Particularly, the amounts of kaempferol and astragalin in C. australis were remarkably higher than in C. chinensis. This finding could be valuable for the quality control of Tu-Si-Zi. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  6. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  7. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. A borax fusion technique for quantitative X-ray fluorescence analysis

    NARCIS (Netherlands)

    van Willigen, J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1971-01-01

    A borax fusion technique to cast glass discs for quantitative X-ray analysis is described in detail. The method is based on the “nonwetting” properties of a Pt/Au alloy towards molten borax, on the favourable composition of the flux and finally on the favourable form of the casting mould. The

  9. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  10. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  11. Complex pedigree analysis to detect quantitative trait loci in dairy cattle

    NARCIS (Netherlands)

    Bink, M.C.A.M.

    1998-01-01

    In dairy cattle, many quantitative traits of economic importance show phenotypic variation. For breeding purposes the analysis of this phenotypic variation and uncovering the contribution of genetic factors is very important. Usually, the individual gene effects contributing to the

  12. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    International Nuclear Information System (INIS)

    Pořízka, P.; Demidov, A.; Kaiser, J.; Keivanian, J.; Gornushkin, I.; Panne, U.; Riedel, J.

    2014-01-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  13. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    Energy Technology Data Exchange (ETDEWEB)

    Pořízka, P. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Demidov, A. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Keivanian, J. [Institute for Mining, Technical University Clausthal, Erzstraße 18, 38678 Clausthal-Zellerfeld (Germany); Gornushkin, I. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Panne, U. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Univerisät zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany); Riedel, J., E-mail: jens.riedel@bam.de [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany)

    2014-11-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  14. Quantitative ferromagnetic resonance analysis of CD 133 stem cells labeled with iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Gamarra, L F; Pavon, L F; Marti, L C; Moreira-Filho, C A; Amaro, E Jr; Pontuschka, W M; Mamani, J B; Costa-Filho, A J; Vieira, E D

    2008-01-01

    The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC 133), and thus to express the antigenic labeling evidence for the stem cells CD 133 + . The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the CD 133 + cells (∼6.16 x 10 5 pg in the volume of 2 μl containing 4.5 x 10 11 SPION). The quantitative method led to the result of 1.70 x 10 -13 mol of Fe (9.5 pg), or 7.0 x 10 6 nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI)

  15. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  16. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  17. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  18. Review of Department of Defense Education Activity (DODEA) Schools. Volume II: Quantitative Analysis of Educational Quality

    National Research Council Canada - National Science Library

    Anderson, Lowell

    2000-01-01

    This volume compiles, and presents in integrated form, IDA's quantitative analysis of educational quality provided by DoD's dependent schools, It covers the quantitative aspects of volume I in greater...

  19. Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements.

    Science.gov (United States)

    Mari, Angela; Montoro, Paola; Pizza, Cosimo; Piacente, Sonia

    2012-11-01

    A validated analytical method for the quantitative determination of seven chemical markers occurring in a hydroalcoholic extract of Vitex agnus-castus fruits by liquid chromatography electrospray triple quadrupole tandem mass spectrometry (LC/ESI/(QqQ)MSMS) is reported. To carry out a comparative study, five commercial food supplements corresponding to hydroalcoholic extracts of V. agnus-castus fruits were analysed under the same chromatographic conditions of the crude extract. Principal component analysis (PCA), based only on the variation of the amount of the seven chemical markers, was applied in order to find similarities between the hydroalcoholic extract and the food supplements. A second PCA analysis was carried out considering the whole spectroscopic data deriving from liquid chromatography electrospray linear ion trap mass spectrometry (LC/ESI/(LIT)MS) analysis. High similarity between the two PCA was observed, showing the possibility to select one of these two approaches for future applications in the field of comparative analysis of food supplements and quality control procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Toxmatch-a new software tool to aid in the development and evaluation of chemically similar groups.

    Science.gov (United States)

    Patlewicz, G; Jeliazkova, N; Gallegos Saliner, A; Worth, A P

    2008-01-01

    Chemical similarity is a widely used concept in toxicology, and is based on the hypothesis that similar compounds should have similar biological activities. This forms the underlying basis for performing read-across, forming chemical groups and developing (Quantitative) Structure-Activity Relationships ((Q)SARs). Chemical similarity is often perceived as structural similarity but in fact there are a number of other approaches that can be used to assess similarity. A systematic similarity analysis usually comprises two main steps. Firstly the chemical structures to be compared need to be characterised in terms of relevant descriptors which encode their physicochemical, topological, geometrical and/or surface properties. A second step involves a quantitative comparison of those descriptors using similarity (or dissimilarity) indices. This work outlines the use of chemical similarity principles in the formation of endpoint specific chemical groupings. Examples are provided to illustrate the development and evaluation of chemical groupings using a new software application called Toxmatch that was recently commissioned by the European Chemicals Bureau (ECB), of the European Commission's Joint Research Centre. Insights from using this software are highlighted with specific focus on the prospective application of chemical groupings under the new chemicals legislation, REACH.

  1. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    Directory of Open Access Journals (Sweden)

    Venkatesha R. Hathwar

    2015-09-01

    Full Text Available Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

  2. Quantitative analysis of tellurium in simple substance sulfur

    International Nuclear Information System (INIS)

    Arikawa, Yoshiko

    1976-01-01

    The MIBK extraction-bismuthiol-2 absorptiometric method for the quantitative analysis of tellurium was studied. The method and its limitation were compared with the atomic absorption method. The period of time required to boil the solution in order to decompose excess hydrogen peroxide and to reduce tellurium from 6 valance to 4 valance was examined. As a result of experiment, the decomposition was fast in the alkaline solution. It takes 30 minutes with alkaline solution and 40 minutes with acid solution to indicate constant absorption. A method of analyzing the sample containing tellurium less than 5 ppm was studied. The experiment revealed that the sample containing a very small amount of tellurium can be analyzed when concentration by extraction is carried out for the sample solutions which are divided into one gram each because it is difficult to treat several grams of the sample at one time. This method also is suitable for the quantitative analysis of selenium. This method showed good addition effect and reproducibility within the relative error of 5%. The comparison between the calibration curve of the standard solution of tellurium 4 subjected to the reaction with bismuthiol-2 and the calibration curve obtained from the extraction of tellurium 4 with MIBK indicated that the extraction is perfect. The result by bismuthiol-2 method and that by atom absorption method coincided quite well on the same sample. (Iwakiri, K.)

  3. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.

  4. Positron annihilation spectroscopy for chemical analysis (PASCA). Chapter 9

    International Nuclear Information System (INIS)

    Cheng, K.L.; Jean, Y.C.

    1988-01-01

    This chapter gives an up to date overview of positron annihilation spectroscopy for chemical analysis (PASCA). As an in situ technique PASCA is especially suitable for studying processes occurring at surfaces. The in situ characteristics of PASCA are treated. The principes of positron annihilation life time spectroscopy (PAL) are discussed and some important analytical applications such as, in determining of total surface areas and cavity volumes in chemical reactions, in the study of chemisorption and catalytic reactions on porous surfaces, in the analysis of bulk materials, in determining molecular association constants in biological systems, in proton and neutron activation analysis, in thin layer chromatography and in tracer technology. 28 refs.; 15 figs.; 8 tabs

  5. Quantitative research.

    Science.gov (United States)

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  6. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  7. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    investigates whether the need for knowledge on climate changes in the most vulnerable regions of the world is met by the supply of knowledge measured by scientific research publications from the last decade. A quantitative analysis of more than 15,000 scientific publications from 197 countries investigates...... the poorer, fragile and more vulnerable regions of the world. A quantitative keywords analysis of all publications shows that different knowledge domains and research themes dominate across regions, reflecting the divergent global concerns in relation to climate change. In general, research on climate change...... the distribution of climate change research and the potential causes of this distribution. More than 13 explanatory variables representing vulnerability, geographical, demographical, economical and institutional indicators are included in the analysis. The results show that the supply of climate change knowledge...

  8. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  9. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  10. Quantitative phase analysis of a highly textured industrial sample using a Rietveld profile analysis

    International Nuclear Information System (INIS)

    Shin, Eunjoo; Huh, Moo-Young; Seong, Baek-Seok; Lee, Chang-Hee

    2001-01-01

    For the quantitative phase analysis on highly textured two-phase materials, samples with known weight fractions of zirconium and aluminum were prepared. Strong texture components prevailed in both zirconium and aluminum sheet. The diffraction patterns of samples were measured by the neutron and refined by the Rietveld method. The preferred orientation correction of diffraction patterns was carried out by means of recalculated pole figures from the ODF. The present Rietveld analysis of various samples with different weight fractions showed that the absolute error of the calculated weight fractions was less than 7.1%. (author)

  11. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  12. Neutron activation analysis of biological materials for sub PPM amount of mercury without determining the chemical yield

    International Nuclear Information System (INIS)

    Foldzinska, A.; Dybczynski, R.

    1976-01-01

    A simple method for the determination of sub ppm amounts of mercury in various biological materials by neutron activation analysis is described. Irradiated samples were decomposed with H 2 SO 4 - fuming HNO 3 mixture and mercury selectively isolated by ion exchange chromatography using Dowex 50X2(H + ) and Dowex 1X4(Br - ) columns in HBr medium. Finally the activity of 197 Hg fixed on an anion exchange resin was measured either with a Ge(Li) or a NaI (Tl) detector. Both the high radiochemical purity of mercury and the practically quantitative recovery were achieved thus eliminating the necessity of determining the chemical yield. The method was used for the determination of mercury in flour, milk, butter, margarine, fish, etc. Total time of analysis (including counting) amounted to 6-7 hrs and several samples could be simultaneously analysed by one technician. (T.G.)

  13. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  14. Three-way methods for the analysis of qualitative and quantitative two-way data.

    NARCIS (Netherlands)

    Kiers, Hendrik Albert Lambertus

    1989-01-01

    A problem often occurring in exploratory data analysis is how to summarize large numbers of variables in terms of a smaller number of dimensions. When the variables are quantitative, one may resort to Principal Components Analysis (PCA). When qualitative (categorical) variables are involved, one may

  15. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  16. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    Science.gov (United States)

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.

  17. Integration of Qualitative and Quantitative Methods: Building and Interpreting Clusters from Grounded Theory and Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Aldo Merlino

    2007-01-01

    Full Text Available Qualitative methods present a wide spectrum of application possibilities as well as opportunities for combining qualitative and quantitative methods. In the social sciences fruitful theoretical discussions and a great deal of empirical research have taken place. This article introduces an empirical investigation which demonstrates the logic of combining methodologies as well as the collection and interpretation, both sequential as simultaneous, of qualitative and quantitative data. Specifically, the investigation process will be described, beginning with a grounded theory methodology and its combination with the techniques of structural semiotics discourse analysis to generate—in a first phase—an instrument for quantitative measuring and to understand—in a second phase—clusters obtained by quantitative analysis. This work illustrates how qualitative methods allow for the comprehension of the discursive and behavioral elements under study, and how they function as support making sense of and giving meaning to quantitative data. URN: urn:nbn:de:0114-fqs0701219

  18. In vitro quantitative analysis of Salmonella typhimurium preference for amino acids secreted by human breast tumor

    Science.gov (United States)

    Choi, Eunpyo; Maeng, Bohee; Lee, Jae-hun; Chang, Hyung-kwan; Park, Jungyul

    2016-12-01

    Bacterial therapies have been paid significant attentions by their ability to penetrate deep into the solid tumor tissue and its propensity to naturally accumulate in tumors of living animals. Understanding the actual mechanism for bacteria to target the tumor is therapeutically crucial but is poorly understood. We hypothesized that amino acids released from the specific tumors induced bacteria to those tumors and the experiments for chemotactic response of bacteria toward the cancer secreting amino acids was then performed by using the diffusion based multiple chemical gradient generator constructed by in situ self-assembly of microspheres. The quantitative analysis was carried out by comparison of intensity using green fluorescent protein (GFP) tagged Salmonella typhimurium ( S. typhimurium) in the gradient generator, which showed the clear preference to the released amino acids, especially from breast cancer patients. The understanding chemotaxis toward the cancer secreting amino acids is essential for controlling S. typhimurium targeting in tumors and will allow for the development of bacterial therapies.

  19. Winston-Lutz Test: A quantitative analysis

    International Nuclear Information System (INIS)

    Pereira, Aline Garcia; Nandi, Dorival Menegaz; Saraiva, Crystian Wilian Chagas

    2017-01-01

    Objective: Describe a method of quantitative analysis for the Winston-Lutz test. Materials and methods The research is a qualitative exploratory study. The materials used were: portal film; Winston- Lutz test tools and Omni Pro software. Sixteen portal films were used as samples and were analyzed by five different technicians to measure the deviation between the radiation isocenters and mechanic. Results: Among the results were identified two combinations with offset values greater than 1 mm. In addition, when compared the method developed with the previously studied, it was observed that the data obtained are very close, with the maximum percentage deviation of 32.5%, which demonstrates its efficacy in reducing dependence on the performer. Conclusion: The results show that the method is reproducible and practical, which constitutes one of the fundamental factors for its implementation. (author)

  20. Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Graz, Y.; Di-Giovanni, C. [Universite d' Orleans, Universite Francois Rabelais - Tours, CNRS/INSU, Institut des Sciences de la Terre d' Orleans - UMR 6113 Campus Geosciences, 1A, rue de la Ferollerie, 45071 Orleans cedex 2 (France); Copard, Y. [M2C, UMR 6143 CNRS/Universite de Rouen, place E. Blondel, Bat. Irese A, Universite de Rouen, 76821 Mont Saint Aignan Cedex (France); Laggoun-Defarge, F.; Boussafir, M.; Lallier-Verges, E.; Baillif, P.; Perdereau, L.; Simonneau, A. [Universite d' Orleans, Universite Francois Rabelais - Tours, CNRS/INSU, Institut des Sciences de la Terre d' Orleans - UMR 6113 Campus Geosciences, 1A, rue de la Ferollerie, 45071 Orleans cedex 2 (France)

    2010-10-01

    Classical palynofacies method, which consists of an organic concentrate microscopic qualitative observation after mineral phase dissolution, is commonly used in order to study sedimentary organic matter. In the present study we develop a new quantitative palynofacies method that allows organic particles mass concentrations to be determined in studied samples. This method was developed to help quantify the input of fossil organic matter (FOM) into modern environments as a result of sedimentary rocks weathering. Studied samples were collected from different pools, like bedrocks, weathering profiles, soils and riverine particles in an experimental watershed ''Le Laval''. This watershed overlying Callovo-Oxfordian marls (1 km{sup 2} in area) is located near Digne, Alpes-de-Haute-Provence, in France. In addition to palynofacies techniques, Rock-Eval 6 pyrolysis and Al{sub 2}O{sub 3} content measurements (inductively coupled plasma emission spectrometry) were carried out on the samples. Obtained results show that this quantitative palynofacies method is suitable for FOM studies in modern environments, and FOM particles are quantified in the different pools. Results also give evidence that FOM alteration depends on the type of weathering, but also on the kind of organic particles. Soil formation under vegetation, resulting from the (bio)chemical weathering, lead to fossil organic particles concentration losses that do not exceed 30%. Elsewhere, mechanical weathering appears extremely fast and has no qualitative or quantitative influence on the observed FOM particles, which feeds directly into riverine stocks. FOM appears to be very resistant to weathering processes, this highlights its occurrence into supergene pools and then into carbon cycle. Quantitative palynofacies analysis is a new method adapted to such study, but can also be applied to other palynological, paleoenvironmental or archeological studies. (author)

  1. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-07-01

    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  2. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  3. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    International Nuclear Information System (INIS)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  4. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    Science.gov (United States)

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  5. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-11-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. © 2017 The Authors. Rapid Communications in Mass

  6. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching.

    Science.gov (United States)

    Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian

    2018-01-01

    To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.

  7. Quantitative security analysis for programs with low input and noisy output

    NARCIS (Netherlands)

    Ngo, Minh Tri; Huisman, Marieke

    Classical quantitative information flow analysis often considers a system as an information-theoretic channel, where private data are the only inputs and public data are the outputs. However, for systems where an attacker is able to influence the initial values of public data, these should also be

  8. Studies on marine toxins: chemical and biological aspects

    International Nuclear Information System (INIS)

    Stonik, Valentin A; Stonik, Inna V

    2010-01-01

    The structures and mechanisms of biological action of the best known representatives of the main groups of marine toxins are presented. It is shown that many compounds have complex chemical structures and possess extremely high toxicities. Characteristic features of isolation, structure determination and syntheses of these compounds using the achievement of modern organic chemistry are discussed. The methods of identification and quantitative analysis of marine toxins are briefly reviewed.

  9. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  10. Quantitative ferromagnetic resonance analysis of CD 133 stem cells labeled with iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gamarra, L F; Pavon, L F; Marti, L C; Moreira-Filho, C A; Amaro, E Jr [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, Sao Paulo 05651-901 (Brazil); Pontuschka, W M; Mamani, J B [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Costa-Filho, A J; Vieira, E D [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil)], E-mail: lgamarra@einstein.br

    2008-05-21

    The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC 133), and thus to express the antigenic labeling evidence for the stem cells CD 133{sup +}. The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the CD 133{sup +} cells ({approx}6.16 x 10{sup 5} pg in the volume of 2 {mu}l containing 4.5 x 10{sup 11} SPION). The quantitative method led to the result of 1.70 x 10{sup -13} mol of Fe (9.5 pg), or 7.0 x 10{sup 6} nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI)

  11. Quantitative analysis of rat Ig (sub)classes binding to cell surface antigens

    International Nuclear Information System (INIS)

    Nilsson, R.; Brodin, T.; Sjoegren, H.-O.

    1982-01-01

    An indirect 125 I-labeled protein A assay for detection of cell surface-bound rat immunoglobulins is presented. The assay is quantitative and rapid and detects as little as 1 ng of cell surface-bound Ig. It discriminates between antibodies belonging to different IgG subclasses, IgM and IgA. The authors describe the production and specificity control of the reagents used and show that the test can be used for quantitative analysis. A large number of sera from untreated rats are tested to evaluate the frequency of falsely positive responses and variation due to age, sex and strain of rat. With this test it is relatively easy to quantitate the binding of classes and subclasses of rat immunoglobulins in a small volume (6 μl) of untreated serum. (Auth.)

  12. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications

    Science.gov (United States)

    Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro

    2018-05-01

    A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.

  13. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Haddad, J. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Villot-Kadri, M.; Ismaël, A.; Gallou, G. [IVEA Solution, Centre Scientifique d' Orsay, Bât 503, 91400 Orsay (France); Michel, K.; Bruyère, D.; Laperche, V. [BRGM, Service Métrologie, Monitoring et Analyse, 3 avenue Claude Guillemin, B.P 36009, 45060 Orléans Cedex (France); Canioni, L. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Bousquet, B., E-mail: bruno.bousquet@u-bordeaux1.fr [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France)

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced.

  14. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B.

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced

  15. Optimization and automation of quantitative NMR data extraction.

    Science.gov (United States)

    Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos

    2013-06-18

    NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.

  16. Quantitative analysis of the ATV data base, Stage 2

    International Nuclear Information System (INIS)

    Stenquist, C.; Kjellbert, N.A.

    1981-01-01

    A supplementary study of the Swedish ATV data base was carried out. The study was limited to an analysis of the quantitative coverage of component failures from 1979 through 1980. The results indicate that the coverage of component failures is about 75-80 per cent related to the failure reports and work order sheets at the reactor sites together with SKI's ''Safety Related Occurrences''. In general there has been an improvement compared to previous years. (Auth.)

  17. Quantitative analysis of culture using millions of digitized books

    OpenAIRE

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2010-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pu...

  18. Quantitative Analysis of Culture Using Millions of Digitized Books

    OpenAIRE

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K.; Google Books Team; Pickett, Joseph; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics,’ focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pu...

  19. Quantitative comparison of performance analysis techniques for modular and generic network-on-chip

    Directory of Open Access Journals (Sweden)

    M. C. Neuenhahn

    2009-05-01

    Full Text Available NoC-specific parameters feature a huge impact on performance and implementation costs of NoC. Hence, performance and cost evaluation of these parameter-dependent NoC is crucial in different design-stages but the requirements on performance analysis differ from stage to stage. In an early design-stage an analysis technique featuring reduced complexity and limited accuracy can be applied, whereas in subsequent design-stages more accurate techniques are required.

    In this work several performance analysis techniques at different levels of abstraction are presented and quantitatively compared. These techniques include a static performance analysis using timing-models, a Colored Petri Net-based approach, VHDL- and SystemC-based simulators and an FPGA-based emulator. Conducting NoC-experiments with NoC-sizes from 9 to 36 functional units and various traffic patterns, characteristics of these experiments concerning accuracy, complexity and effort are derived.

    The performance analysis techniques discussed here are quantitatively evaluated and finally assigned to the appropriate design-stages in an automated NoC-design-flow.

  20. Attenuated total internal reflection Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis.

    Science.gov (United States)

    Gulley-Stahl, Heather J; Haas, Jennifer A; Schmidt, Katherine A; Evan, Andrew P; Sommer, André J

    2009-07-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 +/- 0.02% COM/HAP where COM is the analyte and HAP is the matrix, to 0.26 +/- 0.07% HAP/COM where HAP is the analyte and COM is the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size.

  1. Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies.

    Science.gov (United States)

    Ferreira, Vicente; Ortín, Natalia; Escudero, Ana; López, Ricardo; Cacho, Juan

    2002-07-03

    The aroma of a Grenache rosé wine from Calatayud (Zaragoza, Spain) has been elucidated following a strategy consisting of an aroma extract dilution analysis (AEDA), followed by the quantitative analysis of the main odorants and the determination of odor activities values (OAVs) and, finally, by a series of reconstitution and omission tests with synthetic aroma models. Thirty-eight aroma compounds were found in the AEDA study, 35 of which were identified. Twenty-one compounds were at concentrations higher than their corresponding odor thresholds. An aroma model prepared by mixing the 24 compounds with OAV > 0.5 in a synthetic wine showed a high qualitative similarity with the aroma of the rosé wine. The addition of compounds with OAV 10 was very different from that of the wine. Omission tests revealed that the most important odorant of this Grenache rosé wine was 3-mercapto-1-hexanol, with a deep impact on the wine fruity and citric notes. The synergic action of Furaneol and homofuraneol also had an important impact on wine aroma, particularly in its fruity and caramel notes. The omission of beta-damascenone, which had the second highest OAV, caused only a slight decrease on the intensity of the aroma model. Still weaker was the sensory effect caused by the omission of 10 other compounds, such as fatty acids and their ethyl esters, isoamyl acetate, and higher alcohols.

  2. Nondestructive inspection of chemical warfare based on API-TOF

    International Nuclear Information System (INIS)

    Wang Xinhua; Zheng Pu; He Tie; An Li; Yang Jie; Fan Yu

    2013-01-01

    Background: Real-time, fast, accurate, nondestructive inspection (NDI) and quantitative analysis for chemical warfare are very imperative for chemical defense, anti-terror and nation security. Purpose: Associated Particles Technique (APT)/Neutron Time of Flight (TOF) has been developed for non-invasive inspection of sealed containers with chemical warfare agents. Methods: A prototype equipment for chemical warfare is consisted of an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, the shielding protection of neutron and gamma-ray, arrayed NaI(Tl)-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis, decision-making software, support platform and remote control system. Inelastic scattering gamma-ray pulse height spectra of sarin, VX, mustard gas and adamsite induced by 14-MeV neutron are measured. The energies of these gamma rays are used to identify the inelastic scattering elements, and the intensities of the peaks at these energies are used to reveal their concentrations. Results: The characteristic peaks of inelastic scattering gamma-ray pulse height spectra show that the prototype equipment can fast and accurately inspect chemical warfare. Conclusion: The equipment can be used to detect not only chemical warfare agents but also other hazardous materials, such as chemical/toxic/drug materials, if their chemical composition is in any way different from that of the surrounding materials. (authors)

  3. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  4. A semi-quantitative reasoning methodology for filtering and ranking HAZOP results in HAZOPExpert

    International Nuclear Information System (INIS)

    Vaidhyanathan, Ramesh; Venkatasubramanian, Venkat

    1996-01-01

    Hazard and Operability (HAZOP) analysis is the most widely used and recognized as the preferred Process Hazards Analysis (PHA) approach in the chemical process industry. Recently, a diagraph-model based framework and an expert system called HAZOPExpert was developed for automating this analysis. Upon testing the performance of the system on various industrial case studies. HAZOPExpert was found to successfully mimic the human expert's reasoning and identify the hazards. But, with the increasing complexity of the processes, the HAZOPExpert system generated a large number of consequences compared to those identified by a team of experts. This is mainly due to the strict qualitative reasoning approach implemented in the HAZOPExpert system. In order to filter and rank the consequences generated by the HAZOPExpert system, a semi-quantitative reasoning methodology is proposed using additional quantitative knowledge in the form of design and operating specifications of the process units, and process material property values. This filtering approach combines the qualitative digraph-based HAZOP models and the quantitative knowledge to eliminate the unrealizable consequences. Significant reduction in the number of consequences was obtained using this approach on an ethylene process plant HAZOP case study

  5. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  6. Analytical applications of a recycled flow nuclear magnetic resonance system: quantitative analysis of slowly relaxing nuclei

    International Nuclear Information System (INIS)

    Laude, D.A. Jr.; Lee, R.W.K.; Wilkins, C.L.

    1985-01-01

    The utility of a recycled flow system for the efficient quantitative analysis of NMR spectra is demonstrated. Requisite conditions are first established for the quantitative flow experiment and then applied to a variety of compounds. An application of the technique to determination of the average polymer chain length for a silicone polymer by quantitative flow 29 Si NMR is also presented. 10 references, 4 figures, 3 tables

  7. Application of harmonic analysis in quantitative heart scintigraphy

    International Nuclear Information System (INIS)

    Fischer, P.; Knopp, R.; Breuel, H.P.

    1979-01-01

    Quantitative scintigraphy of the heart after equilibrium distribution of a radioactive tracer permits the measurement of time activity curves in the left ventricle during a representative heart cycle with great statistical accuracy. By application of Fourier's analysis, criteria are to be attained in addition for evaluation of the volume curve as a whole. Thus the entire information contained in the volume curve is completely described in a Fourier spectrum. Resynthesis after Fourier transformation seems to be an ideal method of smoothing because of its convergence in the minimum quadratic error for the type of function concerned. (orig./MG) [de

  8. Quantitative x-ray fluorescent analysis using fundamental parameters

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1976-01-01

    A monochromatic source of x-rays for sample excitation permits the use of pure elemental standards and relatively simple calculations to convert the measured fluorescent intensities to an absolute basis of weight per unit weight of sample. Only the mass absorption coefficients of the sample for the exciting and the fluorescent radiation need be determined. Besides the direct measurement of these absorption coefficients in the sample, other techniques are considered which require fewer sample manipulations and measurements. These fundamental parameters methods permit quantitative analysis without recourse to the time-consuming process of preparing nearly identical standards

  9. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    International Nuclear Information System (INIS)

    Biesinger, Mark C.; Lau, Leo W.M.; Gerson, Andrea R.; Smart, Roger St.C.

    2010-01-01

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  10. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2010-11-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  11. Quantitative analysis of thorium-containing materials using an Industrial XRF analyzer

    International Nuclear Information System (INIS)

    Hasikova, J.; Titov, V.; Sokolov, A.

    2014-01-01

    Thorium (Th) as nuclear fuel is clean and safe and offers significant advantages over uranium. The technology for several types of thorium reactors is proven but still must be developed on a commercial scale. In the case of commercialization of thorium nuclear reactor thorium raw materials will be on demand. With this, mining and processing companies producing Th and rare earth elements will require prompt and reliable methods and instrumentation for Th quantitative on-line analysis. Potential applicability of X-ray fluorescence conveyor analyzer CON-X series is discussed for Th quantitative or semi-quantitative on-line measurement in several types of Th-bearing materials. Laboratory study of several minerals (zircon sands and limestone as unconventional Th resources; monazite concentrate as Th associated resources and uranium ore residues after extraction as a waste product) was performed and analyzer was tested for on-line quantitative measurements of Th contents along with other major and minor components. Th concentration range in zircon sand is 50-350 ppm; its detection limit at this level is estimated at 25- 50 ppm in 5 minute measurements depending on the type of material. On-site test of the CON-X analyzer for continuous analysis of thorium traces along with other elements in zircon sand showed that accuracy of Th measurements is within 20% relative. When Th content is higher than 1% as in the concentrate of monazite ore (5-8% ThO_2) accuracy of Th determination is within 1% relative. Although preliminary on-site test is recommended in order to address system feasibility at a large scale, provided results show that industrial conveyor XRF analyzer CON-X series can be effectively used for analytical control of mining and processing streams of Th-bearing materials. (author)

  12. Quantitative Analysis of KF-LiF-ZrF4 Molten Salt by Probe Assisted in-situ LIBS Systems

    International Nuclear Information System (INIS)

    Kim, S.H.; Moon, J.H.; Kim, D.H.; Hwang, I.S.; Lee, J.H.

    2015-01-01

    Full text of publication follows: Pyro-processing draws attention as a recycling process of spent nuclear fuel for future nuclear reactor. In the aspect of process control and safeguards of the pyro-processing, it requires a technology to measure the concentration of molten salt in real-time. The existing technologies measure the concentration by chemical analysis of sampled molten salt in the hot cell but it is disadvantageous in the aspects of cost, safety and time. The LIBS (Laser-Induced Breakdown Spectroscopy) is a form of atomic emission spectroscopy in which a pulsed laser is used as the excitation source. LIBS technology is appropriate to measure sensitive nuclear materials in hot cell because it is capable of measuring specimen quantitatively and qualitatively by exited atom by laser. Spectrum obtained from plasma is largely influenced by laser operation conditions and physical properties of specimens. Also, plasma induction is limited on the surface of specimen, so analysis of composition inside of the molten salt is extremely difficult. Thus, several restrictions should be overcome in order to apply LIBS for the measurement of molten salt (KF-LiF-ZrF 4 ) composition in real-time. In this study probe assisted LIBS system will be introduced with KF-LiF-ZrF 4 to quantitatively measure molten salt composition. Echelle spectrometer was used and the measurable wavelength area was 250-400 nm, the range of UV ray. NIST atomic spectra database measured the wavelength for molten salt composition, and each element was selected high signal intensity and wavelength range that is not overlapped by other elements. (authors)

  13. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative CT analysis of small pulmonary vessels in lymphangioleiomyomatosis

    International Nuclear Information System (INIS)

    Ando, Katsutoshi; Tobino, Kazunori; Kurihara, Masatoshi; Kataoka, Hideyuki; Doi, Tokuhide; Hoshika, Yoshito; Takahashi, Kazuhisa; Seyama, Kuniaki

    2012-01-01

    Backgrounds: Lymphangioleiomyomatosis (LAM) is a destructive lung disease that share clinical, physiologic, and radiologic features with chronic obstructive pulmonary disease (COPD). This study aims to identify those features that are unique to LAM by using quantitative CT analysis. Methods: We measured total cross-sectional areas of small pulmonary vessels (CSA) less than 5 mm 2 and 5–10 mm 2 and calculated percentages of those lung areas (%CSA), respectively, in 50 LAM and 42 COPD patients. The extent of cystic destruction (LAA%) and mean parenchymal CT value were also calculated and correlated with pulmonary function. Results: The diffusing capacity for carbon monoxide/alveolar volume (DL CO /VA %predicted) was similar for both groups (LAM, 44.4 ± 19.8% vs. COPD, 45.7 ± 16.0%, p = 0.763), but less tissue damage occurred in LAM than COPD (LAA% 21.7 ± 16.3% vs. 29.3 ± 17.0; p CO /VA %predicted, %CSA and mean parenchymal CT value were still greater for LAM than COPD (p < 0.05). Conclusions: Quantitative CT analysis revealing a correlation between cystic destruction and CSA in COPD but not LAM indicates that this approach successfully reflects different mechanisms governing the two pathologic courses. Such determinations of small pulmonary vessel density may serve to differentiate LAM from COPD even in patients with severe lung destruction.

  15. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Payne, Brad P. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, Andrew P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 (Canada); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2011-01-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of their 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. Our previous paper [M.C. Biesinger et al., Appl. Surf. Sci. 257 (2010) 887-898.] in which we examined Sc, Ti, V, Cu and Zn species, has shown that all the values of the spectral fitting parameters for each specific species, i.e. binding energy (eV), full wide at half maximum (FWHM) value (eV) for each pass energy, spin-orbit splitting values and asymmetric peak shape fitting parameters, are not all normally provided in the literature and data bases, and are necessary for reproducible, quantitative chemical state analysis. A more consistent, practical and effective approach to curve fitting was developed based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of literature references and (3) specific literature references where fitting procedures are available. This paper extends this approach to the chemical states of Cr, Mn, Fe, Co and Ni metals, and various oxides and hydroxides where intense, complex multiplet splitting in many of the chemical states of these elements poses unique difficulties for chemical state analysis. The curve fitting procedures proposed use the same criteria as proposed previously but with the additional complexity of fitting of multiplet split spectra which has been done based on spectra of numerous reference materials and theoretical XPS modeling of these transition metal species. Binding energies, FWHM values, asymmetric peak shape fitting parameters, multiplet peak separation and peak area percentages are presented. The procedures developed can be utilized to remove uncertainties in the analysis of surface states in nano

  16. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake

    Science.gov (United States)

    Nixdorf, E.; Boehrer, B.

    2015-11-01

    Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits vertical transport, and a chemically different (reducing) milieu can be established. As a consequence, the geochemical setting and the mixing regime of a lake can stabilize each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As an example, we chose the prominent case of iron meromixis in Waldsee near Doebern, a small lake that originated from near-surface underground mining of lignite. From a data set covering 4 years of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed the changing of the chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we designed a lab experiment, in which we removed iron compounds and organic material from monimolimnetic waters by introducing air bubbles. Precipitates could be identified by visual inspection. Eventually, the remaining solutes in the aerated water layer looked similar to mixolimnetic Waldsee water. Due to its reduced concentration of solutes, this water became less dense and remained floating on nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron-rich deep groundwater and the aeration through the lake surface were fully sufficient for the formation of iron meromixis.

  18. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    International Nuclear Information System (INIS)

    Lazariev, A; Graveron-Demilly, D; Allouche, A-R; Aubert-Frécon, M; Fauvelle, F; Piotto, M; Elbayed, K; Namer, I-J; Van Ormondt, D

    2011-01-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1 H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed

  19. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    Science.gov (United States)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  20. Large-scale quantitative analysis of painting arts.

    Science.gov (United States)

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-12-11

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

  1. 3D Auger quantitative depth profiling of individual nanoscaled III–V heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hourani, W. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Gorbenko, V. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Barnes, J.-P.; Guedj, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Cipro, R.; Moeyaert, J.; David, S.; Bassani, F.; Baron, T. [Univ. Grenoble Alpes, LTM, CNRS, F-38000 Grenoble (France); Martinez, E., E-mail: eugenie.martinez@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2016-11-15

    Highlights: • The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. • Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. • Quantitative 3D compositional depth profiles are obtained on patterned structures, with sufficient lateral resolution to analyze one single trench. • The Auger intrinsic spatial resolution is estimated around 150–200 nm using a comparison with HAADF-STEM. • Auger and SIMS provide reliable in-depth chemical analysis of such complex 3D heterostructures, in particular regarding indium quantification. - Abstract: The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. This technique is successfully applied to quantify the elemental composition of planar and patterned III–V heterostructures containing InGaAs quantum wells. Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. Quantitative 3D compositional depth profiles are obtained on patterned structures, for trench widths down to 200 nm. The elemental distributions obtained in averaged and pointed mode are compared. For this last case, we show that Zalar rotation during sputtering is crucial for a reliable indium quantification. Results are confirmed by comparisons with secondary ion mass spectrometry, photoluminescence spectroscopy, transmission electron microscopy and electron dispersive X-ray spectroscopy. The Auger intrinsic spatial resolution is quantitatively measured using an original methodology based on the comparison with high angle annular dark field scanning transmission electron microscopy measurements at the nanometric scale.

  2. Combined use of computational chemistry and chemoinformatics methods for chemical discovery

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ideo, Toshihiro; Iwane, Ryo [Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2015-12-31

    Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of the density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.

  3. Operation Iraqi Freedom 04 - 06: Opportunities to Apply Quantitative Methods to Intelligence Analysis

    National Research Council Canada - National Science Library

    Hansen, Eric C

    2005-01-01

    The purpose of this presentation is to illustrate the need for a quantitative analytical capability within organizations and staffs that provide intelligence analysis to Army, Joint, and Coalition Force headquarters...

  4. Toward best practices in data processing and analysis for intact biotherapeutics by MS in quantitative bioanalysis.

    Science.gov (United States)

    Kellie, John F; Kehler, Jonathan R; Karlinsey, Molly Z; Summerfield, Scott G

    2017-12-01

    Typically, quantitation of biotherapeutics from biological matrices by LC-MS is based on a surrogate peptide approach to determine molecule concentration. Recent efforts have focused on quantitation of the intact protein molecules or larger mass subunits of monoclonal antibodies. To date, there has been limited guidance for large or intact protein mass quantitation for quantitative bioanalysis. Intact- and subunit-level analyses of biotherapeutics from biological matrices are performed at 12-25 kDa mass range with quantitation data presented. Linearity, bias and other metrics are presented along with recommendations made on the viability of existing quantitation approaches. This communication is intended to start a discussion around intact protein data analysis and processing, recognizing that other published contributions will be required.

  5. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  6. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  7. Ratio of slopes method for quantitative analysis in ceramic bodies

    International Nuclear Information System (INIS)

    Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Radzali Othman; Messer, P.F.

    1996-01-01

    A quantitative x-ray diffraction analysis technique developed at University of Sheffield was adopted, rather than the previously widely used internal standard method, to determine the amount of the phases present in a reformulated whiteware porcelain and a BaTiO sub 3 electrochemical material. This method, although still employs an internal standard, was found to be very easy and accurate. The required weight fraction of a phase in the mixture to be analysed is determined from the ratio of slopes of two linear plots, designated as the analysis and reference lines, passing through their origins using the least squares method

  8. Quantitative descriptive analysis and principal component analysis for sensory characterization of Indian milk product cham-cham.

    Science.gov (United States)

    Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C

    2016-02-01

    Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.

  9. Quantitative analysis of hydrogen and of its isotopes at the surface of the solids

    International Nuclear Information System (INIS)

    Trocellier, P.

    2007-01-01

    For analyzing the hydrogen isotopes, the nature of the probe which allows to excite the considered material and to give the hydrogen answer is multiple and is supported by various physical principles. The different available techniques are presented and several examples are given. To conclude, it is possible to determine the superficial or volume distribution of hydrogen or of one of its two heavy isotopes in choosing the most physico-chemical method. The choice of the technique to use depends of the wanted performance. In order to simplify, we can associate: 1)the sensitivity with mass spectrometry; 2)the depth resolution with the glow discharge, the SIMS and the resonant nuclear reaction; 3)the studied depth with the accelerated ions beams and the AMS; 4)the distribution image with the electrons stimulated desorption, the beta autoradiography and the ERDA; 5)the quantitative profile with the accelerated ions beams techniques; 6)the isotopic analysis with mass spectrometry and the accelerated ions beams. In order to be sure of the relevance of the measurements result, it is indicated to combine the advantages and the performances of several techniques as SIMS and NRA or FTIR and ERDA for instance. (O.M.)

  10. Statistic analysis of grouping in evaluation of the behavior of stable chemical elements and physical-chemical parameters in effluent from uranium mining

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.

    2013-01-01

    The Ore Treatment Unit (UTM) is a uranium mine off. The statistical analysis of clustering was used to evaluate the behavior of stable chemical elements and physico-chemical variables in their effluents. The use of cluster analysis proved effective in the evaluation, allowing to identify groups of chemical elements in physico-chemical variables and group analyzes (element and variables ). As a result, we can say, based on the analysis of the data, a strong link between Ca and Mg and between Al and TR 2 O 3 (rare earth oxides) in the UTM effluents. The SO 4 was also identified as strongly linked to total solids and dissolved and these linked to electrical conductivity. Other associations existed, but were not as strongly linked. Additional collections for seasonal evaluation are required so that assessments can be confirmed. Additional statistics analysis (ordination techniques) should be used to help identify the origins of the groups identified in this analysis. (author)

  11. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  12. Quantitative analysis of Esophageal Transit of Radionuclide in Patients with Dermatomyositis-Polymyositis

    International Nuclear Information System (INIS)

    Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Myung Hae

    1989-01-01

    Esophageal transit of radionuclide was quantitatively analyzed in 29 patients with dermatomyositis-polymyositis Fourteen patients (48.3%) showed retention of tracer in oropharynx. The mean value of percent retention of oropharynx was 15.5+16.6%. Esophageal dysfunction was found in 19 patients (65.5%). Among them 4 showed mild, 12 showed moderate and 3 showed severe esophageal dysfunction. Dysphagia was found in 11 patients (37.9%), which was closely related to percent retention of oropharynx. Quantitative analysis of esophageal transit of radionuclide seemed to be a useful technique for evaluation of dysphagia in patients with dermatomyositis-polymyositis.

  13. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  14. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  15. An iterative approach to case study analysis: insights from qualitative analysis of quantitative inconsistencies

    Directory of Open Access Journals (Sweden)

    Allain J Barnett

    2016-09-01

    Full Text Available Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analysing Large-N case studies. We examine two issues: 1 the challenge of missing data and 2 potential approaches that rely on context (which is often lost in the coding process to address inconsistencies between empirical observations theoretical predictions.  For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1 cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2 cases where the CPR system was deemed successful despite finding limited or no evidence for design principles.  We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”.  Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions.  This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding

  16. Quantitative chromatography in the analysis of labelled compounds 1. Quantitative paper chromotography of amino acids by A spot comparison technique

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; El-Gharbawy, A.A.

    1974-01-01

    For the determination of the specific activity of labelled compounds separated by paper sheet chromatography, it was found essential to perfect the quantitative aspect of the paper chromatographic technique. Actually, so far paper chromatography has been used as a separation tool mainly and its use in quantification of the separated materials is by far less studied. In the present work, the quantitative analysis of amino acids by paper sheet chromatography has been carried out by methods, depending on the use of the relative spot area values for correcting the experimental data obtained. The results obtained were good and reproducible. The main advantage of the proposed technique is its extreme simplicity. No complicated equipment of procedures are necessary

  17. Quantitative charge-tags for sterol and oxysterol analysis.

    Science.gov (United States)

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  18. Quantitative CT analysis of small pulmonary vessels in lymphangioleiomyomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Katsutoshi, E-mail: kando@juntendo.ac.jp [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Tobino, Kazunori [Department of Respiratory Medicine, Iizuka Hospital, 3-83 Yoshio-Machi, Iizuka-City, Fukuoka 820-8505 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Kurihara, Masatoshi; Kataoka, Hideyuki [Pneumothorax Center, Nissan Tamagawa Hospital, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Doi, Tokuhide [Fukuoka Clinic, 7-18-11 Umeda, Adachi-Ku, Tokyo 123-0851 (Japan); Hoshika, Yoshito [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Takahashi, Kazuhisa [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); Seyama, Kuniaki [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan)

    2012-12-15

    Backgrounds: Lymphangioleiomyomatosis (LAM) is a destructive lung disease that share clinical, physiologic, and radiologic features with chronic obstructive pulmonary disease (COPD). This study aims to identify those features that are unique to LAM by using quantitative CT analysis. Methods: We measured total cross-sectional areas of small pulmonary vessels (CSA) less than 5 mm{sup 2} and 5–10 mm{sup 2} and calculated percentages of those lung areas (%CSA), respectively, in 50 LAM and 42 COPD patients. The extent of cystic destruction (LAA%) and mean parenchymal CT value were also calculated and correlated with pulmonary function. Results: The diffusing capacity for carbon monoxide/alveolar volume (DL{sub CO}/VA %predicted) was similar for both groups (LAM, 44.4 ± 19.8% vs. COPD, 45.7 ± 16.0%, p = 0.763), but less tissue damage occurred in LAM than COPD (LAA% 21.7 ± 16.3% vs. 29.3 ± 17.0; p < 0.05). Pulmonary function correlated negatively with LAA% (p < 0.001) in both groups, yet the correlation with %CSA was significant only in COPD (p < 0.001). When the same analysis was conducted in two groups with equal levels of LAA% and DL{sub CO}/VA %predicted, %CSA and mean parenchymal CT value were still greater for LAM than COPD (p < 0.05). Conclusions: Quantitative CT analysis revealing a correlation between cystic destruction and CSA in COPD but not LAM indicates that this approach successfully reflects different mechanisms governing the two pathologic courses. Such determinations of small pulmonary vessel density may serve to differentiate LAM from COPD even in patients with severe lung destruction.

  19. Quantitative assessment of Al-to-N bonding in dilute Al0.33Ga0.67As1-yNy

    International Nuclear Information System (INIS)

    Wagner, J.; Geppert, T.; Koehler, K.; Ganser, P.; Maier, M.

    2003-01-01

    A quantitative assessment of the group III-nitrogen bonding in low N-content Al 0.33 Ga 0.67 As 1-y N y with y≤0.04 has been performed, using vibrational mode Raman spectroscopy for the quantitative analysis of local bond formation in combination with energy dispersive x-ray analysis and secondary ion mass spectrometry for chemical analysis. Clear evidence is obtained for the preferential bonding of nitrogen to Al with one nitrogen atom being coordinated to, at the average, 3.4 Al neighbors. This strong preference for Al-to-N bond formation can be understood in terms of the much larger cohesive energy of the Al-N bond compared to the Ga-N chemical bond. In spite of this phase-separation-like formation of local Al-N complexes, the fundamental band gap and the E 1 /E 1 +Δ 1 band gaps show a continuous low-energy and high-energy shift, respectively, upon the addition of nitrogen as already known from dilute GaAsN

  20. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  1. Physical aspects of quantitative particles analysis by X-ray fluorescence and electron microprobe techniques

    International Nuclear Information System (INIS)

    Markowicz, A.

    1986-01-01

    The aim of this work is to present both physical fundamentals and recent advances in quantitative particles analysis by X-ray fluorescence (XRF) and electron microprobe (EPXMA) techniques. A method of correction for the particle-size effect in XRF analysis is described and theoretically evaluated. New atomic number- and absorption correction procedures in EPXMA of individual particles are proposed. The applicability of these two correction methods is evaluated for a wide range of elemental composition, X-ray energy and sample thickness. Also, a theoretical model for composition and thickness dependence of Bremsstrahlung background generated in multielement bulk specimens as well as thin films and particles are presented and experimantally evaluated. Finally, the limitations and further possible improvements in quantitative particles analysis by XFR and EPXMA are discussed. 109 refs. (author)

  2. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    International Nuclear Information System (INIS)

    Greenberg, M.; Ebel, D.S.

    2009-01-01

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of ∼15 (micro)m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 (micro)m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  3. Characterising Ageing in the Human Brainstem Using Quantitative Multimodal MRI Analysis

    Directory of Open Access Journals (Sweden)

    Christian eLambert

    2013-08-01

    Full Text Available Ageing is ubiquitous to the human condition. The MRI correlates of healthy ageing have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI and DTI. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analysing this region. By utilising a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of ageing within the human brainstem in vivo. Using quantitative MRI (qMRI, tensor based morphometry (TBM and voxel based quantification (VBQ, the volumetric and quantitative changes across healthy adults between 19-75 years were characterised. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetisation transfer (MT and increase in proton density (PD, accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterised, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterised by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases.

  4. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    CERN Document Server

    Vekemans, B; Somogyi, A; Drakopoulos, M; Kempenaers, L; Simionovici, A; Adams, F

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative u...

  5. A quantitative screening-level approach to incorporate chemical exposure and risk into alternative assessment evaluations.

    Science.gov (United States)

    Arnold, Scott M; Greggs, Bill; Goyak, Katy O; Landenberger, Bryce D; Mason, Ann M; Howard, Brett; Zaleski, Rosemary T

    2017-11-01

    As the general public and retailers ask for disclosure of chemical ingredients in the marketplace, a number of hazard screening tools were developed to evaluate the so-called "greenness" of individual chemical ingredients and/or formulations. The majority of these tools focus only on hazard, often using chemical lists, ignoring the other part of the risk equation: exposure. Using a hazard-only focus can result in regrettable substitutions, changing 1 chemical ingredient for another that turns out to be more hazardous or shifts the toxicity burden to others. To minimize the incidents of regrettable substitutions, BizNGO describes "Common Principles" to frame a process for informed substitution. Two of these 6 principles are: "reduce hazard" and "minimize exposure." A number of frameworks have emerged to evaluate and assess alternatives. One framework developed by leading experts under the auspices of the US National Academy of Sciences recommended that hazard and exposure be specifically addressed in the same step when assessing candidate alternatives. For the alternative assessment community, this article serves as an informational resource for considering exposure in an alternatives assessment using elements of problem formulation; product identity, use, and composition; hazard analysis; exposure analysis; and risk characterization. These conceptual elements build on practices from government, academia, and industry and are exemplified through 2 hypothetical case studies demonstrating the questions asked and decisions faced in new product development. These 2 case studies-inhalation exposure to a generic paint product and environmental exposure to a shampoo rinsed down the drain-demonstrate the criteria, considerations, and methods required to combine exposure models addressing human health and environmental impacts to provide a screening level hazard and exposure (risk) analysis. This article informs practices for these elements within a comparative risk context

  6. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  7. Quantitative Motion Analysis of Tai Chi Chuan: The Upper Extremity Movement

    Directory of Open Access Journals (Sweden)

    Tsung-Jung Ho

    2018-01-01

    Full Text Available The quantitative and reproducible analysis of the standard body movement in Tai Chi Chuan (TCC was performed in this study. We aimed to provide a reference of the upper extremities for standardizing TCC practice. Microsoft Kinect was used to record the motion during the practice of TCC. The preparation form and eight essential forms of TCC performed by an instructor and 101 practitioners were analyzed in this study. The instructor completed an entire TCC practice cycle and performed the cycle 12 times. An entire cycle of TCC was performed by practitioners and images were recorded for statistics analysis. The performance of the instructor showed high similarity (Pearson correlation coefficient (r=0.71~0.84 to the first practice cycle. Among the 9 forms, lay form had the highest similarity (rmean=0.90 and push form had the lowest similarity (rmean=0.52. For the practitioners, ward off form (rmean=0.51 and roll back form (rmean=0.45 had the highest similarity with moderate correlation. We used Microsoft Kinect to record the spatial coordinates of the upper extremity joints during the practice of TCC and the data to perform quantitative and qualitative analysis of the joint positions and elbow joint angle.

  8. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  9. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    Science.gov (United States)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  10. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  11. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A

    2013-01-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses. (paper)

  12. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  13. Ultrastructural Analysis of Urinary Stones by Microfocus Computed Tomography and Comparison with Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Tolga Karakan

    2016-06-01

    Full Text Available Objective: To investigate the ultra-structure of urinary system stones using micro-focus computed tomography (MCT, which makes non-destructive analysis and to compare with wet chemical analysis. Methods: This study was carried out at the Ankara Train­ing and Research hospital. Renal stones, removed from 30 patients during percutaneous nephrolithotomy (PNL surgery, were included in the study. The stones were blindly evaluated by the specialists with MCT and chemi­cal analysis. Results: The comparison of the stone components be­tween chemical analysis and MCT, showed that the rate of consistence was very low (p0.05. It was also seen that there was no significant relation between its 3D structure being heterogeneous or homogenous. Conclusion: The stone analysis with MCT is a time con­suming and costly method. This method is useful to un­derstand the mechanisms of stone formation and an im­portant guide to develop the future treatment modalities.

  14. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  15. The Quantitative Analysis of a team game performance made by men basketball teams at OG 2008

    OpenAIRE

    Kocián, Michal

    2009-01-01

    Title: The quantitative analysis of e team game performance made by men basketball teams at Olympis games 2008 Aims: Find reason successes and failures of teams in Olympis game play-off using quantitative (numerical) observation of selected game statistics. Method: The thesis was made on the basic a quantitative (numerical) observation of videorecordings using KVANTÝM. Results: Obtained selected statistic desribed the most essentials events for team winning or loss. Keywords: basketball, team...

  16. The cost of electricity distribution in Italy: a quantitative analysis

    International Nuclear Information System (INIS)

    Scarpa, C.

    1998-01-01

    This paper presents a quantitative analysis of the cost of medium and low tension electricity distribution in Italy. An econometric analysis of the cost function is proposed, on the basis of data on 147 zones of the dominant firm, ENEL. Data are available only for 1996, which has forced to carry out only a cross-section OLS analysis. The econometric estimate shows the existence of significant scale economies, that the current organisational structure does not exploit. On this basis is also possible to control to what extent exogenous cost drivers affect costs. The role of numerous exogenous factors considered seems however quite limited. The area of the distribution zone and an indicator of quality are the only elements that appear significant from an economic viewpoint [it

  17. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    International Nuclear Information System (INIS)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-01-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products

  18. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Somerville, Robert A. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, EH25 9PS (United Kingdom); Kitamoto, Tetsuyuki [Division of CJD Science and Technology, Department of Prion Research, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 (Japan); Mohri, Shirou, E-mail: shirou@affrc.go.jp [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  19. Quantitative analysis of iodine in thyroidin. I. Methods of ''dry'' and ''wet'' mineralization

    International Nuclear Information System (INIS)

    Listov, S.A.; Arzamastsev, A.P.

    1986-01-01

    The relative investigations on the quantitative determination of iodine in thyroidin using different modifications of the ''dry'' and ''wet'' mineralization show that in using these methods the difficulties due to the characteristic features of the object of investigation itself and the mineralization method as a whole must be taken into account. The studies show that the most applicable method for the analysis of thyroidin is the method of ''dry'' mineralization with potassium carbonate. A procedure is proposed for a quantitative determination of iodine in thyroidin

  20. Quantitative evaluation of fluctuation error in X-ray diffraction profiles with fractal analysis

    International Nuclear Information System (INIS)

    Kurose, Masashi; Hirose, Yukio; Sasaki, Toshihiko; Yoshioka, Yasuo.

    1995-01-01

    A method of the fractal analysis was applied to the diffraction profiles for its quantitative evaluation. The fractal dimension was analyzed according to both Box counting method and FFT method. The relationship between the fractal dimension and the measurement criteria in X-ray diffraction analysis was discussed with diffraction data obtained under various conditions of the measurement. It was concluded that the fractal analysis is effective for the quantitative evaluation of diffraction data. Box counting method is suitable for evaluation of a whole profile, and FFT method is for that of a fundamental profile. The range of desirable condition of measurement is 1.0≤D≤1.2, where D is a fractal dimension. The appropriate range of measurement becomes 0.01≤Sw/HVB≤0.03, where Sw is the step width and the HVB is the half-value breadth. Stresses with higher precision were obtained from measurements under this new criteria. (author)