WorldWideScience

Sample records for analysis nuclear reaction

  1. Quantitative surface analysis using deuteron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Afarideh, Hossein

    1991-01-01

    The nuclear reaction analysis (NRA) technique consists of looking at the energies of the reaction products which uniquely define the particular elements present in the sample and it analysis the yield/energy distribution to reveal depth profiles. A summary of the basic features of the nuclear reaction analysis technique is given, in particular emphasis is placed on quantitative light element determination using (d,p) and (d,alpha) reactions. The experimental apparatus is also described. Finally a set of (d,p) spectra for the elements Z=3 to Z=17 using 2 MeV incident deutrons is included together with example of more applications of the (d,alpha) spectra. (author)

  2. Ex-vacuo nuclear reaction analysis of deuterium

    International Nuclear Information System (INIS)

    Lee, S.R.; Doyle, B.L.

    1989-01-01

    A novel technique for performing in-air d( 3 He, p) nuclear reaction analysis of deuterium using external 3 He ion beams ranging in energy from 0.3-2.0 MeV is presented. Variable on-target beam energies for the depth profiling of deuterium are obtained by varying the transmission distance of the external 3 He beam in air. The ex-vacuo nuclear reaction analysis (XNRA) apparatus is described, and unique aspects and limitations of in-air depth profiling of deuterium using the d( 3 He, p) reaction are discussed. Example analyses where XNRA has been used for the multidimensional measurement of deuterium in fusion reactor components are presented in order to illustrate the advantages of XNRA for deuterium. These advantages include nondestructive analysis of large targets, efficient depth profiling via variable air gap energy tuning, and rapid analysis of numerous samples in the absence of vacuum cycling. (orig.)

  3. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    International Nuclear Information System (INIS)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs

  4. Status of CONRAD, a nuclear reaction analysis tool

    International Nuclear Information System (INIS)

    Saint Jean, C. de; Habert, B.; Litaize, O.; Noguere, G.; Suteau, C.

    2008-01-01

    The development of a software tool (CONRAD) was initiated at CEA/Cadarache to give answers to various problems arising in the data analysis of nuclear reactions. This tool is then characterized by the handling of uncertainties from experimental values to covariance matrices for multi-group cross sections. An object oriented design was chosen allowing an easy interface with graphical tool for input/output data and being a natural framework for innovative nuclear models (Fission). The major achieved developments are a data model for describing channels, nuclear reactions, nuclear models and processes with interface to classical data formats, theoretical calculations for the resolved resonance range (Reich-Moore) and unresolved resonance range (Hauser-Feshbach, Gilbert-Cameron,...) with nuclear model parameters adjustment on experimental data sets and a Monte Carlo method based on conditional probabilities developed to calculate properly covariance matrices. The on-going developments deal with the experimental data description (covariance matrices) and the graphical user interface. (authors)

  5. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  6. Analysis by nuclear reactions and activations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2001-01-01

    A current bibliography based on INIS Atomindex with 78 references on Analysis by nuclear reactions and activations has been prepared for year 1998. References are arranged by first authors' name. (N.T.)

  7. Multilayer Network Analysis of Nuclear Reactions

    Science.gov (United States)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  8. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  9. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  10. Use of deuteron-induced nuclear reactions for quantitative surface analysis

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Earwaker, L.G.

    1986-01-01

    A summary of the basic features of nuclear reaction analysis is given; particular emphasis is placed on quantitative light element determination using (d,p) and (d,α) reactions. The experimental apparatus is also described, with reference to the 3MV Dynamitron accelerator at the University of Birmingham Radiation Centre. Finally, a set of standard (d, p) spectra for the elements Z=3 to Z=17, using 2 MeV incident deuterons, is included together with examples of the more useful of the (d,α) spectra. (orig.)

  11. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  12. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP)

  13. Applications of the photo-nuclear reaction data for activation analysis

    International Nuclear Information System (INIS)

    Odsuren, M.; Khuukhenkhuu, G.; Turbold, A.; Davaa, S.; Baatarkhuu, D.

    2015-01-01

    In the relative method of activation analysis by continuum wide spectrum gamma-rays the same isotope is usually used for standard reference element and sample material in connection with different dependence of the reaction cross sections on the irradiation beam energy. But, in practice suitable isotopes for reference element are not always available. So, in this paper, we suggest a new method for photo-activation analysis in which is used the correction factor. This factor takes into account the difference in the photo-nuclear reaction cross section dependence on the gamma-ray energy for standard reference isotope and sample elements. The correction factor is determined by three methods of experimental, theoretical and TALYS evaluation. Pure metal foils of Au, Cu and Mo were irradiated by bremsstrahlung gamma-rays on the electron cyclic accelerator Microtron MT-22 at the Nuclear Research Center, National University of Mongolia. Gamma spectra of the activated metal foils were measured by HP-Ge detector to obtain element contents in the samples. It was shown that experimental results with correction factors are satisfactorily in agreement with real values of the element contents in the samples

  14. Nuclear reactions

    International Nuclear Information System (INIS)

    Corner, J.; Richardson, K.; Fenton, N.

    1990-01-01

    Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)

  15. Nuclear alignment following compound nucleus reactions

    International Nuclear Information System (INIS)

    Butler, P.A.; Nolan, P.J.

    1981-01-01

    A procedure for calculating the alignment of a nuclear state populated by a compound nucleus reaction is given and used to investigate how alignment varies for different types of population mechanisms. The calculations are compared to both predictions of Gaussian models for the state population distribution and to experimental data, for a variety of types of nuclear reactions. The treatment of alignment in the analysis of γ-ray angular distribution is discussed. (orig.)

  16. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-01-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  17. Optimizing Nuclear Reaction Analysis (NRA) using Bayesian Experimental Design

    International Nuclear Information System (INIS)

    Toussaint, Udo von; Schwarz-Selinger, Thomas; Gori, Silvio

    2008-01-01

    Nuclear Reaction Analysis with 3 He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Comparison of the inversion properties of the optimized design with standard settings reveals huge possible gains. Application of the posterior sampling method allows to optimize the experimental settings interactively during the measurement process.

  18. Measurement of hydrogen in BCN films by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ. (Japan); Awazu, Kaoru [Industrial Research Inst., of Ishikawa, Kanazawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influence on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem produce the films with the properties required. Ion beam techniques using nuclear reactions are effective for the quantitative determination of hydrogen concentration. A specially designed spectrometer is employed for the detailed determination of hydrogen concentrations by detecting 4.43MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C at the 6.385MeV. In this study, the BCN films were formed on silicon substrate by ion beam assisted deposition (IBAD), in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by ion implantation simultaneously. The concentrations of hydrogen in BCN films were measured using RNRA. The mechanical properties of BCN films were evaluated using an ultra-micro-hardness tester. It was confirmed that the hardness of BCN films increased with increasing the concentration of hydrogen. (author)

  19. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  20. Nuclear Reaction Data Centers

    International Nuclear Information System (INIS)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab

  1. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  2. Applications of Nuclear Reaction Analysis for Semiconductor Industry

    International Nuclear Information System (INIS)

    Wei Luncun

    2003-01-01

    Many thin film samples used in the semiconductor industry contain C, N and O. The detection limits and accuracy obtained by Rutherford Backscattering Spectroscopy (RBS) measurement are limited due to the small cross section values. High energy non-Rutherford backscattering is often used to enhance the sensitivities. But non-Rutherford cross section values are irregular and can not be calculated as normal Rutherford backscattering values. It is also difficult to find an appropriate energy window that for all these elements, and high-energy ions are needed. In this paper, the Nuclear Reaction Analysis (NRA) method is used to simultaneously measure C, N and O. several applications in the semiconductor research, development, and manufacturing areas are presented

  3. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  4. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  5. Atomic nuclei and nuclear reactions. Theory and application

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.

    2004-01-01

    Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and

  6. The unified theory of nuclear reactions

    International Nuclear Information System (INIS)

    Tobocman, W.

    A unified nuclear reaction theory is a formalism for the scattering reactions of many-body nuclear systems which is capable of describing both direct interaction and compound nucleus formation processes. The Feshbach projection operator formalism is the original unified nuclear reaction theory. An alternative unified nuclear reaction theory called the X-matrix formalism is described. The X-matrix formalism is a generalization of the Brown-de Dominicis formalism. It does not require projection operators and is readly applied to rearrangement collisions

  7. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  8. Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals

    International Nuclear Information System (INIS)

    Altstetter, C.J.

    1981-01-01

    The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

  9. Reaction list for charged-particle-induced nuclear reactions: Z = 1 to Z = 98 (H to Cf), July 1973--September 1974

    International Nuclear Information System (INIS)

    McGowan, F.K.; Milner, W.T.

    1975-01-01

    This Reaction List for charged-particle-induced nuclear reactions has been prepared from the journal literature for the period from July 1973 through September 1974. Each published experimental paper is listed under the target nucleus in the nuclear reaction with a brief statement of the type of data in the paper. The nuclear reaction is denoted by A(a,b)B, where the mass of a is greater than or equal to (one nucleon mass). There is no restriction on energy. Nuclear reactions involving mesons in the outgoing channel are not included. Theoretical papers which treat directly with the analysis of nuclear reaction data and results are included in the Reaction List. The cutoff date for literature was September 30, 1974. (U.S.)

  10. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  11. Statistical theory of precompound nuclear reactions

    International Nuclear Information System (INIS)

    Nishioka, H.

    1986-01-01

    The purpose of the paper is to show the application of the Grassmann-integration method (or the graded-symmetry method) to a pre-equilibrium process in nuclear reactions. The Grassmann-integration method for random systems was first introduced by Efetov and later largely extended and applied to nuclear physics by Verbaarschot, Weidenmuller and Zirnbauer (referred to as VWZ). They have applied it to the equilibrium nuclear reactions; namely; the compound-nucleus reactions. It will be shown in this paper that this method is also applicable to non-equilibrium nuclear reactions. Applying this method to precompound nuclear reactions, the authors have obtained the same expression of the cross-section as Agassi, Weidenmuller and Mantzouranis (referred to as AWM) in the weak-coupling limit. In the general case their results show an important modification to AWM

  12. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16 O(e,e'p), 12 C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12 C(e,e'p 0 ) and 16 O(e,e'p 0 ), comparison of the 12 C(e, e'p 0 ) and 16 O(e,e'p 3 ) reactions, quadrupole strength in the 16 O(e,e'α 0 ) reaction, quadrupole strength in the 12 C(e,e'α) reaction, analysis of the 12 C(e,e'p 1 ) and 16 O(e,e'p 3 ) angular distributions, analysis of the 40 Ca(e,e'x) reaction at low q, analysis of the higher-q 12 C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  13. Experimental (Network) and Evaluated Nuclear Reaction Data at NDS

    International Nuclear Information System (INIS)

    Otsuka, N.; Semkova, V.; Simakov, S.P.; Zerkin, V.

    2011-01-01

    Dr Simakov of Nuclear Data Services Unit in the Nuclear Data Section (NDS) gave a brief overview of the data compilation and evaluation activities in the nuclear data community: experimental nuclear reaction data (EXFOR, http://www-nds.iaea.org/exfor/) and evaluated nuclear reaction data (ENDF, http://www-nds.iaea.org/endf). The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by NDS includes 14 Centres in 8 Countries (China, Hungary, India, Japan, Korea, Russian, Ukraine, USA) and 2 International Organizations (NEA, IAEA). It had the first meeting of four core centres (Brookhaven, Saclay, Obninsk, Vienna) in 1966 and the EXFOR was adopted as an official data exchange format. In 2000, IAEA implemented the EXFOR database as a relational multiform database and the EXFOR is a trusted, increasing and living database with 19100 experimental works (as of September 2011) and 141600 data tables. The EXFOR provides a compilation control system for selection of articles and compilation of data and the NRDC home page provides manuals, documents and codes. The nuclear data can be retrieved by the web-retrieval system or distributed on a DVD on request. The EXFOR data play a critical role in the development of evaluated nuclear reaction data. There are several major general purpose libraries: ENDF (US), CENDL (China), JEFF (EU), JENDL (Japan) and RUSFOND (Russia). In addition, there are special libraries for particular applications: EAF (European Activation File), FENDL (Fusion Evaluated Nuclear Data Library for ITER neutronics), IBANDL (Ion Beam Analysis Nuclear Data Library for surface analysis of solids), IRDF, DXS (Dosimetry, radiation damage and gas production data) and Medical portal. Dr V. Zerkin of NDS demonstrated the data retrieval from the EXFOR database and the ENDF library.

  14. Experimental (Network) and Evaluated Nuclear Reaction Data at NDS

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, N; Semkova, V; Simakov, S P; Zerkin, V [Nuclear Data Services Unit, Nuclear Data Section, IAEA, Vienna (Austria)

    2011-11-15

    Dr Simakov of Nuclear Data Services Unit in the Nuclear Data Section (NDS) gave a brief overview of the data compilation and evaluation activities in the nuclear data community: experimental nuclear reaction data (EXFOR, http://www-nds.iaea.org/exfor/) and evaluated nuclear reaction data (ENDF, http://www-nds.iaea.org/endf). The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by NDS includes 14 Centres in 8 Countries (China, Hungary, India, Japan, Korea, Russian, Ukraine, USA) and 2 International Organizations (NEA, IAEA). It had the first meeting of four core centres (Brookhaven, Saclay, Obninsk, Vienna) in 1966 and the EXFOR was adopted as an official data exchange format. In 2000, IAEA implemented the EXFOR database as a relational multiform database and the EXFOR is a trusted, increasing and living database with 19100 experimental works (as of September 2011) and 141600 data tables. The EXFOR provides a compilation control system for selection of articles and compilation of data and the NRDC home page provides manuals, documents and codes. The nuclear data can be retrieved by the web-retrieval system or distributed on a DVD on request. The EXFOR data play a critical role in the development of evaluated nuclear reaction data. There are several major general purpose libraries: ENDF (US), CENDL (China), JEFF (EU), JENDL (Japan) and RUSFOND (Russia). In addition, there are special libraries for particular applications: EAF (European Activation File), FENDL (Fusion Evaluated Nuclear Data Library for ITER neutronics), IBANDL (Ion Beam Analysis Nuclear Data Library for surface analysis of solids), IRDF, DXS (Dosimetry, radiation damage and gas production data) and Medical portal. Dr V. Zerkin of NDS demonstrated the data retrieval from the EXFOR database and the ENDF library.

  15. Direct nuclear reactions and the structure of atomic nuclei

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1985-01-01

    The present thesis deals with two different aspects of direct nuclear reactions, namely on the one hand with the microscopic calculation of the imaginary optical potential for the elastic nucleon-nucleus scattering as well as on the other hand with the microscopic analysis of giant magnetic resonances in atomic nuclei which are excited by (p,n) charge-exchange reactions. In the first part of the thesis the imaginary part of the optical potential for the elastic proton- and neutron-nucleus scattering is microscopically calculated in the framework of the so called nuclear-structure approximation to the optical potential. The calculations are performed in the Feshbach formalism in second-order perturbation theory corresponding to an effective projectile-target-nucleon interaction. In the second part of this thesis in the framework of microscopic nuclear models a complete analysis of different A(p,n)B charge-exchange reactions at high incident energies 160 MeV 90 Zr(p,n) reaction three collective spin-isospin resonances could be uniquely identified. (orig./HSI) [de

  16. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  17. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  18. Asian collaboration on nuclear reaction data compilation

    International Nuclear Information System (INIS)

    Aikawa, Masayuki; Furutachi, Naoya; Kato, Kiyoshi; Makinaga, Ayano; Devi, Vidya; Ichinkhorloo, Dagvadorj; Odsuren, Myagmarjav; Tsubakihara, Kohsuke; Katayama, Toshiyuki; Otuka, Naohiko

    2013-01-01

    Nuclear reaction data are essential for research and development in nuclear engineering, radiation therapy, nuclear physics and astrophysics. Experimental data must be compiled in a database and be accessible to nuclear data users. One of the nuclear reaction databases is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC) under the auspices of the International Atomic Energy Agency. Recently, collaboration among the Asian NRDC members is being further developed under the support of the Asia-Africa Science Platform Program of the Japan Society for the Promotion of Science. We report the activity for three years to develop the Asian collaboration on nuclear reaction data compilation. (author)

  19. Introduction to nuclear reactions

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1980-01-01

    This introduction to nuclear reaction phenomena is aimed primarily but not exclusively at readers at the undergraduate student level. An overview of the subject is presented in the first two chapters entitled - Some background information and Introduction to nuclear reactions. The third chapter reviews scattering theory with emphasis on the underlying physical ideas and also provides schematic entrees to the more advanced topics. The physical models which have been developed to account for the various aspects of nuclear phenomena are described in more detail in chapter 4. References and exercises are appended to each chapter. (U.K.)

  20. Analysis of fluorine by nuclear reactions and applications to human dental enamel

    International Nuclear Information System (INIS)

    Stroobants, J.; Bodart, F.; Deconninck, G.; Demortier, G.; Nicolas, G.

    Nuclear reactions induced on Fluorine by low energy protons are investigated, thick target excitation yield curves and tables for 19 F(p,p'γ) 19 F and 19 F(p,αγ) 16 O reactions are given between 0.3 and 2.5 MeV. Interferences from other nuclear reactions, detection limits and sensitivity for Fluorine detection are investigated. After a wide investigation of the repartition of Fluorine in tooth enamel it is concluded that there is an equilibrium of the concentrations between tooth and saliva which is rapidly restored after the perturbation introduced by the external treatments. (author)

  1. Compositional analysis of silicon nitride films on Si and GaAs by backscattering spectrometry and nuclear resonance reaction analysis

    International Nuclear Information System (INIS)

    Kumar, Sanjiv; Raju, V.S.

    2004-01-01

    This paper describes the application of proton and α-backscattering spectrometry for the determination of atomic ratio of Si to N in 1100-5000 A silicon nitride films on Si and GaAs. The conventional α-Rutherford backscattering spectrometry is suitable for the analysis of films on Si; it is rather inadequate for films on GaAs due to higher background from the substrate. It is shown that these films can be analysed by 14 N(α,α) 14 N scattering with 3.5 MeV α-particles. Proton elastic scattering with enhanced cross sections for 28 Si(p,p) 28 Si and 14 N(p,p) 14 N scatterings, is also suitable for analysing films on GaAs. However, the analysis of films on Si by this technique is difficult due to interferences between the signals of Si from the film and the substrate. In addition, the hydrogen content in films is determined by 1 H( 19 F,αγ) 16 O nuclear reaction analysis using the resonance at 6.4 MeV. The combination of backscattering spectrometry with nuclear reaction analysis provides compositional analysis of ternary Si 1-(x+y) N x H y films

  2. Compilation and R-matrix analysis of Big Bang nuclear reaction rates

    International Nuclear Information System (INIS)

    Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen; Coc, Alain; Vangioni-Flam, Elisabeth

    2004-01-01

    We use the R-matrix theory to fit low-energy data on nuclear reactions involved in Big Bang nucleosynthesis. Special attention is paid to the rate uncertainties which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats

  3. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  4. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  5. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  6. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  7. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  8. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  9. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  10. Forging the link between nuclear reactions and nuclear structure.

    Science.gov (United States)

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  11. Theoretical studies in nuclear reaction and nuclear structure. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    MacDonald, W.M.; Redish, E.F.

    1978-01-01

    The research program covers four major areas of nuclear theory: reaction theory including both few-body and many-body systems, intermediate energy reactions including nucleon-nucleon processes, pion physics, and nuclear dynamics. In many-body reaction theory the major achievement has been the development of a unitary and connected Hamiltonian formulation adapted to approximate calculations which include 3-body channels. A new analysis of isobaric analog states attracts high resolution data parameters which characterize these states and provide information about the nucleon-nucleon interaction. The multiple-scattering analysis of approximately GeV proton-nucleus scattering has been validated by agreement in absolute magnitude with new experimental data, and contributions of a nucleon isobar were identified. The Banerjee-Cammarata dynamical theory of the pion-nucleon interaction has been found to satisfy several independent tests of dispersion relations as well as predicting experimental phase shifts. In nuclear dynamics a new S-matrix theory of time-dependent Hartree-Fock promises to provide a new approach to heavy-ion reactions. A list of publications is included

  12. Nuclear reaction database on Meme Media

    International Nuclear Information System (INIS)

    Ohbayashi, Yoshihide; Masui, Hiroshi; Aoyama, Shigeyoshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    We have developed the system of charged particle nuclear reaction data (CPND) on the IntelligentPad architecture. We called the system CONTIP, which is an abbreviation of 'Creative, Cooperative and Cultural Objects for Nuclear data and Tools'. NRDF (Nuclear Reaction Data File), which is a kind of CPND compilation, is applied as an application example. Although CONTIP is currently applied to NRDF, the framework can be generalized to use the other nuclear database. We will develop CONTIP to give the framework for effective utilization of nuclear data. (author)

  13. Catalysis of Nuclear Reactions by Electrons

    Science.gov (United States)

    Lipoglavšek, Matej

    2018-01-01

    Electron screening enhances nuclear reaction cross sections at low energies. We studied the nuclear reaction 1H(19F,αγ)16O in inverse kinematics in different solid hydrogen targets. Measured resonance strengths differed by up to a factor of 10 in different targets. We also studied the 2H(p,γ)3He fusion reaction and observed electrons emitted as reaction products instead of γ rays. In this case electron screening greatly enhances internal conversion probability.

  14. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  15. Biological analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Cookson, J.A.; Legge, G.J.F.

    1975-01-01

    Most low-energy nuclear accelerators are now partly used on analytical studies in support of sciences other than nuclear physics. This paper gives a short review of such analytical techniques (X-ray analysis, elastic scattering analysis, nuclear reaction analysis, and the nuclear microprobe) with particular reference to biological applications and also emphasizes the role of the positional analysis that can be performed with a focused beam of ions - the nuclear microprobe. (author)

  16. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2000-01-01

    Full text: This year 1999 can be considered as very successful. Not only that we have published 33 papers in journals listed by the Philadelphia Institute of Science but because our hard work allowed us to obtain new and exciting results. A group of theoretical papers concerned with application of correlation among random matrices elements developed for statistical aspects of nuclear coupling into continuum to study of the collective effects in brain activity and stock market dynamics. These papers arose quite an interest and got several citations. Studies of the nonpartonic components in the nucleon structure function led to better understanding of the higher-twist effects. It was shown that inclusion of the terms of the order of 1/Q 4 improves fits to the experimental data. A review paper summarizing results on the role of the leading baryon in high energy reactions appeared in Progress on Nuclear and Particle Physics. Studies on multistep transfer reactions of light heavy ions in collaboration with the Institute of Nuclear Physics of the Ukrainian Academy of Sciences in Kiev have explained angular distributions of many reactions using the coupled channel theory. We have shown that it is possible to determine energy dependence of the optical model potential for such unstable nuclei like 8 Be. Further studies of mechanism of near threshold light meson production in collaboration with Juelich and Jagiellonian University were performed. Within COSY 10 and COSY 11 collaborations new data on the isospin symmetry breaking in pionic reactions and strange meson accompanied by hyperons emission were obtained. Together with colleagues from the Flerov Nuclear Reaction Laboratory we have started experiments with radioactive beams. Using magnetic separator COMBAS velocity distributions of isotopes with 2 ≤Z≤11 in reactions induced by 16 O on 9 Be were obtained. At the high resolution radioactive beam channel ACCULINA reactions induced by 6 He and 8 He nuclei were studied

  17. Analysis of a nuclear backscattering and reaction data by the method of convolution integrals

    International Nuclear Information System (INIS)

    Lewis, M.B.

    1979-02-01

    A quantitative description of nuclear backscattering and reaction processes is made. Various formulas pertinent to nuclear microanalysis are assembled in a manner useful for experimental application. Convolution integrals relating profiles of atoms in a metal substrate to the nuclear reaction spectra obtained in the laboratory are described and computed. Energy straggling and multiple scattering are explicitly included and shown to be important. Examples of the application of the method to simple backscattering, oxide films, and implanted gas are discussed. 7 figures, 1 table

  18. Theory of nuclear reactions, with applications to heavy ion scattering reactions

    International Nuclear Information System (INIS)

    Youssef, M.S.A.

    1981-01-01

    Nuclear science to day, has gained its stature through the pioneer work of both theorists and experimentalists within its two main divisions, Nuclear Reaction and Nuclear Structure theories. Our main interest in this theoretical work in nuclear reaction theory is focused on three topics, come under the headings of three parts which are the constituents of the present paper. Part 1 is concerned with ''Contributions to the theory of Threshold phenomena in nuclear reactions; cluster threshold states in heavy ion reactions''. Part II is devoted to ''Hermiticity of the Laplacian operator, R-matrix theories and direct interaction theory'', while part xII is ascribed to ''Heavy ion transfer reactions and scattering''. The aforementioned selected topics are the backbones of this thesis, which starts with general introduction giving a brief account about the material included in. In each part, investiqations are given in an extended manner through several chapters. Finally, the thesis is ended eith the chapter on ''General Discussions and Conclusions''. Appendices, references, and figure captions are found at the end of each part, the matter which we believe to facilitate much the reading through of the thesis. The first two parts are based (to some extent) on the same formal background (R-matrix, Kapur-Peierls-theories) and they converge to solve some physical problems originating from flux conservation laws in nuclear reactions, while the third part is indirect related to the first two; in principle it joins the other two parts under computational aspects. All of them after all, form the solidarity of the material included in the thesis. (author)

  19. Dynamic screening in solar and stellar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Daeppen, W. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States); Mussack, K. [Los Alamos National Laboratory, XTD-2, Los Alamos, NM (United States)

    2012-02-15

    In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions was revisited in the 1990s. In particular the issue of dynamic effects was raised by Shaviv and Shaviv, who applied the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In the last few years, the USC group has first reproduced Shaviv and Shaviv's numerical analysis of the screening energy, showing an effect of dynamic screening. When the consequence for the reaction-rate was computed, a rather surprising resulted, which is contrary to that from static screening theory. Our calculations showed that dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential. If this can be independently confirmed, then the effects of dynamic screening are highly relevant and should be included in stellar nuclear reaction rates (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Nuclear reaction database on Meme Media

    Energy Technology Data Exchange (ETDEWEB)

    Ohbayashi, Yoshihide; Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Kato, Kiyoshi [Division of Physics, Graduate School of Science, Hokkaido Univ., Sapporo, Hokkaido (Japan); Chiba, Masaki [Division of Social Information, Sapporo Gakuin University, Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed the system of charged particle nuclear reaction data (CPND) on the IntelligentPad architecture. We called the system CONTIP, which is an abbreviation of 'Creative, Cooperative and Cultural Objects for Nuclear data and Tools'. NRDF (Nuclear Reaction Data File), which is a kind of CPND compilation, is applied as an application example. Although CONTIP is currently applied to NRDF, the framework can be generalized to use the othernuclear database. We will develop CONTIP to give the framework for effective utilization of nuclear data. (author)

  1. Nuclear fission, chain reaction and criticality

    International Nuclear Information System (INIS)

    Reuss, Paul

    2016-01-01

    Criticality is, notably for nuclear reactors, the status which separates the case of a fission chain reaction which inexorably decays, from that of a reaction which grows faster and faster until a counter-reaction occurs. If this status is an objective in nuclear reactors, it must not be reached or exceeded in any case in other types of installations in which fissile materials are handled (fabrication, transports, nuclear fuel processing). The author proposes an insight into this notion of criticality, discusses elements of neutron science which allow the multiplication factor to be assessed, analyses accidental scenarios which may happen, and presents associated experiments and computation codes

  2. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  3. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  4. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Smith, Michael S.

    2001-01-01

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  5. Japan Nuclear Reaction Data Centre (JCPRG) Progress Report

    International Nuclear Information System (INIS)

    2011-01-01

    In this report, we give a brief review of the activities carried out by the ''Japan Nuclear Reaction Data Centre (JCPRG)'' since the last NRDC meeting in 2009. The main subjects of our activities are; (1) reaction data compilation, (2) evaluation of the astrophysical nuclear reaction data for light nuclei, and (3) cooperation of nuclear data activities in Asia. Our activities in detail are as follows. a) New reaction data compilation (NRDF and EXFOR) b) Conversion of old NRDF to EXFOR c) Bibliography compilation (CINDA) d) Evaluation of astrophysical nuclear reaction data based on theoretical calculations for light nuclei e) Collaboration among nuclear data physicists in Asia for the EXFOR compilation to form a stable base f) Database maintenance and services (NRDF, EXFOR/ENDF and CINDA) g) Development of software systems (GSYS) h) Customer services

  6. Nuclear reactions. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Paetz gen. Schieck, Hans [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2014-03-01

    Modern, self-contained introduction to the subject matter. Emphasizes the interplay between theory and experiment. Course-tested tutorial style, contains many derivations. Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown - mainly by performing scattering experiments with electrons, muons, and neutrinos - to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction. The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no end in sight for either theoretical or experimental developments as shown e.g. by the recent need to introduce more sophisticated three-body interactions to account for an improved picture of nuclear structure and reactions. Yet, it turns out that the internal structure of the nucleons has comparatively little influence on the behavior of the nucleons in nuclei, and nuclear physics - especially nuclear structure and reactions - is thus a field of science in its own right, without much recourse to subnuclear degrees of freedom. This book collects essential material that was presented in the form of lectures notes in nuclear physics courses for graduate students at the University of Cologne. It follows the course's approach, conveying the subject matter by combining experimental facts and

  7. Nuclear reactions. An introduction

    International Nuclear Information System (INIS)

    Paetz gen. Schieck, Hans

    2014-01-01

    Modern, self-contained introduction to the subject matter. Emphasizes the interplay between theory and experiment. Course-tested tutorial style, contains many derivations. Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown - mainly by performing scattering experiments with electrons, muons, and neutrinos - to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction. The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no end in sight for either theoretical or experimental developments as shown e.g. by the recent need to introduce more sophisticated three-body interactions to account for an improved picture of nuclear structure and reactions. Yet, it turns out that the internal structure of the nucleons has comparatively little influence on the behavior of the nucleons in nuclei, and nuclear physics - especially nuclear structure and reactions - is thus a field of science in its own right, without much recourse to subnuclear degrees of freedom. This book collects essential material that was presented in the form of lectures notes in nuclear physics courses for graduate students at the University of Cologne. It follows the course's approach, conveying the subject matter by combining experimental facts and experimental

  8. Possibility of analysis using RBS, PIXE and nuclear reaction on the electrostatic Pelletron accelerator 5SDH-2

    International Nuclear Information System (INIS)

    Nguyen The Nghia; Bui Van Loat; Le Hong Khiem

    2011-01-01

    The electrostatic Pelletron accelerator 5SDH-2 is installing at Hanoi University of Sciences. This accelerator will be the first tandem electrostatic accelerator installed in Vietnam. The schematic structure, principle of operation of the machine and its application for analysis using Rutherford Back Scattering (RBS), Particle-Induced X-ray Emission (PIXE) and Nuclear Reaction Analysis (NRA) will be presented. (author)

  9. Radiochemistry and nuclear methods of analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Vance, D.

    1991-01-01

    This book provides both the fundamentals of radiochemistry as well as specific applications of nuclear techniques to analytical chemistry. It includes such areas of application as radioimmunoassay and activation techniques using very short-lined indicator radionuclides. It emphasizes the current nuclear methods of analysis such as neutron activation PIXE, nuclear reaction analysis, Rutherford backscattering, isotope dilution analysis and others

  10. Statistical nuclear reactions

    International Nuclear Information System (INIS)

    Hilaire, S.

    2001-01-01

    A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)

  11. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  12. Nanoscopic analysis using Maruhn-Greiner theory by energy based variables in lattice for low energy nuclear reactions (LENRs)

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; WooTae Ho

    2016-01-01

    Maruhn-Greiner theory is investigated for the low energy nuclear reactions (LENRs) in the aspect of the energy productions. Conventional nuclear reactions could give the hints in another kind of the nuclear theoretical utilizations. The results of simulations show the ranges of the configurations for H-ion to Pd with 10; 000 ions as 10 and 180 keV. The most probable ranges are 30 and 600 nanometers respectively. In the simulation result of broad energy regions, the cutoff energy, 350 keV , is very significant in analyzing the LENR, because the range usually depends on the entering particle, target particle, and energy of the entering particle. Therefore, the 350 keV shows there is priority for hydrogen interaction from the energy. In the analysis, the water (H_2O) has the better possibility in LENR after the 350 keV . Following the simulation for searching LENRs, the possible conditions that include the energy based variables of atomic ranges, Debye length, and reaction time has been investigated for the designed energy productions

  13. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  14. Verification of cold nuclear fusion reaction, (1)

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aratono, Yasuyuki; Hirabayashi, Takakuni

    1991-01-01

    Can cold nuclear fusion reaction occur as is expected? If it occurs, what extent is its reaction probability? At present after 2 years elapsed since its beginning, the clear solution of these questions is not yet obtained. In many reaction systems employing different means, the experiments to confirm the cold nuclear fusion reaction have been attempted. In order to confirm that the nuclear fusion reaction of deuterium mutually has occurred, the neutrons, He-3, protons, tritium or generated heat, which were formed by the reaction and released from the system, are measured. Since it is considered that the frequency of the occurrence at normal temperature of the reaction is very low, it is necessary to select the most suitable method upon evaluating the limit of detection peculiar to the measuring methods. The methods of measuring neutrons, protons, gamma ray and generated heat, and the reaction systems by electrolytic process and dry process are explained. The detection of plural kinds of the reaction products and the confirmation of synchronism of signals are important. (K.I.)

  15. Japan Nuclear Reaction Data Centre (JCPRG), Progress Report

    International Nuclear Information System (INIS)

    Aikawa, M.

    2012-01-01

    In this report, we review the activities of Japan Nuclear Reaction Data Centre (JCPRG) since the last NRDC meeting in 2011. Our main objectives are as follows: a) Compilation of nuclear reaction data for two databases, NRDF and EXFOR b) Evaluation of astrophysical nuclear reaction data c) Development of software and systems d) Development of collaboration among Asian countries. (author)

  16. Solar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, G

    1978-04-01

    The current state of neutrino solar astrophysics is outlined, showing the contradictions between the experimental results of solar neutrino detection and the standard solar models constructed on the basis of the star structure and development theory, which give values for high-energy neutrino fluxes considerably exceeding the upper experimental limit. A number of hypotheses interpreting the experimental results are summarized. The hypotheses are critically assessed and experiments are recommended for refining or verifying experimental data. Also dealt with are nuclear reactions in the Sun, as is the attempt to interpret the anomalous by high /sup 3/He fluxes from the Sun and the relatively small amounts of solar neutrinos and gamma quanta. The importance is emphasized of the simultaneous and complex measurement of the fluxes of neutrons, gamma radiation, and isotopes of hydrogen, helium, and boron from the Sun as indicators of nuclear reactions in the Sun.

  17. A study on the hierarchy model of nuclear reactions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Sekiya, Tamotsu

    1975-01-01

    The application of the hierarchy model of nuclear reaction is discussed, and the hierarchy model means that the compound nucleus state is formed after several steps, at least, one step of reaction. This model was applied to the analysis of the observed cross sections of 235 U and some other elements. Neglecting exchange scattering effect, the equations for the total neutron cross section of 235 U were obtained. One of these equations describes explicitly the hierarchy of the transition from intermediate reaction state Xm into the compound nucleus state Xs, and another one describes the cross section averaged over an energy interval larger than the average level spacing of compound nucleus eigenvalues. The hierarchy of reaction mechanism was investigated in more detail, and the hierarchy model was applied to the case of unresolved energy region. It was not tried to evaluate the strength function in the mass region (A>140), since the effect of nuclear deformation was neglected in the task. (Iwase, T.)

  18. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  19. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Cardenas, M.

    1976-01-01

    It is revised the nuclear reactions which present an interest in astrophysics regarding the explanation of some problems such as the relative quantity of the elements, the structure and evolution of the stars. The principal object of the study is the determination of the experimental possibilities in the field of astrophysics, of an accelerator Van de Graaff's 700 KeV type. Two hundred nuclear reactions approximately, were found, and nothing or very little has been done in the intervals of energy which are of interest. Since the bombardment energies and the involved sections are low in some cases, there are real possibilities, for the largest number of stars to obtain important statistical data with the above mentioned accelerator, taking some necessary precautions. (author)

  20. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  1. Nuclear chain reaction: forty years later

    International Nuclear Information System (INIS)

    Sachs, R.G.

    1984-01-01

    The proceedings from a 1982 symposium 40 years after the first controlled nuclear chain reaction took place in Chicago covers four sessions and public discussion. The session covered the history of the chain reaction; peaceful uses in technology, medicine, and biological science; peaceful uses in power generation; and nuclear weapons control. Among the speakers were Eugene Wigner, Glenn Seaborg, Alvin Weinberg, and others who participated in the first chain reaction experiments. The proceedings reflect differences of opinion among the scientists as well as the general public. References, slides, and tables used to illustrate the individual talks are included with the papers

  2. SkyNet: A Modular Nuclear Reaction Network Library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  3. A method of simulating and visualizing nuclear reactions

    International Nuclear Information System (INIS)

    Atwood, C.H.; Paul, K.M.

    1994-01-01

    Teaching nuclear reactions to students is difficult because the mechanisms are complex and directly visualizing them is impossible. As a teaching tool, the authors have developed a method of simulating nuclear reactions using colliding water droplets. Videotaping of the collisions, taken with a high shutter speed camera and run frame-by-frame, shows details of the collisions that are analogous to nuclear reactions. The method for colliding the water drops and videotaping the collisions are shown

  4. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  5. Determination and theoretical analysis of the differential cross sections of the 2H(d,p) reaction at energies and detection angles suitable for NRA (Nuclear Reaction Analysis)

    International Nuclear Information System (INIS)

    Paneta, V.; Axiotis, M.; Lagoyannis, A.; Gastis, P.; Kokkoris, M.; Vlastou, R.; Kontos, A.; Mayer, M.; Misaelides, P.; Perdikakis, G.

    2014-01-01

    The accurate determination of deuteron depth profile presents a strong analytical challenge for all the principal IBA (Ion Beam Analysis) techniques. As far as NRA (Nuclear Reaction Analysis) is concerned, the 2 H(d,p) reaction, seems to be a promising candidate, especially in the case of complex matrices, or for the study of deep-implanted deuteron layers. In the present work differential cross-section values for the 2 H(d,p) reaction have been determined at 140, 160 and 170 degrees, for E d (lab) = 900-1600 keV, with an energy step of 50 keV, using a well-characterized, thin C:D target deposited on a polished Si wafer. The detection system consisted of 3 silicon surface barrier (SSB) detectors (thickness of 1000 μm) placed at a distance of about 11-13 cm from the target, at the appropriate angles. The experimental results were analyzed using the R-matrix calculations code AZURE. The results, in graphical and tabular form, will soon be available to the scientific community through IBANDL

  6. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  7. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  8. Proceedings of the third meeting on nuclear analysis

    International Nuclear Information System (INIS)

    1984-04-01

    This international meeting presents a series of methodical and device developments in the field of nuclear analysis techniques such as nuclear reaction analysis, activation analysis, pixe analysis, tracer techniques or atom and nuclear spectroscopy. The applications cover an extensive field in energetics, geology, medicine, biology, environment protection, materials science etc. and are presented in 141 papers

  9. Effect of nuclear reaction rates on primordial abundances

    International Nuclear Information System (INIS)

    Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li

  10. Induced isospin mixing in direct nuclear reactions

    International Nuclear Information System (INIS)

    Lenske, H.

    1979-07-01

    The effect of charge-dependent interactions on nuclear reactions is investigated. First, a survey is given on the most important results concerning the charge dependence of the nucleon-nucleon interaction. The isospin symmetry and invariance principles are discussed. Violations of the isospin symmetry occuring in direct nuclear reactions are analysed using the soupled channel theory, the folding model and microscopic descriptions. Finally, induced isospin mixing in isospin-forbidden direct reactions is considered using the example of the inelastic scattering of deuterons on 12 C. (KBE)

  11. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  12. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1993-01-01

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in 82 Sr; structure of and identical bands in 182 Hg and 178 Pt; a highly deformed band in 136 Pm; particle decay of the 164 Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of 12 O; modeling and theoretical studies; excited 16 O disassembly into four alpha particles; 209 Bi + 136 Xe collisions at 28.2 MeV/amu; and development work on 4π solid angle gamma detectors, and x-ray detectors

  13. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  14. Applications of computer simulation, nuclear reactions and elastic scattering to surface analysis of materials

    Directory of Open Access Journals (Sweden)

    Pacheco de Carvalho, J. A.

    2008-08-01

    Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of 12C and 16O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (4He+ ions are also used.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de 12C y de 16O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (4He+, tanto a Rutherford como resonante.

  15. Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Rolfs, C.; California Inst. of Tech., Pasadena

    1986-01-01

    Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)

  16. Materials analysis with a nuclear microprobe

    International Nuclear Information System (INIS)

    Maggiore, C.J.

    1980-01-01

    The ability to produce focused beams of a few MeV light ions from Van de Graaff accelerators has resulted in the development of nuclear microprobes. Rutherford backscattering, nuclear reactions, and particle-induced x-ray emission are used to provide spatially resolved information from the near surface region of materials. Rutherford backscattering provides nondestructive depth and mass resolution. Nuclear reactions are sensitive to light elements (Z < 15). Particle-induced x-ray analysis is similar to electron microprobe analysis, but 2 orders of magnitude more sensitive. The focused beams are usually produced with specially designed multiplets of magnetic quadrupoles. The LASL microprobe uses a superconducting solenoid as a final lens. The data are acquired by a computer interfaced to the experiment with CAMAC. The characteristics of the information acquired with a nuclear microprobe are discussed; the means of producing the beams of nuclear particles are described; and the limitations and applications of such systems are given

  17. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    Energy Technology Data Exchange (ETDEWEB)

    Hirdt, J.A. [Department of Mathematics and Computer Science, St. Joseph' s College, Patchogue, NY 11772 (United States); Brown, D.A., E-mail: dbrown@bnl.gov [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-01-15

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  18. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    International Nuclear Information System (INIS)

    Hirdt, J.A.; Brown, D.A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  19. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  20. Nuclear reactions and synthesis of new transuranium species

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1983-01-01

    In this short review, I shall describe the special aspects of heavy ion nuclear reaction mechanisms operative in the transuranium region, the role of new techniques, possible nuclear reactions for the production of additional transuranium elements and nuclear species and the importance of work in this region for the development of nuclear models and theoretical concepts. This discussion should make it clear that a continuing supply of leements and isotopes, some fo them relatively short-lived, produced by the HFIR-TRU facilities, will be a requirement for future synthesis of new elements and isotopes

  1. The analysis of B, C, N, and O by nuclear reactions

    International Nuclear Information System (INIS)

    Debras, G.; Deconninck, G.

    1979-01-01

    Nuclear reactions induced on light elements by lower energy deuterons are investigated. Differential cross section for 10 B(d,α 0 ) 8 Be, 10 B(d,α 1 ) 8 Be, 12 C(d,p 0 ) 13 C, 14 N(d,α 1 ) 12 C, 16 O(d,p 0 ) 17 O, 16 O(d,p 1 ) 17 O and 16 O(d,α 0 ) 14 N reactions are measured between 0.5 and 3 MeV at an observation angle of 135 0 with respect to the incident beam. Possible application of these reactions to the measurement of surface concentration is considered. Special emphasis was given on nitrogen determination in order to study nitrogen concentration in industrial glasses. Surface nitrogen repartition on glass, origin of nitrogen, influence of oxidizing and reducing conditions and glass structure are discussed. (author)

  2. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  3. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  4. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  5. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  6. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Maino, G.; Menapace, E. [Bologna Univ., ENEA (Italy)

    2008-07-01

    Main aspects are discussed concerning nuclear reaction cross-sections for PIXE and PIGE (Particle Induced Gamma-ray Emission) analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing recent results from international Conferences on Nuclear Data for Science and Technology and from NEANSC meetings and IAEA initiatives on the matter.To sum up this work, it is then worth remarking the following items: IBA techniques are powerful tools to derive unique information as for corrosion, degradation and, generally, conservation conditions of materials. Careful analyses of specific systems require accurate evaluations and establishment of complete databases, in particular for stopping powers and relevant cross sections. The physical parameters to be accurately determined are, therefore, nuclear reaction cross sections of importance for NRA analysis of light elements and stopping powers and ranges of light and heavy ions in various matrices. Light elements (H, Li, B, C, N, O, etc.) play an important role as constituents of many important organic as well inorganic materials in historical and artistic objects. To a large extent these materials occur in the near-surface area of a material with altered or degraded composition.

  7. Nuclear reaction data for IBA applications to cultural heritage diagnostics

    International Nuclear Information System (INIS)

    Maino, G.; Menapace, E.

    2008-01-01

    Main aspects are discussed concerning nuclear reaction cross-sections for PIXE and PIGE (Particle Induced Gamma-ray Emission) analyses, especially referring to cultural heritage diagnostics, within the framework of ion beam analysis (IBA) methods, also reviewing recent results from international Conferences on Nuclear Data for Science and Technology and from NEANSC meetings and IAEA initiatives on the matter.To sum up this work, it is then worth remarking the following items: IBA techniques are powerful tools to derive unique information as for corrosion, degradation and, generally, conservation conditions of materials. Careful analyses of specific systems require accurate evaluations and establishment of complete databases, in particular for stopping powers and relevant cross sections. The physical parameters to be accurately determined are, therefore, nuclear reaction cross sections of importance for NRA analysis of light elements and stopping powers and ranges of light and heavy ions in various matrices. Light elements (H, Li, B, C, N, O, etc.) play an important role as constituents of many important organic as well inorganic materials in historical and artistic objects. To a large extent these materials occur in the near-surface area of a material with altered or degraded composition

  8. Activation cross-section data for -particle-induced nuclear reactions ...

    Indian Academy of Sciences (India)

    B M ALI

    2018-02-20

    particle-induced nuclear reactions on natural vanadium up to 20 MeV. It should be mentioned that this study represents a part of (a supplement) systematical study of charged particles-induced nuclear reactions. Earlier studies were.

  9. New methods in nuclear reaction theory

    International Nuclear Information System (INIS)

    Redish, E.F.

    1979-01-01

    Standard nuclear reaction methods are limited to treating problems that generalize two-body scattering. These are problems with only one continuous (vector) degree of freedom (CDOF). The difficulty in extending these methods to cases with two or more CDOFs is not just the additional numerical complexity: the mathematical problem is usually not well-posed. It is hard to guarantee that the proper boundary conditions (BCs) are satisfied. Since this is not generally known, the discussion is begun by considering the physics of this problem in the context of coupled-channel calculations. In practice, the difficulties are usually swept under the rug by the use of a highly developed phenomenology (or worse, by the failure to test a calculation for convergence). This approach limits the kind of reactions that can be handled to ones occurring on the surface of where a second CDOF can be treated perturbatively. In the past twenty years, the work of Faddeev, the quantum three-body problem has been solved. Many techniques (and codes) are now available for solving problems with two CDOFs. A method for using these techniques in the nuclear N-body problem is presented. A set of well-posed (connected kernal) equations for physical scattering operators is taken. Then it is shown how approximation schemes can be developed for a wide range of reaction mechanisms. The resulting general framework for a reaction theory can be applied to a number of nuclear problems. One result is a rigorous treatment of multistep transfer reactions with the possibility of systematically generating corrections. The application of the method to resonance reactions and knock-out is discussed. 12 figures

  10. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  11. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  12. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1978-02-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states

  13. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. (author)

  14. Sequential series for nuclear reactions

    International Nuclear Information System (INIS)

    Izumo, Ko

    1975-01-01

    A new time-dependent treatment of nuclear reactions is given, in which the wave function of compound nucleus is expanded by a sequential series of the reaction processes. The wave functions of the sequential series form another complete set of compound nucleus at the limit Δt→0. It is pointed out that the wave function is characterized by the quantities: the number of degrees of freedom of motion n, the period of the motion (Poincare cycle) tsub(n), the delay time t sub(nμ) and the relaxation time tausub(n) to the equilibrium of compound nucleus, instead of the usual quantum number lambda, the energy eigenvalue Esub(lambda) and the total width GAMMAsub(lambda) of resonance levels, respectively. The transition matrix elements and the yields of nuclear reactions also become the functions of time given by the Fourier transform of the usual ones. The Poincare cycles of compound nuclei are compared with the observed correlations among resonance levels, which are about 10 -17 --10 -16 sec for medium and heavy nuclei and about 10 -20 sec for the intermediate resonances. (auth.)

  15. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1975-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. 3 figures

  16. Studies of nuclear second moments for pre-equilibrium nuclear reaction theories

    International Nuclear Information System (INIS)

    Sato, K.; Yoshida, S.

    1987-01-01

    The nuclear second moments, important inputs to pre-equilibrium reaction theories, are evaluated by assuming a simple model. The positive definite nature of the second moments is examined, and the nuclear level densities are calculated using positive definite second moments. (orig.)

  17. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-01-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described

  18. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  19. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  20. The nuclear structure and low-energy reactions (NSLER) collaboration

    International Nuclear Information System (INIS)

    Dean, D J

    2006-01-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible

  1. Compilation status and research topics in Hokkaido University Nuclear Reaction Data Centre

    International Nuclear Information System (INIS)

    Aikawa, M.; Furutachi, N.; Katō, K.; Ebata, S.; Ichinkhorloo, D.; Imai, S.; Sarsembayeva, A.; Zhou, B.; Otuka, N.

    2015-01-01

    Nuclear reaction data are necessary and applicable for many application fields. The nuclear reaction data must be compiled into a database for convenient availability. One such database is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC). As a member of the NRDC, the Hokkaido University Nuclear Reaction Data Centre (JCPRG) compiles charged-particle induced reaction data and contributes about 10 percent of the EXFOR database. In this paper, we show the recent compilation status and related research topics of JCPRG. (author)

  2. Lin's theory of flux and nuclear reactions

    International Nuclear Information System (INIS)

    Ping-Wha Lin

    2002-01-01

    Mathematical development of Lin's theory of flux is presented. Based on the Theory, when a chemical reaction system is subjected to a high time rate of temperature change, it changes from equilibrium to non-equilibrium conditions. It is proved mathematically that, when a gas system is subjected to a high time rate of temperature increase, the activities of particles (molecules, atoms or nuclei, and electrons) are increased: the particles are accelerated; frequencies and amplitudes of electron and atomic vibrations in a molecule increased; average kinetic energy of the particles increased; atomic bonds are ruptured; electrons are caused to leave their orbits. If most or all of the electrons leave their orbits, the gas fluid becomes plasma, which is very active chemically. The acceleration of nuclei in the dynamic condition can lead to nuclear reactions. In the pilot plant studies conducted at Research Triangle, NC, USA, for SO 2 conversion to SO 3 by rapid heating, a 10-ft high vertically fired combustor (VFC) was used. Air containing 0.5% SO 2 is forced continuously through the VFC, where it is heated by burners for conversion of SO 2 to SO 3 . During the idle period of operation, no external heat is added to the system by turning off the burners. It is observed that, as the air passing through the VFC during the idle period of sixteen hours, the temperature of the flowing air consistently rises up rapidly from ambient temperature (90 deg F) at inlet of the VFC to an average temperature as high as 582 deg F (in the range of 840 deg F to 455 deg F) at one section of the VFC, an increase of about 500 deg F. The air flow temperature increase of such large magnitude and long duration clearly indicates that nuclear reactions are present in VFC. It is also found that the water vapour in the air stream has completely disappeared in the VFC, for no sulphuric acid formation resulting from the reaction of water and SO 3 is detected there. Presumably, the water vapour in the

  3. Archival and Dissemination of the U.S. and Canadian Experimental Nuclear Reaction Data (EXFOR Project)

    Science.gov (United States)

    Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor

    2017-09-01

    The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.

  4. International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko; Dunaeva, Svetlana

    2010-11-01

    The activities of fourteen nuclear data centres are summarized, and their cooperation under the auspices of the International Atomic Energy Agency is described. Each of the centres provides coverage for different geographical zones and/or specific types of nuclear data, thus together providing a complete service for users worldwide. The International Network of Nuclear Reaction Data Centres (NRDC) was established with the objective of providing nuclear physics databases that are required for nuclear technology (encompassing energy and non-energy applications) by coordinating the collection, compilation and dissemination of nuclear data on an international scale. (author)

  5. The (n,p) reaction as a probe of nuclear structure

    International Nuclear Information System (INIS)

    Jackson, K.P.; Celler, A.

    1988-08-01

    An account is given of some results of studies of the (n,p) reaction on nuclear targets at TRIUMF. The (n,p) reaction, inducing spin flip transitions in isospin space, appears to exhibit a unique sensitivity to certain aspects of nuclear structure. The TRIUMF facility is the first to exploit the (n,p) reaction as a detailed probe of nuclear structure at energies above 65 MeV. In the (n,p) reaction Fermi transitions are absent, but there is a dramatic impact on Gamow-Teller and other collective transactions. Some nuclear transition matrix elements can be estimated on the basis of (n,p) measurements. Experiments have been carried out at TRIUMF on Li 6 , Fe 5 4, and Zr 9 0 targets. The calibration of the (n,p) reaction as a probe of the Gamow-Teller strength B + GT has been achieved for three targets. (L.L.) (45 refs., 10 figs.)

  6. Reaction network modelling for kinetic parameters of pyrolytic reactions of CHON extractants in nuclear fuel processing waste management. Contributed Paper IT-07

    International Nuclear Information System (INIS)

    Gaikar, Vilas G.; Thaore, Vaishali

    2014-01-01

    The recovery and purification of plutonium (Pu) from uranium (U) and of U from Thorium (Th) in spent nuclear fuel reprocessing is accomplished by processes that employ organophosphorous compounds as extractants.The main objective of the present work was to develop a suitable kinetic model and to determine the kinetic parameters of the set of reactions involved in the pyrolysis of amides by fitting the experimental data in the reaction network model. The experimental data and analysis are expected to be useful in the steam pyrolysis of amide waste in fuel reprocessing in the nuclear industry. The basic approach was to understand the reaction mechanism of the steam pyrolysis of amides and then to estimate the reaction rate constants for the generation and consumption of different species by solving the model equations, allowing for the determination of important species in the reaction network

  7. Nuclear reaction analysis of hydrogen in amorphous silicon and silicon carbide films

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Contellec, M.; Richard, J.; Ligeon, E.; Fontenille, J.; Danielou, R.

    1980-01-01

    The 1 H( 11 B, α)αα nuclear reaction is used to determine the H content and the density of amorphous semiconductor Si 1 -sub(x)Csub(x)H 2 and SiHsub(z) thin films. Rutherford backscattering is used to determine the x values and infrared transmission to study the hydrogen bonds. We have observed a transfer or/and a release of hydrogen under bombardment by various ions and we show that this last effect must be taken into account for a correct determination of the hydrogen content. An attempt is made to correlate the hydrogen release with electronic and nuclear energy losses. (orig.)

  8. Nuclear data for proton activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhammedov, S; Vasidov, A [Institute of Nuclear Physics of Academy of Sciences of Uzbekistan, 702132 Ulugbek, Tashkent (Uzbekistan); Comsan, M N.H. [Nuclear Research Centre, Inshas Cyclotron Facility, AEA 13759 Cairo (Egypt)

    2000-11-15

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy.

  9. Nuclear data for proton activation analysis

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Vasidov, A.; Comsan, M.N.H.

    2000-01-01

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy

  10. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    1999-01-01

    Full text: The year 1998 can be considered as very successful both in harvesting important results from the existing collaborations as well as establishing new ones. In the frame of the COSY-11 collaboration cross section for η' production in p-p collision close to the threshold has been measured. In the region of excess energy between 1.5 and 4.1 MeV the η' cross sections are much lower than those of the π 0 and η production. There seems to be no indication that N * resonance doorway-like state governs the reaction mechanisms. The determined coupling constant g η'pp appears to be consistent with the prediction of the simple quark model. Results were published in Phys. Rev. Letters. Using the GEM detector, investigations of the isospin symmetry breaking were performed. Two reactions channels 3 Heπ 0 and 3 Hπ + from the reaction at proton momenta 700, 767, and 825 MeV/c were measured. Data analysis is in progress. The model of the meson cloud in the nucleon which is a speciality of our department has been successfully applied to explain the leading proton and neutron cross sections from the e + or e - proton collisions at the HERA ring. General formulas to calculate polarization of the particles with spin transmitted through the barrier in the presence of strong magnetic fields were obtained. New collaboration between our laboratory and the Institute for Nuclear Research in Kiev has been established. One PhD thesis was completed in the frame of this collaboration. We joined the new collaboration with Lund University concerning studies of hot nuclear matter properties using heavy ions from CELSIUS ring. First test of the phoswich detector for the forward wall was performed in Uppsala. Isoscalar giant dipole resonance strength distribution 3 ℎω has been evaluated in 208 Pb in the space of 1p1h and 2p2h excitation. The centroid energy of this state can directly be related to the nuclear incompressibility module. Our result indicates rather large values of

  11. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  12. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  13. NRABASE 2.0. Charged-particle nuclear reaction data for ion beam analysis

    International Nuclear Information System (INIS)

    Gurbich, A.F.

    1997-01-01

    For 30 targets between H-1 and Ag-109, differential cross sections for reactions induced by protons, deuterons, He-3 and alpha particles are given in tabular and graphical form. The data were compiled from original experimental references. The database was developed under a research contract with the IAEA Physics Section and is available on diskette from the IAEA Nuclear Data Section. (author)

  14. Dispersion Theory of Direct Nuclear Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, I. S. [Institute Of Theoretical And Experimental Physics, Moscow, USSR (Russian Federation)

    1963-01-15

    The main difficulty of nuclear theory is that nuclei contain many (i. e. more than two) but not too many particles. Therefore, the precise equations of motion (Schrodinger equation) become practically useless, and at the same time it is impossible to apply statistical methods with confidence. The latter circumstance is graphically expressed in direct nuclear reactions. The essence of these phenomena consists in that a particle hitting the target nucleus transfers its energy and momentum either to one nuclear nucleon or to a comparatively small group of nucleons. This fact would not by itself be surprising if at the same time we did not observe a directly opposite picture corresponding to the production of a compound nucleus, i. e. the statistical distribution among all degrees of freedom of the energy transferred to the nucleus. In macroscopic physics the co-existence of. such processes is impossible since they would contradict the second law of thermodynamics. Such processes occur quite often in nuclear physics because of the inapplic- ability of the asymptotic laws of the theory of probabilities. Since statistical methods were obviously unsuited for the direct process theory, this led to the conviction that it was necessary to return to the Schrodinger equation for a system of many interacting particles. But the technique of solving such equations is still confined to perturbation theory and therefore it was the latter that was used to describe direct nuclear reactions despite the fact that the interaction between nucleons is strong and the application of perturb- ation theory to the interaction of free nucleons (to n-p or p-p scattering, for example) leads to results which strongly contradict experimental data. The results of the application of perturbation theory to direct nuclear reactions sometimes agree with experimental data and sometimes cqntradict them, but in either case they can hardly satisfy the investigator because it seems impossible to give the

  15. Dispersion Theory of Direct Nuclear Reactions

    International Nuclear Information System (INIS)

    Shapiro, I.S.

    1963-01-01

    The main difficulty of nuclear theory is that nuclei contain many (i. e. more than two) but not too many particles. Therefore, the precise equations of motion (Schrodinger equation) become practically useless, and at the same time it is impossible to apply statistical methods with confidence. The latter circumstance is graphically expressed in direct nuclear reactions. The essence of these phenomena consists in that a particle hitting the target nucleus transfers its energy and momentum either to one nuclear nucleon or to a comparatively small group of nucleons. This fact would not by itself be surprising if at the same time we did not observe a directly opposite picture corresponding to the production of a compound nucleus, i. e. the statistical distribution among all degrees of freedom of the energy transferred to the nucleus. In macroscopic physics the co-existence of. such processes is impossible since they would contradict the second law of thermodynamics. Such processes occur quite often in nuclear physics because of the inapplic- ability of the asymptotic laws of the theory of probabilities. Since statistical methods were obviously unsuited for the direct process theory, this led to the conviction that it was necessary to return to the Schrodinger equation for a system of many interacting particles. But the technique of solving such equations is still confined to perturbation theory and therefore it was the latter that was used to describe direct nuclear reactions despite the fact that the interaction between nucleons is strong and the application of perturb- ation theory to the interaction of free nucleons (to n-p or p-p scattering, for example) leads to results which strongly contradict experimental data. The results of the application of perturbation theory to direct nuclear reactions sometimes agree with experimental data and sometimes cqntradict them, but in either case they can hardly satisfy the investigator because it seems impossible to give the

  16. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  17. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2002-01-01

    Full text: Our research in 2001 can be characterized by a wide range of various subjects e.g. search for new physics in Au + Au collisions at the energy in the centre of mass per nucleon pair √ s NN = 200 GeV through hunting dibaryon formation in p + p → K + + D (dibaryon) reaction to the application of the random matrix theory taken from nuclear reaction studies in the analysis of fluctuations of the stock exchange time and space correlations. Heavy ion reactions have been studied in a broad range of energies. At low energy of the 12 C ions (E CM = 25.57 MeV), delivered by the Warsaw U200P cyclotron, the reactions induced on 11 B target were studied. Coupling effects between various reaction channels were found. At the energies corresponding to the liquid-to-gas phase transition, the onset of the flow phenomena was found in the multifragmentation of the 197 Au nuclei induced by a sequence of projectiles p, 4 He, 12 C of the energies from 1-3 GeV per nucleon. Finally, evidence of the melting of the baryonic structure of the colliding nuclei was found at the highest available energies of 200 GeV per nucleon pair, in the collision of gold nuclei studied at the Relativistic Heavy Ion Collider within the BRAHMS and PHOBOS collaboration. We entered a new collaboration HIRES with the aim to discover S = -1 dibaryonic state by studying the reaction p+p → K + +D. So far many attempts to prove experimentally the existence of a dibaryonic state failed. We hope to use the unique properties of the Big Karl spectrometer to prove the existence of a sharp peak in the energy spectra of kaons. To do so, we have to reduce strongly the background of pions. A diffusely reflective threshold Cherenkov detector made from silica aerogel was designed. Preliminary tests indicate that pionic signals can be reduced by a factor of 58. Extensive studies of the mechanism of generating collective levels and the energy gap by means of diagonalizing matrices with random elements ended up with

  18. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  19. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  20. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  1. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  2. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  3. Low energy nuclear reaction polyplasmon postulate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, John L. [201 Heritage Drive, Apt. 208, Canton, GA 30093 (United States)], E-mail: RUSSELLJL@aol.com

    2008-11-15

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is

  4. Low energy nuclear reaction polyplasmon postulate

    International Nuclear Information System (INIS)

    Russell, John L.

    2008-01-01

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is absorbed in the plasmon

  5. Determination of 18O by prompt nuclear reaction analysis: application for measurement of microsamples

    International Nuclear Information System (INIS)

    Bradshaw, S.D.; Cohen, D.; Katsaros, A.; Tom, J.; Owen, I.J.

    1987-01-01

    A method is described for the routine determination of 18 O concentrations in microsamples of biological fluids. The method utilizes the prompt nuclear reaction 18 O(p,α 0 ) 15 N, and 846-keV protons from a 3-MeV Van de Graaff Accelerator are focused on ∼2,000-Angstroem-thick Ta 2 O 5 targets prepared by anodic oxidation from 50-μl samples of water distilled from blood or other biological fluids. The broad cross section of the resonance peak for this nuclear reaction (47 keV) ensures high yields, especially at small reaction angles, and the high-energy α particles produced by the reaction (4 MeV) are readily separated from scattered protons by the use of an aluminized Mylar foil of suitable thickness. Background levels of 18 O (0.204 atom%) can be detected with run times of ∼5-8 min, and the sensitivity of the method is of the order of 0.05 atom%. Experimental error due to sample preparation was found to be 1.7%, and counting errors were close to theoretical limits so that total error was of the order of 2.5%. Duplicate samples were analyzed by use of the 18 O(p,α 0 ) 15 N reaction at Lucas Heights, Australia and the 18 O(p,n) 18 F reaction at the University of California, Los Angeles, and the agreement was excellent (y = 1.0123x - 0.0123, r = 0.991, P < 0.001). The theoretical limitations and the general applicability of the method in biological studies designed to estimate the rate of metabolism of free-ranging animals are also discussed. 24 refs., 2 tabs., 7 figs

  6. Nuclear halo and its related reactions

    International Nuclear Information System (INIS)

    Zhang Huanqiao

    2005-01-01

    In order to search proton halo, the reaction cross sections of 27,28 P, 29 S and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at Z=15. The experimental results for the isotones with Z=14 as well as 28 P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross sections for 28 P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27 P. Our theoretical analysis shows that an enlarged core together with proton halo is probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27 P+ 28 Si. In addition, we find from the experimental results that 29 S may have a moderate proton halo structure. Except the nuclei near or at drop-lines, halo may appear in the excited states of stable nuclei. By means of the asymptotic normalization coefficients (ANC's) extracted from transfer reactions of 11 B(d, p) 12 B, 12 C(d, p) 13 C, and H( 6 He, n) 6 Li, we have verified that the second ( Jπ = 2 - ) and third (Jπ = 1 - ) excited states in 12 B and the first (Jπ =1/2 + ) excited state in 13 C are the neutron halo states, while the second excited state (3.56 MeV, Jπ = 0 + ) in 6 Li is a proton-neutron halo state. We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity 2 >/R 2 of

  7. The role of nuclear reaction theory and data in nuclear energy and safety applications

    International Nuclear Information System (INIS)

    Schmidt, J.J.

    1993-01-01

    The nuclear data requirements for nuclear fission reactor design and safety computations are so large that they cannot be satisfied by experimental measurements alone. Nuclear reaction theories and models have recently been developed and refined to the extent, that, with suitable parametrisation and fitting to accurately known experimental data, they can be used for filling gaps in the available experimental nuclear data base as well as for bulk computations of nuclear reaction, e.g. activation cross sections. The concurrent rapid development of ever more powerful mainframe and personal computers has stimulated the development of comprehensive nuclear model computer codes. A representative selection of such codes will be presented in the lectures and computer exercises of this Workshop. In order to fulfill nuclear data requirements of the nineties and, at the same time, develop improved tools for nuclear physics teaching at developing country universities it will be required and a major future task of the IAEA nuclear data programme to develop computer files of ''best'' sets of nuclear parameters for standardised input to nuclear model computations of nuclear data. Nuclear scientists from developing countries can make substantial contributions to this project. (author). 25 refs

  8. Nuclear reactions an introduction

    CERN Document Server

    Paetz gen. Schieck, Hans

    2014-01-01

    Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown – mainly by performing scattering experiments with electrons, muons, and neutrinos – to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction.   The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no ...

  9. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2000-01-01

    Full text: During last year the physicists of the Department of Nuclear Reactions were involved in many experiments and projects: -Low energy nuclear reactions: For the first time a heavy ion beam from the Warsaw Cyclotron C-200 was used to investigate elastic and inelastic scattering of 12 C ions from 12 C target. The experiment is a part of a long range programme devoted to study the energy dependence of the nucleus-nucleus interactions. -Multifragmentation of relativistic heavy ions: Multifragmentation reactions induced by 12 C on different heavy targets and at different energies were studied in experiments performed at Gesellschaft fuer Schwerionenforschung by the ALADIN Collaboration. These asymmetric systems were investigated in order to study the interplay between preequilibrium and equilibrium phenomena in the nuclear liquid - gas phase transition. -The structure of nucleons: A novel, two-structure description of the Roper resonance was proposed on the basis of the α-p scattering data reanalysed by means of a T-matrix formalism. -Atomic physics: Emission of the X-rays by fast heavy ions (S, Ti, Fe) as they traverse the matter (thin carbon or other light element foil) was investigated in a series of experiments performed at University of Erlangen. It was demonstrated, that the characteristic K α X-rays emitted by a heavy ion can serve as a tool for Z-value control of the ion. -Material research: Semiconductor heterostructures were investigated by means of Rutherford Back Scattering and Channeling methods using the 2 MeV α particles from the Van de Graaff accelerator ''Lech'' at the Department. The following reports present the results and major successes which were achieved in 1999. (author)

  10. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  11. Intermediate and high energy nuclear reactions at the hadronic structural level

    Energy Technology Data Exchange (ETDEWEB)

    Slowinski, B [Institute of Physics, Warsaw, University of Technology, Poland, Institute of Atomic Energy, Swierk, (Poland)

    1997-12-31

    Form tens of MeV to several hundred of GeV is stretched out quite a large interval of energy when the interaction between hadrons (for instance, pion/nucleon-nucleus and nucleus-nucleus reactions) can be described by the considerably simplified way with still acceptable accuracy. This happens because in this energy region hadrons (i.e. pions, nucleons etc.) remain quasiparticles of nuclear matter mostly without revealing any internal structure, their de Broglie`s wavelength is much shorter as compared to the average intranuclear nucleon`s distance, and the energy transfers in the reaction are, on the average, significantly greater than the binding energy of nucleons inside nuclei. Consequently an approach to the analysis of these phenomena based on simple geometric and probabilistic considerations is justifiable, especially for many practical purposes, in particular, for shielding and dosimetric estimations, material behaviour prediction, as well as for the approximate evaluation of electronuclear breeding effects in different composites of target materials, for nuclear passivation problems and so on. In this work basic physical reasons of such a simplified picture of intermediate and high energy nuclear reactions are presented. The most usual phenomenological models of hadronic multiple emission/production and recent results of the cascade evaporation type models, are also discussed. 2 figs.

  12. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  13. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  14. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  15. NEA contributions to the worldwide collection, compilation and dissemination of nuclear reaction data

    International Nuclear Information System (INIS)

    Dupont, E.

    2012-01-01

    The NEA Data Bank is an international centre of reference for basic nuclear tools used in the analysis and prediction of phenomena in different nuclear applications. The Data Bank collects and compiles computer codes and scientific data and contributes to their improvement for the benefit of scientists in its member countries. In line with this mission, the Data Bank is a core centre of the International Network of Nuclear Reaction Data Centres (NRDC), which co-ordinates the worldwide collection, compilation and dissemination of nuclear reaction data. The NRDC network was established in 1976 from the earlier Four-Centres' Network created in 1966 by the United States, the NEA, the International Atomic Energy Agency (IAEA) and the former Soviet Union. Today, the NRDC is a worldwide co-operation network under the auspices of the IAEA, with 14 nuclear data centres from 8 countries and 2 international organisations belonging to the network. The main objective of the NRDC is to preserve, update and disseminate experimental nuclear reaction data that have been compiled for more than 40 years in a shared database (EXFOR). The EXFOR database contains basic nuclear data on low- to medium-energy experiments for incident neutron, photon and various charged-particle-induced reactions on a wide range of isotopes, natural elements and compounds. Today, with more than 140 000 data sets from approximately 20 000 experiments, EXFOR is by far the most important and complete experimental nuclear reaction database in the world and is widely used in the field of nuclear science and technology. The Data Bank is responsible for the collection and compilation of nuclear reaction data measured in its geographical area. Since 1966, the Data Bank has contributed around 5 000 experiments to the EXFOR database, and it continues to compile new data while maintaining the highest level of quality throughout the database. NRDC co-ordination meetings are held on a biennial basis. Recent meetings

  16. The nuclear structure dependence of (p,α) reactions on light nuclei

    International Nuclear Information System (INIS)

    Leitner, W.

    1985-01-01

    As the theoretical predictions on nuclear structure and on nucleon-nucleon correlations implied by the nuclear wave functions are not subject to an immediate experimental verification the authors require a reaction theory connecting these state functions with observable quantities. The application of (rho,α) reactions as a spectroscopic tool has found widespread interest, as a number of microscopic descriptions of the reaction mechanism have facilitated the extraction of nuclear structure information. A microscopic formulation results in a strong dependence of the cross section on the nuclear structure of the reaction partners. The different basic configurations of the transferred nucleon system contribute coherently, thus causing a great sensitivity to the relative phases of the wave functions' amplitudes. A major disadvantage inherent to these microscopic theories of multinucleon-transfer reactions is based on the destruction of the transition amplitude's formal symmetry in the dynamic and in the nuclear structure part. In order to retain the factorization of the reaction amplitude, the authors applied the cluster ansatz to the microscopic theory of an earlier studies. The attractive features of this procedure are the conservation of the coherence properties of the structure term and the straightforward determination of transition strengths, independent of an elaborate DWBA treatment

  17. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  18. Lattice location of O{sup 18} in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vairavel, Mathayan; Sundaravel, Balakrishnan, E-mail: bsundar@igcar.gov.in; Panigrahi, Binaykumar

    2016-09-15

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O{sup 18} ions with fluence of 5 × 10{sup 15} ions/cm{sup 2} are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O{sup 18} is analysed using the α-particles yield from O{sup 18}(p,α)N{sup 15} nuclear reaction. The tilt angular scans of α-particle yield along 〈110〉 and 〈100〉 axial directions are performed at room temperature. Lattice location of O{sup 18} is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  19. Positron annihilation investigation and nuclear reaction analysis of helium and oxygen-implanted zirconia

    International Nuclear Information System (INIS)

    Grynszpan, R.I.; Saude, S.; Anwand, W.; Brauer, G.

    2005-01-01

    Since irradiation affects in-service properties of zirconia, we investigated the fluence dependence on production and thermal stability of defects induced by helium and oxygen-ion implantation in single crystals of yttria-fully-stabilized zirconia. In either case, depth profiling by slow positron implantation spectroscopy (SPIS) detects a distribution of vacancy-type defects peaking at 60% of the projected ion range R p . Owing to the saturation of positron-trapping occurring for low fluences, which depends on the ion mass, we could estimate a critical size of clusters ranging from 0.4 to 1.6 nm. The lack of SPIS-evidence of an open-volume excess at R p is explained by the presence of over-pressurized gas bubbles. This assumption is confirmed by Nuclear Reaction Analysis of 3 He concentration profiles, which shows that helium remains partly trapped at R p , even after annealing above 400 o C

  20. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  1. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1995 - August 31, 1996

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1996-01-01

    The research program of this group addresses three areas of nuclear physics: (1) nuclear structure studies at high spin; (2) nuclear reactions with emphasis on the interface between structure and reactions; (3) development and use of novel techniques and instrumentation in the above areas of research. Research with their collaborators responsible for the data analysis is also included very briefly in this report. Significant progress has been made in all the areas of their research program during the past year. The lists of publications and invited talks are given in Chapter 6. In the past 3 years the authors published 10 letters, 4 rapid communications and 7 full papers. Seven full papers have also been submitted. In addition, 12 invited talks have been delivered in professional conferences. In this report the authors highlight their accomplishments and advances in the three areas of their effort

  2. A detailed test of the statistical theory of nuclear reactions

    NARCIS (Netherlands)

    Spijkervet, Andreas Lambertus

    1978-01-01

    Low-energy nuclear reactions are governed by two principal kinds of mechanisms: direct reaction mechanisms characterized by reaction times of the order of the transit time of the bombarding particle through the nucleus , and compound nucelar reaction mechanisms. The reaction times ot the latter are

  3. Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Kelic, A.; Napolitani, P.; Schmidt, K.H.; Yordanov, O.; Ignatyuk, A.V.; Rejmund, F.

    2003-12-01

    Complex structural effects in the nuclide production from the projectile fragmentation of 1 A GeV 238 U nuclei in a titanium target are reported. The structure seems to be insensitive to the excitation energy induced in the reaction. This is in contrast to the prominent structural features found in nuclear fission and in transfer reactions, which gradually disappear with increasing excitation energy. Using the statistical model of nuclear reactions, relations to structural effects in nuclear binding and in the nuclear level density are demonstrated. (orig.)

  4. Hadron Cancer Therapy: Role of Nuclear Reactions

    Science.gov (United States)

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  5. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Rayet, M.

    1990-01-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects

  6. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  7. Images of mycobacterium for nuclear reactions

    International Nuclear Information System (INIS)

    Lima, C.T.S.; Crispim, V.R.; Silva, M.G.

    2007-01-01

    According to the World Health Organization (WHO) tuberculosis is responsible for 2.9 million deaths annually worldwide. The necessity for optimizing time to detect the tuberculosis bacillus (mycobacterium tuberculosis) in the sputum samples of affected individuals (TB patients) led to the development of a methodology based on the doping with boron of the bacillus, submission of the samples to thermal neutron beam and ionizing particles, generating nuclear reactions of the types: 10 B (n,α) 7 Li and 10 B(α, p) 13 C. Images of these bacilli are obtained by means of the nuclear tracks produced in the CR-39 detector for particles products of these nuclear reactions, α and p. When the CR-39 is submitted to a chemical attack the traces are developed and the images of the microorganisms registered in the detector can be observed with a conventional light microscope, characterizing them by morphology. The use of this methodology results in images of the mycobacterium tuberculosis becoming more defined and enlarged than those obtained by bacilloscopy, in which the sample is submitted to the method of coloration of Ziehl-Neelsen (ZN) and observed in light microscopy. (author)

  8. Neutron-induced complex reaction analysis with 3D nuclear track simulation

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Palfalvi, J.K.; Akatov, Yu.; Arevalo, O.; Greaves, E.D.; Nemeth, P.; Palacios, D.; Szabo, J.; Eoerdoegh, I.

    2005-01-01

    Complex (multiple) etched tracks are analysed through digitised images and 3D simulation by a purpose-built algorithm. From a binary track image an unfolding procedure is followed to generate a 3D track model, from which several track parameters are estimated. The method presented here allows the deposited energy, that originated from particle fragmentation or carbon spallation by means of induced tracks in commercially available PADC detectors, to be estimated. Results of evaluated nuclear tracks related to 12 C (n,3αn ' ) reaction are presented here. The detectors were exposed on the ISS in 2001

  9. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  10. Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1999-01-01

    In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications

  11. On nuclear reaction duration at the range of overlapping resonances

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.

    1981-01-01

    Nuclear reaction duration above the threshold of overlapping resonances is investigated and its importance to obtain a new information on a collision mechanism is evidenced. It is shown also that the duration of resonant nuclear reactions is asymptotically decreasing according to the law[E 2 n(E)] -1 when the energy E and the number of open channels n(E) are increasing [ru

  12. Nuclear proliferation in the Near East. What is the reaction of the regional neighbors on Iran's nuclear program? An analysis based on the proliferation debate; Nukleare Proliferation im Nahen Osten. Wie reagieren die regionalen Nachbarn auf Irans Nuklearprogramm? Eine Analyse anhand der Proliferationsdebatte

    Energy Technology Data Exchange (ETDEWEB)

    Erny, Matthias [Zuericher Hochschule fuer Angewandte Wissenschaften (ZHAW), Winterthur (Switzerland)

    2012-07-01

    The booklet on the reactions of the neighbor states on Iran's nuclear program covers the following topics: Iran's position in the Near East: historical aspects, Iran's nuclear program. The nuclear proliferation and the theory debate: the role of nuclear weapons in the international policy, proliferation optimism, proliferation pessimism. Analysis of the players and theory criticism: nuclear states (Israel, Pakistan), emerging nuclear states (Saudi Arab, Egypt, Turkey, Syria), states without nuclear weapons (Iraq, Jordan, GCC states); analysis, theory criticism.

  13. Quantum shielding effects on the Gamow penetration factor for nuclear fusion reaction in quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-01-01

    The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.

  14. Nuclear Forensics and Radiochemistry: Reaction Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-22

    In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

  15. Low energy nuclear reactions: 2007 update

    International Nuclear Information System (INIS)

    Krivit, S. B.

    2007-01-01

    Introduction: This paper presents an overview of the field of low energy nuclear reactions (LENR), a branch of condensed matter nuclear science. It explains some of the various terminologies that have been used to describe this field since it debuted as 'cold fusion' in 1989. The paper also reviews some of the most interesting news and developments regarding low energy nuclear reaction experiments and theory, and some of the sociological and political trends that have affected the field over the last 18 years. It concludes with a list of resources and information for scientists, journalists and decision makers. Understanding the Nature of the Reactions The worldwide LENR research effort includes 200 researchers in 13 nations. Over the last 18 years, 12 international conferences have been held, as well as 7 regional conferences in Italy, 14 in Russia and 7 in Japan. The significant questions that face this field of research are: a) Are LENRs a genuine nuclear reaction? b) If so, is there a release of excess energy? and c) Are transmutations possible? If the answers to these questions turn out to be positive, the next questions will be: d) Is the energy release cost-effective? and e) Are the transmutations useful? Despite the fact that repeatability and reproducibility are challenging, the required parameters for achieving the excess heat effect are well understood. First, a high atomic loading ratio of D into Pd is required. In most conditions, 0.90 is the minimum threshold required to produce an excess heat effect. Second, a high electrical current density in the cathode is needed, 250 mA/cm 2 under most conditions. The third requirement is for some kind of dynamic trigger to impose a deuterium flux in, on or around the cathode. The challenge that researchers face is how to achieve these conditions. Some of the Most Interesting Research Developments Work by Stanislaw Szpak, Pamela Boss and Frank Gordon at the U.S. Navy's SPAWAR Systems Center in San Diego has

  16. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  17. Nuclear reaction studies: Progress report

    International Nuclear Information System (INIS)

    Thaler, R.M.

    1986-01-01

    A principal focus of recent research has been the three-body problem. A great deal of effort has been devoted to the creation of a computer program to calculate physical observables in the three body problem below 1 GeV. Successful results have been obtained for the triton. Additional work concerns scattering of K + mesons from nuclei, antinucleon physics, relativistic nuclear physics and inclusive reactions

  18. Development of a utility system for nuclear reaction data file: WinNRDF

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayasi, Yosihide; Masui, Hiroshi; Chiba, Masaki; Kato, Kiyoshi; Ohnishi, Akira

    2000-01-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  19. Direct nuclear reaction experiments for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Cherubini, S.

    2016-01-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi- Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the "1"8F(p,α)"1"5O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the "1"8F(d,α "1"5O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  20. The Cascade-Exciton Approach to Nuclear Reactions. (Foundation and Achievements)

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1994-01-01

    The relativistic kinetic equations describing nuclear reactions at intermediate energies are obtained on the dynamical basis. These equations are analyzed and realized in several versions of the Cascade Exciton Model (CEM). The CEM assumes that reactions occur in three stages: the intranuclear cascade, pre-equilibrium and the evaporative ones. A large variety of experimental data on hadron- and photonuclear reactions in the bombarding energy range up to several GeV are analyzed in this approach. The contributions of different pion and photon absorption mechanisms and the relative role of different particle and photon production mechanisms in these reactions are estimated. The CEM describes adequately nuclear reactions at intermediate energies and has one of the best predictive powers as compared to other available modern models. 55 refs., 10 figs., 1 tab

  1. BNL325 - Nuclear reaction data display program

    International Nuclear Information System (INIS)

    Dunford, C.L.

    1994-01-01

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs

  2. BNL325 - Nuclear reaction data display program

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, C L

    1994-11-27

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs.

  3. Development of the system for excitation function automatic measurement of nuclear reactions

    International Nuclear Information System (INIS)

    Sapozhnikov, A.B.

    2004-01-01

    Full text: The resonance nuclear reaction method is applied at the tandem accelerator UKP-2-1 to determinate films thickness and obtain light element depth distribution. The system for automatic measurement of the nuclear reaction excitation curve has been developed. It allowed to obtain an excitation function of nuclear reaction using continuous changing potential of the target with energy step of 6 eV. Saw-tooth voltage with amplitude up to 6 kV from the block of scanning beam is fed to a target. The amplitude is determined by constant voltage from the scanning beam block control. Nal(Tl) detector detects gamma quanta - the products of a nuclear reaction and transforms they in voltage impulses. The impulses through the amplifier income in the single-channel analyzer which forms impulses to start the analog-to-digital converter. The value of saw-tooth voltage corresponding to the moment of gamma quantum detection is read by the analog-to-digital converter, where it is transformed to digital code and transmitted to the computer. The computer program has been developed to control the process of accumulation of excitation function. The dependence a detected γ-quanta yield from a target potential is automatically plotted by the program. This dependence corresponds to the nuclear reaction excitation function. If scanning amplitude is not enough in order to scan need depth of a sample, an operator increases energy of the proton beam changing high voltage potential of the terminal up 3 keV and measures the nuclear reaction excitation function with the new energy. This procedure can be repeated some times. After that 'sewing' of excitation functions is carried out by the program under the hypothesis that nuclear reaction yield in last points be identical

  4. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  5. Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy

    Science.gov (United States)

    Mondal, Ashok; Adhikari, S.; Basu, C.

    2017-09-01

    The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.

  6. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  7. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  8. The US nuclear reaction data network. Summary of the first meeting, March 13 ampersand 14 1996

    International Nuclear Information System (INIS)

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN

  9. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  10. Nuclear data needs for material analysis

    International Nuclear Information System (INIS)

    Molnar, Gabor L.

    2001-01-01

    Nuclear data for material analysis using neutron-based methods are examined. Besides a critical review of the available data, emphasis is given to emerging application areas and new experimental techniques. Neutron scattering and reaction data, as well as decay data for delayed and prompt gamma activation analysis are all discussed in detail. Conclusions are formed concerning the need of new measurement, calculation, evaluation and dissemination activities. (author)

  11. Nuclear reaction matrix and nuclear forces

    International Nuclear Information System (INIS)

    Nagata, Sinobu; Bando, Hiroharu; Akaishi, Yoshinori.

    1979-01-01

    An essentially exact method of solution is presented for the reaction- matrix (G-matrix) equation defined with the orthogonalized plane-wave intermediate spectrum for high-lying two-particle states. The accuracy is examined for introduced truncations and also in comparison with the Tsai-Kuo and Sauer methods. Properties of the G-matrix are discussed with emphasis on the relation with the saturation mechanism, especially overall saturation from light to heavy nuclei. Density and starting-energy dependences of the G-matrix are separately extracted and discussed. It is demonstrated that the triplet-even tensor component of the nuclear force is principally responsible for these dependences and hence for the saturation mechanism. In this context different nuclear potentials are used in the renormalized Brueckner calculation for energies of closed-shell nuclei in the harmonic oscillator basis. A semi-phenomenological ''two-body potential'' is devised so that it can reproduce the saturation energies and densities of nuclear matter and finite nuclei in the lowest-order Brueckner treatment. It is composed of a realistic N-N potential and two additional parts; one incorporates the three-body force effect and the other is assumed to embody higher-cluster correlations in G. The tensor component in the triplet-even state of this potential is enhanced by the three-body force effect. The G-matrix is represented in the effective local form and decomposed into central, LS and tensor components. (author)

  12. Enhancement Mechanisms of Low Energy Nuclear Reactions

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy o...

  13. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  14. Influence of hexadecapole deformations of the nuclear shape of subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Fernandez Niello, J.

    1989-01-01

    A systematic study of the contribution of hexadecapole deformations to the enhancement of subbarrier fusion cross reactions is carried out. The analysis is based on calculations that cover the full range of values of hexadecapole deformations found in actual nuclear systems. The interplay of this shape degree of freedom with the presence of prolate quadrupole deformations is also contemplated. (Author) [es

  15. Statistical theory of neutron-nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1981-01-01

    In addition to the topics dealt with by the author in his lectures at the Joint IAEA/ICTP Course held at Trieste in 1978, recent developments in the statistical theory of multistep reactions are reviewed as well as the transport theory and intranuclear cascade approaches to the description of nuclear multi-step processes. (author)

  16. Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line

    Science.gov (United States)

    Dickhoff, Willem

    2012-10-01

    The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.

  17. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    International Nuclear Information System (INIS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Smith, Karl; Warren, Scott; Ferguson, Ryan; Wiescher, Michael; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-01-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described

  18. EXFOR Systems Manual Nuclear reaction Data Exchange Format

    International Nuclear Information System (INIS)

    McLane, V.

    2000-01-01

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format

  19. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  20. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    Science.gov (United States)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  1. Synthesis and applications of 18O standards for nuclear reaction analysis

    Science.gov (United States)

    Pitthan, E.; Corrêa, S. A.; Soares, G. V.; Radtke, C.; Stedile, F. C.

    2014-08-01

    A new method to synthesize 18O standard samples to be used in nuclear reaction analyses is proposed and investigated. This method consists of obtaining a Si18O2 film on a Si substrate using a natural abundance SiO2 film as a passivation layer to prevent the isotopically enriched film to be exposed to the atmosphere and possibly degraded by it. For that, sequential oxidation steps are performed followed by a controlled etching in aqueous hydrofluoric acid. Details of these steps are discussed as well as the stability of the synthesized samples. Applications using these standard samples in the field of alternative semiconductors to Si (SiC and Ge), used in micro and nanoelectronics are also presented.

  2. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Technical progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1979-01-01

    Experimental research on nuclear structure and reactions both published and in progress is summarized. Included are fusion reactions, strongly damped heavy ion collisions, and nuclear structure at high angular momentum. A list of publications is included

  3. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  4. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  5. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  6. The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system

    Science.gov (United States)

    Zerkin, V. V.; Pritychenko, B.

    2018-04-01

    The EXchange FORmat (EXFOR) experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource is based on numerical data sets and bibliographical information of ∼22,000 experiments since the beginning of nuclear science. The principles of the computer database organization, its extended contents and Web applications development are described. New capabilities for the data sets uploads, renormalization, covariance matrix, and inverse reaction calculations are presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development, and research activities. It is publicly available at the websites of the International Atomic Energy Agency Nuclear Data Section, http://www-nds.iaea.org/exfor, the U.S. National Nuclear Data Center, http://www.nndc.bnl.gov/exfor, and the mirror sites in China, India and Russian Federation.

  7. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  8. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    This lecture series is concerned with the transport description of damped nuclear reactions. Part 1 is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expressions for the transport coefficients. The results can also be used in a wider context than the present one. Part 2 gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. More detailed presentations are due to be published soon. By necessity entire topics have been omitted. For example, no discussion is given of the calculation of the form factors, and the several instructive applications of the theory to transport of mass and change are not covered at all. For these topics they refer to the literature. It is hoped that the present notes provide a sufficient basis to make the literature on the subject accessible to the student

  9. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  10. Non extensive corrections to stellar nuclear reactions rate

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, M. [Universidade Federal de Sao Paulo (DCET/UNIFESP), Diadema, SP (Brazil). Dept. de Ciencias Exatas e da Terra; Silveira, F.E.M. [Universidade Federal do ABC, Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2010-07-01

    Full text: Stellar nucleosynthesis is widely accepted as the basic mechanism for creation of chemical elements in the Universe. In particular, nuclear reactions occurring in the Sun are recognized as responsible for its energy generation. The problem of to determine the energy generation mechanism in stars was firstly attacked by Gamow in the framework of his quantum mechanical theory of potential barrier penetration. According to that approach, the reactions rate is calculated by averaging the penetration factor over the velocity distribution of the plasma particles. A randomization of that distribution is expected as a consequence of the reactions. However, diffusion processes in the macroscopic environment should balance the resulting particles number depletion. Therefore, matter, energy, and momentum might steadily flow. In other words, a quasi-stationary equilibrium state must be attained. In this work, the potential barrier penetration approach to stellar nuclear reactions rate has been rediscussed with basis on Tsallis nonextensive statistics. The investigation has been restricted to non-resonant reactions, for which the S-factor can be regarded as a constant. It has been found that, within the extended formulation, the nonextensive q-parameter is constrained to a maximum value. Accordingly, the q-energy has been shown to exhibit a minimum. The q-Gamow peak has been derived and, in connection with the usual Gaussian approximation, the corresponding half q-width has been also estimated. Plots of the q-energy, q-Gamow peak and half q-width for some reactions with stellar physics interest have been produced. (author)

  11. Analysis of the nucleon-nucleus reactions by the quantum molecular dynamics

    International Nuclear Information System (INIS)

    Chiba, Satoshi; Niita, Koji; Maruyama, Toshiki; Fukahori, Tokio; Takada, Hiroshi; Iwamoto, Akira

    1995-01-01

    The quantum molecular dynamics + statistical decay model has been applied to analyze the nucleon-induced nuclear reactions in the energy range from 50 to 3 GeV in order to verify its applicability to light-ion induced nuclear reactions. It was found that the present approach could give a quantitative description of various cross sections such as (p,p'), (p,n), (n,p) reactions from a wide range of targets and also target-like isotope production cross sections from p+Fe reaction, showing its basic ability as a tool for the study of intermediate energy nuclear reactions and nuclear data evaluation. (author)

  12. Microanalysis of solid surfaces by nuclear reactions and elastic scattering

    International Nuclear Information System (INIS)

    Agius, B.

    1975-01-01

    The principles involved in the use of monokinetic light ions beams, of about 1MeV, to the study of surface phenomena are presented. Two complementary techniques are described: the use of elastic scattering, which allows the analysis of impurity elements heavier than the substrate components and the use of nuclear reactions specific of light elements. Typical sensitivities are of the order of 10 11 at/cm 2 in good cases. The depth resolution varies, according to the cases, from about a hundred angstroems to a few thousand angstroems [fr

  13. Low-energy nuclear reactions with double-solenoid- based ...

    Indian Academy of Sciences (India)

    solenoids to produce low-energy radioactive nuclear beams. In these systems the ... For many years, the disadvantage in these investigations ... fusion or breakup reaction, preferred with large forward-peaked cross-sections. To transfer the ...

  14. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Science.gov (United States)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  15. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  16. Development of nuclear reaction data retrieval system on Meme media

    International Nuclear Information System (INIS)

    Ohbayasi, Yosihide; Masui, Hiroshi; Aoyama, Shigeyoshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    A newly designed retrieval system of charged particle nuclear reaction data is developed on Meme media architecture. We designed the network-based (client-server) retrieval system. The server system is constructed on a UNIX workstation with a relational database, and the client system is constructed on Microsoft Windows PC using an IntelligentPad software package. The IntelligentPad is currently available as developing Meme media. We will develop the system to realize effective utilization of nuclear reaction data: I. 'Re-production, Re-edit, Re-use', II. 'Circulation, Coordination and Evolution', III. 'Knowledge discovery'. (author)

  17. A workshop report on nuclear reaction and cluster structure

    International Nuclear Information System (INIS)

    1985-01-01

    A work shop was held in June 1984 at RCNP (Research Center for Nuclear Physics), Osaka University, to discuss theory of nuclear reactions based on studies from microscopic or cluster structure viewpoints. About forty researchers participated in this work shop and 27 paperes were presented. All these papers with English abstracts are gathered in this collective report. (Aoki, K.)

  18. EMPIRE-II statistical model code for nuclear reaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M [International Atomic Energy Agency, Vienna (Austria)

    2001-12-15

    EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)

  19. From nuclear reactions to liquid-drop collisions

    International Nuclear Information System (INIS)

    Menchaca R, A.; Huidobro, F.; Martinez D, A.; Michaelian, K.; Perez, A.; Rodriguez, V.; Carjan, N.

    1997-01-01

    A review of the experimental and theoretical situation in coalescence and fragmentation studies of binary liquid-drop collisions is given, putting in perspective our own contributions, which include experiments with mercury and oil drops and the application of a nuclear reaction model, specifically modified by us for the macroscopic case. (Author)

  20. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1998-01-01

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3 H(d,n) 4 He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  1. Photopion reactions, a probe for nuclear critical opalescence

    International Nuclear Information System (INIS)

    Delorme, J.

    1980-07-01

    It is shown that photopion reactions are a good probe of the nuclear pion field for momenta characteristic of pion condensation. They are thus a direct detector of critical opalescence. Best conditions for experimental detection are discussed

  2. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    Science.gov (United States)

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  3. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Directory of Open Access Journals (Sweden)

    Utsunomiya Hiroaki

    2018-01-01

    Full Text Available We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032.

  4. Complementarity between neutron capture and heavy-ion reactions in nuclear structure studies

    International Nuclear Information System (INIS)

    Schult, O.W.B.

    1978-01-01

    The study of the complementarity of certain nuclear reactions in nuclear structure studies includes spectroscopic methods, nuclear rotation and coupling of nucleons to the core, and the de-excitation and structure of high lying states. 23 references

  5. Direct interaction in nuclear reactions: a theory

    International Nuclear Information System (INIS)

    Dominicis, C.T. de

    1959-01-01

    General treatment of the foundations of direct interaction in nuclear reactions; representation of the instantaneous elastic scattering amplitude by the scattering amplitude due to a complex potential; expansion of the instantaneous inelastic scattering amplitude and discussion of the 1. Bohr approximation (distorted waves) contribution to individual and collective states of excitation. (author) [fr

  6. Theory of nuclear structure and reactions. Annual technical progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    Macfarlane, M.H.; Serot, B.D.

    1985-01-01

    In the period covered by this report, work focused on five main areas: (1) relativistic effects in intermediate-energy nuclear reactions; (2) the role of quarks and gluons in nuclear physics; (3) quantum hadrodynamics and relativistic nuclear mean-field theory; (4) structure and reaction effects in intermediate-energy nuclear reactions; and (5) weak and electromagnetic interactions in nuclei. Results and publications in these areas are summarized. Publications are listed

  7. Study of some continuous spectra produced by nuclear reactions with light nuclei

    International Nuclear Information System (INIS)

    Marquez, L.

    1966-01-01

    The continuous spectra coming from several nuclear reactions with light nuclei were measured. The spectra can be explained by a two-step reaction mechanism; however, the reactions produced by 6 Li are different. A mechanism was proposed to explain their spectra based on the following assumptions: 6 Li makes a nuclear molecule with the target which subsequently breaks up in such a way that an α particle comes out with the kinetic energy that it has in the molecule. The calculated spectra and those measured are in good agreement. (author) [fr

  8. Laser induced nuclear reactions

    International Nuclear Information System (INIS)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  9. Summary Report of the Workshop on the Experimental Nuclear Reaction Data Database

    International Nuclear Information System (INIS)

    Semkova, V.; Pritychenko, B.

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here. (author)

  10. Summary Report of the Workshop on The Experimental Nuclear Reaction Data Database

    Energy Technology Data Exchange (ETDEWEB)

    Semkova, V. [IAEA Nuclear Data Section, Vienna (Austria); Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here.

  11. Contribution to the study of nuclear reaction analysis with low energy alpha particles (<=3,5 MeV). Comparative study of Ag non destructive nuclear reaction determination in numismatology

    International Nuclear Information System (INIS)

    Basutcu, Mehmet.

    1980-12-01

    The first part of this work concerns the development of the new analytical possibilities offered by gamma spectrometry with a beam of low energy alpha particles. With this method twenty five elements can be analyzed by non-destructive methods. Special attention is given to the determination of light elements such as lithium, boron, fluorine and sodium. The reactions brought about by the low energy alpha particles on light elements are (α,n), (α,p) or (α,α') type reactions. The various applications developed are presented after the description of the experimental conditions and the method used for calculating the contents. The problems related to the calibration, accuracy and exactness of the determinations are also discussed. The second part is about the contribution of nuclear analysis methods and of X-ray fluorescence in the field of numismatic research. Attention is focused solely on the determination of the major ingredients of coins, silver in particular. The results provided by proton activation, neutron activation in a flux of 'thermalized' neutrons of a 252 Cf isotopic source on the one hand, and by the fast neutrons of the cyclotron on the other, by gamma spectrometry under a beam of protons and alpha particles and by X-ray fluorescence are thus compared for the same analytical problem in order to grasp in a better manner the specificity of each method and to bring into evidence the complementarity they present [fr

  12. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  13. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S; Kenny, M J; Wieczorek, L [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  14. Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay

    Science.gov (United States)

    Cavallaro, M.; Cappuzzello, F.; Agodi, C.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Branchina, V.; Bussa, M. P.; Calabrese, S.; Calabretta, L.; Calanna, A.; Calvo, D.; Carbone, D.; Chávez Lomelí, E. R.; Coban, A.; Colonna, M.; D'Agostino, G.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; de Faria, P. N.; Ferraresi, C.; Ferreira, J. L.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia, U.; Giraudo, G.; Greco, V.; Hacisalihoglu, A.; Kotila, J.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lavagno, A.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lo Presti, D.; Lubian, J.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Petrascu, H.; Pinna, F.; Reito, S.; Rifuggiato, D.; Rodrigues, M. R. D.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Sgouros, O.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Tudisco, S.; Vsevolodovna, R. I. M.; Wheadon, R. J.; Yildirin, A.; Zagatto, V. A. B.

    2018-02-01

    Neutrinoless double beta decay (0vββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0vββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0vββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0vββ.

  15. Microscopic approach to the theory of light nuclei and to simple nuclear reactions

    International Nuclear Information System (INIS)

    Baz', L.I.; Filippov, G.F.

    1976-01-01

    The results of calculations for the properties of light nuclei and simple nuclear reactions using the Schrodinger multinucleon equation involving the realistic nucleon-nucleon interaction are reviewed. It is noted that the theory for the A(<=)4 nuclei is practically complete at present. The reasons for the good agreement between the theoretical and experimental cross sections of nuclear reactions are given. The programme of a correct separation of the nuclear collective degree of freedom are discussed in detail

  16. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    Science.gov (United States)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  17. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, O., E-mail: iwamoto.osamu@jaea.go.jp; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-15

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  18. Experimental Observation of Nuclear Reactions in Palladium and Uranium

    International Nuclear Information System (INIS)

    J. Dufour; D. Murat; X. Dufour; J. Foos

    2001-01-01

    By submitting various metals (Pd, U) containing hydrogen (from 2000 to 700 000 atoms of hydrogen for 1 000 000 atoms of the host metal) to the combined action of electrical currents and magnetic fields, we have observed a sizeable exothermal effect (from 0.1 to 8 W for 500 mg of metal used). This effect is beyond experimental errors, the energy output being typically 130 to 250% of the energy input and not of chemical origin (exothermal effect in the range of 7000 MJ/mol of metal in the case of palladium and of 60 MJ/mol in the case of uranium). New chemical species also appear in the processes metals. It has been shown by a QED calculation that resonances of long lifetime (s), nuclear dimensions (fm), and low energy of formation (eV) could exist. This concept seems to look like the 'shrunken hydrogen atoms' proposed by various authors. It is indeed very different in two ways (a) being a metastable state, it needs energy to be formed (a few eV) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not the source of the energy observed); (b) its formation can be described as the electron spin/proton nuclear spin interaction becoming first order in the lattice environment (whereas it is third order in a normal hydrogen atom). Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results, we put forward the following working hypothesis: In a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them HYDREX, and we assume that they are actually formed in cold fusion (CF) and low-energy nuclear reaction (LENR) experiments. Once formed, a number of HYDREX could gather around a nucleus of the lattice to form a cluster of nuclear size and of very long life time compared to nuclear time (10 -22 s). In this cluster, nuclear rearrangements could take place, yielding mainly 4 He

  19. Applying some methods to process the data coming from the nuclear reactions

    International Nuclear Information System (INIS)

    Suleymanov, M.K.; Abdinov, O.B.; Belashev, B.Z.

    2010-01-01

    Full text : The methods of a posterior increasing the resolution of the spectral lines are offered to process the data coming from the nuclear reactions. The methods have applied to process the data coming from the nuclear reactions at high energies. They give possibilities to get more detail information on a structure of the spectra of particles emitted in the nuclear reactions. The nuclear reactions are main source of the information on the structure and physics of the atomic nuclei. Usually the spectrums of the fragments of the reactions are complex ones. Apparently it is not simple to extract the necessary for investigation information. In the talk we discuss the methods of a posterior increasing the resolution of the spectral lines. The methods could be useful to process the complex data coming from the nuclear reactions. We consider the Fourier transformation method and maximum entropy one. The complex structures were identified by the method. One can see that at lest two selected points are indicated by the method. Recent we presented a talk where we shown that the results of the analyzing the structure of the pseudorapidity spectra of charged relativistic particles with ≥ 0.7 measured in Au+Em and Pb+Em at AGS and SPS energies using the Fourier transformation method and maximum entropy one. The dependences of these spectra on the number of fast target protons were studied. These distribution shown visually some plateau and shoulder that was at least three selected points on the distributions. The plateaus become wider in PbEm reactions. The existing of plateau is necessary for the parton models. The maximum entropy method could confirm the existing of the plateau and the shoulder on the distributions. The figure shows the results of applying the maximum entropy method. One can see that the method indicates several clean selected points. Some of them same with observed visually ones. We would like to note that the Fourier transformation method could not

  20. Activation analysis of thallium by /sup 203/Tl(n,2n)/sup 202/Tl reaction in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, I M; Resnizky, S M; Baro, G B [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Gerencia de Radioisotopos y Radiaciones

    1982-01-01

    Two techniques are described for neutron activation analysis of thallium in biological and geological materials, based on /sup 203/Tl(n,2n)/sup 202/Tl reaction in nuclear reactors. Co-precipitation with bismuth sulphide is used as a pre-concentration method of thallium in urine samples, and post-irradiation chemical separation is also performed. The detection limit is 0.5 ..mu..g/l, for 100 ml urine samples. For thallium determination in blendes a radiochemical separation is carried out after the irradiation. An extension of this technique is presented for glass and silicate rocks. Results for seven blende samples from different places of Argentina are shown. Analysis of two reference materials, the 614 glass from the National Bureau of Standards and the granodiorite GSP-1 from the U.S. Geological Survey were also performed. The results are in very good agreement with the certified or estimated values.

  1. High vacuum general purpose scattering chamber for nuclear reaction study

    International Nuclear Information System (INIS)

    Suresh Kumar; Ojha, S.C.

    2003-01-01

    To study the nuclear reactions induced by beam from medium energy accelerators, one of the most common facility required is a scattering chamber. In the scattering chamber, projectile collides with the target nucleus and the scattered reaction products are detected with various type of nuclear detector at different angles with respect to the beam. The experiments are performed under high vacuum to minimize the background reaction and the energy losses of the charged particles. To make the chamber general purpose various requirement of the experiments are incorporated into it. Changing of targets, changing angle of various detectors while in vacuum are the most desired features. The other features like ascertaining the beam spot size and position on the target, minimizing the background counts by proper beam dump, accurate positioning of the detector as per plan etc. are some of the important requirements

  2. Prompt nuclear analysis bibliography 1976

    International Nuclear Information System (INIS)

    Bird, J.R.; Campbell, B.L.; Cawley, R.J.

    1978-05-01

    A prompt nuclear analysis bibliography published in 1974 has been updated to include literature up to the end of 1976. The number of publications has more than doubled since mid-1973. The bibliography is now operated as a computer file and searches can be made on key words and parameters. Tables of references are given for each of the categories: backscattering, ion-ion, ion-gamma, ion-neutron, neutron-gamma, neutron-neutron and gamma-ray-induced reactions

  3. The two-proton halo nucleus {sup 17}Ne studied in high-energy nuclear breakup reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Marganiec, Justyna [IKP, TU Darmstadt, Darmstadt (Germany); EMMI, GSI, Darmstadt (Germany); GSI, Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Chulkov, Leonid [GSI, Darmstadt (Germany); NRC Kurchatov Institute, Moscow (Russian Federation); Heil, Michael; Simon, Haik [GSI, Darmstadt (Germany); Plag, Ralf [GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt (Germany); Savran, Deniz [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    We report on exclusive measurements of nuclear breakup reactions of highly-energetic (500 MeV) unstable {sup 17}Ne beams impinging on light targets in an experiment at the R{sup 3}B-LAND complete-kinematics reaction setup at GSI. Focusing on the properties of beam-like {sup 15}O-p (={sup 16}F) systems produced in one-proton-removal reactions, we are presenting a comprehensive analysis of the s-/d-wave configuration mixing of the {sup 17}Ne valence-proton pair that is used to quantify its halo-nature. The results include the {sup 15}O-p relative-energy spectrum, {sup 16}F momentum distributions, and their corresponding momentum profile.

  4. Progress Report, Nuclear Reaction Data Group at ATOMKI (NRDC Meeting, 16-19 April 2012)

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Takacs, S.; Ditroi, F.; Szelecsenyi, F.; Kovacs, Z.; Szucs, Z.; Kiraly, B.; Csikai, J.

    2012-01-01

    The research program of the Atomki Nuclear Reaction Data Group consists of measurement, compilation, evaluation and application of low and medium energy charged particle induced nuclear reaction data. The work is done in international collaborations. The experiments, data compilation and data evaluation are mainly connected to running international projects. Every day applications at ATOMKI and collaborating institutes also initiate data measurements. One initiative is the systematic experimental study of activation cross sections of proton and deuteron induced reactions for comparison with the results of modern theoretical codes to establish a more reliable experimental database and to prepare of a general use activation file up to 100 MeV protons and 50 MeV deuterons. Second program is the systematic investigation of nuclear data for production of radioisotopes candidate for use in radiotherapy. The staff members are active referrers of different journals and conference proceedings reporting nuclear data related works (Applied Radiation and Isotopes, Journal of Radioanalytical and nuclear Chemistry, Nuclear Instruments and Methods, Annals of Nuclear Energy, etc)

  5. Non-traditional neutron activation analysis by use of a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.

    2003-01-01

    Full text: Traditional reactor neutron activation analysis (NAA) based on (n, γ) - thermal neutron capture nuclear reaction has been developed into a reliable and powerful analytical method, for trace element analysis, allowing the determination of over 60 chemical elements, with good accuracy and low detection limits. Considering all possibilities of activation and a radiochemical separation of the indicator radionuclide, the majority of the elements of this group can be determined at the ppm concentration level and below. However, for solving a number of analytical problems NAA technique is not well suited or it cannot be used at all. An important limitation is that all light elements, some medium and heavy elements cannot be determined even at ppm concentration level by this method, for example, H, Be, Li, B, C, N, O, Ti, Nb, Pb, etc. Accurate determination of lithium, oxygen and other light elements in sub-microgram level is of importance in geochemical and material studies. Such examples are great many. On such instances, several non-traditional reactor activation analysis can be used which have increasingly been developed and applied to several fields of semiconductor industry, biology, geology in recent years. The purpose of this presentation is to review the modern status of non-traditional nuclear reactor activation analysis based on use of nuclear reactions excited by the flow of secondary charged particles which are produced by two methods. In first method the triton flow is produced by thermal neutrons flux which excites the nuclear reaction 6 Li(n, α)T on lithium. The neutron activation analysis associated with two consecutive reactions 6 Li(n, α)T + 16 O(T, n) 18 F is established to determine trace amounts either of lithium or of oxygen in different geological, ecological and technological samples. Besides, the triton flow can be used for the determination of other light elements, for instance, B, N, S, Mg. This nuclear reactor triton activation

  6. Nuclear momentum distribution and relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    In terms of a direct fragmentation process and a hard-scattering process, the proton-inclusive data for the reaction α + 12 C → p + X have been successfully analyzed. The extracted semiempirical momentum distribution indicates possible evidence of nuclear correlations and final-state interactions. 4 figures

  7. 'Level-level correlation and absorption in nuclear reactions'

    International Nuclear Information System (INIS)

    Hussein, M.S.

    Level-level correlation (LLC) in nuclear reactions is discussed in general and it is shown that in the presence of LLC, N sub(μ) = Σ/g μa/ 2 > divided by gamma μ T tilde, where T tilde is the average absorption in the eigen channels [pt

  8. Defect and dopant depth profiles in boron-implanted silicon studied with channeling and nuclear reaction analysis

    NARCIS (Netherlands)

    Vos, M.; Boerma, D.O.; Smulders, P.J.M.; Oosterhoff, S.

    1986-01-01

    Single crystals of silicon were implanted at RT with 1 MeV boron ions to a dose of 1 × 1015 ions/cm2. The depth profile of the boron was measured using the 2060-keV resonance of the 11B(α, n)14N nuclear reaction. The distribution of the lattice disorder as a function of depth was determined from

  9. Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2008-03-01

    Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.

  10. The heavy-ion total reaction cross-section and nuclear transparancy

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-10-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparancy is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determing σ sub(R) at lower energies. (Author) [pt

  11. The heavy-ion total reaction cross-section and nuclear transparency

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-01-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt

  12. Development of utility system of charged particle Nuclear Reaction Data on Unified Interface

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayashi, Yosihide; Kato, Kiyoshi; Masui, Hiroshi; Ohnishi, Akira; Chiba, Masaki

    1999-01-01

    We have developed a utility system, WinNRDF, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on a unified interface of Windows95, 98/NT. By using the system, we can easily search the experimental data of a charged particle reaction in NRDF and also see the graphic data on GUI (Graphical User Interface). Furthermore, we develop a mechanism of making a new index of keywords in order to include the time developing character of the NRDF database. (author)

  13. K X-rays and nuclear reaction times in the deep inelastic reactions U+U and U+Pb at 7.5 MeV/amu

    International Nuclear Information System (INIS)

    Stoller, C.

    1985-01-01

    The K-shell ionisation probability of the heavy reaction products emerging from binary deep inelastic collisions of U + U and U + Pb at 7.5 MeV/amu has been measured as a function of the total kinetic energy loss - Q. After subtraction of the ionisation probability due to internal conversion of γ-rays, a strongly Q-dependent Psub(K) is found, in agreement with theoretical predictions relating the change in ionisation probability to the nuclear sticking time. The deduced nuclear reaction times are in qualitative agreement with predictions from nuclear models of deep inelastic reactions. (orig.)

  14. Oklo natural reactor. Study of uranium and rare earths migration on a core drilled through a reaction zone. Application to determination of the date of the nuclear reaction by measurement of fission products

    International Nuclear Information System (INIS)

    Ruffenach, J.C.

    1977-01-01

    Isotopic and chemical analysis of uranium and five rare earths: neodymium, samarium, europium, gadolinium and dysprosium were effected on fourteen samples taken in the same core drilled through a reaction zone of the Oklo uranium deposit. This study points out the general stability of uranium and fission rare earths; spatial distributions of these elements are quite analogous. Migrations have affected about 5% only of fission neodymium in the core of the reaction zone; corresponding values for samarium and gadolinium are slightly higher. These migration phenomena have carried rare earths to no more than 80 cm out of the core. By study of the europium it is shown that nuclear reactions have stayed in the ground since the time of reactions. On the other hand it is shown by analysis of the dysprosium that rare earths have not undergone an important movement. This study allow also the datation of nuclear reactions from the measurement of the quantity of fission neodymium produced. A value of 1.98x10 9 years is obtained slightly higher than the value obtained by geochronology [fr

  15. Is the relativistic approach really useful to nuclear reactions?

    CERN Document Server

    Miyazaki, K

    2003-01-01

    We have reconsidered the non-relativistic distorted-wave t-matrix approximation (NR-DWTA) for proton knockout (p,2p) reaction using modern high-quality phenomenological optical potentials and NN t-matrix. We have calculated 40Ca(p,2p) reactions at T_LAB=200MeV and compared the results with the relativistic distorted-wave impulse approximation (RDWIA) calculations. It is found that the NR-DWTA is superior to the RDWIA in consistent description of the cross section and the analyzing power. An immediate relativistic extension of the DWIA to the nuclear reaction has a problem.

  16. Exclusive nuclear reactions: Can you count on the deuteron?

    International Nuclear Information System (INIS)

    Holt, R.J.

    1991-01-01

    Three of the simplest nuclear reactions -- (1) electron-deuteron elastic scattering, (2) electro-disintegration of the deuteron near threshold and at high momentum transfer, and (3) photodisintegration of the deuteron at high energy -- were believed to have unique signatures for OCD effects in nuclei. The progress in the past few years with regard to these reactions will be traced and the results will be compared with recent theoretical predictions. 36 refs., 12 figs., 1 tab

  17. Review of nuclear reaction data evaluation in the US

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, R.J.

    1985-05-01

    The development of the nuclear reaction data evaluation activities in the US over the last 40 years is reviewed, starting with comments on several reports as early as 1944. The review moves on to the development of consortia to share the burden by interchanging sets of data and efforts toward putting together an encoding system and computer-oriented formats. It is predicted that future emphasis is likely to be on charged particle induced reactions. (LEW)

  18. Review of nuclear reaction data evaluation in the US

    International Nuclear Information System (INIS)

    Howerton, R.J.

    1985-05-01

    The development of the nuclear reaction data evaluation activities in the US over the last 40 years is reviewed, starting with comments on several reports as early as 1944. The review moves on to the development of consortia to share the burden by interchanging sets of data and efforts toward putting together an encoding system and computer-oriented formats. It is predicted that future emphasis is likely to be on charged particle induced reactions

  19. Towards an unified microscopic approach of the description of the nuclear structure and reaction

    International Nuclear Information System (INIS)

    Hoang, Sy Than

    2009-09-01

    This thesis contains 3 main parts. The first one: nuclear matter. The motivation of the study is to establish a link between the bare nucleon-nucleon interaction and nuclear matter properties. The properties of nuclear matter are examined using finite range effective interactions either derived from the Brueckner theory or determined in a purely phenomenological way. Skyrme-type interactions are also used for comparison. We have focused our discussion on several main aspects: the pressure ins symmetric nuclear matter and in neutron matter, the density dependence of the symmetric energy S and the nuclear matter incompressibility. The second part: the structure of finite nuclei and of the inner crust of neutrons stars. We present the non-relativistic HF and HF-BCS approaches in coordinate representation using finite-range density-dependent interactions in both the mean field and pairing channels. An iterative scheme is used for solving the integral-differential HF equations. We have studied the doubly magic nuclei, the Sn isotopes and the possible occurrence of bubble structures in the nuclei O 22 , Si 34 , Ar 46 and Ar 68 . We have also examined the different zones of the inner crust of neutron stars. The third part: nuclear reactions. Using the same effective interactions derived from the Brueckner theory we have performed a coupled channel analysis of (p,n) charge exchange reactions at 35 and 45 MeV incident energies on Ca 48 , Zr 90 , Sn 120 and Pb 208 targets leading to isobaric analog states. (A.C.)

  20. Direct reactions and nuclear spectroscopy; forward into the 21st century

    International Nuclear Information System (INIS)

    Keeley, N.

    2006-01-01

    The use of direct reactions of the (d,p) (3He,d) etc. type in nuclear spectroscopy has a long history. The availability of beams of exotic nuclei has seen a resurgence of interest in the technique as a means of probing the structure of nuclei close to, or even beyond, the driplines. Analysis of these reactions to extract spectroscopic information has usually been performed with standard DWBA. However, while the DWBA is still useful, as it is based on first-order perturbation theory it should only be used where couplings are weak and proceed predominantly in a single step. Examples where either or both of these conditions are violated, with important consequences for the spectroscopic information extracted, are presented. Some of the sources of uncertainty that remain in the derived quantities are also discussed, along with possible means of reducing them

  1. Development of charged particle nuclear reaction data retrieval system on IntelligentPad

    International Nuclear Information System (INIS)

    Ohbayashi, Yosihide; Masui, Hiroshi; Aoyama, Shigeyoshi; Kato, Kiyoshi; Chiba, Masaki

    1999-01-01

    An newly designed database retrieval system of charged particle nuclear reaction database system is developed with IntelligentPad architecture. We designed the network-based (server-client) data retrieval system, and a client system constructs on Windows95, 98/NT with IntelligentPad. We set the future aim of our database system toward the 'effective' use of nuclear reaction data: I. 'Re-produce, Re-edit, Re-use', II. 'Circulation, Evolution', III. 'Knowledge discovery'. Thus, further developments are under way. (author)

  2. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  3. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  4. Experimental study and nuclear model calculations of {sup 3}He-induced nuclear reactions on zinc

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abyad, M.; Mohamed, Gehan Y. [Nuclear Research Centre, Atomic Energy Authority, Physics Department (Cyclotron Facility), Cairo (Egypt); Ditroi, F.; Takacs, S.; Tarkanyi, F. [Hungarian Academy of Sciences (ATOMKI), Institute for Nuclear Research, Debrecen (Hungary)

    2017-05-15

    Excitation functions of {sup 3}He-induced nuclear reactions on natural zinc were measured using the standard stacked-foil technique and high-resolution gamma-ray spectrometry. From their threshold energies up to 27 MeV, the cross-sections for {sup nat}Zn ({sup 3}He,xn) {sup 69}Ge, {sup nat}Zn({sup 3}He,xnp) {sup 66,67,68}Ga, and {sup nat}Zn({sup 3}He,x){sup 62,65}Zn reactions were measured. The nuclear model codes TALYS-1.6, EMPIRE-3.2 and ALICE-IPPE were used to describe the formation of these products. The present data were compared with the theoretical results and with the available experimental data. Integral yields for some important radioisotopes were determined. (orig.)

  5. EXFOR basics: A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data

  6. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide; Masui, Hiroshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  7. Japan Nuclear Reaction Data Center (JCPRG), Faculty of Science, Hokkaido University, Steering Committee progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The Japan Nuclear Reaction Data Center (JCPRG) was approved as an organisation of Faculty of Science, Hokkaido University and established on April 1, 2007. In addition to nuclear data activities carried out by JCPRG (Japan-Charged Particle Nuclear Reaction Data Group), the centre is concerned with the evaluation of nuclear reaction data in nucleosynthesis in the universe. In order efficiently to compile reaction data obtained by using radioactive ion beam, the centre signed a research contract with RIKEN Nishina Center. We are scanning 16 journals for Japanese charged-particle and photo-nuclear nuclear reaction data compilation. From April 2006 to March 2007, CPND and PhND in 45 references (453 records, 1.83 MB) have been newly compiled for NRDF. Usually new data are released at the JCPRG web site several months prior to EXFOR. Since the 2006 NRDC meeting, we have made 104 new entries and have revised or deleted 142 old entries. Intensive numerical data compilations have been done. These data were shown in tabular form in dissertations which are (partially) published in Journals. About 30 new entries were compiled from these data. We have prepared CINDA batches for CPND published in Japan every half year. Each batch covers 6 issues of each of 4 Japanese journals JPJ, PTP, NST and JNRS. Bibliographies for neutron induced reaction data have been compiled by JAEA Nuclear Data Center as before. A new web-based NRDF search and plot system on MySQL was released in July, 2007. New compilation, which has been finalized for NRDF, but not for EXFOR, can be obtained from this site. DARPE (another NRDF search and plot system written in Perl) is also available at http://www.jcprg.org/darpe/. EXFOR/ENDF (http://www.jcprg.org/exfor/) search and plot system is available. We have also developed following utilities: PENDL (http://www.jcprg.org/endf/) and RENORM (http://www.jcprg.org/renorm). We are developing a new search system of CINDA. This is an extension of EXFOR/ENDF search

  8. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  9. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  10. Nuclear chemical method for preparation of free carbenium ions and radiochemical investigation of reactions of these particles

    International Nuclear Information System (INIS)

    Nefedov, V.D.; Sinotova, E.N.; Toropova, M.A.

    1980-01-01

    Tritium nuclear transformation (β-decay) in the composition of the molecules of hydrocarbons, appearance of primary molecular ions and formation of free carbenium ion are the main items of nuclear-chemical method of preparation of free carbenium ions. The method permits to prepare carbenium ions present in free state, i.e. without counterion and without solvate sheath of variou nitial localization of the charge. The rate of carbenium ion generation is strictly definite and does not depend upon outer conditions. The method suggested permits to prepare carbenium ions in all phases, study their reactions with individual substances in gaseous, liquid and solid states. The study of ion-molecular reactions is carried out using radiochemical method. The analysis of the products is made using the method of gaseous radiochromatography. Development of preparation techniques of carbenium ions and their analogues, study of the reactions of these particles with different classes of compounds, investigation of the effect of different factors upon procedure of ion-molecular reactions are the main directions of the investigations

  11. Kinematical program package for nuclear reaction

    International Nuclear Information System (INIS)

    Dai Nengxiong; Xie Ying

    1988-01-01

    A FORTRAN package is designed to provide users as many conveniences as possible. Besides adopting man-machine interaction mode and setting nuclide mass file, there are still some other features which are, for examples, the functions of offering the initial values for some transcendental equations and evaluating all the kinematic variables in nuclear reactions at low energies of the form of T (p,1)2, T (p,12)3 and T (p,12)34. All these make the users much easier to use the package

  12. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    International Nuclear Information System (INIS)

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  13. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Science.gov (United States)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  14. Co-ordination of the nuclear reaction data centers. Report on an IAEA advisory group meeting

    International Nuclear Information System (INIS)

    Schwerer, O.; Lemmel, H.D.

    1996-11-01

    This report summarizes the 1996 co-ordination meeting in Brookhaven, U.S.A., of the national and regional nuclear reaction data center, convened by the IAEA at regular intervals. The main topics are: the international exchange of nuclear reaction data by means of the ''EXFOR'' system, and the further development of this system; the ''CINDA'' system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable nuclear data compilation and data center services; the exchange and documentation of evaluated data libraries in ''ENDF'' format; the rapid advances of online electronic information technologies, with the goal of rendering data center services to data users in IAEA Member States by means of computer retrievals, online services and printed materials. The scope of data covers microscopic cross-sections and related parameters of nuclear reactions induced by neutrons, charged-particles and photons. (author). Refs, figs, tabs

  15. Co-ordination of the nuclear reactions data centers. Report on an IAEA advisory group meeting

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Schwerer, O.

    1998-07-01

    This report summarizes the 1998 co-ordination meeting at the IAEA Headquarters in Vienna of the regional, national and specialized nuclear reaction data centers, concerned by the IAEA at two-year intervals. The main topics are: the international exchange of nuclear reaction data by means of the ''EXFOR'' system, and the further development of this system; the ''CINDA'' system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable nuclear data compilation and data center services; the exchange and documentation of evaluated data libraries in ''ENDF'' format; the rapid advances of online electronic information technologies, with goal of rendering data center services to data users in IAEA Member States by means of computer retrievals, online services and printed materials. The scope of data covers microscopic cross-sections and related parameters of nuclear reactions induced by neutrons, charged-particles and photons. (author)

  16. Co-ordination of the nuclear reaction data centers. Report on an IAEA advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O; Lemmel, H D [eds.

    1996-11-01

    This report summarizes the 1996 co-ordination meeting in Brookhaven, U.S.A., of the national and regional nuclear reaction data center, convened by the IAEA at regular intervals. The main topics are: the international exchange of nuclear reaction data by means of the ``EXFOR`` system, and the further development of this system; the ``CINDA`` system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable nuclear data compilation and data center services; the exchange and documentation of evaluated data libraries in ``ENDF`` format; the rapid advances of online electronic information technologies, with the goal of rendering data center services to data users in IAEA Member States by means of computer retrievals, online services and printed materials. The scope of data covers microscopic cross-sections and related parameters of nuclear reactions induced by neutrons, charged-particles and photons. (author). Refs, figs, tabs.

  17. US nuclear reaction data program in support of basic research

    International Nuclear Information System (INIS)

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1997-01-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy-ion and electron interactions and related activities involving all aspects of data stewardship

  18. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  19. Nuclear excitations and reaction mechanisms. Progress report, 1 November 1979-30 September 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Among the topics investigated were the following: photon scattering and consistency condition between seagull quadrupole terms and the absorption sum rule; Raman scattering to negative-parity states; nonlocal terms due to exchange and retardation effects in charge-transfer reactions; consistency and meaning of various approximate channel coupling array equations; derivation of equations used in empirical nuclear reaction analyses; multicluster, n-particle scattering theory; converged molecular bound state calculations; consistency of approximate channel coupling array equations; derivations of equations used in empirical nuclear reaction analyses; and WKB-type approximation in angular momenta for central potentials. References to publications are given

  20. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  1. Mechanism of nuclear dissipation in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1986-01-01

    Recent advances in the theoretical understanding of nuclear dissipation at intermediate excitation energies are reviewed, with particular emphasis on a new surface-plus-window mechanism that involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in fission and heavy-ion reactions, the transfer of nucleons through the window separating the two portions of the system. This novel dissipation mechanism provides a unified macroscopic description of such diverse phenomena as widths of isoscalar giant quadrupole and giant octupole resonances, mean fission-fragment kinetic energies and excitation energies, dynamical thresholds for compound-nucleus formation, enhancement in neutron emission prior to fission, and widths of mass and charge distributions in deep-inelastic heavy-ion reactions. 41 refs., 8 figs

  2. Method of investigation of nuclear reactions in charge-nonsymmetrical muonic complexes

    CERN Document Server

    Bystritsky, V M; Penkov, F M

    1999-01-01

    A method for experimental determination of the nuclear fusion rates in the d mu He molecules in the states with J=0 and J=1 (J is the orbital moment of the system) and of the effective rate of transition between these states (rotational transition 1-0) is proposed. It is shown that information on the desired characteristics can be found from joint analysis of the time distribution and yield of products of nuclear fusion reactions in deuterium-helium muonic molecules and muonic X-ray obtained in experiments with the D sub 2 +He mixture at three (and more) appreciably different densities. The planned experiments with the D sub 2 +He mixture at the meson facility PSI (Switzerland) are optimized to gain more accurate information about the desired parameters on the assumption that different mechanisms for the 1-0 transition of the d mu He complex are realized. (author)

  3. Analysis of ion implanted doped insulators by nuclear reactions

    International Nuclear Information System (INIS)

    Gheith, B.M.

    1992-01-01

    Nuclear resonance reaction an6520750JOalysis (NRA), using a proton beam at 1350 KeV, and the complementary rutherford backscattering, using a 1.8 MeV helium beam, techniques were utilized to investigate the level of impurities and the influencs of structural defects created by an 40 Ar + beam irradation induced in single crysttalline pure, and 10 and 20 mole % Eu doped, CaF 2 targets. The energetic proton, helium and argon beams were all supplied from the Uniersity of Jordan Van De Graaff accelerator, JOVAC. The depth distribuation of intrinsic defecta altered by the radiation damage was determined, using the resonance(p,α reaction at 1350 KeV resulting, from the halogen with proton beams of incident energies above resonance. Results are compared with transport of ions in matter calculations (TRIM), using the computer code 'TRIM-89'. Results indicate that the influence of doping alters tje crystal structure by pbserving a Ca-surfaace rich layer. The Ca enrichment is explained based on the defect model of trivalent Eu occupying the divalent substitutional places of the Ca atoms. The extra positive charge is linked to a negative one available on the the neighbouring F in order to preserve charge neutrality. The Ar irradiation results on the other hand revealed that the low level Eu doping stabilizes hte crystal better than the higher doping level. Chanages in the Eu signal from uniformly even distribution to an enhancement below the surface art a depth that is correlated with the mean and straggling values of the Ar impurrity distribution, is observed. This is consistant with the calculated Ar impurity distributions in which the 250 KeV Ar irradiation results in narrow distributions gradient of defects, possibly by a radiation enhanced diffusion mechanism. Preferential sputtering of the halogen, being the lightest element in the matrix, was alos noted. Surface topographic changes due to formation of large complexes and cracks are found to distort a large volume of

  4. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  5. MSU SINP CDFE nuclear data activities in the nuclear reaction data centres network

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, V.V.; Komarov, S.Yu.; Peskov, N.N.; Semin, S.B.; Stepanov, M.E.; Chesnokov, V.V.

    2002-01-01

    This paper is the progress report of the Centre for Photonuclear Experiments Data, Moscow. It is a short review of the works carried out by the CDFE concerning the IAEA nuclear reaction data centers network activities from May 2001 until May 2002. and the description of the main results obtained. (a.n.)

  6. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  7. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  8. Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blackmon, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Launey, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-12

    Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratory experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.

  9. Report on the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Forrest, R.; Dunaeva, S.; Otsuka, N.

    2010-07-01

    This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. (author)

  10. Co-ordination of the nuclear reactions data centers. Report on an IAEA advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    Pronyaev, V G; Schwerer, O [eds.

    1998-07-01

    This report summarizes the 1998 co-ordination meeting at the IAEA Headquarters in Vienna of the regional, national and specialized nuclear reaction data centers, concerned by the IAEA at two-year intervals. The main topics are: the international exchange of nuclear reaction data by means of the ``EXFOR`` system, and the further development of this system; the ``CINDA`` system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable nuclear data compilation and data center services; the exchange and documentation of evaluated data libraries in ``ENDF`` format; the rapid advances of online electronic information technologies, with goal of rendering data center services to data users in IAEA Member States by means of computer retrievals, online services and printed materials. The scope of data covers microscopic cross-sections and related parameters of nuclear reactions induced by neutrons, charged-particles and photons. (author) Refs, figs, tabs

  11. EXFOR – a global experimental nuclear reaction data repository: Status and new developments

    Directory of Open Access Journals (Sweden)

    Semkova Valentina

    2017-01-01

    Full Text Available Members of the International Network of Nuclear Reaction Data Centres (NRDC have collaborated since the 1960s on the worldwide collection, compilation and dissemination of experimental nuclear reaction data. New publications are systematically complied, and all agreed data assembled and incorporated within the EXFOR database. Recent upgrades to achieve greater completeness of the contents are described, along with reviews and adjustments of the compilation rules for specific types of data.

  12. The application of nuclear cross section measurements to spallation reactions in cosmic rays

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.

    1976-01-01

    The effects and implications of nuclear transformations of the comic ray particles themselves, and how those transformations are simulated in the laboratory are dealt with. Thus, although the majority of cosmic rays are protons and alpha particles, it is the small fraction of heavier species that is the main concern here. These nuclides interact with the interstellar matter (again mostly hydrogen and helium) in which they propagate, and thus can undergo nuclear reactions. For the cosmic ray physicist the effects of these reactions are both favourable and unfavourable. The unfavourable aspect arises from the fact that the composition of the cosmic ray is significantly altered, thus tending to mask an important indication as to their origin. Counterbalancing this is the fact that the effects left by the nuclear reactions are one of the most valuable links with the propagation process itself. A careful unravelling of these effects can thus reveal important information on where and how this propagation takes place. The type of nuclear information needed and techniques that are used to obtain it are considered. (Auth.)

  13. EXFOR basics. A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, Victoria

    2000-01-01

    EXFOR is the agreed exchange format for the transmission of experimental nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. This report is intended as a guide to data users. For a complete guide to the EXFOR system see: EXFOR Systems Manual, IAEA-NDS-207 (BNL-NCS-63330-00/04-Rev.) (author)

  14. Final stage of high energy hadron-nucleus nuclear collision reactions

    International Nuclear Information System (INIS)

    Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.

    1996-01-01

    The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs

  15. Neutron resonance analysis for nuclear safeguards and security applications

    Science.gov (United States)

    Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

    2017-09-01

    Neutron-induced reactions can be used to study the properties of nuclear materials of interest in the fields of nuclear safeguards and security. The elemental and isotopic composition of these materials can be determined by using the presence of resonance structures. This idea is the basis of two non-destructive analysis techniques which have been developed at the GELINA neutron time-of-flight facility at JRC-Geel: Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). A combination of NRTA and NRCA has been proposed for the characterisation of particle-like debris of melted fuel formed in severe nuclear accidents. In this work, we present a quantitative validation of the NRTA technique which was used to determine the areal densities of Pu enriched reference samples used for safeguards applications. Less than 2% bias has been obtained for the fissile isotopes, with well-known total cross sections.

  16. 1-4 Strangeness Production in Antiproton Induced Nuclear Reactions.

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    More localized energy deposition is able to be produced in antiproton-nucleus collisions in comparison withheavy-ion collisions due to annihilation reactions. Searching for the cold quark-gluon plasma (QGP) with antiprotonbeamshas been considered as a hot topic both in experiments and in theretical calculations over the past severaldecades. Strangeness production and hypernucleus formation in antiproton-induced nuclear reactions are importancein exploring the hyperon (antihyperon)-nucleon (HN) potential and the antinucleon-nucleon interaction, whichhave been hot topics in the forthcoming experiments at PANDA in Germany.

  17. Sigma: Web Retrieval Interface for Nuclear Reaction Data

    International Nuclear Information System (INIS)

    Pritychenko, B.; Sonzogni, A.A.

    2008-01-01

    The authors present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at www.nndc.bnl.gov/sigma

  18. Analysis of the MZA/MZB benchmarks with modern nuclear data sets

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van

    2013-01-01

    Highlights: • ERANOS libraries are produced based on four modern nuclear data sets. • The MOZART MZA/MZB benchmarks are analyzed with these li- braries. • Results are generally acceptable in an academic context, but for highly accurate applications data adjustment is required. • Some discrepancies between the calculations and the benchmark results remain and cannot be readily explained. • Successful generation of ECCO libraries and covariance data for ERA- NOS. - Abstract: For fast reactor design and analysis, our laboratory uses, amongst others, the ERANOS code system. Unfortunately, the publicly available version of ERANOS does not have the most recent nuclear data. Therefore, it was decided to implement an integrated processing system to generate cross sections libraries for the ECCO cell code, as well as covariance data. Cross sections are generated from the original ENDF files. For our purposes, it is important to ascertain that the ECCO cross section libraries are of adequate quality to allow design and analysis of advanced fast reactors in an academic context. In this paper, we present an analysis of the MZA/MZB benchmarks with nuclear data from JENDL-4.0, JEFF-3.1.2 and ENDF/B-VII.1. Results are that reactivity is generally well predicted, with an uncertainty of about 1% due to covariances of the nuclear data. Reaction rate ratios are satisfactorily calculated, as well as the flux spectrum and reaction rate traverses. Some problems remain: the magnitude of the void effect is not satisfactorily calculated, and reaction rate traverses are not always satisfactorily calculated. On the whole, the ECCO libraries are sufficient for design and analysis tasks in an academic context. For high-precision calculations, such as required for licensing tasks and detailed design calculations, data adjustment is still necessary as the “native” covariance data in the ENDF files is not accurate enough

  19. Table of nuclear reactions and subsequent radioactive dacays induced by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Tsukada, Kineo

    1977-09-01

    Compilation of the data on nuclear reactions and subsequent radioactive decays induced by 14-MeV neutrons is presented in tabular form for most of the isotopes available in nature and for some of the artificially-produced isotopes, including the following items: Nuclide (isotopic abundance), type of nuclear reaction, reaction Q-value, reaction product, type of decay, decay Q-value, half-life of reaction product, decay product, maximum reaction cross section, neutron energy for maximum cross section, reaction cross section for 14 MeV neutrons, saturated radioactivity induced by irradiation of a neutron flux of 1 n/cm 2 sec for a mol of atoms, and reference for the cross section. The mass number dependence of (n, γ), (n, 2n), (n, p), (n, d), (n, t), (n, 3 He) and (n, α) reaction cross sections for 14-MeV neutrons is given in figures to show general trends of the cross sections

  20. Use of SSNTD for measuring nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bakr, M H [Division of Baic Nucl. Sc., NRC, Atomic Energy Authority Cairo (Egypt)

    1997-12-31

    Solid state nuclear track detectors (SSNTD) technique in nuclear reactions is reviewed. Special attention is given to the study of Makrofol-E films using a proposed optimum etching solution. The etching rate was 10.5 Mm/ hour. The energy resolution was measured and estimated to be 600 and 400 KeV in the energy ranges 1-2 MeV and 2-3 MeV respectively. Based on these results, the sensitivity threshold for gamma-particles in Makrofol-E is shifted up to 1 MeV, otherwise, there will be no discrimination between the etch - pits of gamma- particles with energies ranging from 0 to 1 MeV. The full angular distribution of the gamma-groups were measured in one run by means of a SSNTD sheel surrounding the target. A scattering chamber designed for gamma-particle angular distribution measurements is described. An example of the influence of energy loss in degrading Al foils in eliminating the energy angle dependence is given. The numerous curves of the range -energy dependence of gamma - particles in Makrofol - E after passing Al foils of different thicknesses are scaled in one schematic normograph. The later simplifies the process of choosing the suitable Al foil thickness or of determining the range- energy relation. The angular distributions of five gamma- groups from the {sup 56} Co (P, gamma) {sup 56} Fe reaction in the proton energy 1.6 -2.4 MeV have been measured using the designed chamber. A Makrofol - E film of 200 Mm thickness was exposed to the reaction products for 5 hours. This time was enough to get the angular distribution for (d/d) in the range 5-72 Mm barn/ster.

  1. Report on the 9. IAEA consultants' meeting of the nuclear reaction data centres

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1988-04-01

    This report summarizes the 1987 co-ordination meeting of the national and regional nuclear reaction data centers, convened by the IAEA at regular intervals. The main topics are: the international exchange of nuclear reaction data by means of the ''EXFOR'' system, and the further development of this system; the ''CINDA'' system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable data compilation; the exchange and documentation of evaluated data libraries in ENDF format, with the goal of rendering data center services to data users in IAEA Member States by means of computer retrievals and printed materials. (author). Refs, figs and tabs

  2. Simulations of nuclear reactions for a future HIE-ISOLDE spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, Gry [University of Oslo (Norway); CERN (Switzerland); Cederkall, Joakim [Lund University (Sweden); CERN (Switzerland); Blumenfeld, Yorick [CERN (Switzerland)

    2009-07-01

    The planned High Intensity and Energy (HIE) upgrade of the radioactive beam facility ISOLDE will enable post-acceleration of radioactive beams up to an energy of about 10 MeV/u, thus opening the door to nuclear reaction studies. In the case of transfer reactions in inverse kinematics a recoil separator is often well suited or even needed to tell recoils and beam apart and to select the exit channel or to do spectroscopic studies. Two different types of spectrometer designs are being considered for HIE-ISOLDE, namely a recoil mass separator or a ray-tracing type of spectrometer. A set of nuclear transfer reactions in inverse kinematics have been simulated using realistic parameters for HIE-ISOLDE. The performance of the two types of spectrometer designs is compared and their scientific possibilities and limitations discussed based on the simulation results. To evaluate the validity of the simulations a data set from PRISMA at LNL is also compared with simulation results and a comparison between simulations and these data will be presented.

  3. Squids, supercurrents, and slope anomalies: Nuclear structure from heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1989-01-01

    Within the past five years we have developed experimental techniques to study heavy-ion transfer reactions to high spin states in deformed nuclei. These methods have been turned into a quantitative tool to assess the influence of collective excitation on single-particle and pairing structure. I discuss some of the nuclear structure questions which are being answered in these experiments: How strong is ground state pairing? How does pairing change with angular momentum? Why is two-neutron transfer much stronger than expected at large radial separation? What is the evidence for a nuclear Josephson Effect? What is the evidence for a nuclear Berry phase effect (nuclear SQUID)? Why does one-neutron transfer populate much higher spins than would be naively expected? Conversely, why does two-neutron transfer populate much lower spins than anyone expected? The answer to each of these questions involves the influence of detailed nuclear structure on transfer reactions, and represents quantitative new information about the effect of angular momentum and excitation energy on many-body systems with a finite number of particles. 8 refs., 6 figs

  4. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  5. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    Science.gov (United States)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  6. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report. [Summaries of research activities at Carnegie-Mellon University

    Energy Technology Data Exchange (ETDEWEB)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed.

  7. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Briere, M.A.

    1993-07-01

    Resonant nuclear reaction analysis, using the 1 H( 15 N, αγ) 12 C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 10 20 cm -3 (Al gate), and as low as 1 10 18 cm -3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO 2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H 2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  8. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  9. The nuclear reaction n + 3He -> 1H + 3H as proximity reaction

    International Nuclear Information System (INIS)

    Hilber, H.C.

    1982-01-01

    The present thesis tries to give by means of the nuclear reaction n + 3 He -> 1 H + 3 H as proximity reaction on the three-particle system 3 He + 9 Be -> 1 H + 3 H + 8 Be an experimental verification to the second term of a multiple scattering series. The study of these rescattering effects is of great interest for the present theory of the final-state interaction. At three incident energies (7.08 MeV, 8.98 MeV, and 6.37 MeV) to detector telescopes identify the exit channel of the three-particle system in list-mode coincidence experiments according to protons and tritons. Peaks on the kinematical curves occur. The detailed study of their kinematic behaviour allows to exclude the inconcurrence to the proximity reaction lying cascade decays via intermediate states in 4 He, 9 B, and 11 B. Regarding the Coulomb interaction the experimental results can be also explained in the sense of the classical kinematics by the proximity model. (orig.) [de

  10. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    International Nuclear Information System (INIS)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi; Ohbayasi, Yosihide; Aoyama, Shigeyoshi; Chiba, Masaki

    2002-01-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  11. Deuterium depth profiling in JT-60U W-shaped divertor tiles by nuclear reaction analysis

    International Nuclear Information System (INIS)

    Hayashi, T.; Ochiai, K.; Masaki, K.; Gotoh, Y.; Kutsukake, C.; Arai, T.; Nishitani, T.; Miya, N.

    2006-01-01

    Deuterium concentrations and depth profiles in plasma-facing graphite tiles used in the divertor of JAERI Tokamak-60 Upgrade (JT-60U) were investigated by nuclear reaction analysis (NRA). The highest deuterium concentration of D/ 12 C of 0.053 was found in the outer dome wing tile, where the deuterium accumulated probably through the deuterium-carbon co-deposition. In the outer and inner divertor target tiles, the D/ 12 C data were lower than 0.006. Additionally, the maximum (H + D)/ 12 C in the dome top tile was estimated to be 0.023 from the results of NRA and secondary ion mass spectroscopy (SIMS). Orbit following Monte-Carlo (OFMC) simulation showed energetic deuterons caused by neutral beam injections (NBI) were implanted into the dome region with high heat flux. Furthermore, the surface temperature and conditions such as deposition and erosion significantly influenced the accumulation process of deuterium. The deuterium depth profile, scanning electron microscope (SEM) observation and OFMC simulation indicated the deuterium was considered to accumulate through three processes: the deuterium-carbon co-deposition, the implantation of energetic deuterons and the deuterium diffusion into the bulk

  12. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Noda, Tetsuji [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2001-03-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for {gamma}-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  13. Nuclear reactions and self-shielding effects of gamma-ray database for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji

    2001-01-01

    A database for transmutation and radioactivity of nuclear materials is required for selection and design of materials used in various nuclear reactors. The database based on the FENDL/A-2.0 on the Internet and the additional data collected from several references has been developed in NRIM site of 'Data-Free-Way' on the Internet. Recently, the function predicted self-shielding effect of materials for γ-ray was added to this database. The user interface for this database has been constructed for retrieval of necessary data and for graphical presentation of the relation between the energy spectrum of neutron and neutron capture cross section. It is demonstrated that the possibility of chemical compositional change and radioactivity in a material caused by nuclear reactions can be easily retrieved using a browser such as Netscape or Explorer. (author)

  14. Low-Energy Nuclear Reactions Resulting as Picometer Interactions with Similarity to K-Shell Electron Capture

    Science.gov (United States)

    Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.

    2006-02-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.

  15. Low-energy nuclear reactions resulting as parametric interactions with similarity to K-shell electron capture

    International Nuclear Information System (INIS)

    Hora, H.; Miley, G.H.; Li, X.Z.; Kelly, J.C.; Osman, F.

    2006-01-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons of deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockcroft Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the 'life after death' heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of pico-meters with reaction probability times U of about mega-seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the pico-meter- mega-second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas. (authors)

  16. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1983-04-01

    Part I is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expression for the transport coefficients. The results can also be used in a wider context than the present one. Part II gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations

  17. Reactions of charged and neutral recoil particles following nuclear transformations. Final report

    International Nuclear Information System (INIS)

    Ache, H.J.

    1980-12-01

    A summary is given of the various activities conducted as part of the research on the chemical reactions of energetic particles generated in nuclear reactions. Emphasis was on hot atom chemistry in gases and liquids. A bibliography of 110 publications published as part of the program is included

  18. 11. IAEA consultants' meeting of the nuclear reaction data centers. Obninsk, 7-11 October 1991

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1992-03-01

    This report summarizes the 1991 co-ordination meeting in Obninsk, Russia, of the national and regional nuclear reaction data centers, convened by the IAEA at regular intervals. The main topics are: the international exchange of nuclear reaction data by means of the ''EXFOR'' system, and the further development of this system; the ''CINDA'' system as an international index and bibliography to neutron reaction data; the sharing of the workload for speedy and reliable nuclear data compilation; the exchanged and documentation of evaluated data libraries in ENDF format, with the goal of rendering data center services to data users in IAEA Member States by means of computer retrievals, online services and printed materials

  19. Capture and photonuclear reaction rates involving charged-particles: Impacts of nuclear ingredients and future measurement on ELI-NP

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Balabanski, D. L.; Chesnevskaya, S.; Guardo, G. L.; La Cognata, M.; Lan, H. Y.; Lattuada, D.; Luo, W.; Matei, C.

    2018-05-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ), (α,γ), (γ,p), and (γ,α) reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  20. Nuclear excitations and reaction mechanisms. Progress report, 1 August-31 July 1984

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1984-01-01

    This progress report describes activities of the Nuclear Theory group at Brown University during the period 1 August 1983 to 31 July 1984. Completed and ongoing research include various theoretical and numerical studies of few-particle systems, nuclear reaction models, nuclear electroexcitation and photon scattering from nuclei. In addition, research on atomic and molecular structure has essentially been concluded and no further DOE-supported research in this area is anticipated

  1. N-body methods in the theory of nuclear reactions

    International Nuclear Information System (INIS)

    Bencze, Gy.

    1980-08-01

    The traditional method of applying two-body methods for the study of nuclear reactions is briefly reviewed. The recent developments in the N particle scattering theory are described in detail. The application of the methods in the study of effective two and few-body problems is also considered. (P.L.)

  2. Nuclear physics

    International Nuclear Information System (INIS)

    Patel, S.B.

    1991-01-01

    This book is a simple and direct introduction to the tools of modern nuclear physics, both experimental and mathematical. Emphasizes physical intuition and illuminating analogies, rather than formal mathematics. Topics covered include particle accelerators, radioactive series, types of nuclear reactions, detection of the neutrino, nuclear isomerism, binding energy of nuclei, fission chain reactions, and predictions of the shell model. Each chapter contains problems and illustrative examples. Pre-requisites are calculus and elementary vector analysis

  3. U.S. nuclear reaction data program in support of basic research

    International Nuclear Information System (INIS)

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1998-03-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy ion and electron interactions and related activities involving all aspects of data stewardship

  4. Nuclear reactions of high energy deuterons with medium mass targets

    International Nuclear Information System (INIS)

    Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi

    1994-01-01

    Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)

  5. Dynamics of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1979-01-01

    Large-amplitude collective motion in fission and heavy-ion reactions is studied by solving classical equations of motion for the time evolution of the nuclear shape. In the nuclear potential energy of deformation, the generalized surface energy was calculated by means of a double volume integral of a Yukawa-plus-exponential function, which was obtained by requiring that two semi-infinite slabs of constant-density nuclear matter have minimum energy at zero separation. The collective kinetic energy is calculated for nuclear flow that is a superposition of incompressible, nearly irrotational collective-shape motion and rigid-body rotation. Nuclear dissipation is included by means of the Rayleigh dissipation function, which depends upon the physical mechanism that converts collective energy into internal energy. For both ordinary two-body viscosity and a combined wall and window one-body dissipation, fission-fragment kinetic energies are calculated for the fission of nuclei throughout the periodic table and compare with experimental results. Finally, the one-body dynamics of nucleons inside a cylinder colliding with a moving piston is explicitly studied by solving exactly the collisionless Boltzmann equation for the distribution function. By examining the relative phases of the pressure at the piston and the piston's velocity, a dissipative force and an elastic restoring force can be separately identified. 9 references

  6. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  7. Proton capture reactions and nuclear structure

    International Nuclear Information System (INIS)

    Kikstra, S.W.

    1989-01-01

    Experimental studies are described of the structure of 40 Ca and 42 Sc with measurements at proton-capture of (p, gamma) reactions. Where possible, an attempt has been made to interpret the results of the measurements in termsof existing models. The 40 Ca and 42 Sc nuclides were excited by bombarding 39 K and 41 Ca targets, respectively with low energy protons (E p = 0.3-3.0 MeV), that were produced by the Utrecht 3MV van de Graaff accelerator. From the measured energy and intensity of the gamma-rays created in the subsequent decay of the cuclei, information was obtained on the existence and properties of their excited states. In addition properties of two T = 3/2 levels at high excitation energy of the 9 Be nucleus were investigated. These levels were excited by the resonant absorption of gamma-rays from the 11 B(p, gamma) 12 C reaction. The results of the measurements are interpreted by a comparison to the analoque β-decay of 9 Li and to shell model calculations. The total decay energy of the superallowed O + → O + transition between the ground states of 42 Sc and 42 Ca was determined by measurements in Utrecht of the proton separation energy S p of 42 Sc and in Oak Ridge of S n of 42 Sc and 42 Ca. The results were used for verification of the conserved vector current hypothesis, which implies that the ft values of all superallowed O + → O + β-decays are the same. An attempt was made to describe properties of odd-parity states of A = 37-41 nuclei with a variant of the Warburton, Becker, Millener and Brown (WBMB) interaction.Finally a new method for the assignment of nuclear spins by a simple statistical analysis of spectroscopic information is proposed. (author). 169 refs.; 22 figs.; 24 schemes; 29 tabs

  8. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  9. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  10. Low-energy nuclear reactions resulting as parametric interactions with similarity to K-shell electron capture

    Energy Technology Data Exchange (ETDEWEB)

    Hora, H. [University of New South Wales, Sydney 2052 (Australia); Miley, G.H. [Fusion Studies Laboratory, University of Illinois, Urbana, lL 61801 (United States); Li, X.Z. [Physics Department, Tsinghua University, Beijing 100084 (China); Kelly, J.C. [School of Physics, Sydney University, Sydney 2006 (Australia); Osman, F. [University of Western Sydney, Penrith-Soutti, NSW 1791 (Australia)

    2006-07-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons of deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockcroft Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the 'life after death' heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of pico-meters with reaction probability times U of about mega-seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the pico-meter- mega-second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas. (authors)

  11. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    International Nuclear Information System (INIS)

    Tárkányi, F.; Takács, S.; Ditrói, F.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2014-01-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the nat Nd(d,x) 151,150,149,148m,148g,146,144,143 Pm, 149,147,139m Nd, 142 Pr and 139g Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed

  12. Capture and photonuclear reaction rates involving charged-particles: Impacts of nuclear ingredients and future measurement on ELI-NP

    Directory of Open Access Journals (Sweden)

    Xu Y.

    2018-01-01

    Full Text Available The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ, (α,γ, (γ,p, and (γ,α reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p and 96Ru(γ,α are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  13. G.N. Florov Laboratory of Nuclear Reactions, history and the present day

    International Nuclear Information System (INIS)

    Szmider, J.

    1996-01-01

    The scientific activity and review of results attained at Florov Nuclear Reactions Laboratory of the Joined Institute of Nuclear Research, Dubna, have been presented in historical order. Especially the heavy ion cyclotron use for synthesis of new super-heavy elements as well as investigations of their physical and chemical properties have been shown. 1 fig

  14. Energy gains from lattice-enabled nuclear reactions

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    The energy gain of a system is defined as the ratio of its output energy divided by the energy provided to operate the system. Most familiar systems have energy gains less than one due to various inefficiencies. By contrast, lattice-enabled nuclear reactions (LENR) offer high energy gains. Theoretical values in excess of 1000 are possible. Energy gains over 100 have already been reported. But, they have not yet been sustained for commercially significant durations. This article summarizes the current status of LENR energy gains. (author)

  15. Alpha-decay within Feshbach theory of nuclear reactions

    International Nuclear Information System (INIS)

    Sandulescu, A.; Silisteanu, I.; Wunsch, R.

    1977-01-01

    In the frame of Feshbach theory of nuclear reactions the alpha-decay widths are determined by the alpha-daughter nucleus optical potential and by the formation factors. It is shown that the calculated absolute values of the alpha widths for Po light isotopes are in good agreement with experimental data, if the real part of the optical potential with the parameters fitted by the low energy α-scattering is used

  16. High sensitivity boron quantification in bulk silicon using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Marcos V.; Silva, Tiago F. da; Added, Nemitala; Rizutto, Marcia A.; Tabacniks, Manfredo H. [Instituto de Fisica da Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Neira, John B.; Neto, Joao B. F. [Institute of Research Tecnology, Cidade Universitaria, SP, 05508-091 (Brazil)

    2013-05-06

    There is a great need to quantify sub-ppm levels of boron in bulk silicon. There are several methods to analyze B in Si: Nuclear Reaction Analysis using the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be reaction exhibits a quantification limit of some hundreds ppm of B in Si. Heavy Ion Elastic Recoil Detection Analysis offers a detection limit of 5 to 10 at. ppm. Secondary Ion Mass Spectrometry is the method of choice of the semiconductor industry for the analysis of B in Si. This work verifies the use of NRA to quantify B in Si, and the corresponding detection limits. Proton beam with 1.6 up to 2.6 MeV was used to obtain the cross-section of the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be nuclear reaction at 170 Degree-Sign scattering angle. The results show good agreementwith literature indicating that the quantification of boron in silicon can be achieved at 100 ppm level (high sensitivity) at LAMFI-IFUSP with about 16% uncertainty. Increasing the detection solid angle and the collected beam charge, can reduce the detection limit to less than 100 ppm meeting present technological needs.

  17. Asymptotic normalization coefficients, nuclear vertex constants and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Yarmukhamedov, R.; Artemov, S.V.; Igamov, S.B.; Burtebaev, N.; Peterson, R.J.

    2007-01-01

    Full text: We will review the results of a comprehensive analysis of the experimental astrophysical S- factors S(E) for the t(α, γ ) 7 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 B, 12 C(p , γ) 13 N and 13 C(p,γ) 14 N reactions at extremely low energies, performed within a three-sided collaboration (Uzbekistan-Kazakhstan-USA). In the analysis, the new experimental data for the 12 C(p, γ) 13 N reaction are also included, as measured with the accelerator UKP-2-1 at the Institute of Nuclear Physics in Kazakhstan. The analysis is carried out within the framework of a new two-body potential approach and the R-matrix method, taking into account information about the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant for virtual decay of the residual nuclei into two fragments of the initial states of the aforesaid reactions, which belong to the fundamental nuclear constants). Nowadays ANC's are obtained from analysis of peripheral one nucleon transfer reactions by method combining dispersion theory and DWBA (CM). It is shown that ANC can be also reliably obtained from analysis of proton capture reactions at astrophysical energies by new modified two-body potential method where the CM is used. A comparative analysis of the results obtained by different authors in the framework of different methods is also done

  18. Experimental cross-sections for proton-induced nuclear reactions on Mo-nat

    Czech Academy of Sciences Publication Activity Database

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-01-01

    Roč. 380, AUG (2016), s. 32-49 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : cross-sections * excitation functions * proton-induced nuclear reactions * natural molybdenum * Mo-99 * Tc-99m * Tc96m+g * Tc-95m * thick target yields * U-120M cyclotron Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  19. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  20. High energy nuclear reactions ('Spallation') and their application in calculation of the Acceleration Driven Systems (ADS)

    International Nuclear Information System (INIS)

    Rossi, Pedro Carlos Russo

    2011-01-01

    This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the

  1. Theory of nuclear reactions with participation of slow charged particles in solids

    International Nuclear Information System (INIS)

    Barts, B.I.; Barts, D.B.; Grinenko, A.A.

    1992-01-01

    In the last two years, there has been a sharp increase of interest in various aspects of the interaction of nuclear particles in solids. This is due, above all, to the sensational reports of the possibility that deuteron fusion reactions take place at normal temperatures. At the present time, it is clear that, among the various factors, an important role for the understanding of this remarkable phenomenon is played by crystal fields that significantly change the tail of the Coulomb barrier and, thus, its penetrability. Here, in connection with the problem of the cold fusion of deuterons, an analysis is made of the influence of screening of the deuteron charges by electrons of the crystal on the penetrability of the Coulomb barrier. A study is made of the reaction-enhancement method in the case when the deuterons move in the general crystal potential well near one of the minima of the crystal potential

  2. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Science.gov (United States)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  3. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  4. Determination of tea fluorine concentration with 19F(p, αγ)16O prompt nuclear reaction analysis

    International Nuclear Information System (INIS)

    Liang Daihua; Shen Guantao; Li Deyi; Wu Junheng

    1987-01-01

    Experiments of 19 F(p, αγ) 16 O prompt nuclear reaction analyses of tea F contents were performed on a Cockroft-Walton accelerator. The principle and apparatus are described. More than 150 varieties tea samples were examined. Results show that for the same variety of tea samples, the higher the grade of the tea, the higher the F concentration it contains, and for different varieties, the better the tea, the lower the F concentration of the tea

  5. Structural analysis of aircraft impact on a nuclear powered ship

    International Nuclear Information System (INIS)

    Dietrich, R.

    1976-01-01

    As part of a general safety analysis, the reliability against structural damage due to an aircraft crash on a nuclear powered ship is evaluated. This structural analysis is an aid in safety design. It is assumed that a Phantom military jet-fighter hits a nuclear powered ship. The total reaction force due to such an aircraft impact on a rigid barrier is specified in the guidelines of the Reaktor-Sicherheitskommission (German Safety Advisory Committee) for pressurized water reactors. This paper investigates the aircraft impact on the collision barrier at the side of the ship. The aircraft impact on top of the reactor hatchway is investigated by another analysis. It appears that the most unfavorable angle of impact is always normal to the surface of the collision barrier. Consequently, only normal impact will be considered here. For the specific case of an aircraft striking a nuclear powered ship, the following two effects are considered: Local penetration and dynamic response of the structure. (Auth.)

  6. Results of the Nonelastic Reaction Code Brieff for Nuclear Data

    International Nuclear Information System (INIS)

    Duarte, H.

    2009-01-01

    We present recent changes in our nonelastic reaction code BRIEFF and especially in the fast stage of reaction described by the intranuclear cascade (INC) code BRIC. Distributions and excitation functions of residual nuclei production cross sections are shown for proton-induced reaction on target nuclei. Slight improvements are seen in the proton-induced reaction on light nuclei with a closed shell when the energy levels are taken into account in the INC stage. On the other hand, fission gives poor results in the current version. To compare to other nuclear models and LA150 libraries, BRIEFF has been incorporated into MCNPX 2.5.0. Examples of neutron production from thick target irradiation by proton beams between 30 and 350 MeV are presented. Except for some discrepancies, a good agreement with data is obtained on average. (authors)

  7. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  8. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    International Nuclear Information System (INIS)

    Draayer, Jerry P.

    2014-01-01

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  9. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  10. Introduction;Commemorating the first self-sustaining nuclear chain reaction on 2 December 1942

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, S [International Atomic Energy Agency, Vienna (Austria)

    1962-12-02

    On the occasion of the 20th anniversary of the conducting of the first self-sustaining nuclear chain reaction and following development of nuclear reactors, the article reviews the work and scientific development behind this achievement. The impact of atomic energy on economics, benefits of nuclear reactors for electricity production and the by-product - radio isotopes, used in different areas such as industry, medicine, agriculture etc. are pointed out

  11. Empire-3.2 Malta. Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation. User's Manual

    International Nuclear Information System (INIS)

    Herman, M.; Capote, R.; Sin, M.

    2013-08-01

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. The system can be used for theoretical investigations of nuclear reactions as well as for nuclear data evaluation work. Photons, nucleons, deuterons, tritons, helions ( 3 He), α's, and light or heavy ions can be selected as projectiles. The energy range starts just above the resonance region in the case of a neutron projectile, and extends up to few hundred MeV for heavy ion induced reactions. The code accounts for the major nuclear reaction models, such as optical model, Coupled Channels and DWBA (ECIS06 and OPTMAN), Multi-step Direct (ORION + TRISTAN), NVWY Multi-step Compound, exciton model (PCROSS), hybrid Monte Carlo simulation (DDHMS), and the full featured Hauser-Feshbach model including width fluctuations and the optical model for fission. Heavy ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters based on the RIPL-3 library covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, and γ-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations (BARFIT, MOMFIT). The results can be converted into the ENDF-6 format using the accompanying EMPEND code. Modules of the ENDF Utility Codes and the ENDF Pre-Processing codes are applied for ENDF file verification. The package contains the full EXFOR library of experimental data in computational format C4 that are automatically retrieved during the calculations. EMPIRE contains the resonance module that retrieves data from the electronic version of the Atlas of Neutron Resonances by Mughabghab (not provided with the EMPIRE distribution), to produce resonance section and related covariances for the

  12. EXFOR systems manual: Nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  13. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    International Nuclear Information System (INIS)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-01-01

    A review is given for the explanation of the measurements of Miley (et al.) of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li (et al.) from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li (et al.) were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping

  14. The AEP Barnbook DATLIB. Nuclear Reaction Cross Sections and Reactivity Parameter Library and Files

    International Nuclear Information System (INIS)

    Feldbacher, R.

    1987-10-01

    Nuclear reaction data for light isotope charged particle reactions (Z<6) have been compiled. This hardcopy contains file headers, plots and an extended bibliography. Numerical data files and processing routines are available on tape at IAEA-NDS. (author). Refs

  15. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  16. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  17. Puzzle of the folding potential on the nuclear halo reactions

    International Nuclear Information System (INIS)

    Ismail, Atef; Lee, Yen Cheong; Mahmoud, Z.M.M.

    2015-01-01

    Folding potentials of the elastic scattering drip-line nuclei at various incident energies is one method to study nuclear matter density distributions and nuclear radii. The nuclei with density distributions consisting of a bulk (core) and an outer layer (halo), dilute and spatially extended are called the halo nuclei caused for the weak particle binding. Several halo nuclei are studied and many potential candidates are identified. All the cross-sections of the elastic scattering for the drip-line nuclei 11 Be and 6 He, are calculated to understand the exotic properties of these nuclei starting from its structure, extended radius, nuclear size till the large total reaction cross-sections for these nuclei when it interacts with a stable target 12 C. (author)

  18. Reactions of charged and neutral recoil particles following nuclear transformations. Progress report No. 10

    International Nuclear Information System (INIS)

    Ache, H.J.

    1976-09-01

    The status of the following programs is reported: study of the stereochemistry of halogen atom reactions produced via (n,γ) nuclear reactions with diastereomeric molecules in the condensed phase; decay-induced labelling of compounds of biochemical interest; and chemistry of positronium

  19. Sensitivity analysis of the nuclear data for MYRRHA reactor modelling

    International Nuclear Information System (INIS)

    Stankovskiy, Alexey; Van den Eynde, Gert; Cabellos, Oscar; Diez, Carlos J.; Schillebeeckx, Peter; Heyse, Jan

    2014-01-01

    A global sensitivity analysis of effective neutron multiplication factor k eff to the change of nuclear data library revealed that JEFF-3.2T2 neutron-induced evaluated data library produces closer results to ENDF/B-VII.1 than does JEFF-3.1.2. The analysis of contributions of individual evaluations into k eff sensitivity allowed establishing the priority list of nuclides for which uncertainties on nuclear data must be improved. Detailed sensitivity analysis has been performed for two nuclides from this list, 56 Fe and 238 Pu. The analysis was based on a detailed survey of the evaluations and experimental data. To track the origin of the differences in the evaluations and their impact on k eff , the reaction cross-sections and multiplicities in one evaluation have been substituted by the corresponding data from other evaluations. (authors)

  20. Direct interaction in nuclear reactions: a theory; L'interaction directe dans les reactions nucleaires: theorie

    Energy Technology Data Exchange (ETDEWEB)

    Dominicis, C.T. de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    General treatment of the foundations of direct interaction in nuclear reactions; representation of the instantaneous elastic scattering amplitude by the scattering amplitude due to a complex potential; expansion of the instantaneous inelastic scattering amplitude and discussion of the 1. Bohr approximation (distorted waves) contribution to individual and collective states of excitation. (author) [French] Expose general sur les fondements de l'interaction directe dans les reactions nucleaires; representation de l'amplitude de diffusion instantanee elastique par celle due a un potentiel complexe; developpement de l'amplitude de diffusion instantanee inelastique et discussion de la contribution de la premiere approximation de Bohr (sur des distendues) a l'excitation d'etats individuels et collectifs. (auteur)

  1. Modeling and analysis of liquid deuterium-water reactions

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1995-01-01

    This Presentation highlights the following: Overview of LD 2 -water reactions their connections to research reactors with cold sources; some key features and ingredients of vapor explosions in general; Examination of results of 1970 experiment at Grenoble Nuclear Research Center; Thermodynamic evaluations of energetics of explosive LD 2 -D 2 O reactions. This presentation concentrates only on the technical aspects of LD 2 /LH 2 - water reactions; it is not intended to draw/imply safety-related conclusions for research reactors

  2. Nuclear bremsstrahlung in proton induced reactions at 190 MeV (first experiments at AGOR)

    NARCIS (Netherlands)

    Wilschut, HW

    1998-01-01

    An overview is given of the first experiments with the new KVI cyclotron AGOR. First experiments have focused on nuclear bremsstrahlung in few-and many-body reactions. A classical introduction to nuclear bremsstrahlung is given. First results on coherent bremsstrahlung are discussed.

  3. Measurement and analysis of double-differential neutron emission spectra in (P,N) and (α,N) reactions

    International Nuclear Information System (INIS)

    Okamoto, K.; Mehta, M.K.

    1988-05-01

    The second IAEA Research Co-ordination Meeting on Measurement and Analysis of Double-Differential Neutron Emission Spectra in (p,n) and (α,n) Reactions was convened by the IAEA Nuclear Data Section at the IAEA Headquarters in Vienna during 8-10 February, 1988. The main objectives of the Co-ordinated Research Project for which this meeting was held are (i) to extract systematic information about nuclear level densities as a function of excitation energy by analysing the neutron emission spectra from (p,n) and (α,n) reactions on properly selected targets and bombarding energy range, and (ii) to parametrize this information into appropriate phenomenological models to enable reliable extrapolation for general use of level density information in basic and applied nuclear physics related problems. Detailed conclusions and recommendations, together with a summary of the programme during 1988/1989 are attached in the Appendices

  4. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  5. Probing the short range behavior of nuclei with high PT photo- and electro-nuclear reactions

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The short range behavior of the nucleus and the use of the nucleus as a filter are studied. Special emphasis is given to photon and hadron induced reactions. The components of the nuclear wave function are described. The evidences of hard scattering processes in reactions induced by real photons as well as by hadrons on free nucleus are reviewed. The spin observables are also investigated. The perspectives opened by these studies in the nuclear environment are considered

  6. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  7. On microscopic theory of radiative nuclear reaction characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  8. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kamioka, K.; Oga, T.; Izawa, Y. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Science, Osaka Kyouiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 10{sup 20} cm{sup −3}) into ZnO is performed using a multiple-step energy. The high resistivity of ∼10{sup 3} Ω cm in un-implanted samples remarkably decreased to ∼10{sup −2} Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  9. Measurement and analysis of γ-spectra in the research of nuclear chemistry

    International Nuclear Information System (INIS)

    Li Wenxin; Sun Tongyu

    1990-01-01

    Measurement of γ-ray spectra and method of data analysis are described for the research of nuclear chemistry. Gamma-ray spectra are collected as a function of time and are analysed by the computer codes GAMA33 or LEONE. Decay curves are constructed by selection of characteristic γ-ray using the computer code SORT. The analysis of half-life and identification of nuclides are performed with the interactive computer code TAU85 and Tektronix graphics terminal. Nuclear reaction cross-sections are calculated on weighted average of all the observed γ-rays for each nuclide after duplicate or erroneous identifications are screened

  10. Measure of hydrogen concentration profile in materials by resonant nuclear reactions

    International Nuclear Information System (INIS)

    Livi, R.P.; Zawislak, F.C.; Acquadro, J.C.

    1986-01-01

    The technique for determining the profile of hydrogen concentration in proximities of the surface of materials, is presented. The preliminary measurements were done, using the Pelletron accelerator at Sao Paulo University (USP), in Brazil, for the resonant-nuclear reaction 1 H( 19 F, α γ) 16 O. By using this reaction the technique is sensitive for concentrations above 500 ppm, which could be reduced to 100 ppm through special shieldings and other techniques to reduce the background radiation. (M.C.K.) [pt

  11. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    International Nuclear Information System (INIS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2001-01-01

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis

  12. Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology

    OpenAIRE

    Cardone, F.; Mignani, R.; Petrucci, A.

    2011-01-01

    The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtaine...

  13. CRSEC: a general purpose Hauser--Feshbach code for the calculation of nuclear cross-sections and thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Woosley, S.; Fowler, W.A.

    1977-09-01

    CRSEC is a FORTRAN IV computer code designed for the efficient calculation of average nuclear cross sections in situations where a statistical theory of nuclear reactions is applicable and where compound nuclear formation is the dominant reaction mechanism. This code generates cross sections of roughly factor of 2 accuracy for incident particle energies in the range of 10 keV to 10 MeV for most target nuclei from magnesium to bismuth. Exceptions usually involve reactions that enter the compound nucleus at such a low energy that fewer than 10 levels are present in the ''energy window of interest.'' The incident particle must be a neutron, proton, or alpha particle, and only binary reactions resulting in the emission of a single n, p, α, or γ (cascade) are calculated. CRSEC is quite fast, a complete calculation of 12 different reactions over a grid of roughly 150 energy points and the generation of Maxwellian averaged rates taking about 30 seconds of CDC7600 time. Also the semi-empirical parameterization of nuclear properties contained in CRSEC is very general. Greater accuracy may be obtained, however, by furnishing specific low-lying excited states, level density parameterization, and nuclear strength functions. A more general version of CRSEC, called CRSECI, is available that conserves isospin properly in all reactions and allows the user to specify a given degree of isospin mixing in the highly excited states of the compound nucleus. Besides the cross section as a function of center-of-mass energy, CRSEC also generates the Maxwell--Boltzmann averaged thermonuclear reaction rate and temperature dependent nuclear partition function for a grid of temperatures from 10 8 to 10 10 0 K. Sections of this report describe in greater detail the physics employed in CRSEC and how to use the code. 2 tables

  14. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...

  15. Deuterium cluster model for low energy nuclear reactions (LENR)

    Science.gov (United States)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  16. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  17. Nuclear astrophysics: Recent results on CNO-cycle reactions and AGB nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.

    2011-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 100 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method and new experimental facilities such as deep underground laboratories have been devised yielding new cutting-edge results.

  18. Exothermic reaction induced by high-density current in metals: Possible nuclear origin

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J. [Laboratoire des sciences nucleaires, CNAM 2, rue Conte 75141, Cedex 03 Paris (France)]. E-mail: dufourj@cnam.fr; Murat, D.; Dufour, X.; Foos, J. [Laboratoire des sciences nucleaires, CNAM 2, rue Conte 75141, Cedex 03 Paris (France)

    2005-07-01

    Since 1989, many experimenters worked on low-energy nuclear reactions (LENR). They face both an experimental and a theoretical dilemma: how to design simple and convincing experiments in a complex system and if the phenomenon has a nuclear origin, why do they observe no radiation. A rather simple water mass flow calorimeter was designed to study this phenomenon under different experimental conditions. First results indicate that a high-density current induced an exothermic reaction in a hydrogen processed palladium wire. A working hypothesis is presented to solve the theoretical dilemma. This working hypothesis is based on the possible existence of a still hypothetical proton/electron resonance. We underline that a working hypothesis is not a theory presented to explain the phenomenon; this is just a conceptual scheme to drive the authors to build experiments. (author)

  19. Exothermic reaction induced by high-density current in metals: Possible nuclear origin

    International Nuclear Information System (INIS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2005-01-01

    Since 1989, many experimenters worked on low-energy nuclear reactions (LENR). They face both an experimental and a theoretical dilemma: how to design simple and convincing experiments in a complex system and if the phenomenon has a nuclear origin, why do they observe no radiation. A rather simple water mass flow calorimeter was designed to study this phenomenon under different experimental conditions. First results indicate that a high-density current induced an exothermic reaction in a hydrogen processed palladium wire. A working hypothesis is presented to solve the theoretical dilemma. This working hypothesis is based on the possible existence of a still hypothetical proton/electron resonance. We underline that a working hypothesis is not a theory presented to explain the phenomenon; this is just a conceptual scheme to drive the authors to build experiments. (author)

  20. Development of IAEA nuclear reaction databases and services

    Energy Technology Data Exchange (ETDEWEB)

    Zerkin, V.; Trkov, A. [International Atomic Energy Agency, Dept. of Nuclear Sciences and Applications, Vienna (Austria)

    2008-07-01

    From mid-2004 onwards, the major nuclear reaction databases (EXFOR, CINDA and Endf) and services (Web and CD-Roms retrieval systems and specialized applications) have been functioning within a modern computing environment as multi-platform software, working under several operating systems with relational databases. Subsequent work at the IAEA has focused on three areas of development: revision and extension of the contents of the databases; extension and improvement of the functionality and integrity of the retrieval systems; development of software for database maintenance and system deployment. (authors)

  1. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  2. Web-Based Search and Plot System for Nuclear Reaction Data

    International Nuclear Information System (INIS)

    Otuka, N.; Nakagawa, T.; Fukahori, T.; Katakura, J.; Aikawa, M.; Suda, T.; Naito, K.; Korennov, S.; Arai, K.; Noto, H.; Ohnishi, A.; Kato, K.

    2005-01-01

    A web-based search and plot system for nuclear reaction data has been developed, covering experimental data in EXFOR format and evaluated data in ENDF format. The system is implemented for Linux OS, with Perl and MySQL used for CGI scripts and the database manager, respectively. Two prototypes for experimental and evaluated data are presented

  3. Time-dependent, many-body scattering theory and nuclear reaction applications

    International Nuclear Information System (INIS)

    Levin, F.S.

    1977-01-01

    The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results

  4. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, I., E-mail: ilombardo@lns.infn.it; Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A. [INFN Laboratori Nazionali del Sud (Italy); Auditore, L. [Universita di Messina, and INFN-Gr. Coll. Messina, Dipartimento di Fisica (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering (Romania); Cardella, G. [INFN, Sezione di Catania (Italy); Cavallaro, S. [INFN Laboratori Nazionali del Sud (Italy); Chatterjee, M. B. [Saha Institute of Nuclear Physics (India); Filippo, E. De [INFN, Sezione di Catania (Italy); Di Pietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud (Italy); Giuliani, G.; Geraci, E.; Grassi, L. [Dipartimento di Fisica e Astronomia Universita di Catania (Italy); Grzeszczuk, A. [University of Silesia, Institute of Physics (Poland); Han, J. [INFN Laboratori Nazionali del Sud (Italy); La Guidara, E. [INFN, Sezione di Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud (Italy); and others

    2011-11-15

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  5. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  6. Nuclear reaction rates and the nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.G.; Iliadis, C.

    2000-01-01

    In this paper we examined the consequences of improving the nuclear reaction library on our simulations of TNRs on 1.25M, WD and 1.35M, WDS. We have found that the changes in the rates have affected the nucleosynthesis predictions of our calculations but not, to any great extent, the gross features. In addition, we have used a lower mass accretion rate than in our previous studies in order to accrete (and eject) more material. This has, as expected, caused the peak values of some important parameters to increase over our previous studies at the same WD mass. However, because some important reaction rates have declined in the new compilation this has not increased the abundances for nuclei above aluminum and, in fact, they have declined while the abundances of both 26 Al and 27 Al have increased at both WD masses. In contrast, the abundance of 22 Na has declined at both WD masses over the values predicted in our earlier work. This has important implications with respect to predictions of the observability of novae with INTEGRAL

  7. Nuclear reactions and the synthesis of new species

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Targets of relatively short-lived, neutron-rich transplutonium isotopes, such as 254 Es, which are produced by the HFIR/TRU, when combined with the capabilities of modern heavy-ion accelerators, offer a unique possibility to expand our knowledge of chemical elements and atomic nuclei toward the limits of nuclear stability. This knowledge should enable us to delineate the forces that eventually terminate the periodic table at its upper end. Specifically, the panel concludes that significant research opportunities exist in several areas, which are highlighted below: Nucleon-transfer reactions between light heavy-ion projectiles (such as 18 O, 22 Ne, or 48 Ca) and 254 Es targets will give access to a completely uncharted region of neutron-rich isotopes. Cold-fusion reactions of 48 Ca projectiles with /sup 254,255/Es targets should yield superheavy nuclei with neutron numbers very close to the predicted closed neutron shell at N = 184

  8. Nuclear reaction models - source term estimation for safety design in accelerators

    International Nuclear Information System (INIS)

    Nandy, Maitreyee

    2013-01-01

    Accelerator driven subcritical system (ADSS) employs proton induced spallation reaction at a few GeV. Safety design of these systems involves source term estimation in two steps - multiple fragmentation of the target and n+γ emission through a fast process followed by statistical decay of the primary fragments. The prompt radiation field is estimated in the framework of quantum molecular dynamics (QMD) theory, intra-nuclear cascade or Monte Carlo calculations. A few nuclear reaction model codes used for this purpose are QMD, JQMD, Bertini, INCL4, PHITS, followed by statistical decay codes like ABLA, GEM, GEMINI, etc. In the case of electron accelerators photons and photoneutrons dominate the prompt radiation field. High energy photon yield through Bremsstrahlung is estimated in the framework of Born approximation while photoneutron production is calculated using giant dipole resonance and quasi-deuteron formation cross section. In this talk hybrid and exciton PEQ models and QMD formalism will be discussed briefly

  9. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2008-01-01

    . Jaskola joined a collaboration of many Polish institutions and performed a series of experiments at the Heavy Ion Laboratory of Warsaw University devoted to a study of cell survival after irradiation by ions from the Warsaw Cyclotron. Finally, I would like to warmly welcome drs H.P. Morsch and N. Keeley who joined us last year. Dr Morsch is collaborating with Assoc. Prof. P. Zupranski on a multi-gluon field approach within Quantum Chromodynamics. Dr Keeley's interest is in low energy nuclear reactions. I would also like to welcome our new PhD students, Ms I. Strojek, Mr l. Standylo and Mr Shaaban Abd El Aal. With Mr Abd El Aal we are opening a new field of applications of nuclear methods, studying ancient Egyptian frescos by means of proton induced X-ray emission (PIXE). As every year, apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from highs Schools in Warsaw and to students of Warsaw University. (author)

  10. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  11. TORUS: Theory of Reactions for Unstable iSotopes.Topical Collaboration for Nuclear Theory Project. Period: June 1, 2010 - May 31, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-28

    The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.

  12. γ-Particle coincidence technique for the study of nuclear reactions

    Science.gov (United States)

    Zagatto, V. A. B.; Oliveira, J. R. B.; Allegro, P. R. P.; Chamon, L. C.; Cybulska, E. W.; Medina, N. H.; Ribas, R. V.; Seale, W. A.; Silva, C. P.; Gasques, L. R.; Zahn, G. S.; Genezini, F. A.; Shorto, J. M. B.; Lubian, J.; Linares, R.; Toufen, D. L.; Silveira, M. A. G.; Rossi, E. S.; Nobre, G. P.

    2014-06-01

    The Saci-Perere γ ray spectrometer (located at the Pelletron AcceleratorLaboratory - IFUSP) was employed to implement the γ-particle coincidence technique for the study of nuclear reaction mechanisms. For this, the 18O+110Pd reaction has been studied in the beam energy range of 45-54 MeV. Several corrections to the data due to various effects (energy and angle integrations, beam spot size, γ detector finite size and the vacuum de-alignment) are small and well controlled. The aim of this work was to establish a proper method to analyze the data and identify the reaction mechanisms involved. To achieve this goal the inelastic scattering to the first excited state of 110Pd has been extracted and compared to coupled channel calculations using the São Paulo Potential (PSP), being reasonably well described by it.

  13. γ-Particle coincidence technique for the study of nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zagatto, V.A.B., E-mail: vinicius.zagatto@gmail.com [Instituto de Física da Universidade de São Paulo (Brazil); Oliveira, J.R.B.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Seale, W.A.; Silva, C.P.; Gasques, L.R. [Instituto de Física da Universidade de São Paulo (Brazil); Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B. [Instituto de Pesquisas Energéticas e Nucleares (Brazil); Lubian, J.; Linares, R. [Instituto de Física da Universidade Federal Fluminense (Brazil); Toufen, D.L. [Instituto Federal de Educação, Ciência e Tecnologia (Brazil); Silveira, M.A.G. [Centro Universitário da FEI (Brazil); Rossi, E.S. [Centro Universitário FIEO – UNIFIEO (Brazil); Nobre, G.P. [Lawrence Livermore National Laboratory (United States)

    2014-06-01

    The Saci-Perere γ ray spectrometer (located at the Pelletron AcceleratorLaboratory – IFUSP) was employed to implement the γ-particle coincidence technique for the study of nuclear reaction mechanisms. For this, the {sup 18}O+{sup 110}Pd reaction has been studied in the beam energy range of 45–54 MeV. Several corrections to the data due to various effects (energy and angle integrations, beam spot size, γ detector finite size and the vacuum de-alignment) are small and well controlled. The aim of this work was to establish a proper method to analyze the data and identify the reaction mechanisms involved. To achieve this goal the inelastic scattering to the first excited state of {sup 110}Pd has been extracted and compared to coupled channel calculations using the São Paulo Potential (PSP), being reasonably well described by it.

  14. Some applications of radioactivity and of nuclear reactions

    International Nuclear Information System (INIS)

    2007-01-01

    This document presents various applications of radioactivity. It first addresses the medical field with applications in imagery (principles, used compounds, positron emission tomography, tumour detection, study of brain operation), applications in therapy (biological effects of radiations, principles of radiotherapy, struggle against cancer, notably by proton therapy), and applications in sterilisation and microbiological decontamination of instruments and medical products. It evokes applications in agriculture (irradiation of fruits and vegetables, vegetable conservation), in industry (production of new and stronger materials by irradiation, analysis by activation, thickness, density or homogeneity gauges), in arts (analysis of statues, use of gamma-graphy on dense objects, decontamination by irradiation), and in science (carbon 14 dating). It presents nuclear fission and ways to control it, recalls the main scientific discoveries and their consequences. It describes energy production based on nuclear fission (description of nuclear reactor core, of waste processing), and on nuclear fusion (principle, Tokamak examples with JET and ITER, brief presentation of laser fusion)

  15. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  16. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    International Nuclear Information System (INIS)

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its' bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine)

  17. Two reactions method for accurate analysis by irradiation with charged particles

    International Nuclear Information System (INIS)

    Ishii, K.; Sastri, C.S.; Valladon, M.; Borderie, B.; Debrun, J.L.

    1978-01-01

    In the average stopping power method the formula error itself was negligible but systematic errors could be introduced by the stopping power data used in this formula. A method directly derived from the average stopping power method, but based on the use of two nuclear reactions, is described here. This method has a negligible formula error and does not require the use of any stopping power or range data: accurate and 'self-consistent' analysis by irradiation with charged particles is then possible. (Auth.)

  18. Analysis of the effects of reaction parameters upon the molecular weight of an aromatic poly(hydrazide) through experimental design

    International Nuclear Information System (INIS)

    Gomes, Dominique; Pinto, Jose Carlos; Borges, Cristiano P.; Nunes, Suzana P.

    2001-01-01

    Samples of an aromatic poly(hydrazide) were synthesized through low temperature solution polycondensation reactions. Monomers were characterized by nuclear magnetic resonance (NMR) and thermal analysis. The polymer material was characterized by intrinsic viscosity measurements and by NMR. The thermal behavior of the polymer samples was studied by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of various factors that influence the course of the polymerization reaction, such as concentration of monomer and electrolyte (LiCl) in the reaction medium, purity of the monomers, reaction temperature and reaction time, were investigated. Reaction conditions were then optimized in order to allow the preparation of high molecular weight polymer resins. Values of intrinsic viscosity obtained for the poly(hydrazide) in N-methyl-2-pyrrolidone were as high as 1.51 dL/g. (author)

  19. Proceedings of the Fifth AASPP Workshop on Asian Nuclear Reaction Database Development

    International Nuclear Information System (INIS)

    Saxena, Alok

    2015-02-01

    The Fifth AASPP Workshop on Asian Nuclear Reaction Database Development was organized by Nuclear Data Physics Centre of India in cooperation with the IAEA and the Board of Research in Nuclear Sciences, Department of Atomic Energy from 22-24 Sept., 2014 at Bhabha Atomic Research Centre, Mumbai, India. Over seventy participants took part in the workshop representing India, Japan, Republic of Korea, Vietnam, Kazakhstan, Uzbekistan, Mongolia and a representative from the IAEA. The workshop covered the overview of nuclear data activities in different countries and covered the topics related to experiments performed using various facilities, the upcoming and existing accelerators and experimental facilities, EXFOR compilation activities, reactor sensitivity studies to nuclear data, criticality benchmarking studies, nuclear data requirement of nuclear power reactors, theoretical calculations using various codes, and covariances in nuclear data. About thirty five talks were delivered by participants from various countries on these topics. The concluding session had a panel discussion on possible future collaboration involving participants from different countries. The present report gives summary of each presentation. (author)

  20. Preequilibrium Nuclear Reactions

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1988-01-01

    After a survey on existing experimental data on precompound reactions and a description of preequilibrium reactions, theoretical models and quantum mechanical theories of preequilibrium emission are presented. The 25 papers of this meeting are analyzed separately

  1. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  2. Nuclear forensic analysis

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2016-01-01

    In the present talk the fundamentals of the nuclear forensic investigations will be discussed followed by the detailed standard operating procedure (SOP) for the nuclear forensic analysis. The characteristics, such as, dimensions, particle size, elemental and isotopic composition help the nuclear forensic analyst in source attribution of the interdicted material, as the specifications of the nuclear materials used by different countries are different. The analysis of elemental composition could be done by SEM-EDS, XRF, CHNS analyser, etc. depending upon the type of the material. Often the trace constituents (analysed by ICP-AES, ICP-MS, AAS, etc) provide valuable information about the processes followed during the production of the material. Likewise the isotopic composition determined by thermal ionization mass spectrometry provides useful information about the enrichment of the nuclear fuel and hence its intended use

  3. Investigation of phosphorous in thin films using the {sup 31}P(α,p){sup 34}S nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Gobbi, A.L. [Laboratório Nacional de Nanotecnologia, 13083-100 Campinas, SP (Brazil); Stedile, F.C. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900 Porto Alegre, RS (Brazil)

    2016-03-15

    Phosphorus detection and quantification were obtained, using the {sup 31}P(α,p){sup 34}S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the {sup 31}P(α,p){sup 34}S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 10{sup 14} cm{sup −2} were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  4. Nuclear structure and nuclear reaction aspects of Faessler and Greiner's rotation-vibration coupling theory

    International Nuclear Information System (INIS)

    Aspelund, O.

    In the nuclear structure part, the foundations of Faessler and Greiner's rotation-vibration coupling theory are reviewed, whereafter an alternative derivation of Faessler and Greiner's Hamiltonian is presented. A non-spherical quadrupole phonon number N is defined and used in the matrix elements reported for odd-even/even-odd nuclei. These matrix elements are shown to evince oblate-prolate effects that can be exploited for assessing the signs of quadrupole deformations. In the nuclear reaction part, the wave functions emerging from the structure part are applied in a complete and consistent description of elastic and inelastic particle scattering, one-nucleon transfer, and particle/γ-ray angular correlations. The intentions are to demonstrate that anomolous angular distributions and 1=2 j-effects observed in one-nucleon transfer are interrelated phenomena, that can be satisfactorily explained in terms of the elementary vibrational excitation modes inherent in Faessler and Greiner's theory. The latter is regarded as a non-spherical approach to the theory of the quadrupole component of the nuclear potential energy surface. (Auth.)

  5. Parameters for calculation of nuclear reactions of relevance to non-energy nuclear applications (Reference Input Parameter Library: Phase III). Summary report of the first research coordination meeting

    International Nuclear Information System (INIS)

    Capote Noy, R.

    2004-08-01

    A summary is given of the First Research Coordination Meeting on Parameters for Calculation of Nuclear Reactions of Relevance to Non-Energy Nuclear Applications (Reference Input Parameter Library: Phase III), including a critical review of the RIPL-2 file. The new library should serve as input for theoretical calculations of nuclear reaction data at incident energies up to 200 MeV, as needed for energy and non-energy modern applications of nuclear data. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with actions and deadlines. Participants' contributions to the RCM are also attached. (author)

  6. Method for calculating the characteristics of nuclear reactions with composite particle

    International Nuclear Information System (INIS)

    Zelenskaya, N.S.

    1978-01-01

    The purpose of the lectures is to attempt to give a brief review of the present status of the theory of nuclear reactions involving composite particles (heavy ions, 6 Li, 7 Li, and 9 Be ions, α-particles). In order to analyze such reactions, one should employ and ''exact'' method of distorted waves with a finite radius of interaction. Since the zero radius approximation is valid only at low momentum transfer, its rejection immediately includes all possible transferred momenta and consequently, the reaction mechanisms different from the usual cluster stripping we shall discuss a sufficiently general formalism of the distorted waves method, which does not use additional assumptions about the smaliness of the region of interaction between particles and about the possible reaction mechanisms. We shall also discuss all physical simplifications introduced in specific particular codes and the ranges of their applicability will be established. (author)

  7. First Year Report: Nuclear Reaction Measurements with Radioactive Beams and Targets- Progress in Measurements of the 89Zr (n,xnyp) Reaction Cross Sections

    International Nuclear Information System (INIS)

    Joseph Cerny; Dennis Moltz; Sylvia La; Ed Morse; Larry Ahle; Lee Bernstein; Ken Moody; Kevin Roberts; Margaret Moody; James Powell; Jim O'Neil; Anthony Belian

    2004-01-01

    OAK-B135 During the underground nuclear tests in Nevada, some of the most important information was obtained by radiochemical analysis of post-test excavations. By adding small samples of refractory and rare earth elements not commonly present in the surrounding soil to the device, a detailed look could be had of the actual event. In order to properly analyze these data, several hundred cross sections are needed at a neutron energy of 14 MeV (a d-t-burn product). Although it has always been assumed that these calculations are correct, insufficient experimental data exist to corroborate this assumption. The purpose of this experiment is to measure two reaction cross sections, namely the 89 Zr (n, 2n) 88 Zr and 89 Zr (n, np) 88 Y reactions. Although the former reaction has been measured in an unpublished report ( A. A. Delucchi and W. Goishi, LANL Report LA-7841-C (1977) pp. 33-36), we intend to reduce the experimental error in this cross section. The latter cross section has not been measured. This case is much simplified because these reaction products have half-lives ∼100 days compared with ∼3 days for the target nuclide. Therefore the assay can be accomplished long after the target nuclei have decayed away

  8. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S., E-mail: rajagopalan78@hotmail.com [Indira Gandhi Centre for Atomic Research, Materials Science Group (India); Asthalter, T., E-mail: t.asthalter@web.de [Universität Stuttgart, Institute of Physical Chemistry (Germany); Rabe, V.; Laschat, S. [Universität Stuttgart, Institute of Organic Chemistry (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe{sub 3}(μ{sub 3}-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe{sub 3}(μ{sub 3}-O) in pyridine solution, Fe{sub 3}(μ{sub 3}-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe{sub 3}(μ{sub 3}-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe{sup (III)}(C{sub 5}H{sub 5}N){sub 2}(O{sub 2}CCH{sub 3}){sub 2}]{sup +} and Fe{sup (II)}(C{sub 5}H{sub 5}N){sub 4}(O{sub 2}CCH{sub 3}){sub 2}, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  9. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  10. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    International Nuclear Information System (INIS)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance

  11. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  12. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  13. Obtention of differential sections in nuclear reactions using a thick target

    International Nuclear Information System (INIS)

    Chavez R, R.

    2000-01-01

    The nuclear reaction analysis (NRA) technique is used mainly for detecting the presence and concentration of light elements of great importance such as: carbon, nitrogen and oxygen. This work has the objective to obtain the differential sections of 16 O and 14 N starting from the irradiation with deuterons of TiSrO 3 samples, of AIN and AIN 2 at energies of 2000 KeV and 1800 KeV respectively. The present work have four chapters; chapter 1 is focused to the physical aspects which takes part in the NRA technique. The technical requirements as well as the necessary equipment for developing the techniques are described in the chapter 2. In chapter 3 it is described the algorithm developed for to obtain the differential sections starting from experimental data, and finally, in chapter 4 are given the results and conclusions. (Author)

  14. Nuclear fragmentation reactions in extended media studied with Geant4 toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.d [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Botvina, Alexander [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Mishustin, Igor [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Kurchatov Institute, Russian Research Center, 123182 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2010-03-15

    It is well-known from numerous experiments that nuclear multifragmentation is a dominating mechanism for production of intermediate mass fragments in nucleus-nucleus collisions at energies above 100AMeV. In this paper we investigate the validity and performance of the Fermi break-up model and the statistical multifragmentation model implemented as parts of the Geant4 toolkit. We study the impact of violent nuclear disintegration reactions on the depth-dose profiles and yields of secondary fragments for beams of light and medium-weight nuclei propagating in extended media. Implications for ion-beam cancer therapy and shielding from cosmic radiation are discussed.

  15. Nuclear fragmentation reactions in extended media studied with Geant4 toolkit

    International Nuclear Information System (INIS)

    Pshenichnov, Igor; Botvina, Alexander; Mishustin, Igor; Greiner, Walter

    2010-01-01

    It is well-known from numerous experiments that nuclear multifragmentation is a dominating mechanism for production of intermediate mass fragments in nucleus-nucleus collisions at energies above 100AMeV. In this paper we investigate the validity and performance of the Fermi break-up model and the statistical multifragmentation model implemented as parts of the Geant4 toolkit. We study the impact of violent nuclear disintegration reactions on the depth-dose profiles and yields of secondary fragments for beams of light and medium-weight nuclei propagating in extended media. Implications for ion-beam cancer therapy and shielding from cosmic radiation are discussed.

  16. Nuclear reactions in Monte Carlo codes

    CERN Document Server

    Ferrari, Alfredo

    2002-01-01

    The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .

  17. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  18. Resonant Interaction, Approximate Symmetry, and Electromagnetic Interaction (EMI) in Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Chubb, Scott

    2007-03-01

    Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.

  19. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    International Nuclear Information System (INIS)

    Hinde, D J; Carter, I P; Dasgupta, M; Simpson, E C; Cook, K J; Kalkal, Sunil; Luong, D H; Williams, E

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University. (paper)

  20. Nuclear fission: reaction to the discovery in 1939

    International Nuclear Information System (INIS)

    Badash, L.; Hodes, E.; Tiddens, A.

    1985-01-01

    Historical aspects of the behavior of scientists in the aftermath of the discovery of nuclear fission are presented. An extensive background section is given which documents the worldwide discussion of atomic energy over the preceding four decades. A second section briefly surveys the research highlights of 1939. The third section examines the reactions of scientists, primarily in the United States, and includes coverage by newspapers, magazines and radio. The final section includes a number of themes to explain why there was little acknowledgment of the potential of the bomb to affect personal morality, the scientific community and international relations

  1. Reaction of the residents to nuclear related policies: in a risk perception perspective

    International Nuclear Information System (INIS)

    Cho, S. K.

    2001-01-01

    In general, most of the nuclear related policies are discussed at governmental level. Siting nuclear related facilities policies is the state as this. The government, as the single decision-maker, tends to decide all procedures from policy drafting, decision making to implementation. That is to say, the government has been opting for DAD(Decide-Announce-Defend) measure. This resulted in many forms of discord because the government overlooked the importance of sufficient communication with resident or the public. However, the precondition for promoting nuclear related policies is public acceptance. Meanwhile, the public including resident fully understand the necessity of nuclear facilities but do not agree with the idea of having them in their residential area. Therefore, the research focuses on identifying the affecting factors toward reaction of the resident derived from previous studies. It also aims to lay the foundation for devising effective communication strategies between the government and the public. The result of case study, it was found that these factors-trust, participation and compensative-have interacted to affect resident's reaction. Ultimately, the government must recognize the residents as decision-maker so as to gain the PA(Public Acceptance). It also necessary to create better decision making processes by substantial participation, reasonable compensation and trust are essential first steps toward improving the situation

  2. Nuclear stopping in oxygen-induced reactions at 200 A GeV

    International Nuclear Information System (INIS)

    Obenshain, F.E.; Albrecht, R.; Awes, T.C.

    1988-01-01

    A primary goal of relativistic heavy-ion studies is to verify the existence of the postulated quark-gluon plasma (QGP). Since most of the possible plasma signatures are indistinguishable from background created by nonplasma events. Thorough understanding of reaction mechanisms is an important prerequisite in any QGP search. To isolate collective features of nucleus-nucleus collisions from those that may be expected on the basis of linear superposition of nucleon-nucleus collisions, we compare measured quantities with calculations that reproduce data from nucleon-induced reactions and that make predictions for nucleus-nucleus reactions. Here we discuss the data obtained from our Zero-Degree Calorimeter (ZDC) and the transverse energy obtained from the Mid-Rapidity Calorimeter (MIRAC). The primary reactions considered are: 16 O + 16 C and 16 O + 197 Au. The measurements show a high degree of nuclear stopping and the energy densities may be large enough to produce a transition to the quark-gluon plasma. 10 refs., 5 figs

  3. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    International Nuclear Information System (INIS)

    Hussein, M. S.

    2008-01-01

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials

  4. Shape nuclei and nuclear reactions

    International Nuclear Information System (INIS)

    Yushkov, A.V.

    1975-01-01

    Experimental methods for obtaining the nucleus shape parameters are reviewed throughout the period of 1955-1975. Spatial properties of a nucleus, which can be directly or indirectly measured, are determined. They include: parameters of nucleus localization in space; parameters characterizing the nucleus nonsphericity; parameters of the nucleus nonaxiality. Dimensional parameters of a nucleus, namely, radius R and surface ΔR are derived from electron scattering. The deformation sign is indirectly obtained in the experiments. Parameters of the nucleus shape, namely, the sign and magnitude of nuclear deformation are derived from the mean energy proton scattering by a coupled channels method. The only direct way of deriving the nucleus surface deformation signs is the method of the Blaire phase shift. Results on scattering of electrons, protons, and α-particles on light and medium nuclei are reported. Data on the nucleus shape can be also obtained from reactions with heavy ions. A difference between strong absorptions of incident particles of high and average energy by a nucleus is noted. Numerous diagrams illustrate experimental and theoretical results

  5. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    International Nuclear Information System (INIS)

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-01-01

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for 1 H and ICRU 63 data for 12 C, 14 N, 16 O, 31 P, and 40 Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much

  6. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.

    Science.gov (United States)

    Sterpin, E; Sorriaux, J; Vynckier, S

    2013-11-01

    Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within

  7. Effect of the Pauli principle and channel coupling on the nuclear reactions, 2

    International Nuclear Information System (INIS)

    Kanada, Hiroyuki; Kaneko, Tsuneo; Nomoto, Morikazu

    1976-01-01

    The effect of the Pauli principle on nuclear reactions of a six-nucleon system is investigated in the presence of a breakup channel, by using the resonating group method (RGM). The microscopic treatment with full exchange effects for the t( 3 He, d) 4 He reaction is examined together with the 3 He-t and d- 4 He elastic scattering. It is shown that the exchange effects (especially owing to the Pauli principle) play an important role in the differential cross section in the backward region. The t( 3 He, d) 4 He reaction is examined by decomposing the reaction processes into three terms, that is, proton stripping, neutron pick-up and residual processes. The asymmetry of the angular distribution for the t( 3 He, d) 4 He reaction is also discussed. (auth.)

  8. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  9. Manual on usage of the Nuclear Reaction Data File (NRDF)

    International Nuclear Information System (INIS)

    1984-10-01

    In the computer in the Institute for Nuclear Study, University of Tokyo, there is set up a Nuclear Reaction Data File (NRDF) which has been built in Hokkaido University. While the data base is growing year after year, its trial usage is for the purpose of joint utilization by educational institutions. In section 1, examples of the retrieval are presented to have the user familiarize with NRDF. In section 2, the terms used in retrieval are given in table. Then, in section 3, as a summary of the examples, structure of the retrieval commands is explained. In section 4, for the retrieval results on a CRT, cautions in reading are given. Finally, in section 5, general cautions in usage of NRDF are given. (Mori, K.)

  10. Report on the consultants` meeting on technical aspects of the co-operation of nuclear reaction data centers

    Energy Technology Data Exchange (ETDEWEB)

    Lemmel, H D; Schwerer, O; Wienke, H [eds.

    1995-10-01

    The IAEA Nuclear Data Section convenes in annual intervals coordination meetings of the Network of the Nuclear Reaction Data Center. The present meeting dealt with technical matters of the nuclear data compilation and exchange by means of the jointly operated computerized systems CINDA, EXFOR, ENDF and others. Refs, figs and tabs.

  11. Report on the consultants' meeting on technical aspects of the co-operation of nuclear reaction data centers

    International Nuclear Information System (INIS)

    Lemmel, H.D.; Schwerer, O.; Wienke, H.

    1995-10-01

    The IAEA Nuclear Data Section convenes in annual intervals coordination meetings of the Network of the Nuclear Reaction Data Center. The present meeting dealt with technical matters of the nuclear data compilation and exchange by means of the jointly operated computerized systems CINDA, EXFOR, ENDF and others. Refs, figs and tabs

  12. Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.

  13. Nuclear excitations and reaction mechanisms. Progress report

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1986-01-01

    Theoretical research is being conducted on the following topics: photon scattering, gauge invariance and the extension of Siefert's Theorem; retardation effects in photonuclear absorption and the Cabibbo Radicati Sum Rule; isovector transition densities, currents and response functions; the electric polarizability, the magnetic susceptibility and the distribution of oscillator strengths in some elementary systems; relativistic models and processes; properties of skyrmions; multiquark compound bags and the charge form factor of the A = 3 nuclei; nuclear reaction theory; three-particle scattering theory; deuteron-nucleus model calculations; asymptotia in three-particle scattering systems; and time-dependent approach to few-nucleon collisions. Progress in each of these areas is reviewed briefly. A list of invited talks and of publications for the fiscal year 1986 is included. 27 refs

  14. Photon correlation: a micrometer of the nuclear reaction

    International Nuclear Information System (INIS)

    Marques, F.M.

    1997-01-01

    The technique of intensity interferometry was largely applied to pairs of bosons produced in heavy ion collisions to study the properties of their source. Recently this technique was applied also to photons which can be considered 'natural' probes in interferometry. The analysis of the results of two experiments, namely Kr + Mi at 60 MeV/N and Ta + Au at 40 MeV/N carried out with the multidetector TAPS at GANIL has shown the complexity of the space-time characteristic of the photon source. The standard hypothesis describing the production of high energy protons (E γ > 25 MeV) as starting from p-n Bremsstrahlung exclusively in the initial superposition of the two nuclei was rejected. Actually the typical form of the correlation function in which the correlation width corresponds to the inverse of the source size, is not satisfied by any of the two systems. Only, by the taking into account in the BUU calculations the photons produced later bring near the calculations and the data. This late production could originate in the recompression of the di-nuclei system. In analogy with previous application of this technique to stellar interferometry we have studied the structure of the photon source by Monte-Carlo calculations of the correlation function. For the simple case of a binary source the correlation function is dependent on the two source distributions, relative intensity and the space-time separation of the two sources. The results of this calculations evidence the sensitivity of the photon interferometry to different reaction mechanisms by the magnitude and also the shape of the correlation function. The best agreement with the data is obtained when the two nuclear fragments emit simultaneously the photons at a moment subsequent to the reaction moment

  15. The nuclear reaction analysis (NRA) as a means for detecting carbon in GaAs and in source materials and additives

    International Nuclear Information System (INIS)

    Bethge, K.; Mader, A.; Michelmann, R.; Krauskopf, J.; Thee, P.; Meyer, J.D.

    1991-01-01

    The nuclear reaction ananlysis (NRA) on the basis of the reaction 12 C (d,p) 13 C is a method allowing the detection and description of both lateral and depth profiles of the presence of carbon in GaAs and in the source materials and additives. The NRA is an absolute method with a detection limit for C of approx. 4x10 15 cm 3 . The achievable detection range in depth under the experimental conditions goes from the surface down to 6 μm. Combined with channeling measurements, NRA is capable of identifying the position of carbon in the GaAs crystal lattice, and thus permits to examine the mobility of C in GaAs. (BBR) With 11 refs [de

  16. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  17. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  18. Tables of nuclear constants for gamma activation analysis

    International Nuclear Information System (INIS)

    Randa, Z.; Kreisinger, F.

    1983-01-01

    Tables of nuclear data were compiled for the purpose of routine gamma (photon) activation analysis. The tables are arranged in two parts. The first one lists the radionuclides in the order of their atomic number. In the second one, the emitted gamma-ray photons are tabulated in the order of increasing energy. Tables contain the gamma emitters produced by the following photonuclear reactions: (#betta#,#betta#), (#betta#,n), (#betta#,p), (#betta#,p+n), (#betta#,2n), (#betta#,3n), (#betta#,4n), (#betta#,2p), (#betta#,α), (#betta#,α+n), (#betta#,α+p). This set corresponds to the maximum energy of the bremsstrahlung of roughly 45 MeV. The program for the output of the tabulated data allows the data as required for specific irradiation and measuring reduction of conditions (reaction thresholds, energy and intensity of gamma-rays, half-lives and target elements). (author)

  19. Unified formulation of the theory of nuclear reactions

    International Nuclear Information System (INIS)

    Bloch, C.

    The determination of the scattering matrix in the theory of nuclear reactions is essentially equivalent to the construction of the Green function for the Schroedinger equation in the internal region of the configuration space with proper boundary conditions at the nuclear surface. This Green function can be expressed as the inverse of an operator involving the sum of the Hamiltonian and of a ''boundary value operator'' which is different from zero only on the nuclear surface where it has a singularity of the same kind as a Dirac function. A general operator expression for the scattering matrix is derived. This expression can be transformed into a matrix expression by introducing an arbitrary basis of orthonormal functions in the internal region. The Wigner-Eisenbud and the Peierls-Kapur formulations are obtained by an appropriate choice of the internal functions. When a large number of resonances contribute to the cross section, the expansion of the scattering matrix in terms of resonances of the compound system is not useful, and a more appropriate starting point can be obtained from a perturbation expansion of the scattering matrix which is easily derived from the general operator expression. A simple statistical assumption is proposed in order to determine the dominant terms in such an expansion. It leads to the optical model for the elastic scattering and to the direct interactions for the inelastic scattering

  20. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  1. The use of statistical models in heavy-ion reactions studies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1984-01-01

    This chapter reviews the use of statistical models to describe nuclear level densities and the decay of equilibrated nuclei. The statistical models of nuclear structure and nuclear reactions presented here have wide application in the analysis of heavy-ion reaction data. Applications are illustrated with examples of gamma-ray decay, the emission of light particles and heavier clusters of nucleons, and fission. In addition to the compound nucleus, the treatment of equilibrated fragments formed in binary reactions is discussed. The statistical model is shown to be an important tool for the identification of products from nonequilibrium decay

  2. A proposed aging management program for alkali silica reactions in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E., E-mail: saouma@colorado.edu; Hariri-Ardebili, Mohammad A.

    2014-10-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort.

  3. A proposed aging management program for alkali silica reactions in a nuclear power plant

    International Nuclear Information System (INIS)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad A.

    2014-01-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort

  4. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  5. Non-destructive analysis of spent nuclear fuel

    International Nuclear Information System (INIS)

    Popovic, D.

    1961-12-01

    Nondestructive analysis of fuel elements dealt with determining the isotope contents which provide information about the burnup level, quantities of fission products and neutron-multiplication properties of the irradiated fuel. Methods for determination of the isotope ratio of the spent fuel are both numerical and experimental. This report deals with the experimental method. This means development of the experimental methods for direct measurement of the isotope content. A number of procedures are described: measurements of α, β and γ activities of the isotopes; measurement of secondary effects of nuclear reactions with thermal neutrons and fast neutrons; measurement of cross sections; detection of prompt and delayed neutrons

  6. Nuclear reaction

    CERN Multimedia

    Penwarden, C

    2001-01-01

    At the European Research Organization for Nuclear Research, Nobel laureates delve into the mysteries of particle physics. But when they invited artists from across the continent to visit their site in Geneva, they wanted a new kind of experiment.

  7. Using (n,xnγ) reactions to probe collective nuclear structure

    International Nuclear Information System (INIS)

    Yates, S.W.; Brown, T.B.; Warr, N.; Hannant, C.D.

    2000-01-01

    Complete text of publication follows. The (n,n'γ) reaction has been utilized at the University of Kentucky accelerator laboratory for many years to study the structure of stable nuclei (1,2). Through the use of γ-ray excitation function and angular distribution measurements, detailed level schemes of stable nuclei can be established. In recent years, the Doppler-shift attenuation method (DSAM) has been applied following the inelastic neutron scattering reaction to determine the lifetimes of nuclear states (3), and collimated neutron 'beams' have been employed in γ-γ coincidence measurements with an array of HPGe detectors in a close geometry (4,5). Recently, γ-ray detection facilities (6,7) for reactions induced by spallation neutrons, with energies of several hundred MeV, have become available at the Los Alamos Neutron Science Center (LANSCE), and initial measurements indicate that a large variety of reactions are possible. Evidence has been obtained for reactions with as many as 27 particles emitted (7). While the mechanisms of such reactions may be of interest, the primary spectroscopic advantage of utilizing higher-energy neutrons appears to be that neutron-rich nuclei which are not normally available for study with fusion-evaporation reactions can be accessed. As a complement to these measurements with very energetic neutrons, (n2nγ) and (n,3nγ) reaction studies have been explored with neutrons from the 2 H(d,n) and 3 H(d,n) reactions and the facilities at the University of Kentucky. Neutron energies as high as 22 MeV have been employed. Initial evaluations have focussed on data from the 186 W(n,2nγ) 185 W and 186 W(n,3nγ) 184 W reactions and indicate that a great deal of information can be obtained. The advantages of these measurements, as well as comparisons with data from reactions with spallation neutrons, will be presented. This work was supported under grant PHY-9803784 from the U.S. National Science Foundation. (author)

  8. The role of reversed kinematics and double kinematic solutions in nuclear reactions studies

    International Nuclear Information System (INIS)

    Kaplan, M.; Parker, W.E.; Moses, D.J.; Lacey, R.; Alexander, J.M.

    1993-01-01

    The advantages of reversed kinematics in nuclear reactions studies are discussed, with particular emphasis on the origin of double solutions in the reaction kinematics. This possibility for double solutions does not exist in normal kinematics, and provides the basis for a new method of imposing important experimental constraints on the uniqueness of fitting complex observations. By gating on one or the other of the two solutions, light particle kinematics can be greatly influenced in coincidence measurements. The power of the method is illustrated with data for the reaction 1030 MeV 121 Sb+ 27 Al, where charged particle emissions arise from several different sources. (orig.)

  9. Oxygen depth profiling using the 16O(d,α)14N nuclear reaction

    International Nuclear Information System (INIS)

    Khubeis, I.; Al-Rjob, R.

    1997-01-01

    The excitation function of the 16 O(d,α) 14 N nuclear reaction has been determined in the deuteron energy range of 0.88-2.28 MeV. Major resonances are observed at deuteron energies of 0.98, 1.31, 1.53, 1.60, 1.73 and 2.22 MeV. The present results show good agreement with those of Haase and Khubeis, however there is a shift of 60 keV in the first resonance compared with the measurements of Amsel. The use of a thin surface barrier detector (t=22 μm) and a bias voltage of +20 V coupled with a proper pile-up rejection circuit has allowed the determination of the oxygen depth profiling to a resolution of 16 nm for thick targets. This method is efficient in eliminating interferences from other nuclear reactions such as 16 O(d,p) 17 O and 12 C(d,p) 19 C, where emitted protons have severely obscured α-particles from the 16 O(d,α) 14 N reaction. A 1.08 MeV deuteron beam has been employed to increase the α-yield from the target. The target has been tilted at 70 to enhance depth resolution. This reaction is well suited for the determination of oxygen concentration in oxides of high temperature superconductors. (orig.)

  10. Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation

    International Nuclear Information System (INIS)

    Mayer, K; Wallenius, M; Luetzenkirchen, K; Galy, J; Varga, Z; Erdmann, N; Buda, R; Kratz, J-V; Trautmann, N; Fifield, K

    2011-01-01

    Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236 U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.

  11. Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation

    Science.gov (United States)

    Mayer, K.; Wallenius, M.; Lützenkirchen, K.; Galy, J.; Varga, Z.; Erdmann, N.; Buda, R.; Kratz, J.-V.; Trautmann, N.; Fifield, K.

    2011-09-01

    Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.

  12. Solving The Longstanding Problem Of Low-Energy Nuclear Reactions At the Highest Microscopic Level - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions for fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.

  13. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  14. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  15. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Schwerer, O.; Nichols, A.L.

    2002-08-01

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (and the biennial Data Centre Heads' Meeting) was held at the OECD Nuclear Energy Agency, Issy-les-Moulineaux (near Paris), France, from 27 to 30 May 2002. The meeting was attended by 21 participants from 12 co-operating data centres of six Member States and two international organizations. This report contains the meeting summary, conclusions and actions, status reports of the participating data centres, and working papers considered. (author)

  16. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    observations on the nature of neutron superfluidity and the thermal conductivity of nuclear pasta. Our neutron star modeling efforts also pose new questions. For instance, reaction networks find that neutrino emission from cycling nuclear reactions is present in the neutron star ocean and crust, and potentially cools an accreting neutron star. This is a theory we attempt to verify using observations of neutron star transients and thermonuclear bursts, although it remains unclear if this cooling occurs. Furthermore, on some accreting neutron stars, more heat than supplied by nuclear reactions is needed to explain their high temperatures at the outset of quiescence. Although the presence of heating anomalies seems common, the source of extra heating is difficult to determine.

  17. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2005-01-01

    Full text: It is surprising how so few under-paid scientists could do so much. During 2004 the number of papers published or being in press exceeded fifty, making almost three papers per person employed in our department. Furthermore, among these papers one was published in Nature, the World's highest-ranked scientific journal. This is a result that will be difficult to beat. It is my pleasure to mention that one of our PhD students, Mr Sergiy Mezhevych, won a prestigious Heavy Ion Laboratory Prize founded by Prof. Inamura, for his experimental work using a beam from the Warsaw Cyclotron. Thanks to the effort of our colleagues the Hermes Collaboration Meeting organized by IPJ in Kazimierz Dolny (June 25 - July 1) turned out a success. The following short reports cover the three major domains of our scientific activities: nuclear, materials and atomic physics. -Nuclear physics - The structure of light nuclei, including exotic radioactive isotopes, was investigated both experimentally and theoretically. Some experimental studies were performed at the Heavy Ion Laboratory of Warsaw University in collaboration with scientists from the Institute of Nuclear Research in Kiev, Ukraine. The two reports present interesting results for the rare carbon isotope, 14 C. In the framework of Feshbach, Kerman and Koonin theory the multistep emission of one particle as well as more complicated direct processes were studied. It was found that these more complex processes play an important role in proton induced reactions. Experimental data from projectile-multifragmentation experiments with stable and radioactive beams were analysed. Some preliminary results are presented. Using a proton beam provided by the C-30 compact cyclotron at Swierk, detectors consisting of a PWO scintillator coupled to avalanche photodiodes were tested. The aim of these tests was to find the best detectors for the large electromagnetic calorimeter which will be used in future PANDA Collaboration experiments

  18. Comparison of two analysis methods for nuclear reaction measurements of {sup 12}C +{sup 12}C interactions at 95 MeV/u for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dudouet, J. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Juliani, D. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Labalme, M., E-mail: labalme@lpccaen.in2p3.fr [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Angélique, J.C. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Braunn, B. [CEA, Centre de Saclay, IRFU/SPhN, F-91191, Gif-sur-Yvette (France); Colin, J.; Cussol, D. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Finck, Ch. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Fontbonne, J.M.; Guérin, H. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Henriquet, P.; Krimmer, J. [IPNL, Université de Lyon, F-69003 Lyon (France); Université Lyon 1 and CNRS/IN2P3, UMR 5822 F-69622 Villeurbanne (France); Rousseau, M. [Institut Pluridisciplinaire Hubert Curien Strasbourg (France); Saint-Laurent, M.G. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3 BP5027,F-14076 Caen cedex 5 (France)

    2013-07-01

    During therapeutic treatment with heavier ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, the accuracy must be higher than ±3% and±1 mm. Therefore, measurements are performed to determine the double differential cross-section for different reactions. In this paper, the analysis of data from {sup 12}C +{sup 12}C reactions at 95 MeV/u are presented. The emitted particles are detected with ΔE{sub thin}−ΔE{sub thick}−E telescopes made of a stack of two silicon detectors and a CsI crystal. Two different methods are used to identify the particles. One is based on graphical cuts onto the ΔE−E maps, the second is based on the so-called KaliVeda method using a functional description of ΔE versus E. The results of the two methods will be presented in this paper as well as the comparison between both.

  19. Linear cascade calculations of matrix due to neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Avila, Ricardo E

    2000-01-01

    A method is developed to calculate the total number of displacements created by energetic particles resulting from neutron-induced nuclear reactions. The method is specifically conceived to calculate the damage in lithium ceramics by the 6L i(n, α)T reaction. The damage created by any particle is related to that caused by atoms from the matrix recoiling after collision with the primary particle. An integral equation for that self-damage is solved by interactions, using the magic stopping powers of Ziegler, Biersack and Littmark. A projectile-substrate dependent Kinchin-Pease model is proposed, giving and analytic approximation to the total damage as a function of the initial particle energy (au)

  20. Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10 endash 15)A GeV

    International Nuclear Information System (INIS)

    Mattiello, R.; Mattiello, R.; Sorge, H.; Stoecker, H.; Greiner, W.

    1997-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d, t, and He are predicted for central Au(11.6A GeV)Au and Si(14.6A GeV)Si reactions in the framework of the relativistic quantum molecular dynamics transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear open-quotes bounce-off close-quote close-quote event shape is seen: The averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields, particularly at low p t at midrapidities, and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows one to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters, and other hadrons. copyright 1997 The American Physical Society

  1. Use of Helium Production to Screen Glow Discharges for Low Energy Nuclear Reactions (LENR)

    Science.gov (United States)

    Passell, Thomas O.

    2011-03-01

    My working hypothesis of the conditions required to observe low energy nuclear reactions (LENR) follows: 1) High fluxes of deuterium atoms through interfaces of grains of metals that readily accommodate movement of hydrogen atoms interstitially is the driving variable that produces the widely observed episodes of excess heat above the total of all input energy. 2) This deuterium atom flux has been most often achieved at high electrochemical current densities on highly deuterium-loaded palladium cathodes but is clearly possible in other experimental arrangements in which the metal is interfacing gaseous deuterium, as in an electrical glow discharge. 3) Since the excess heat episodes must be producing the product(s) of some nuclear fusion reaction(s) screening of options may be easier with measurement of those ``ashes'' than the observance of the excess heat. 4) All but a few of the exothermic fusion reactions known among the first 5 elements produce He-4. Hence helium-4 appearance in an experiment may be the most efficient indicator of some fusion reaction without commitment on which reaction is occurring. This set of hypotheses led me to produce a series of sealed tubes of wire electrodes of metals known to absorb hydrogen and operate them for 100 days at the 1 watt power level using deuterium gas pressures of ~ 100 torr powered by 40 Khz AC power supplies. Observation of helium will be by measurement of helium optical emission lines through the glass envelope surrounding the discharge. The results of the first 18 months of this effort will be described.

  2. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    International Nuclear Information System (INIS)

    Rack, E.P.

    1976-02-01

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38 Cl for Cl substitution following 37 Cl(n,γ) 38 Cl in liquid meso and dl-(CHFCl) 2 . A technique was also developed for the radioassay of Al in urine specimens

  3. TOTAL NUCLEAR-REACTION PROBABILITY OF 270 TO 390 N-14 IONS IN SI AND CSI

    NARCIS (Netherlands)

    WARNER, RE; CARPENTER, CL; FETTER, JM; WAITE, WF; WILSCHUT, HW; HOOGDUIN, JM

    A magnetic spectrograph and position-sensitive detectors were used to measure the total nuclear reaction probability eta(R) for alpha + CsI at 116 MeV, N-14 + CsI at 265 and 385 MeV, and N-14 + Si at 271 and 390 MeV. From these eta(R)'s, average reaction cross sections sigma(R) were deduced for

  4. The effect of nuclear structure in the emission of reaction products in ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... Abstract. Study of intermediate mass fragments (IMFs) and light charged particles (LCPs) emis- sion has been carried out for a few reactions involving α-cluster and non-α-cluster systems to see how the emission processes are affected by nuclear clustering. Li, Be, B and α-particles have been studied from ...

  5. Summary Report of the Technical Meeting on International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2012-06-01

    This report summarizes the IAEA Technical Meeting on the International Network of Nuclear Reaction Data Centres, held at the OECD Nuclear Energy Agency (NEA) in Issy-les-Moulineaux, France from 16 to 19 April 2012. The meeting was attended by twenty-three participants representing thirteen cooperative centres from eight Member States and two International Organisations. A summary of the meeting is given in this report along with the conclusions and actions. (author)

  6. Deexcitation processes in nuclear reactions. Progress report, August 1, 1983-July 31, 1984

    International Nuclear Information System (INIS)

    Porile, N.T.

    1984-01-01

    Research performed on the following studies during the past year is described: fragment emission in reactions of 60 to 350 GeV protons with rare gas targets; study of fragment emission from rare gas targets by protons in the near-threshold regime, 1 to 28 GeV; differential ranges, angular distributions, and thick-target recoil properties of products from the interaction of 400 GeV protons with nuclear targets; recoil studies of pion-induced reactions on carbon and gold; radiochemical search for anomalons. 14 references

  7. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  8. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  9. Seismic analysis of the Aguirre Nuclear Reactor

    International Nuclear Information System (INIS)

    Sepulveda Soza, Cristian

    1999-01-01

    This thesis aims to verify the seismic design of the Aguirre Nuclear Reactor using the finite elements method and comparing the results with the original analysis. The study focused on the dynamic interaction of soil and structures, using the ANSYS program for the analysis, which was implemented for a work station under a UNIX platform belonging to the Chilean Nuclear Energy Commission. The modeling of the structures was carried out following International Atomic Energy recommendations, those of the makers of the Swanson Analysis Systems program and the prior study by S y S Ingenieros Consultores. Two-dimensional models were developed with axial and symmetry and three-dimensional models with symmetric and asymmetric plans, where the retaining building, the pond block and the soil down to the basal rock were included. The seismic stresses were defined according to the Chilean Standard NCh433.of96, using the spectrum of design accelerations for type II soils for the structural models and type IV for the soil-structure interaction models.The results of interest for this study are: the compression and cutting tensions, the unitary cut distortions and the displacements, which are shown graphically and are compared between the different models and with the original analysis. A sensitivity analysis was prepared for the models with axial symmetry considering soil reaction coefficient values of 20, 10, 5, 2, 1 and 0.5 kp/cm 3 ; and four screens with maximum sizes of 100, 50, 25 and 12.5 cm. The behavior of the stressed materials was studied as well as the result of the seismic stress (CS)

  10. Influence of cold work on the diffusion of ion-implanted nitrogen in D9 steel using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Arunkumar, J.; David, C.; Panigrahi, B.K.; Nair, K.G.M.

    2014-01-01

    D9 steels and their modified versions are envisaged for use as fuel cladding and wrapper materials in the Indian fast breeder reactor (FBR) programme. The role played by interstitially dissolved nitrogen in steel matrices for the stabilization of austenitic phase, increase of strength and corrosion resistance is well known. Various factors: the role of grain boundaries and the their orientation, stress mediation, grain fragmentation and production of short circuit paths as a result of compressive stress are known to affect the diffusion of nitrogen. Basically, cold working produces plethora of defects throughout the sample as compared to its solution annealed state. Our earlier studies on 1 x10"1"5 and 5x10"1"5 N"1"5 implanted Solution Annealed D9 (SAD9) showed significant vacancy-nitrogen complexes for higher fluence. Hence, thermal diffusion behaviour of nitrogen was studied in 5 x10"1"5 -N"1"5 implanted samples in solution annealed state. In the present study, to understand the influence of cold work, similar thermal diffusion behaviour of nitrogen has been studied in Cold Worked D9 steel (CWD9) using nuclear reaction analysis

  11. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Marianski, B.

    2010-01-01

    Full text: Our scientific activities in 2009 concentrated on four subjects: low energy nuclear physics, high energy nuclear physics, materials science and applications. · Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: University of Jyvaskyla, Institute of Nuclear Research of the Ukrainian Academy of Science and Institut de Recherches Subatomique in Strasbourg. Dr Eryk Piasecki was nominated to full professor. · A group of our colleagues, involved in the Hermes collaboration which comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron ( DESY) in Hamburg, have continued the analysis of Spin Density Matrix Elements and asymmetry moments in ρ, φ, ω vector meson production. We hope that these studies will provide important constraints on the Generalized Parton Distribution (GPD). Prof. B. Zwieglinski and his team are involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They worked on the project of an electromagnetic calorimeter for the Panda detector at FAIR. Dr Dmytro Melychuk. a member of this team. defended his PhD thesis '' Development of electromagnetic calorimeter detectors and simulations for spectroscopic measurements of charmonium with PANDA ''. Grzegorz Kapica, a student in this team defended his master's thesis '' lnvestigating the energetic and time response of PWO scintillator with cooled photodiode readout in the gamma energy range 4 - 20 MeV '' · Materials science studies focused on semiconductor compounds that could be used in electronic and optoelectronic devices. This was done in close collaboration with the Institute of Electronic Materials Technology. In particular, a determination of the thermal stability of ohmic contacts in SiC monocrystals was performed. Beams from our Van de Graaff accelerator LECH were used in particle - induced X-ray emission (PIXE) studies

  12. Department of Nuclear Reactions - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Marianski, B [The Andrzej Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2010-07-01

    Full text: Our scientific activities in 2009 concentrated on four subjects: low energy nuclear physics, high energy nuclear physics, materials science and applications. centre dot Low energy nuclear physics experiments were continued at the Heavy Ion Laboratory of Warsaw University in collaboration with foreign institutions: University of Jyvaskyla, Institute of Nuclear Research of the Ukrainian Academy of Science and Institut de Recherches Subatomique in Strasbourg. Dr Eryk Piasecki was nominated to full professor. centre dot A group of our colleagues, involved in the Hermes collaboration which comprises 32 institutions from eleven countries at the Deutsches Elektronen Synchrotron ( DESY) in Hamburg, have continued the analysis of Spin Density Matrix Elements and asymmetry moments in rho, phi, omega vector meson production. We hope that these studies will provide important constraints on the Generalized Parton Distribution (GPD). Prof. B. Zwieglinski and his team are involved in the large-scale international collaboration PANDA (antiProton ANnihilation at DArmstadt). They worked on the project of an electromagnetic calorimeter for the Panda detector at FAIR. Dr Dmytro Melychuk, a member of this team, defended his PhD thesis ' Development of electromagnetic calorimeter detectors and simulations for spectroscopic measurements of charmonium with PANDA '. Grzegorz Kapica, a student in this team defended his master's thesis ' lnvestigating the energetic and time response of PWO scintillator with cooled photodiode readout in the gamma energy range 4 - 20 MeV ' centre dot Materials science studies focused on semiconductor compounds that could be used in electronic and optoelectronic devices. This was done in close collaboration with the Institute of Electronic Materials Technology. In particular, a determination of the thermal stability of ohmic contacts in SiC monocrystals was performed. Beams from our Van de Graaff accelerator LECH were used in particle - induced X

  13. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  15. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  16. Reactions of charged and neutral recoil particles following nuclear transformations. Progress report No. 11, September 1976--August 1977

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-09-01

    The status of the following programs is reported: study of the stereochemistry of halogen atom reactions produced via (n,γ) nuclear reactions with diastereomeric molecules in the condensed phase; decay-induced labelling of compounds of biochemical interest; reactions of energetic tritium species in graphite; and positron lifetime measurements in γ-irradiated organic solids

  17. Development of automatic nuclear emulsion plate analysis system and its application to elementary particle reactions, 2

    International Nuclear Information System (INIS)

    Ushida, Noriyuki; Otani, Masashi; Kumazaki, Noriyasu

    1984-01-01

    This system is composed of precise coordinate measuring apparatuses, a stage controller and various peripherals, employing NOVA 4/C as the host computer. The analyzed results are given as the output to a printer or an XY plotter. The data required for experiment, sent from Nagoya University and others, are received by the host computer through an acoustic coupler, and stored in floppy disks. This paper contains simple explanation on the monitor for the events which occur immediately after the on-line measurement ''MTF 1'', the XY plotter and the acoustic coupler, which hold important position in the system in spite of low cost, due to the development of useful program, as those were not described in the previous paper. The three-dimensional reconstruction of tracks and various errors, corrective processing and analytical processing after corrective processing as off-line processing are also described. In addition, the application of the system was made to the E-531 neutrino experiment in Fermi National Accelerator Laboratory, which attempted to measure the life of the charm particles generated in neutrino reaction with a composite equipment composed of nuclear plates and various counters. First, the outline of the equipment, next, the location of neutrino reaction and the surveillance of charm particle decay using MTF program as the analyzing method at the target, and thirdly, the emulsion-counter data fitting are explained, respectively. (Wakatsuki, Y.)

  18. Penumbral imaging with multi-penumbral-apertures and its heuristic reconstruction for nuclear reaction region diagnostics

    International Nuclear Information System (INIS)

    Ueda, Tatsuki; Fujioka, Shinsuke; Nishimura, Hiroaki; Nozaki, Shinya; Chen Yenwei

    2010-01-01

    Imaging of nuclear reaction region is important to clarify heating mechanism in a fast-ignition plasma. The nuclear reaction region can be identified by hard x-ray and neutron images, which are emanated from the heated region. We proposed a novel penumbral imaging that is suitable for imaging quanta having strong penetrating power, such as hard x ray and neutron. Using multiple penumbral apertures arranged with M-sequence leads to two orders of magnitude higher detection efficiency than that with a single aperture. In addition, a heuristic method was introduced to a image reconstruction procedure for reducing artifacts caused by noise in a penumbral image. A proof-of-principle experiment indicates that the proposed imaging is superior to the conventional one.

  19. Study of some continuous spectra produced by nuclear reactions with light nuclei; Etude de quelques spectres continus produits par reactions nucleaires avec des noyaux legers

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, L

    1966-07-01

    The continuous spectra coming from several nuclear reactions with light nuclei were measured. The spectra can be explained by a two-step reaction mechanism; however, the reactions produced by {sup 6}Li are different. A mechanism was proposed to explain their spectra based on the following assumptions: {sup 6}Li makes a nuclear molecule with the target which subsequently breaks up in such a way that an {alpha} particle comes out with the kinetic energy that it has in the molecule. The calculated spectra and those measured are in good agreement. (author) [French] Nous avons mesure les spectres continus produits dans plusieurs reactions nucleaires avec des noyaux legers. A l'exception des spectres produits par {sup 6}Li, on a trouve qu'on pouvait expliquer ces spectres par le mecanisme des reactions en deux etapes. Nous avons propose un mecanisme pour expliquer les spectres produits par {sup 6}Li. On suppose que {sup 6}Li forme une molecule nucleaire avec la cible qui eclate ensuite de facon telle qu'une particule alpha de la molecule sort avec l'energie cinetique de son mouvement propre dans la molecule. Les spectres calcules avec ces hypotheses et les spectres mesures sont en bon accord. (auteur)

  20. Nuclear astrophysics with DRAGON at ISAC: the 21Na(p, γ)22Mg reaction

    International Nuclear Information System (INIS)

    D'Auria, J.M.

    2003-01-01

    The DRAGON facility at the new intense radioactive beams facility, ISAC, is now operational. It was built to perform studies of radiative alpha and proton capture reactions involving radioactive reactants, and of interest to nuclear astrophysics. The rate of the 21 Na(p, γ) 22 Mg reaction has been measured using inverse kinematics. Resonance strengths have been measured for states of importance for novae explosions. This report will summarize aspects of this study and its impact. (orig.)

  1. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    International Nuclear Information System (INIS)

    De Angelis, Giacomo; Fiorentini, Gianni

    2016-01-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ -ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ -detector array based on γ -ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes. (invited comment)

  2. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  3. Near-surface analysis with nuclear reactions and scattering

    International Nuclear Information System (INIS)

    Dunning, K.L.; Hirvonen, J.K.

    1974-01-01

    Very useful information about the elemental composition of solids in the surface and near-surface regions can be obtained with small accelerators and suitable auxiliary apparatus. Two methods which produce data from which quantitative concentration depth profiles can be constructed and which have been used extensively at this laboratory are: nuclear resonance profiling and Rutherford backscattering. The first method is described in detail. Data are given on profiles of Al and Al + Na films implanted on silicon substrates. Rutherford backscattering spectra for chromium implanted into silicon dioxide are used to illustrate the improved depth sensitivity that can be obtained with a magnetic spectrometer in depth concentration profiles of heavy impurities relative to that obtainable with a conventional semiconductor detector

  4. Relationship between reaction layer thickness and leach rate for nuclear waste glasses

    International Nuclear Information System (INIS)

    Chick, L.A.; Pederson, L.R.

    1984-02-01

    Three leaching tests, devised to distinguish among several proposed nuclear waste glass leaching mechanisms, were carried out for four different waste glasses. In the first test, the influence of a pre-formed reaction layer on elemental release was evaluated. In the second test, glass specimens were replaced with fresh samples halfway through the leaching experiment, to evaluate the influence of the concentration of glass components in leaching. Finally, regular replacement of the leachant at fixed time intervals essentially removed the variable changing solution concentration, and allowed an assessment of the influence of reaction layer thickness on the leaching rate. Results for all glasses tested indicated that the reaction layer presented little or no barrier to leaching, and that most of the retardation on leaching rates generally observed are attributable to saturation effects. 20 references, 6 figures, 1 table

  5. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  6. Cross sections of nuclear reactions induced by protons, deuterons, and alpha particles. Pt.6. Phosphorus

    International Nuclear Information System (INIS)

    Tobailem, Jacques.

    1981-11-01

    Cross sections are reviewed for nuclear reactions induced by protons, deuterons, and alpha particles on phosphorus targets. When necessary, published experimental data are corrected, and, when possible, excitation functions are proposed [fr

  7. Nonlinear many-body reaction theories from nuclear mean field approximations

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1983-01-01

    Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)

  8. The mechanisms of the hadron-nucleus collision processes and of the hadron-nucleus collision induced nuclear reactions - in the light of experimental data

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    The mechanisms of the hadron-nucleus collision processes and of the hadron-nucleus collision induced nuclear reactions are described - as experimentally based. The target nuclei are damaged definitely and locally in the collisions and the configurations of the nucleons in them became instable. The configuration must transit into stable stages of the nuclear transition reaction products. The difference between the initial internal energy of the unstable residual nucleus and the total final energy of the stable products of the nuclear transition reaction may be released in some cases

  9. The first nuclear chain reaction

    International Nuclear Information System (INIS)

    Zinn, W.H.

    1989-01-01

    The author offers his recollections of the experimental efforts beginning in 1939 which culminated in the Chain Reaction in the squash court on December 2, 1942. Recalled are Columbia University experiments which did much to establish the feasibility of the chain in natural uranium and which stimulated the creation of the Manhattan District. The Columbia group moved to the University of Chicago, where, in early summer of 1942, construction and analysis of a number of subcritical reactors (piles) gave assurance with a high probability that only a reasonable amount of uranium and moderator would be required

  10. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  11. Lattice-enabled nuclear reactions in the nickel and hydrogen gas system

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    Thousands of lattice-enabled nuclear reaction (LENR) experiments involving electrochemical loading of deuterium into palladium have been conducted and reported in hundreds of papers. But, it appears that the first commercial LENR power generators will employ gas loading of hydrogen onto nickel. This article reviews the scientific base for LENR in the gas-loaded Ni-H system, and some of the tests of pre-commercial prototype generators based on this combination. (author)

  12. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States). Experimental Low-Energy Nuclear Physics Group

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  13. Direct reactions for nuclear structure and nuclear astrophysics

    International Nuclear Information System (INIS)

    Jones, Katherine Louise

    2014-01-01

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106 Sn at the NSCL, and on 131 Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  14. Use of nuclear methods for the analysis of materials and the determination of concentration profiles

    International Nuclear Information System (INIS)

    Darras, R.

    1976-01-01

    The possibilities of the activation analysis and nuclear reaction analysis are presented. These methods allow the oligo-elements and impurities (in trace amounts) to be determined in materials with accuracy and a high sensitivity. They can also be applied to the determination of major elements in a small amount of materials. Surface analysis and concentration profile determination are possible when the nature and energy of the incident particles are judiciously selected. Exemples of analysis of steels, pure iron and refractories are given [fr

  15. Coupling of RELAP5-3D and GAMMA codes for Nuclear Hydrogen System Analysis

    International Nuclear Information System (INIS)

    Jin, Hyung Gon

    2007-02-01

    RELAP5-3D is one of the most important system analysis codes in nuclear field, which has been developed for best-estimate transient simulation of light water reactor coolant systems during postulated accidents. The GAMMA code is a multi-dimensional multi-component mixture analysis code with the complete set of chemical reaction models which is developed for safety analysis of HTGR (High Temperature Gas Cooled Reactor) air-ingress. The two codes, RELAP5-3D and GAMMA, are coupled to be used for nuclear-hydrogen system analysis, which requires the capability of the analysis of multi-component gas mixture and two-phase flow. In order to couple the two codes, 4 steps are needed. Before coupling, the GAMMA code was transformed into DLL (dynamic link liberally) from executive type and RELAP5-3D was recompiled into Compaq Visual Fortran environments for our debugging purpose. As the second step, two programs - RELAP5-3D and GAMMA codes - must be synchronized in terms of time and time step. Based on that time coupling, the coupled code can calculate simultaneously. Time-step coupling had been accomplished successfully and it is tested by using a simple test input. As a next step, source-term coupling was done and it was also tested in two different test inputs. The fist case is a simple test condition, which has no chemical reaction. And the other test set is the chemical reaction model, including four non-condensable gas species, which are He, O2, CO, CO2. Finally, in order to analyze combined cycle system, heat-flux coupling has been made and a simple heat exchanger model was demonstrated

  16. Laser application for nuclear reaction product detecting system alignment

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  17. Oxygen determination in materials by {sup 18}O(p,αγ){sup 15}N nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjiv, E-mail: sanjucccm@rediffmail.com [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Sunitha, Y.; Reddy, G.L.N.; Sukumar, A.A.; Ramana, J.V.; Sarkar, A. [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Verma, Rakesh [Analytical Chemistry Division, BARC, Mumbai 400085 (India)

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on {sup 18}O(p,αγ){sup 15}N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of {sup 15}N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0–4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is <8%. The reaction has a probing depth of several tens of microns. Interferences can arise from fluorine due to the occurrence of {sup 19}F(p,αγ){sup 16}O reaction that emits 6–7 MeV γ-rays. The analytical potential of the methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  18. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

    Science.gov (United States)

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-01

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  19. Nuclear analysis

    International Nuclear Information System (INIS)

    1988-01-01

    Basic studies in nuclear analytical techniques include the examination of underlying assumptions and the development and extention of techniques involving the use of ion beams for elemental and mass analysis. 1 ref., 1 tab

  20. Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data

    Energy Technology Data Exchange (ETDEWEB)

    Josserand, Terry Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis; Young, Leone [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis; Chamberlin, Edwin Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Security Enterprise and Cost Analysis

    2017-09-01

    The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations that estimators and analysts of the Nuclear Security Enterprise will find useful.