WorldWideScience

Sample records for analysis neutron activation

  1. Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    In activation analysis, a sample of an unknown material is first irradiated (activated) with nuclear particles. In practice these nuclear particles are almost always neutrons. The success of activation analysis depends upon nuclear reactions which are completely independent of an atom's chemical associations. The value of activation analysis as a research tool was recognized almost immediately upon the discovery of artificial radioactivity. This book discusses activation analysis experiments, applications and technical considerations.

  2. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  3. Instrumentation in neutron activation analysis

    International Nuclear Information System (INIS)

    The rise of neutron activation analysis (NAA) as a tool in geochemical research has parallelled advances in detector, multi-channel analyzer, and computer technology. Micro-computers are now being integrated into NAA systems, and gamma-ray spectrometer instrumentation is evolving towards direct-reading systems. The investigator is faced with a wide range of possibilities and choices when equipping or re-equipping a laboratory. The geoscientist is provided with an overview of the available instrumentation and what soon may be feasible. (L.L.)

  4. The Atomic Fingerprint: Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Keisch, Bernard [Carnegie-Mellon University

    1972-01-01

    The nuclei of atoms are stable only when they contain certain numbers of neutrons and protons. Since nuclei can absorb additional neutrons, which in many cases results in the conversion of a stable nucleus to a radioactive one, neutron activation analysis is possible.

  5. Neutron activation spectrometry and neutron activation analysis in analytical geochemistry

    International Nuclear Information System (INIS)

    The present report is to show the geochemists who are interested in neutron activation spectrometry (NAS) and neutron activation analysis (NAA) which analytical possibilities these methods offer him. As a review of these analytical possibilities, a lieterature compolation is given which is subdivided into two groups: 1) rock (basic, intermediary, acid, sediments, soils and nuds, diverse minerals, tectites, meteorites and lunar material). 2) ore (Al, Au, Be, Cr, Cu, Mn, Mo, Fe, Pb, Pt, Sn, Ti, W, Zn, Zr, U and phosphate ore, polymetallic ores, fluorite, monazite and diverse ores). The applied methods as well as the determinable elements in the given materials can be got from the tables. On the whole, the literature evaluation carried out makes it clear that neutron activation spectrometry is a very useful multi-element method for the analysis of rocks. The analysis of ores, however, is subjected to great limitations. As rock analysis is very frequently of importance in prospecting for ore deposits, the NAS proves to be extremely useful for this very field of application. (orig./LH)

  6. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  7. Neutron activation analysis of reference materials

    International Nuclear Information System (INIS)

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  8. KFUPM fast neutron activation analysis facility

    International Nuclear Information System (INIS)

    A newly established Fast Neutron Activation Analysis facility at the Energy Research Laboratory is described. The facility mainly consists of a fast neutron irradiation station and a gamma ray counting station. Both stations are connected by a fast pneumatic sample transfer system which transports the sample from the irradiation station to the counting station in a short time of 3 s. The fast neutron activation analysis facility has been tested by measuring the 27A(n, α)24Na and 115In(n, n')115mIn cross sections at 14.8 and 2.5 MeV neutron energies, respectively. Within the experimental uncertainties, the measured cross sections for these elements agree with the published values. (orig.)

  9. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  10. Applications of neutron activation analysis in industry

    International Nuclear Information System (INIS)

    Neutron activation analysis technique is discussed in brief. This technique is used for quality control of raw materials, process materials and finished products, as well as activities in research and development for the improvement of the products and new products. The uses of this technique in several experienced industries are mentioned (author)

  11. New studies in forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Three recently completed studies in forensic neutron activation analysis are reported: a study of 0.22-caliber rimfire cartridge primers, a large-scale study of shotgun pellets, and a new 5-element procedure for the analysis of bullet-lead and shotgun-pellet samples. (author) 12 refs

  12. New studies in forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Earlier studies in forensic neutron activation analysis are being extended in This Laboratory. Three of these new studies are reported here: 1) a study of 0.22-caliber rimfire cartridge primers, 2) a large-scale study of shotgun pellets, and 3) a new 5-element procedure for the analysis of bullet-lead and shotgun-pellet samples. (author)

  13. Design of Neutron Activation Analysis Laboratorium Room

    International Nuclear Information System (INIS)

    Base on the planning to increase of the research and service quality in the ''Neutron activation analysis'' (APN),the design of mentioned ''Neutron activation analysis laboratories room'' has been done in the multi purpose reactor G.A. Siwabessy. By the using the designed installation, the irradiation preparation and counting sample can be done. The design doing by determination of installation lay out and maximum particle contain in the air. The design installation required a unit of 1 HP blower, a unit of 1 HP split air condition and 2 units 1200 x 800 mm HEPA filter. This paper concluded that this design is feasible to fabricated

  14. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 1013 cm-2 s-1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  15. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  16. Reactor neutron activation analysis of industrial materials

    International Nuclear Information System (INIS)

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  17. Applications of neutron activation analysis technique

    International Nuclear Information System (INIS)

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  18. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  19. Neutron activation analysis of Etruscan pottery

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  20. Introduction of Prompt Gamma Thermal Neutron Activation Analysis at CARR

    Institute of Scientific and Technical Information of China (English)

    WANG; Xing-hua; XIAO; Cai-jin; ZHANG; Gui-ying; YAO; Yong-gang; JIN; Xiang-chun; WANG; Ping-sheng; HUA; Long; NI; Bang-fa

    2013-01-01

    CARR will provide with maximal neutron flux in Asia,the third of the world.By using the high quality neutron beam and the advanced international experience,Prompt Gamma Neutron Activation Analysis(PGNAA)facility will be setup at high level.PGNAA on CARR will promote the development of nuclear analysis technology and improve Chinese status in the nuclear analysis field.

  1. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  2. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Neutron Activation Analysis using single comparator (K0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  3. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  4. Large sample neutron activation analysis of a ceramic vase

    OpenAIRE

    Stamatelatos, I.E.; Tzika, F.; Vasilopoulou, T.; Koster-Ammerlaan, M.J.J.

    2010-01-01

    Large Sample Neutron Activation Analysis (LSNAA) was applied to perform non-destructive elemental analysis of a ceramic vase. Appropriate neutron self-shielding and gamma ray detection efficiency calibration factors were derived using Monte Carlo code MCNP5. The results of LSNAA were compared against Instrumental Neutron Activation Analysis (INAA) results and a satisfactory agreement between the two methods was observed. The ratio of derived concentrations between the two methods was within 0...

  5. Human hair neutron activation analysis: analysis on population level, mapping

    International Nuclear Information System (INIS)

    Neutron activation analysis is an outstanding analytical method having very wide applications in various fields. Analysis of human hair within last decades mostly based on neutron activation analysis is a very attractive illustration of the application of nuclear analytical techniques. Very interesting question is how the elemental composition differs in different areas or cities. In this connection the present paper gives average data and maps of various localities in the vicinity of drying-out Aral Sea and of various industrial cities in Central Asia. (author)

  6. Neutron activation analysis of urinary calculi

    International Nuclear Information System (INIS)

    Urinary calculi resulting from disorders in the urinary system are mostly composed of uric acid, urates, calcium oxalate, alkaline earth phosphates (Ca and Mg), triple phosphate (magnesium ammonium phosphate), calcium carbonate, cystine, xanthine, and traces of proteins. The determination of these macro-constituents has been carried out by different analytical procedures. No attempts however, have been reported regarding the determination of trace elements in urinary stones, apart from that of Herring et al., who investigated the consumption of strontium by urolithiasis patients. The present work is a non-destructive neutron activation analysis of urinary calculi, to search the variation in concentration of certain trace elements with the chemical composition of the calculus

  7. Trace Analysis of Ancient Gold Objects Using Radiochemical Neutron Activation

    CERN Document Server

    Olariu, A; Constantinescu, O; Badica, T; Popescu, I V; Besliu, C; Leahu, D; Olariu, Agata; Constantinescu, Mioara; Leahu, Doina

    1999-01-01

    Radiochemical neutron activation analysis has been applied to investigate the microelements in gold samples with archaeological importance. Chemical separation has allowed the determination of traces of Ir, Os, Sb, Zn, Co, Fe, Ni. Instrumental neutron activation analysis has been used for the determination of Cu.

  8. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  9. Development of educational program for neutron activation analysis

    International Nuclear Information System (INIS)

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis

  10. Neutron activation analysis of human hair

    International Nuclear Information System (INIS)

    As a part of IAEA research project, ''Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants'', a survey was carried out to elucidate the levels of various trace element concentration in hair of local population in the Tokyo Metropolitan areas, by applying instrumental neutron activation analysis. A total of 202 scalp hair samples were collected from the inhabitants classified by sex and five age classes. Irradiation was made in the Rikkyo University 100 kW TRIGA MARK-II reactor. Using several combinations of irradiation time, cooling time and counting time, forty elements were determined. The relationship between several trace element contents in hair and such factors as sex, age class, hair treatment, smoking habit and dental treatment, was analyzed by using the method of multiple regression. It was shown that (1) Hair treatment had a predominant effect on the contents of bromine, magnesium and calcium in hair, (2) Aging and amoking contributed increasing mercury content in hair, and hair treatment acted reversely. (author)

  11. Analysis of ayurvedic medicinal leaves by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Concentrations of 15 elements were determined in medicinally important ayurvedic medicinal leaves. Instrumental neutron activation analysis was employed for the determination of the elements viz. Na, K, Br, Sm, Cr, Zn, Th, Rb, Sr, Fe, La, Co, Ce, Cs and Eu. The samples were neutron irradiated at 100 kW TRIGA -Mainz nuclear reactor and the induced activities were measured by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. The concentrations of these elements in the medicinal leaves and their medicinal importance are discussed. (author)

  12. Multielemental analysis of soils by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The results of an instrumental neutron activation analysis of some elemental concentrations in different soil samples near the industrial areas at Tirupati, India, are reported. Altogether 14 elements, Sm, La, Cr, Co, Zn, Cs, Ce, Th, Rb, Na, K, Sr, Fe and Eu were determined. The samples were irradiated with neutrons at the 100 kW Triga - Mainz research reactor and the induced activities were measured by gamma-ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector in connection with a multichannel analyzer. The results are discussed. (author)

  13. Analysis by neutron activation analysis a some ancient Dacian ceramics

    CERN Document Server

    Olariu, A

    1999-01-01

    Ancient Dacian ceramics, from three different establishments from Romanian territory have been analyzed by neutron activation analysis. A series of elements has been determined: Ba, Eu, K, La, Mn, Na, Sc, Sm. Ba is the element that could be considered to differentiate relatively the three groups of ceramics.

  14. Rapid radiochemical separations in neutron activation analysis

    International Nuclear Information System (INIS)

    Rapid radiochemical separation procedures based on the removal of metal ions by columns of C18-bonded silica gel after selective complexation are examined and the simplicity of the method demonstrated by its application to the determination of Mn, Cu and Zn in neutron-activated biological material. The method is rapid and reliable and readily adaptable in all radiochemical laboratories. An alternative separation procedure for selenium in blood plasma involving desalination and concentration of the selenium protein complex by gel filtration or ultrafiltration is briefly discussed. (author)

  15. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1

    International Nuclear Information System (INIS)

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author)

  16. Analysis of human enamel and dentine by neutron activation analysis

    International Nuclear Information System (INIS)

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x1012 n cm-2 s-1 were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 1012 n cm-2 s-1 the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the μg g-1 levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  17. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  18. Fast neutron activation analysis of ancient mirror

    International Nuclear Information System (INIS)

    About fifty specimens of ancient Chinese bronze mirror from various dynasties are analysed by fast neutron radiated from neutron generator. The contents of copper, tin and lead in the mirror are listed in this paper. Experimental method and measurement equipment are described too

  19. Neutron activation analysis for environmental sample in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Busamongkol, Arporn; Nouchpramool, Sunun; Bunprapob, Supamatthree [Office of Atomic Energy for Peace, Bangkok (Thailand); Sumitra, Tatchai [Chulalongkorn Univ., Dept. of Nuclear Technology, Bangkok (Thailand)

    2003-03-01

    Neutron Activation Analysis has been applied for the trace elements analysis in environmental samples. Thirty three samples of airborne particulate were collected every week at Ongkharak Nuclear Research Center (ONRC) during the period of June 1998 to March 1999. The Ti, I, Mg, Na, V, K, Cl, Al, Mn, Ca, As, Sm, Sb, Br, La, Ce, Th, Cr, Cs, Sc, Rb, Fe, Zn and Co were analyzed by Neutron Activation Analysis utilizing 2 MW TRIGA MARK III research reactor. The certified reference materials 1632a and 1633a from National Bureau of Standard were select as standard. (author)

  20. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  1. Neutron Activation Analysis for investigation of elemental composition of Amarantus

    International Nuclear Information System (INIS)

    In this work instrumental neutron activation analysis is applied for the characterization of the elemental composition of Amaranthus seeds, known in the prehistorical period, a tropical plant with promising nutritional and economic value. The characterization is enriched by the results of radiochemical neutron activation analysis for cobalt, molybdenum and uranium content. The comparison of the results, for three sorts of edible flour, commercially available: Soya Flour, Corn Bean Flour and Amaranthus Flour, is presented. The validation of the analytical methods used was carried out on the basis of participation in the interlaboratory comparison organized by the INCT (INCT-TL-1, INCT-MPH-2) and by NIST (SRM 1575a). (author)

  2. Application of inelastic neutron scattering and prompt neutron activation analysis in coal quality assessment

    International Nuclear Information System (INIS)

    The basic principles are assessed of the determination of ash content in coal based on the measurement of values proportional to the effective proton number. Discussed is the principle of coal quality assessment using the method of inelastic neutron scattering and prompt neutron activation analysis. This is done with respect both to theoretical relations between measured values and coal quality attributes and to practical laboratory measurements of coal sample quality by the said methods. (author)

  3. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  4. Instrumental neutron activation analysis of some ayurvedic medicines: Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rajurkar, N.S.; Vinchurkar, M.S. (Poona Univ., Pune (India). Dept. of Chemistry)

    1992-12-01

    Several medicines have been manufactured and prescribed to overcome mineral deficiencies in the human body. Such medicines are mixtures of several components. The present work is undertaken to analyze various Ayurvedic medicines, mainly of herbal origin and used for different purposes, for their elemental contents, by neutron activation analysis. (author).

  5. Neutron activation analysis of final molasses from the sugar industry

    International Nuclear Information System (INIS)

    Molasses samples from 74 factories were analyzed by neutron activation analysis. The concentration values of the 35 elements was determined. The toxicity and the influence of the presence of theses elements in sugar loss in the molasses and fermentative process is discussed

  6. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  7. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    Science.gov (United States)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  8. Current status of neutron activation analysis in HANARO Research Reactor

    International Nuclear Information System (INIS)

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 1013 - 1 x 1014 n/cm2·s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  9. Current status of neutron activation analysis in HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min [Korea Atomic Energy Research Institute, Daejeon (Korea)

    2003-03-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10{sup 13} - 1 x 10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  10. The monostandard method in thermal neutron activation analysis

    International Nuclear Information System (INIS)

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9 x 1012 n x cm-2 x sec-1 and an epithermal neutron contribution of less than 0,03%. The obtained values were found to agree mostly well with the literature best values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standard and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. A brief survey of the monostandard method is presented. (orig.)

  11. Aspects of precision and accuracy in neutron activation analysis

    International Nuclear Information System (INIS)

    Analytical results without systematic errors and with accurately known random errors are normally distributed around their true values. Such results may be produced by means of neutron activation analysis both with and without radiochemical separation. When all sources of random variation are known a priori, their effect may be combined with the Poisson statistics characteristic of the counting process, and the standard deviation of a single analytical result may be estimated. The various steps of a complete neutron activation analytical procedure are therefore studied in detail with respect to determining their contribution to the overall variability of the final result. Verification of the estimated standard deviation is carried out by demonstrating the absence of significant unknown random errors through analysing, in replicate, samples covering the range of concentrations and matrices anticipated in actual use. Agreement between the estimated and the observed variability of replicate results is then tested by a simple statistic T based on the chi-square distribution. It is found that results from neutron activation analysis on biological samples can be brought into statistical control. In routine application of methods in statistical control the same statistical test may be used for quality control when some of the actual samples are analysed in duplicate. This analysis of precision serves to detect unknown or unexpected sources of variation of the analytical results, and both random and systematic errors have been discovered in practical trace element investigations in different areas of research. Particularly, at the ultratrace level of concentration where there are few or no standard reference materials for ascertaining the accuracy of results, the proposed quality control based on the analysis of precision combined with neutron activation analysis with radiochemical separation, with an a priori precision independent of the level of concentration, becomes a

  12. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  13. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Ryel; Kim, Young Gi; Jung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun; Lim, Jong Myoung

    2003-05-01

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology.

  14. Applied research and development of neutron activation analysis

    International Nuclear Information System (INIS)

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology

  15. Practical aspects of operating a neutron activation analysis laboratory

    International Nuclear Information System (INIS)

    This book is intended to advise in everyday practical problems related to operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like ''what to use NAA for'', ''how to find relevant research problems'', ''how to find users for the technique'', ''how to estimate the cost of the analysis and how to finance the work'', ''how to organize the work in a rational way'' and ''how to perform the quality control''. It gives advice in choosing staff, equipment, and consumables and how to design facilities and procedures according to need and available resources. Potential applications of economic or environmental importance, reactor facilities, counting and measuring equipment of the lab, cooperation with other analytical groups and competitiveness of NAA are discussed by experienced analysts. The compiled 8 tables of data useful for neutron activation analysts are a valuable asset for research labs as well as industrial quality control units. Refs, figs and tabs

  16. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  17. Multielement determination in soil extracts by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Forest Swiss soils from 39 locations, each sampled at three depths, were extracted with a buffered solution of pH 4.65 containing EDTA. Nearly 30 elements were determined by instrumental neutron activation analysis. The results obtained are discussed in terms of efficiency of the extractant, precision and accuracy. Summarized results are presented for the quantity fractions of the extracted elements. (author) 18 refs.; 4 figs.; 3 tabs

  18. Instrumental Neutron Activation Analysis Technique using Subsecond Radionuclides

    DEFF Research Database (Denmark)

    Nielsen, H.K.; Schmidt, J.O.

    1987-01-01

    The fast irradiation facility Mach-1 installed at the Danish DR 3 reactor has been used in boron determinations by means of Instrumental Neutron Activation Analysis using12B with 20-ms half-life. The performance characteristics of the system are presented and boron determinations of NBS standard...... reference materials as well as fertilizer materials are compared by literature value and spectrophotometric measurements, respectively. In both cases good agreement is obtained....

  19. Gold determination in massive samples by neutron activation analysis

    CERN Document Server

    Broglio, Eduardo

    2015-01-01

    This work presents the characteristics of the Neutron Activation Analysis (NAA) in the determination of gold in voluminous mineral samples using a linear particle accelerator (Linac) as source of irradiation. The used volumes are one or two orders of magnitude higher than the ones that can be used in nuclear research reactor, which is the source usually used to determine through the NAA. This study was encouraged by a specific legal requirement to determine the gold law in a small Patagonian gold deposit.

  20. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  1. Provenience studies using neutron activation analysis: the role of standardization

    International Nuclear Information System (INIS)

    This paper covers the historical background of chemical analysis of archaeological artifacts which dates back to 1790 to the first application of neutron activation analysis to archaeological ceramics and goes on to elaborate on the present day status of neutron activation analysis in provenience studies, and the role of standardization. In principle, the concentrations of elements in a neutron-activated specimen can be calculated from an exact knowledge of neutron flux, its intensity, duration and spectral (energy) distribution, plus an exact gamma ray count calibrated for efficiency, corrected for branching rates, etc. However, in practice it is far easier to compare one's unknown to a standard of known or assumed composition. The practice has been for different laboratories to use different standards. With analyses being run in the thousands throughout the world, a great benefit would be derived if analyses could be exchanged among all users and/or generators of data. The emphasis of this paper is on interlaboratory comparability of ceramic data; how far are we from it, what has been proposed in the past to achieve this goal, and what is being proposed. All of this may be summarized under the general heading of Analytical Quality Control - i.e., how to achieve precise and accurate analysis. The author proposes that anyone wishing to analyze archaeological ceramics should simply use his own standard, but attempt to calibrate that standard as nearly as possible to absolute (i.e., accurate) concentration values. The relationship of Analytical Quality Control to provenience location is also examined

  2. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using {sup 13}C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. {sup 13}C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation.

  3. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the 64Cu was measured. (author) 2 refs.; 2 tabs

  4. Aerosol and air pollution study by neutron activation analysis

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis technique was used in air pollution and aerosol elemental content and size distribution investigations. Air pollution samples were collected on Whatman 41 paper filters which were activated along with known quantities of standards in a flux of approximately 1013 nxcm-2xs-1. The activity of the samples was measured with a 40 cm3 Ge(Li) detector and analyzed with the computer program JANE, which identified the isotopes and found their quantities by normalization with the standard measurement results. Correlation between the various elements, in particular those belonging to dust from the desert and those considered typical urban air pollution, is investigated. (author)

  5. Analysis by Neutron activation of the Calakmul jadeite mask

    International Nuclear Information System (INIS)

    It is very important to know the elemental composition of archaeological materials with the purpose to find relations that allow to establish their origin standards. the origin and present localization of pre hispanic archaeological pieces can lead to the determination of commercial routes and of technology transfer among different ancient cultures. In the present work it has been realized a systematic analysis using the Instrumental neutron activation analysis technique of three samples obtained from Calakmul jadeite mask, tomb I, that in addition to give a composition of constituent and trace elements detected by this technique it has leaded to establish an applicable methodology to the routine analysis of ceramics of historical interest. (Author)

  6. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    OpenAIRE

    Fantidis, J. G.; Nicolaou, G. E.; C. Potolias; N. Vordos; Bandekas, D. V.

    2011-01-01

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were...

  7. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237Np, 241Am and 242Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237Np were identified, as well as 19 of 241Am, and 127 prompt γ-rays of 242Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237Np was observed at an energy of Eγ=182.82(10) keV associated with a partial capture cross section of σγ=22.06(39) b. The most intense prompt γ-ray lines of 241Am and of 242Pu were observed at Eγ=154.72(7) keV with σγ=72.80(252) b and Eγ=287.69(8) keV with σγ=7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237Np, 241Am and 242Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was demonstrated. Compared

  8. Extraction of polychromatic thermal neutrons by Bragg diffraction to use for prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Extraction method of thermal neutron beam by Bragg diffraction is investigated. A thermal neutron beam is used for the Prompt Gamma Neutron Activation Analysis system at HANARO, a 30 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic beam including all orders of diffraction is obtained by setting a pair of pyrolytic graphite crystals with a Bragg angle of 45 deg. on a horizontal white beam line. Diffracted neutron flux at the sample position is calculated by considering the integrated reflectivity and mosaic spread of crystals. Due to the divergence effect, the mosaic spread of crystals is optimized to give the maximum and flat flux at the sample position. An experiment has been performed to verify the reflectivities for high order diffractions from pyrolytic graphite. When the focusing technique of bending the crystals is adopted, a design value of 1.0x108 n/cm2s is expected at the sample position. Hence Bragg diffraction is a promising method of extracting thermal neutrons for PGNAA

  9. Teaching chemistry with neutron activation analysis at Dalhousie University

    International Nuclear Information System (INIS)

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) has been operating since July 1976 and has proven to be an invaluable tool in many teaching programs. These reactors are inherently safe and are designed to serve teaching and research needs of the universities, research centers, hospitals, etc. Since the DUSR has been, from its inception, associated with the Trace Analysis Research Centre, which is the Analytical Chemistry Division of the Department of Chemistry, the main thrust of its use continues to be in the field of nuclear analytical chemistry. Both teaching and research programs involve trace element analysis by neutron activation

  10. Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) for Elemental Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Robin P. Gardner

    2006-04-11

    This research project was to improve the prompt gamma-ray neutron activation analysis (PGNAA) measurement approach for bulk analysis, oil well logging, and small sample thermal enutron bean applications.

  11. The Application of Neutron Activation Analysis in Thailand

    International Nuclear Information System (INIS)

    The technique of neutron activation analysis was introduced at the OAEP about 5 years ago. Since that time, it has become a useful technique for the determination. in particular, of certain trace inorganic elements in biological samples in this country. Scientists here have been working in close co-operation with those in other Government laboratories to meet the requirements of their studies. At present, a high resolution solid state gamma-ray detector is lacking in our laboratory. The results of the work to be described briefly were thus mainly carried out utilising our research reactor as the neutron source and multi-channel analysers together with the technique of radiochemical separation. In some cases, the non-destructive method was found feasible

  12. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  13. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  14. Neutron Activation Analysis of Pre-Columbian Pottery in Venezuela

    International Nuclear Information System (INIS)

    Pre-Hispanic pottery figurines from north-central Venezuela islands and mainland were analysed by neutron activation analysis (INAA and PGAA) at the Budapest Research to establish their provenience. In order to classify the samples of figurines, characteristic molecular and atomic components were determined. Several mass ratios were calculated for significant classification of the object of two origins. Results shed light on the origin of island figurines and suggest specific areas of their production on the mainland, contributing to better understanding of late pre-Hispanic migration patterns in the southeastern Caribbean region

  15. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  16. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  17. Determination of mercury in dentists through Neutron activation analysis

    International Nuclear Information System (INIS)

    It was determined the mercury levels in urine through Neutron activation analysis to 25 dentists who have been exposed to mercury by several time periods, because of the routine manipulations of amalgams. The determined concentrations of mercury were less to 10 μ g Hg/l of urine. The results were founded inside the safety limits reported in the literature. The mercury levels in the dentists are associated with a wide variety of factors that contribute to their exposure as: number of years of dental practice, number of amalgams manipulated between others. (Author)

  18. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  19. Neutron activation analysis of hair from breast cancer patients

    International Nuclear Information System (INIS)

    Hair samples from breast cancer patients were collected at the same time as tumour and normal tissues obtained during mastectomy, in order to determine elemental concentrations and investigate whether hair can act as an epidemiological monitor of the disease. Instrumental neutron activation analysis was used and concentrations for Na, Mg, S, Cl, Ca, Mn, Cu, Zn, Br, I, Sb, Ba, Au and Hg in the hair samples measured. No strong correlations were found between the concentrations of Cl, Cu, Zn and Br in hair and those in tumour tissues and in normal tissues. The level of Zn in the patients hair is low and that of Ca very high

  20. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  1. Recent developments in environmental research using neutron activation analysis

    International Nuclear Information System (INIS)

    In studies of the origin and fates of trace elements, it is advantageous to be able to analyze samples for a wide spectrum of elements with a high sensitivity and accuracy. This condition is best satisfied with instrumental neutron activation analysis (INAA), since it is one of the most sensitive, selective, and reliable multielement analysis techniques available. In spite of these advantages in environmental studies, use of the technique has been generally limited to aerosol and source material analysis. Over the last few years, the trace analysis and radiochemistry group at the Massachusetts Institute of Technology's Nuclear Reactor Laboratory has applied INAA to various environmental samples for methodology development and/or to provide more information on some important environmental processes. Some examples of these studies are provided in this paper

  2. Automatization of the neutron activation analysis method in the nuclear analysis laboratory

    International Nuclear Information System (INIS)

    In the present paper the work done to automatice the Neutron Activation Analysis technic with a neutron generator is described. An interface between an IBM compatible microcomputer and the equipment in use to make this kind of measurement was developed. including the specialized software for this system

  3. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  4. Neutron imaging and prompt gamma activation analysis using a monolithic capillary neutron lens

    International Nuclear Information System (INIS)

    Neutron focusing lenses have been shown to enhance the measurement capabilities of prompt gamma activation analysis (PGAA) for small samples (∼100 μm in size) using a reactor-based cold neutron beam. As reported in our earlier work, a cold neutron beam emerging from a 58Ni-coated guide, cross section 50 mm x 45 mm, is compressed to a spot size of about 0.54 mm (FWHM). In the current work, we report preliminary prompt gamma measurements performed with a monolithic capillary lens that accepts a 10 mm (hexagon flat-to-flat) size beam and focuses it to a spot size of 40. The smaller focal spot size enables better spatial resolution, but also makes sample alignment more challenging. We have added a neutron imaging technique to the sample positioning procedure that takes advantage of the converging and subsequent diverging nature of the focused beam. The measurement sensitivity for a 2.6 μg Gd sample has improved by a factor of 34. In addition to rastering samples in the lateral plane, we have also explored the possibility of profiling the inhomogeneity of the sample in the direction along the beam axis. (author)

  5. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future

  6. Fast-neutron activation analysis of light elements

    International Nuclear Information System (INIS)

    Full text: The determination of lithium, carbon, oxygen, nitrogen and other light chemical elements in various modern materials in microgram level is of importance for analytical science. As it is well-known, a thermal neutron activation of C, H, N, and O produces negligible γ-ray activity. 13C (n, γ) 14C and 2H (n, γ) 3H reactions produce very small activities of the non- γ- emitters 3H and 14C, and the 19O (n, γ)19O and 15N(n, γ)16N reactions give very short lived 19O (27 sec) and 16N (7.1 sec). All of these reactions have extremely low thermal neutron cross sections. Therefore a major advantage of the instrumental neutron activation analysis (INAA) is the determination of trace elements in biological, medical and environmental materials. For this reason the above mentioned problems are solved with use of some variants of nuclear analytical techniques based on application of charged particle accelerators. However, there are several non-traditional reactor activation analysis techniques to solve such problems which have been developed and applied in various fields of semiconductor industry, biology, geology. In recent years these techniques were named as the nuclear reactor based charged particles activation analysis (NRCPAA). We distinguished two possible applications of a nuclear reactor as charged particles source. During last years the capabilities of the NRCPAA were investigated intensively and some our results were applied to determine light elements contents [1,2]. The recoil protons are produced as the result of (n, p) elastic and inelastic scattering interaction of fast neutrons with nucleus of light elements, for example, hydrogen. These protons are applied for the development of proton activation analysis for the determination of large concentrations of Li, B and O. The non-destructive activation analysis with use of 14-MeV fast neutrons (FNAA) is the most suitable method for analysis of N, P and Si. FNAA was applied for determination of nitrogen

  7. Enhancement of research reactor utilization for neutron activation analysis

    International Nuclear Information System (INIS)

    Analytical Chemistry Division has been utilising NAA for the past 4 decades for trace analysis of a number of materials. Some of the procedures developed recently for the trace element determination of high purity hi-tech and nuclear pure materials, geological, environmental and forensic samples by radiochemical neutron activation analysis (RNAA) are discussed here. Nearly complete characterization of high purity (>4N) As and Ga is possible by the procedures developed which are simple, rapid and elegant and can be used easily for the process samples. It is to be emphasised that though the INAA is simple and being widely followed, the RNAA alone can address the problems of analysis for elements present at ultra trace levels in many matrices. (author)

  8. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  9. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    International Nuclear Information System (INIS)

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources (241Am/Be, 252Cf, 241Am/B, and DT neutron generator). Among the different systems the 252Cf neutron based PGNAA system has the best performance. (author)

  10. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x1011ncm-2s-1. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g-1. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  11. Neutron activation analysis of medieval and early modern times ceramics

    International Nuclear Information System (INIS)

    Provenience studies of medieval and early modern times ceramics from the Eastern Danube area of Austria have been performed by instrumental neutron activation analysis. All sherds examined were selected from pottery which was specially charactrized by pottery marks ('Cross Potent', 'Crossmark within a circle', 'Latin Cross', 'Cross Paty'). With respect to the chemical composition five different pottery groups could be evaluated by cluster analysis. Archaeological results: The'Cross Patent' was used by different potter's workshops whereas the 'Crossmark within a circle' was more likely restricted to one manufacture entre. The distribution of the 'Latin Cross' and The 'Cross Paty' over all five clusters indicated the usage of clay from different deposits. The assignment of the 'Cross Paty' exclusively to the area of Passau could be disproved. (Author)

  12. Neutron activation analysis for monitoring northern terrestrial ecosystems

    International Nuclear Information System (INIS)

    New experimental data have been obtained on heavy metal and rare-earth element concentrations in environmental objects, namely pine needles and soils, caused by atmospheric pollution in different regions of the Kola Peninsula. The investigation was performed with the use of epithermal neutron activation analysis at the IBR-2 fast pulsed reactor. The analysis of nearly 40 element distributions in pine needles and soils from the studied geographical points testifies of a strong contamination source - the nickel smelting complex in Monchegorsk. The contamination levels for Ni, Co, Cr, Se, and others are also high and may be hazardous for this region population because some of these elements are carcinogenic. 6 refs., 1 fig., 2 tabs

  13. Neutron activation analysis: nuclear interference from iron in manganese

    International Nuclear Information System (INIS)

    In the present work, the contribution of iron was verified in the analysis of manganese through the reaction of interference by fast neutron. The irradiation of the samples was accomplished in the channel IC-40 of the rotary rack of the TRIGA MARK I IPR-R1 research reactor, located at Nuclear Technology Development Centre/Brazilian Commission for Nuclear Energy, CDTN/CNEN. In this irradiation device, the average thermal neutron flux is 6.69 x 1011 neutron cm-2 s-1 and fast neutron flux is 7.37 x 1010 neutron cm-2 s-1. Manganese was determined through 56Mn induced by thermal neutron flux according to the reaction 55Mn(n, γ)56Mn. In the analysis of manganese, the contribution of iron was investigated according to the reaction of interference 56Fe(n, p)56Mn produced by the fast neutron. It was verified that the contribution of 1 g of iron is 20 μg of manganese. (author)

  14. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  15. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    Science.gov (United States)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  16. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  17. Semiautomatic exchanger of samples for carry out neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper the design methodology and implementation of a semiautomatic exchanger of samples for the Analysis Laboratory by Neutron Activation of the Reactor department is presented. Taking into account the antecedents, the necessities of improvement are described, as well as the equipment that previously contained the Laboratory. The project of the semiautomatic exchanger of samples was developed at Instituto Nacional de Investigaciones Nucleares, with its own technology to increase independence from commercial equipment. Each element of the semiautomatic exchanger of samples is described both in the design phase as construction. The achieved results are positive and encouraging for the fulfillment of the proposed objective that is to increase the capacity of the Laboratory. (Author)

  18. Neutron activation analysis of organohalogens in Chinese human hair

    International Nuclear Information System (INIS)

    To effectively extract organohalogens from human hair, two factors, the extracting time and hair length on the extraction efficiency of organohalogens were studied by neutron activation analysis (NAA) and gas chromatograph-electron capture detector (GC-ECD), respectively. Furthermore, the concentrations of extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX) in hair samples from angioma and control babies were also measured by the established method. The results indicated that the optimal Soxhlet-extraction time for EOX and EPOX in hair was from 8 to 11 hours, and the extraction efficiencies for organochlorine pesticides in hair were in the order of powder >2 mm>5 mm. Also, the mean levels of EOCl and EPOCl in hair of the angioma babies were significantly higher than those in the control babies (PEOClEPOCl<0.05), which implied the possible relationship between the environmental pollution and angioma. (author)

  19. Instrumental neutron activation analysis of fly ash, aerosols and hair

    International Nuclear Information System (INIS)

    Samples of coal, slag, emissions retained on the separating devices, fly ash, aerosols and hair taken in the area of coal-fired power plant were analyzed by means of instrumental neutron activation analysis. 13 to 23 elements were determined in the samples. The data obtained for emissions and aerosols were further evaluated by calculation of enrichment factors, correlation coefficients and by the ratio matching method. The concentrations of elements determined in the hair of the exposed group were compared with data of control and so called ''out control'' groups as well as with recent data found for hair in other countries. It can be seen from the results that arsenic is the most serious pollutant in the area. (author)

  20. Instrumental neutron activation analysis of the hair of metallurgical workers

    International Nuclear Information System (INIS)

    Hair samples were collected from 20 metallurgical workers (10 males and 10 females) and from 59 control subjects (32 males and 27 females), whose jobs do not indicate a specific occupational exposure. The concentrations of ten minor and trace elements (Al, Co, Cu, Fe, Mg, Mn, Sb, Se, V and Zn) were determined by instrumental neutron activation analysis (INAA). The statistical data distributions, the sex and age influences in these elemental concentrations and the average values obtained for the control group were compared with published data. The effect of occupational exposure to the metallic elements was reflected in elemental compositon of hair by significant higher concentration levels of Al, Co, Cu, Fe, Mg, Mn, Sb, V and Zn in the hair of the exposed group, when compared with the control group. (author)

  1. Prompt gamma-ray neutron activation analysis of boron using Deuterium-Deuterium (D-D) neutron generator

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is a nuclear analytical technique for the determination of trace and other elements in solid, liquid or gaseous samples. The method consists in observing gamma rays emitted by a sample during neutron irradiation. The PGNAA system was built using a moderated and shielded deuterium-deuterium (D-D) neutron generator. This facility has been developed to determine the chemical composition of materials. The neutron generator is composed of three major components: An RF-Induction Ion Source, the Secondary Electron Shroud, and the Diode Accelerator Structure and Target. The generator produces monoenergetic neutrons (2.5 MeV) with a yield of 1010 n/s using 25-50 mA of beam current and 125 kV of acceleration voltage. Prompt γ-ray neutron activation analysis of 10B concentrations in Si and SiO2 matrices was carried out using a germanium detector (HPGe) and the results obtained are compared with a PGNAA system using a NaI detector. Neutron flux and energy distribution from D-D neutron generator at the sample position was calculated using Monte Carlo simulation. The interaction properties of neutrons in a Germanium detector have been studied. (author)

  2. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R

    2007-01-15

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future.

  3. Analysis of natural neutron flux in a seismically active zone

    Directory of Open Access Journals (Sweden)

    V. F. Ostapenko

    2003-01-01

    Full Text Available In a seismically active zone in the near Almaty area (Kazakhstan since 1996 observations of variations of a natural neutron flux have been conducted. Sometimes the neutron flux rises sharply within the one-hour interval in comparison with the background. It occurs on the eve of activation of seismic processes. Increase of the neutron flux level had taken place from 1 h to 10 days prior to earthquakes. It is also indicated a tendency of growth of the anomaly level in accordance with the growth of energetic class of the subsequent earthquake. A character of connection between the neutron flux and earthquakes is still not clear. It is proposed that the neutron flux anomalies caused by variations of cosmic radiation intensity under action of fluxes of solar material, which is burst into interplanetary space (solar wind during solar flares. Energy of the solar wind transferred to Earth puts into action a trigger mechanism of the process of initiation of earthquakes at those places where conditions have already been prepared for them. The neutron flux anomalies can be used as substantial additional information for classical geophysical methods of short-term earthquake prediction.

  4. A package for gamma-ray spectrum analysis and routine neutron activation analysis

    Indian Academy of Sciences (India)

    M E Medhat; A Abdel-Hafiez; Z Awaad; M A Ali

    2005-08-01

    A package for gamma spectrum analysis (PGSA) was developed using object oriented Borland C++ design for MS-windows. This package consists of five programs which can be used for gamma-ray spectrum analysis and routine neutron activation analysis. The advantages of PGSA are its simple algorithms and its need for only minimum amount of input information.

  5. Study on the methods for analysis of the chemical poison in canister by neutron activity

    International Nuclear Information System (INIS)

    The method that is used to analyse the poison gases in canister by neutron activity is proposed. Through theory analysis and experimental measurement, the feasibility for analysis of the poison gases in a canister by neutron activity has been demonstrated, and it is proved that the method itself do not result in radioactive problem to use again the canister. (authors)

  6. Instrumental neutron activation analysis of carbonatites from Panda Hill and Oldoinyo-Lengai, Tanzania

    International Nuclear Information System (INIS)

    Twenty nine (major and trace) elements including nine rare earth elements (REE) in African carbonatite samples were determined by instrumental neutron activation analysis (INAA). The geochemical behavior of trace elements in carbonatites, especially REE pattern (chondrite normalized), and the efficiency of neutron activation analysis compared to other methods are discussed in this study. (author)

  7. Application of neutron activation analysis system in Xi'an pulsed reactor

    CERN Document Server

    Zhang Wen Shou; Yu Qi

    2002-01-01

    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  8. Using robust statistics to improve neutron activation analysis results

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Guilherme S.; Genezini, Frederico A.; Ticianelli, Regina B.; Figueiredo, Ana Maria G., E-mail: gzahn@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas

    2011-07-01

    Neutron activation analysis (NAA) is an analytical technique where an unknown sample is submitted to a neutron flux in a nuclear reactor, and its elemental composition is calculated by measuring the induced activity produced. By using the relative NAA method, one or more well-characterized samples (usually certified reference materials - CRMs) are irradiated together with the unknown ones, and the concentration of each element is then calculated by comparing the areas of the gamma ray peaks related to that element. When two or more CRMs are used as reference, the concentration of each element can be determined by several different ways, either using more than one gamma ray peak for that element (when available), or using the results obtained in the comparison with each CRM. Therefore, determining the best estimate for the concentration of each element in the sample can be a delicate issue. In this work, samples from three CRMs were irradiated together and the elemental concentration in one of them was calculated using the other two as reference. Two sets of peaks were analyzed for each element: a smaller set containing only the literature-recommended gamma-ray peaks and a larger one containing all peaks related to that element that could be quantified in the gamma-ray spectra; the most recommended transition was also used as a benchmark. The resulting data for each element was then reduced using up to five different statistical approaches: the usual (and not robust) unweighted and weighted means, together with three robust means: the Limitation of Relative Statistical Weight, Normalized Residuals and Rajeval. The resulting concentration values were then compared to the certified value for each element, allowing for discussion on both the performance of each statistical tool and on the best choice of peaks for each element. (author)

  9. Medical application of in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking.

  10. Medical application of in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking

  11. The role of neutron activation analysis in nutritional biomonitoring programs

    International Nuclear Information System (INIS)

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities

  12. Recent applications of neutron activation analysis in Korea

    International Nuclear Information System (INIS)

    There are two purposes in this research; first aim is to promote the use of neutron activation analysis (NAA) as a utilization of nuclear research reactor in the field of air pollution studies through a routine and long-term monitoring. Other is to improve NAA with an experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions. For the study on air pollution, airborne particulate matter (APM) for the fine (< 2.5 μm EAD) and coarse particle (2.5-10 μm EAD) fractions were collected using the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters. Air samples were collected at two regions (suburban and industrial site of Daejeon city in the Republic of Korea) from January to December 2002. Mass concentration and elemental black carbon of APM were measured and the concentration of 25 elements were determined by Instrumental NAA. Analytical quality control is carried out using three certified reference materials (CRM). The monitoring data were treated statistically to assess air pollution source and source apportionment. The results obtained from this project can be used to investigate source identification and apportionment and its trends, and to establish a more cost-effective method for national air quality management. Preliminary experiment for application of ko-standardization method has been carried out to determine the reactor neutron spectrum parameters, i.e.a and f-values as the main factors of irradiation quality at NAA no.1 irradiation hole on HANARO research reactor, to determine peak detection efficiency for the HP Ge(EG and G ORTEC, GEM 35185) detector for the use in the ko-experiments and to compare the measured concentration results with the certified values of some CRMs applying the experimentally determined ko-parameters. (author)

  13. Determination of rhenium in molybdenite by neutron-activation analysis.

    Science.gov (United States)

    Terada, K; Yoshimura, Y; Osaki, S; Kiba, T

    1967-01-01

    A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs. PMID:18960067

  14. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  15. Neutron activation analysis: a powerful tool in provenance investigations

    International Nuclear Information System (INIS)

    It is well known that neutron activation analysis (NAA), both instrumental and destructive, allows the simultaneous determination of a number of elements, mostly trace elements, with high levels of precision and accuracy. These peculiar properties of NAA are very useful when applied to provenance studies, i.e. to the identification of the origin of raw materials with which artifacts had been manufactured in ancient times. Data reduction by statistical procedures, especially multivariate analysis techniques, provides a statistical 'fingerprint' of investigated materials, both raw materials and archaeological artifacts, that, upon comparison, allows the identification of the provenance of prime matters used for artifact manufacturing. Thus information on quarries and flows exploitation in the antiquity, on technological raw materials processing, on trade routes and about the circulation of fakes, can be obtained. In the present paper two case studies are reported. The first one deals with the identification of the provenance of clay used to make ceramic materials, mostly bricks and tiles, recovered from the excavation of a Roman 'villa' in Lomello (Roman name Laumellum) and of Roman settlings in Casteggio (Roman name Clastidium). Both sites are located in the Province of Pavia in areas called Lomellina and Oltrepo respectively. The second one investigates the origin of the white marble used to build medieval arks, Carolingian age, located in the church of San Felice, now property of the University of Pavia. Experimental set-up, analytical results and data reduction procedures are presented and discussed. (author)

  16. Elemental analysis of some West Malaysian limestones using neutron activation, delayed neutron and electron microprobe analysis

    International Nuclear Information System (INIS)

    Limestone stratigraphy in Malaysia has been and is dependent almost entirely in palaeontology. However fossil localities are sporadic and as such a new fossil discovery mean the necessity for a complete re-appraisal of the stratigraphy. The almost complete dependence upon palaeontology results from the difficulties of stratigraphy correlation of isolated outcrops, from the cover of tropical vegetation and from the often complex folding and faulting which has been imposed on the geosyn-clinical rocks by the Indonesian-Thai-Malayan orogeny. So by studying the elemental composition of limestones accurately, we would be able to correlate outcrops and other stratigraphic samples independent of fossil finds. The use of delayed neutron analysis would also determine the concentration of uranium and thorium accurately. This study, in conjunction with thermoluminescence and fission track studies, would able us to date the age of the limestones

  17. Characterization of hydrogen in concrete by cold neutron prompt gamma-ray activation analysis and neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R.L.; Chen-Mayer, H.H.; Lindstrom, R.M.; Blaauw, M.

    2000-07-01

    A combination of cold neutron prompt gamma-ray activation analysis (PGAA) and neutron incoherent scattering (NIS) has been used for nondestructive characterization of hydrogen as a function of position in slabs of wet concrete of different composition. Hydrogen was determined by PGAA by scanning each sample across of 5 mm diameter neutron beam in 10 mm increments, and measuring the 2223 keV prompt gamma ray. NIS measurements were performed by scanning the samples across a 5 mm diameter neutron beam at 5 mm increments and detecting scattered neutrons. The measurements demonstrate the feasibility of the techniques for 2D compositional mapping of hydrogen and other elements in materials, and indicate the potential of these methods for monitoring the uniformity of drying concrete.

  18. Elemental analysis of airborne particulate by using thermal and epithermal neutron activation

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis was used to determine Al, Br, Ca, Cl, Mn, Na, V, and Ti concentrations, whereas epithermal neutron activation analysis was used to determine Cu, I and Si concentrations. Counting by Compton suppression both in thermal neutron activation and epithermal neutron activation analysis showed the significantly different on detection limit of element compare with normal counting system. It revealed counting by Compton suppression gave better result. The enrichment factor of elements indicated that V and Mn were enriched in several fine particulate samples. Ca, Si and Na were not enriched, whereas Br, I and Cl were enriched in fine airborne particulate or in coarse one. It was found that Cl and Na did not have correlation, while Br and I showed the same enrichment the same enrichment trend and high correlation (0,9). It means that Br and I were from the same pollutant source. It could concluded that the thermal neutron and epithermal neutron activations analysis combined with counting by Compton suppression could enhance sensitivity of analysis of elemental air bone particulate that was very useful in air pollution study. Key words : activation analysis, thermal neutron, epithermal neutron, Compton

  19. Monte Carlo Model of TRIGA Reactor to Support Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zerovnik, G.; Snoj, L.; Trkov, A. [Reactor Physics Department, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-07-01

    The TRIGA reactor at Jozef Stefan Institute is used as a neutron source for neutron activation analysis. The accuracy of the method depends on the accuracy of the neutron spectrum characterization. Therefore, computational models on different scales have been developed: Monte Carlo full reactor model, model of an irradiation channel and deterministic code for self-shielding factor calculations. The models have been validated by comparing against experiment and thus provide a very strong support for neutron activation analysis of samples irradiated at the TRIGA reactor. (author)

  20. Determination of gold in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Gold has been determined in two Myanmar indigenous medicines TMF 14 (Devaauthada), TMF 15 (Shwe Thwe Say) by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 411 keV of the 198Au has been measured. (author). 2 refs., 1 fig., 1 tab

  1. Development of Distinction Method of Production Area of Ginsengs by Using a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chung, Yong Sam; Sun, Gwang Min; Lee, Yu Na; Yoo, Sang Ho [KAERI, Daejeon (Korea, Republic of)

    2010-05-15

    Distinction of production area of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). A distribution of elements has varied according to the part of plant clue to the difference of enrichment effect and influence from a soil where the plants have been grown. So correlation study between plants and soil has been an Issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis

  2. Status Report on the Neutron Activation Analysis Activities in the Philippines

    International Nuclear Information System (INIS)

    The Philippines has a one megawatt open-pool type nuclear research reactor which is presently utilized in the conduct of nuclear research and development activities. The reactor is operated by the Philippine Atomic Research Center, the research arm of the Philippine Atomic Energy Commission. The reactor is presently utilized in the production of some radioisotopes, nuclear physics experiments and neutron activation analysis. For activation analysis the facilities available include the two 2 inch pneumatic tubes and a 2-inch central core dry-pipe. Although the reactor has been operative since 1963 it was only in the latter part of 1966 that a neutron activation analysis group was organized and almost immediately the training of personnel and setting up of a radiochemical laboratory and nucleonic counting assembly were initiated. Today, the counting system include a 100 channel analyzer with a 3 x 3 inch Nal(Tl) crystal

  3. Inorganic constituents in herbal medicine by neutron activation analysis

    International Nuclear Information System (INIS)

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  4. Elementary concentration of Peruibe black mud by neutron activation analysis

    International Nuclear Information System (INIS)

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  5. Essential trace elements in edible mushrooms by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia L.C.; Maihara, Vera A.; Castro, Lilian P. de [Instituto de Pesquisa e Energetica e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: patricialandim@ig.com.br; vmaihara@ipen.br; lilian.Pavanelli@terra.com.br; Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil)]. E-mail: figueiraru@yahoo.com.br

    2007-07-01

    Mushrooms are excellent nutritional sources since they provide proteins, fibers and mineral, such as K, P, Fe. They have also been the focus of medical research. In Brazil mushrooms are not consumed in large quantities by the general population since people know little about the nutritional and medicinal benefits that mushrooms offer. Hence, this study intends to contribute to a better understanding of the essential element content in edible mushrooms, which are currently commercialized in Sao Paulo state. Br Fe, K, Na and Zn concentrations were determined by Instrumental Neutron Activation Analysis in the following mushroom species: Shitake (Lentinus edodes), Shimeji (Pleurotus ssp), Paris Champignon (Agaricus bisporus), Hiratake ( Pleurotus ssp) and Eringue (Pleurotus Eryngu. The mushroom samples were acquired from commercial establishments in the city of Sao Paulo and directly from the producers. Essential element contents in mushrooms varied between Br 0.03 to 4.1 mg/kg; Fe 20 to 267 mg/kg; K 1.2 to 5.3 g/kg, Na 10 to 582 mg/kg and Zn 60 to 120 mg/kg. The results confirm that mushrooms can be considered a good source of K, Fe and Zn. The low Na level is a good nutritional benefit for the consumer. (author)

  6. Inorganic constituents in herbal medicine by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  7. Elementary concentration of Peruibe black mud by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Ponciano, Ricardo; Silva, Paulo S.C da, E-mail: jeffkoy@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  8. Neutron activation analysis of lipsticks using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Neutron activation analysis with gamma-ray spectrometry was used to measure the concentrations of various elements in lipsticks of popular Indian and foreign brands. The aim of the present work was to study the possibility of existence of trace elements in samples of lipsticks (the ingredients of which are mostly organic in nature) and to see whether trace elements could distinguish lipsticks of different Indian and foreign brands from the forensic point of view apart from their inter-se differentiation. In the different samples of lipsticks that were analysed the following elements were detected: Au, Ba, Br, Ca, Cs, Fe, Na, Ru, Sb, Sc, Ta, Yb, Zn, Rb and Se. It was found that inter-se differentiation of lipsticks was possible on the basis of concentrations of trace elements and their profile. Concentration of bromine in samples of lipsticks identified lipsticks of different Indian brands. Samples of lipsticks of Indian and foreign brands could be differentiated on the basis of concentrations of cesium, antimony and scandium which were found to be higher in foreign brands as compared to those in Indian brands. (authors)

  9. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    S. Okoh

    2012-01-01

    Full Text Available Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irradiated for 6 h in the inner site of the Nigerian Research Reactor (NIRR-1 at a flux of 5×1011 ncm-2 sec-1. Results: After evaluating the spectrum, the mean results for chromium in the samples were determined as 2.33±0.3, 2.23±0.3 and 2.93±0.4% for samples from the tannery, leather crafts market and leather dump sites respectively. Chromium concentration in samples collected from local tanners who use tannins from Acacia nilotica as tanning agent was below the detection limit of Instrumental Neutron Activation Analysis (INAA technique used in the study. Conclusion: Although, the concentrations of chromium in the analysed samples were not much higher than what were obtained in literature, they may be enough to sensitize the population that is allergic to chromium.

  10. Evaluation of new pharmaceuticals using in vivo neutron inelastic scattering and neutron activation analysis

    International Nuclear Information System (INIS)

    Nutritional status of patients can be evaluated by monitoring changes in body composition, including depletion of protein and muscle, adipose tissue distribution and changes in hydration status, bone or cell mass. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. The fast neutrons are produced with a sealed deuterium-tritium (D-T) neutron generator. This method provides the most direct assessment of body composition. Non-bone phosphorus for muscle is measured by the 31P(n,α)28Al reaction, and nitrogen for protein via the (n,2n) fast neutron reaction. Inelastic neutron scattering is used for the measurement of total body carbon and oxygen. Carbon is used to derive body fat, after subtracting carbon contributions due to protein, bone and glycogen. Carbon-to-oxygen (C/O) ratio is used to measure distribution of fat and lean tissue in the body and to monitor small changes of lean mass and its quality. In addition to evaluating the efficacy of new treatments, the system is used to study the mechanisms of lean tissue depletion with aging and to investigate methods for preserving function and quality of life in the elderly. (author)

  11. Neutron activation analysis as analytical tool of environmental issue

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) ia applicable to the sample of wide range of research fields, such as material science, biology, geochemistry and so on. However, respecting the advantages of NAA, a sample with small amounts or a precious sample is the most suitable samples for NAA, because NAA is capable of trace analysis and non-destructive determination. In this paper, among these fields, NAA of atmospheric particulate matter (PM) sample is discussed emphasizing on the use of obtained data as an analytical tool of environmental issue. Concentration of PM in air is usually very low, and it is not easy to get vast amount of sample even using a high volume air sampling devise. Therefore, high sensitive NAA is suitable to determine elements in PM samples. Main components of PM is crust oriented silicate, and so on in rural/remote area, and carbonic materials and heavy metals are concentrated in PM in urban area, because of automobile exhaust and other anthropogenic emission source. Elemental pattern of PM reflects a condition of air around the monitoring site. Trends of air pollution can be traced by periodical monitoring of PM by NAA method. Elemental concentrations in air change by season. For example, crustal elements increase in dry season, and sea salts components increase their concentration when wind direction from sea is dominant. Elements that emitted from anthropogenic sources are mainly contained in fine portion of PM, and increase their concentration during winter season, when emission from heating system is high and air is stable. For further analysis and understanding of environmental issues, indicator elements for various emission sources, and elemental concentration ratios of some environmental samples and source portion assignment techniques are useful. (author)

  12. Neutron activation analysis in the investigation of pseudomonas to mercury

    International Nuclear Information System (INIS)

    The aim of this work was to investigate the resistance to mercury in Pseudomonas. The measurements were performed by using neutron activation technique. The TRIGA MARK 1-IPE-R1 reactor was used as the irradiation facility, and the nuclide Hg202 as target element. The experimental results showed that cultures of Pseudomonas during the logarithmic growing phase, have a significant volatilization of the Hg, while during the stationary phase, they absorb and retain this metal. (author)

  13. A software architectural framework specification for neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron Activation Analysis (NAA) is a sensitive multi-element nuclear analytical technique that has been routinely applied by research reactor (RR) facilities to environmental, nutritional, health related, geological and geochemical studies. As RR facilities face calls to increase their research output and impact, with existing or reducing budgets, automation of NAA offers a possible solution. However, automation has many challenges, not the least of which is a lack of system architecture standards to establish acceptable mechanisms for the various hardware/software and software/software interactions among data acquisition systems, specialised hardware such as sample changers, sample loaders, and data processing modules. This lack of standardization often results in automation hardware and software being incompatible with existing system components, in a facility looking to automate its NAA operations. This limits the availability of automation to a few RR facilities with adequate budgets or in-house engineering resources. What is needed is a modern open system architecture for NAA, that provides the required set of functionalities. This paper describes such an 'architectural framework' (OpenNAA), and portions of a reference implementation. As an example of the benefits, calculations indicate that applying this architecture to the compilation and QA steps associated with the analysis of 35 elements in 140 samples, with 14 SRM's, can reduce the time required by over 80 %. The adoption of open standards in the nuclear industry has been very successful over the years in promoting interchangeability and maximising the lifetime and output of nuclear measurement systems. OpenNAA will provide similar benefits within the NAA application space, safeguarding user investments in their current system, while providing a solid path for development into the future. (author)

  14. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  15. Determination of zinc by substoichiometric thermal neutron activation analysis (Paper No. RA-23)

    International Nuclear Information System (INIS)

    Trace amount of Zn in complex matrices has been determined by substoichiometric thermal neutron activation analysis. The method involves radiochemical separation of 65Zn from neutron irradiated samples employing substoichiometric extraction of Zn(II) with 1,2,3-benzotriazole (1,2,3-BT) into n-heptanol. (author). 1 tab

  16. Analysis of elements present in beers and brewing waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) was used for determination of Si, Na, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Rb, Cs, and La in Czech beers and brewing waters. The Si concentration in beer determined by the reaction 29Si(n,p)29Al with fast neutrons confirmed that beer is an important Si source in human diet. Determination of other trace elements by NAA with the whole spectrum of reactor neutrons aimed at the feasibility of identification of Gambrinus beers brewed in various breweries. The elements Ca and V appeared to be the best candidates for this purpose. The concentrations of elements determined by NAA were also compared with the recommended daily element intake for humans. The accuracy of the method was proved by analysis of reference materials, specifically NIST SRM 2704 Buffalo River Sediment, NIST SRM 1633b Coal Fly Ash, and NIST SRM 1515 Apple Leaves. (author)

  17. Use of research reactors for neutron activation analysis. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an analytical technique based on the measurement of characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation of the material of interest. In the last three decades, neutron activation analysis has been found to be extremely useful in the determination of trace and minor elements in many disciplines. These include environmental analysis applications, nutritional and health related studies, geological as well as material sciences. The most suitable source of neutrons for NAA is a research reactor. There are several application fields in which NAA has a superior position compared to other analytical methods, and there are good prospects in developing countries for long term growth. Therefore, the IAEA is making concerted efforts to promote neutron activation analysis and at the same time to assist developing Member States in better utilization of their research reactors. The purpose of the meeting was to discuss the benefits and the role of NAA in applications and research areas that may contribute towards improving utilization of research reactors. The participants focused on five specific topics: (1) Current trends in NAA; (2) The role of NAA compared to other methods of chemical analysis; (3) How to increase the number of NAA users through interaction with industries, research institutes, universities and medical institutions; (4) How to reduce costs and to maintain quality and reliability; (5) NAA using low power research reactors. Neutron activation analysis in its various forms is still active and there are good prospects in developing countries for long-term growth. This can be achieved by a more effective use of existing irradiation and counting facilities, a better end-user focus, and perhaps marginal improvements in equipment and techniques. Therefore, it is recommended that the Member States provide financial and other assistance to enhance the effectiveness of their laboratories

  18. Determination of cadmium in water samples by co-precipitation and neutron activation analysis

    International Nuclear Information System (INIS)

    For the determination of cadmium in sea water, a neutron activation analysis method involving a preconcentration step has been developed. Preconcentration is achieved by co-precipitation of cadmium dibenzyldithiocarbamate with phenolphthalein. The precipitate is collected on 0.45 μm membrane filters and cadmium is determined by instrumental neutron activation analysis. A 115mCd radio tracer was used to establish optimum conditions and to evaluate the chemical yield. (author) 14 refs.; 1 fig. ; 2 tabs

  19. Elemental analysis of rain- and fresh water by neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analysis of rain-and fresh water for trace constituents is a manda tory part of environmental monitoring. This text gives a survey of neutron activation analysis (NAA) within the framework of current environmental water research pro grammes, based on the practice developed in co-operation with the Dutch Energy Research Centre at Petten (ECN). While the procedures reported in literature cover about thirty five elements, our routine procedures of instrumental neutron activation analysis (INAA) is limited to ten to fifteen elements. The use of some dedicated ra diochemical separations (RNAA) adds another six, some of which are speciated as well. Current contributions of NAA to water analysis center on determination and speciation of anionic trace elements, notably Br, I, As. and Se, on the assay of some ultra traces like Ag, Au and Hg and on validation.

  20. Activities of the neutron activation analysis laboratory of the radiochemistry division of IPEN - CNEN/SP

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the beginning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochesmitry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered

  1. Applications of neutron activation analysis in agriculture of Uzbekistan

    International Nuclear Information System (INIS)

    Full text: Soil is one of the main components of biosphere, which is subject to Man's economic activity from year to year. Unfortunately, during last 50-60years it became an object of the chemization (the treatment of crop by poison chemicals and the usage of mineral fertilizers).Thus, definite pre-conditions are created to migrate to substances applied along the soil horizon. These substances fall into organism of Man and animals through soil-contacting media: plants, air, water. In this respect the instrumental neutron-activation techniques which allows determination of about 40 chemical elements in soils and other objects of environment, with detection limit equal to 0.001-10.0mg/kg and not more than 30% uncertainty, are provided with the Ge -detector (the Canberra firm). The report discusses some metrological points of INAA concerning the objects of environment, in particular, the influence of space-time non-uniformity of chemical element distributions on the reliability of analysis results. The elaborated techniques make it possible to: - establish the elemental composition of soils, cotton, natural waters, mineral fertilizers, aerosol dust of near land layer of various climatic zones of Uzbekistan, including the airs around the Aral sea. - study of the interrelation between the soil elemental composition and the chemism in the evolution of pathological processes - find the correlation between the cotton returns and Mn contents in soils and to elaborate on this base a new way to value the presown grain quality - choose the wall material of ancient monuments of a region, which were not strongly subjected to ecological impact, as standards to monitor the background of chemical elements in soils - value the ecologically agrochemical conditions of soils for main cotton-sawing zones of Uzbekistan - perform a large scale mapping of soils to find the Mn contents and to elaborate the technology of introduction of Mn - containing microfertilizers - estimate the

  2. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    International Nuclear Information System (INIS)

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59

  3. Analysis of large samples by neutron activation analysis. Quality assurance aspects

    International Nuclear Information System (INIS)

    The need for quality assurance in large sample instrumental neutron activation analysis (INAA) requires the development of unconventional methods of quality control. Certified reference materials are not available at the 1-5 kg scale; moreover, inhomogeneities which might affect the accuracy of the real sample analysis would not be reflected in the analysis of a reference material or in-house control sample even when available. Model studies indicate that inhomogeneities with strong gamma ray absorbing properties have the largest effect on the accuracy of the concentrations. The occurrence of these inhomogeneities may be derived from gamma spectrum analysis. Other opportunities for quality assurance are with the calculated estimates of the parameters describing neutron and gamma ray self-attenuation, and eventually through direct assessment after homogenization of the large sample, subsampling and conventional analysis. (author)

  4. Analysis of some egyptian cosmetic samples by using fast neutron activation analysis

    International Nuclear Information System (INIS)

    A description of our neutron generator (NG) facility for neutron activation analysis is presented. As an example, the concentration of Na, Mg, Al, Si, K, Cl, Ca and Fe elements were determined in two domestic brands of face powder by using a beam of 14 MeV neutrons. An empirical expression for detector efficiency in terms of incident gamma ray energy and the source-detector distance has been obtained for a hyper pure germanium detector (HPGe) using different standard point sources. The comparison of the calculated efficiencies and the measured values in the energy range from 59.5 to 1332.2 keV and for source-to-detector distances of 5-30 cm show the agreement between the calculated values and the measured experimental values

  5. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2012-07-01

    This study shows the application of semi-absolute k{sub 0} instrumental neutron activation analysis (k{sub 0}-INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k{sub 0}-INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  6. Establishment and application of the cyclic neutron activation analysis method on mini-reactor

    International Nuclear Information System (INIS)

    Background: Instrument neutron activation analysis is a nondestructive analytic method. Some elements after irradiation produce short half-life radio-nuclides (<60 s), and others produce both long-lived and short-lived nuclides. For these short-lived nuclides, the single measurement has big error. Purpose: In order to reduce the error, cyclic neutron activation analysis can be used to improve the sensitivity. Methods: A device was designed to be connected to the sample transporter, detector and irradiation pipeline in the reactor, which can automatically control the irradiation time and counting time. According to the nuclear parameters of certain elements, irradiation time and counting time and cycle times were determined by experiment. Cyclic activation analysis method was established at the mini-reactor. Results: This paper studied cyclic activation analysis conditions of 17 kinds of element, and applied to the determination of actual samples. Cyclic epithermal neutron activation analysis (CENAA) method was discussed too. By the analysis of national standard reference materials, the reliability of this method was confirmed. Conclusion: Cyclic neutron activation analysis (CNAA) is an effective analytic method for only short life nuclide elements. For both short and long lived nuclides of elements, the cyclic activation analysis method can make the analytical cycle shorten, from a few days or several weeks to within a few minutes. Cyclic activation analysis has the advantages of high sensitivity, and its precision and accuracy are better than single short irradiation activation analysis. (authors)

  7. Gamma and Neutron Flux of a Prompt Gamma Neutron Activation Analysis Collimator at the PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    A Prompt Gamma Neutron Activation Analysis (PGNAA) facility is being studied for installation at PUSPATI TRIGA Reactor (RTP) under the Thorium Flagship programme. This work presents the preliminary design of a PGNAA collimator at the RTP. The result of calculations for gamma and neutron flux at various positions of the PGNAA collimator in the RTP beam port 1 by using the computer code MCNPX are presented and discussed. The results indicate the technical feasibility of the installation of PGNAA facility at the RTP and the possibility of enhancing the utilization of the RTP. (author)

  8. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  9. Application of active neutronic interrogation method to the line analysis in reprocessing plant

    International Nuclear Information System (INIS)

    In a reprocessing plant of irradiated spent fuels, the knowledge in real time (line analysis) of uranium and plutonium quantities present in solutions is an extremely important parameter to control the proceeding and for the apparatus safety. The active neutronic analysis give a nondestructive non intrusive and quick measure to know the concentrations. This method consists in inducing fissions in nuclides with a neutron source and then to detect the particles which come from

  10. Clinical applications of in vivo neutron-activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  11. In-vivo neutron activation analysis: principles and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  12. Neutron activation analysis of stable elements in marine algae

    International Nuclear Information System (INIS)

    The nuclear industry has grown during the last decades and continuing growth is predicted. Although considerable efforts are being made to minimize the release of the increasing amounts of radioactive wastes into marine environment, it is evident that the potential for radioactive contamination will continue to grow. The purposes of marine environment monitoring around nuclear facilities are to verify that they are functioning as it was designed and to detect the unplanned releases of radioactive contaminants. To provide a sufficient assessment with biological indicators of 60Co and 137Cs, most significant radionuclides in waste effluents released with nuclear power station, the concentration of stable elements in the Sargassum and other algae were surveyed with thermal neutron activation method. The results were followed: 1) The concentration of Mn, As, Zn, and Co were seem to be higher in the sargassum than in other algae. 2) The concentration of Co and Cs were higher in S. thunbergit than in other Sargassum. (author)

  13. Clinical applications of in vivo neutron-activation analysis

    International Nuclear Information System (INIS)

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress

  14. Human hair identification by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nondestructive neutron activation technique was used to analyze 17 elements (Al, As, Au, Ba, Br, Cl, Cu, Hg, I, K, Mg, Mn, Na, Sb, Sr, V and Zn) in 75 human hair samples in 5 different locations, respectively, from 15 glassware workers. The analytical results were treated further statistically to find the elemental distribution among different human hairs and to identify the individual's hair. The identifying probability of one's hair by the comparison of elemental concentrations is found to be 104-106 times higher from the same person's than from any other person's. The standard deviation of the elemental concentrations of samples taken from 5 different locations of one person is about 5 time smaller than the standard deviation for individual's hair. These data support the possibility of using NAA of hair for human hair identification. (author)

  15. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun

    2000-05-01

    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques.

  16. Survey on Neutron Activation Analysis Activities at the Dalat Nuclear Research Centre

    International Nuclear Information System (INIS)

    The Dalat Nuclear Research Centre (D.N.R.C.) during the past few years has been involved in conducting an activation analysis service. Work has been carried out in collaboration with other organizations. However, no rigid research programme of our own has been established and thus the Radiochemistry Division of the D.N.R.C. has no personnel and special facilities permanently engaged in this field. The equipment and facilities used are shared with other activities within the Division and the whole Centre. The activities in neutron activation analysis at the D.N.R.C. are sporadically revived by requests for analysis. Up to now, such analyses have been performed free of charge. Most of the work was carried out on biological materials such as vegetables, raw natural rubber (RES smoked sheets of different qualities, crepes and dried rubber films obtained from concentrated natural latex) from hevea tree leaves from various clones

  17. Analysis by neutron activation analysis a some ancient ceramics from Romanian territories

    CERN Document Server

    Olariu, A

    1999-01-01

    In this paper we have analyzed samples of Neolithic ceramics from Cucuteni-Scanteia - Vaslui county and Neolithic and Dacian ceramics from Magurele - Bucharest, by the method of neutron activation analysis. The following elements have been observed: Fe, K, La, Mn, Na, Sc and Sm. It has been noticed a relative and a slight clusterization of the analyzed items on the ratios of concentrations Na/Mn, La/Sc and La/Sm.

  18. Neutron activation analysis as applied to instrumental analysis of trace elements from seawater

    International Nuclear Information System (INIS)

    Particulate matter collected from the coastal area delimited by the mouth of the river Volturno and the Sabaudia lake has been analyzed by instrumental neutron activation analysis for its content of twenty-two trace elements. The results for surface water and bottom water are reported separately, thus evidencing the effect of sampling depth on the concentration of many elements. The necessity of accurately 'cleaning' the filters before use is stressed

  19. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  20. Modern Trends in Neutron Activation Analysis. Applications to some African Environmental Samples

    International Nuclear Information System (INIS)

    This review covers the results of several published articles which deal with the modern trends in neutron activation analysis techniques using some of African research reactors for some environmental samples. The samples used have been collected from different areas in Egypt, South Africa, Ghana, Morocco, Nigeria, and Algeria. The neutron irradiation facilities and the advanced detection systems in each country are outlined. The prompt and delayed gamma-rays emitted due to neutron capture have been applied for investigation of the elemental constituents of such samples. Covered applications include exploration, mining, industrial environment, pollution of air, foodstuffs, soils and irrigation water samples. Some of the developed software programmes as well as the modern methods of data analysis are presented. The thermal and epithermal neutron activation analysis techniques have been applied for estimation of major, minor and trace elements in each material. Some of these data are presented with several comments.

  1. Utilization of recycled neutron source to teach prompt gamma analysis activation-PGNA

    Science.gov (United States)

    Delgado-Correal, Camilo; Munera, Hector

    2008-03-01

    Neutron activation analysis based on prompt gamma ray emission has significantly developed during the past twenty years. The technique is particularly suited for the identification of low atomic number elements, as nitrogen that is a main component of drugs and explosives. Identification of these substances is important in the context of humanitarian demining, and in the control of illicit traffic of drugs and explosives. As a good example of recycling of radioactive sources, a ^241Am-Be neutron source emitting 10^7neutron/s, that was not longer in use for other purposes at Ingeominas, was used to build a neutron irradiator that can be used to teach prompt gamma ray analysis, and other nuclear techniques. We irradiated individual samples, each about 4 gram, of three different elements: nitrogen in urea, silicon in milled rock, and cadmium in cadmium oxide. The prompt gamma rays emitted in the nuclear reactions ^112Cd (neutron,gamma) ^113Cd, ^28Si (neutron,gamma) ^29Si and ^14N (neutron,gamma) ^15N were identified using a well-type NaI (Tl) detector, connected to a multi-channel analyzer.

  2. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, V.C.; Sandquist, G.M.; Merrell, G.B.; Gozani, T.

    1984-08-01

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations.

  3. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    International Nuclear Information System (INIS)

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations

  4. Toenail elemental analysis of Korean young adults by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The element contents in toenail clippings of healthy Korean young adults were measured using an instrumental neutron activation analysis. The average contents of elements such as Na, K, Cl, Ca, Fe, Se, and Zn are 449, 474, 1024, 1677, 66, 0.7 and 94 mg/kg in men, whereas those contents in women respectively 332, 476, 836, 1097, 66, 0.8 and 104 mg/kg. The correlation analysis of toenail elements with chronic disease risks showed positive associations between Na and serum HDL-cholesterol, blood pressure, and negative associations between Se and Hs-CRP, between Zn and hemoglobin level. (author)

  5. Study of the elemental composition of Chenopodium Quinoa Willd by fast neutron activation analysis and X ray fluorescence analysis

    International Nuclear Information System (INIS)

    By means of x-ray fluorescence and fast neutron activation analysis the nitrogen content has been determined in samples of roots, stems, leaf, flowers and grains from Quinua (Chenopodium Quinoa Willd), which was previously treated with fertilizer

  6. Applications of short-lived activation products in neutron activation analysis of bio-environmental specimens

    International Nuclear Information System (INIS)

    This report discusses the advantages and disadvantages, special techniques, and actual and potential applications of neutron activation analysis (NAA) utilizing short-lived neutron-induced products, with special reference to the analysis of samples of biological and environmental origin. Attention is devoted mainly to products having half-lives in roughly the range of 10 milliseconds to 60 seconds, but with some discussion of the usefulness of even shorter-lived species, and ones with half-lives as long as a few minutes. Important aspects of the analytical methodology include sample preparation, irradiation/transfer systems, activity measurements, data processing and analytical quality assurance. It is concluded that several trace elements can be determined in bio-environmental samples (as well as in samples of industrial, geochemical and other origin). In particular, this method provides analytical possibilities for several elements (e.g. B, F, Li and V) that are difficult to determine in some matrices at trace levels by any other technique. These conclusions are illustrated in an annex by results of calculations in which the applicability of the techniques to the analysis of several biological and environmental reference materials is evaluated by means of an advance computer prediction program. The report concludes with an annotated bibliography of relevant publications (including abstracts, where available) taken from the INIS database. (author)

  7. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    Science.gov (United States)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  8. Neutron activation analysis with k{sub 0}-standardisation : general formalism and procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pomme, S.; Hardeman, F. [Centre de l`Etude de l`Energie Nucleaire, Mol (Belgium); Robouch, P.; Etxebarria, N.; Arana, G. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium)

    1997-09-01

    Instrumental neutron activation analysis (INAA) with k{sub 0}-standardisation is a powerful tool for multi-element analysis at a broad range of trace element concentrations. An overview is given of the basic principles, fundamental equations, and general procedure of this method. Different aspects of the description of the neutron activation reaction rate are discussed, applying the Hogdahl convention. A general activation-decay formula is derived and its application to INAA is demonstrated. Relevant k{sub 0}-definitions for different activation decay schemes are summarised and upgraded to cases of extremely high fluxes. The main standardisation techniques for INAA are discussed, emphasizing the k{sub 0}-standardisation. Some general aspects of the basic equipment and its calibration are discussed, such as the characterisation of the neutron field and the tuning of the spectrometry part. A method for the prediction and optimisation of the analytical performance of INAA is presented.

  9. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  10. Neutron activation analysis of rare earths and some other elements in material of geochemical interest

    International Nuclear Information System (INIS)

    ngle-element methods for the determination by neutron activation analysis of antimony, chromium, phosphorus, selenium and silver in international geochemical standard rocks, and the determination of rare earth elements i in standard rocks and apatites are described and discussed in twelve previously published papers, and in an eighteen page summary. Chemical separationtechniques are also discussed and the results are compared with previously obtained results with the same standard rocks. The accuracy of neutron activation analysis is discussed in comparison with isotope dilution mass spectroscopy, atomic absorption, gas chromatography and spark source mass spectrometry. (JIW)

  11. Twenty Five Years of Neutron Activation Analysis: A Personal Perspective on Utilization of the Techniques

    International Nuclear Information System (INIS)

    Since the late 1970's there have been enormous changes in the methods, techniques and applications of neutron activation analysis. Having been a research scientist at the National Research Council of Canada and the McMaster Nuclear Reactor, as well as a professor for ten years at the University of Illinois and 15 years at the University of Texas, I have a unique perspective on the research performed by my many MS, PhD and even undergraduate students. Below is a personal perspective on the utilization of the neutron activation analysis. (author)

  12. An evaluation of Compton suppression neutron activation analysis for determination of trace elements in some geological samples.

    Science.gov (United States)

    Landsberger, S; Kapsimalis, R

    2009-12-01

    Compton suppressed neutron activation analysis has been used for a variety of applications, but never has a detailed discussion of its use in far more complex matrices, such as geological samples, been fully addressed. This investigation seeks to serve as a qualitative evaluation of Compton suppression neutron activation analysis (CSNAA) and to illustrate the benefits of using Compton suppression with thermal and epithermal neutrons for the analysis of several geological specimens. PMID:19577479

  13. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Quraishi, Shamshad Begum; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeoil; Kang, Sang Hoon; Lim, Jong Myoung; Cho, Hyun Je; Kim, Young Jin

    2004-03-01

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used.

  14. Multielement analysis of Nigerian chewing sticks by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    In Nigeria, various parts of various species of native plants have long been used for dental hygiene, with reportedly considerable effectiveness. These materials are known as 'chewing sticks'. This study was an effort to ascertain whether any unusual trace element concentrations might be present in Nigerian chewing sticks. Results are presented for 17 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Mn, Fe, Co, Zn, Br, Cs, La, Sm, Au) detected and measured in 12 species of such plants, via instrumental thermal-neutron activation analysis. (author)

  15. Elemental analysis of soil and hair sample by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Myanmar soil sample was analyzed by using the instrumental neutron activation analysis. The elemental concentrations in the sample, altogether 34 elements, Al As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Ga, Gd, Hf, Ir, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Th, Ti, V, Yb, Zn and Zr were determined. The concentration of 17 elements (Al, Au, Br, Ca, Cl, Cr, Cu, Co, Fe, Hg, K, Na, Mn, Mg, Sb, Se, Zn) in human hair samples were determined by INAA For quality control of analytical method, certified reference material was used

  16. Analysis of consumed fish species by neutron activation analysis in six Asian countries

    International Nuclear Information System (INIS)

    Fish were selected as a common target sample for a collaborative study of FNCA (Forum for Nuclear Cooperation in Asia)-NAA (neutron activation analysis) project in 2011. Six Asian countries took part in this work. Fish samples were purchased from commercial markets and prepared by following an agreed protocol. Toxic and essential elements in the prepared samples were determined by NAA. The concentration levels of As, Hg in many fish samples have higher values than the regulation ones. The fish contamination by heavy metals should be monitored continuously for human health. (author)

  17. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  18. Implementation of neutron activation analysis in the neutron multiplier CS-ISCTN (first part)

    International Nuclear Information System (INIS)

    The detection limit of 32 elements are determined after experimental evaluation of the neutron flux components in the irradiation position of the neutron multiplier CS-ISCTN. The control of the thermal flux was carry up, comparing the experimental results obtained through three convention used determination of the reaction rate, with the theoretical obtained before

  19. A simple and fast method for the determination of active ingredient in antiperspirant cosmetics by neutron activation analysis

    International Nuclear Information System (INIS)

    Antiperspirant cosmetics are tested for their active ingredient (aluminium chlorohydroxide) by conventional analytical techniques. Aluminium has been determined by instrumental neutron activation analysis in all antiperspirant products and package forms available in the Greek market in order to develop a simple and fast method for quantization. The results show that neutron activation analysis could be established as an official method for the determination of active ingredient in antiperspirant cosmetics. The proposed method is compared with the existing official methods and an alternative sampling method for aerosol package is presented. (author)

  20. Neutron activation analysis for the determination of contaminants in food contact materials

    International Nuclear Information System (INIS)

    A neutron activation method has been developed for the analysis of high density polyethylene, low density polyethylene,polypropylene, polyethylene terephthalate and polystyrene. Samples weighing 2-5 g were irradiated in a thermal neutron flux of 1016 neutrons m-2 s-1 and measured with gamma ray spectrometry for 64 elements. With the method developed here over 50 elements can be detected at concentrations below 1 mg/kg. Correction factors were applied for neutron flux variation and counting geometry. The method was validated using reference material citrus leaves (NIST) for Na, Mg, Al, K, Ca, Mn, Cu, Sr and I, and a suite of 'in house' standards doped with Al, Cr, Co, Mg, Zn and Sb confirmed repeatability of the method was used to measure inorganic contaminants in the raw polymers and retail samples of plastic packaging used in contact with food. (author). 3 refs., 6 tabs

  1. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  2. Determination of Lithium by Instrumental Neutron Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Skanborg, Preben Zacho; Gwozdz, R.;

    1977-01-01

    The fast transfer system in the DR 2 reactor for irradiation at a thermal neutron flux density of 1013 n·cm−2·sec−1 was used for the determination of lithium by the7Li(n, γ)8Li reaction. β-counting with a large perspex Cerenkov detector begun at 0.3 s after the end of irradiation, and multi...

  3. Beam characteristics of polychromatic diffracted neutrons used for prompt gamma activation analysis

    International Nuclear Information System (INIS)

    The neutron beam is fully characterized for the prompt gamma activation analysis facility at Hanaro in the Korea Atomic Energy Research Institute(KAERI). The facility uses thermal neutrons which are diffracted vertically from a horizontal beam port by a set of pyrolytic graphite(PG) crystals positioned at the Bragg angle of 45 .deg.. Neutron spectra, neutron flux and Cd-ratio are determined for the three extraction modes of diffracted beam by means of the theoretical and experimental efforts. To obtain theoretical result, the reflectivity of pyrolytic graphite is calculated in the diffraction model for mosaic crystal and the angular divergence after diffraction by mosaic crystal is estimated from Monte Carlo simulation. The time-of-flight spectrometer and gold activation wire are used for measuring the neutron spectra. Both the calculated and measured spectra have proven that the unique feature of polychromatic beam obtained by PG crystals are useful for PGAA. The thermal neutron flux of 7.9 x 107 n/cm2s and the Cd-ratio of 266 for gold have been achieved at the sample position while the reactor operates at 24MW. The uniformity of beam flux is 12% in the central 1 x 1 cm2 area. Finally, the beam is briefly characterized by the effective velocity and temperature which are determined by measuring the prompt γ-ray spectra for thin and thick boron samples

  4. Availability of essential trace elements in Ayurvedic Indian medicinal herbs using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V.; Garg, A.N. [Nagpur Univ. (India). Dept. of Chemistry

    1997-01-01

    Specific parts of several plants (fruits, leaves, stem, bark and roots) often used as medicines in the Indian Ayurvedic system have been analysed for 20 elements (As, Ba, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Mo, Na, P, Rb, Sb, Sc, Se, Sr and Zn) by employing instrumental neutron activation analysis (INAA). The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted using high resolution gamma ray spectrometry. Most of the medicinal herbs have been found to be rich in one or more of the elements under study. (Author).

  5. A method of neutron activation analysis to determine the concentration of alloy elements in steels

    International Nuclear Information System (INIS)

    The determination of the concentration of V, Mn and W in several types of steels was carried out through neutron activation analysis with an isotopic neutron source. Induced activities were detected with a NaI(Tl) gamma spectrometer coupled to a single channel pulse height analyser. Highly significant correlations have been found between specific count rates for each radionuclide and the concentration of the corresponding element (r > = .999 for each element); concentration ranges comprised a number of steel types. The comparison between the results of the application of the method and the ones obtained through conventional chemical analyses showed discrepancies no higher than 10%. (Author)

  6. Analysis of umayyad islamic silver coins (Dirhams) by using instrumental neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Islamic silver coins (Dirhams) running the period between 107 to 126 Hijri (726-743AD), which belong to the Umayyad Empire period, 41-132 hijri (661-750AD), were selected for analysis by using instrumentalneutron activation analysis techniques.During this period (105-126H),(724-743AD), the Caliph Hisham Eben Abdlemalek ruled the Umayyad Empire.Dirhams were irradiated in a reactor neutron activation facility.Levels of various elements viz.Cu, Ag and Au were estimated.It was found that the average silver concentration, the baseconstituent of the Dirham, was about 88wt%.Correlation between thecomposition of Dirhams and the historical implications was discussed.

  7. Software for neutron activation analysis at reactor IBR-2, FLNP, JINR

    CERN Document Server

    Zlokazov, V B

    2004-01-01

    A Delphi program suite, developed for processing gamma-spectra of induced activity of nuclei, obtained from the neutron activation measurements at the reactor IBR-2, FLNF, JINR, is reported. This suite contains components, intended for carrying out all the operations of the analysis cycle, starling with a data acquisition program for gamma -spectrometers Gamma (written in C++ Builder) and including Delphi programs for steps of the analysis. (6 refs).

  8. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  9. Determination of arsenic in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Am(Be) neutron source was used for activation of samples and 76As radioactivity measured by both β- and γ-counting techniques. The samples analyzed were raw materials traditionally used in formulating Myanmar indigenous medicines. The results were compared with those obtained by volumetric analysis and those reported in the literature. (author) 4 refs.; 5 tabs

  10. Multi elementary analysis in medicinal plants through the neutron activation method

    International Nuclear Information System (INIS)

    A instrumental method by neutron activation in multielementary analysis was applied. Samples of Centelha asiatica (Cairucu) and Paulinia cupana (Guarana) were used. The elements Al, Br, Ca, Cl, Fe, K, Mn, Na, Rb, Sc, and Zn were determined. The results like precision and exactitude were analysed. (L.M.J.)

  11. Multi-element neutron activation analysis of sediment using a californium-252 source

    International Nuclear Information System (INIS)

    The application of a 252Cf source to the neutron activation analysis of several elements in small (approximately 1.5 in. in dia) cores was studied using high-resolution gamma ray spectroscopy and manual data reduction. (U.S.)

  12. New method in the criminalistics: neutron-activation analysis of the human hair

    International Nuclear Information System (INIS)

    The application of the neutron activation analysis for the examination of human hair for criminological purposes is discussed. Earlier Nal scintillation detector and 256-channels analyzer were used and only form trace elements could be detected in the hair. Recently using Ge/Li detector and a 1024-channels analyzer 11 trace elements were detected in the human hair. (H.E.)

  13. Development of the k0-based cyclic neutron activation analysis for short-lived radionuclides

    NARCIS (Netherlands)

    Dung, H.M.; Blaauw, M.; Beasley, D.; Freitas, M.D.C.

    2011-01-01

    The k0-based cyclic neutron activation analysis (k0-CNAA) technique has been studied to explore the applicability at the Portuguese research reactor (RPI). In particular, for the determination of elements which form short-lived radionuclides, particularly fluorine (20F, 11.16 s half-life) and seleni

  14. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)], E-mail: mnnasri@kashanu.ac.ir; Jalali, M. [Isfahan Nuclear Science and Technology Research Institute, Atomic Energy organization of Iran (Iran, Islamic Republic of); Mohammadi, A. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2007-10-15

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF{sub 3} detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  15. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source

    International Nuclear Information System (INIS)

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction 55Mn (n.gamma)56 Mn, high concentration of manganese in the matrix and short half - life of 56Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions 56Fe(n,p)56Mn and 59 Co (n, α)56 were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  16. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    Science.gov (United States)

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy. PMID:8949749

  17. Handbook of nuclear data for neutron activation analysis. Vol. I

    International Nuclear Information System (INIS)

    The first part of a two-volume book which is meant for experimentalists working in instrumental activation analysis and related fields, such as nuclear metrology, materials testing and environmental studies. The volume describes the basic processes of gamma-ray interaction with matter as well as the important phenomena affecting gamma-ray spectra formation in semiconductor spectrometers. A brief account is also given of computation methods commonly employed for spectra evaluation. The results rather than detailed derivations are stressed. A great deal of material si divided into five chapters and nine appendices. The inclusion of many tables of significant spectroscopic data should make the text a useful handbook for those dealing with multi-channel gamma-ray spectra. (author) 26 figs., 82 tabs., 334 refs

  18. Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an important technique to determine the provenance of ancient ceramics. The most common technique used for preparing ancient samples for NAA is to grind them into a powder and then encapsulate them before neutron irradiation. Unfortunately, ceramic materials are typically very hard making it a challenge to grind them into a powder. In this study we utilize bulk porcelain samples cut from ancient shards. The bulk samples are irradiated by neutrons alongside samples that have been conventionally ground into a powder. The NAA for both the bulk samples and powders are compared and shown to provide equivalent information regarding their chemical composition. Also, the multivariate statistical have been employed to the analysis data for check the consistency. The findings suggest that NAA results are less dependent on the state of the porcelain sample, and thus bulk samples cut from shards may be used to effectively determine their provenance. (author)

  19. Analysis for toxic elements in food and drinking water in Thailand by neutron activation analysis

    International Nuclear Information System (INIS)

    This paper presents the results of a research aimed at the determination of several trace elements in foodstuffs and water in Thailand. The project included the development of adequate analytical procedures for the determination of As, Cd, Cu and Zn by ion exchange chromatography; Hg and Se by a direct combustion technique; Br, Co, Fe and Mn by instrumental neutron activation analysis (INAA); Pb by flame atomic absorption spectrophotometry; and As, Co, Mn, Sb, U, V, Zn, and Cr in water samples by pre-concentration on activated carbon followed by INAA. The samples analyzed comprised various kinds of vegetables, meat, poultry, beans and peas, various species of rice, fish, shellfish and other marine products. Natural and tap water samples were collected at several locations in twenty-nice provinces in Southern, Northern, North-Eastern and Central parts of Thailand. (author). 16 refs, 1 fig., 49 tabs

  20. Non-destructive analysis of ancient Egyptian vitreous materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Chemical compositions of ancient Egyptian glass are one of the key information for identifying the location of the original material for production. The ordinary chemical analysis is however restricted because variable remains can not be destroyed. Thus sensitive analytical method in non-destructive manner is required. The neutron activation analysis was used in this research and the content of Ca, Cl, Al and Mn were found in ancient Egyptian glass and peak area of them were compared with those in the sand samples taken from several areas around Egypt because sand was thought as the raw material of such glasses. As a result, we found three different patterns in chemical compositions in the surrounding sand samples and we expect this pattern might be a good indicator of location of raw sand material. (author)

  1. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    Science.gov (United States)

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  2. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  3. Determination of aluminium contents in selected food samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Food and food products are the main sources of Aluminium entering the human body. In order to know aluminium contents in food and food products, selected 26 samples from local market were analyzed by instrumental neutron activation analysis (INAA) using reactor neutrons and high resolution gamma-ray spectrometry. INAA using 1,779 keV γ-ray of 28Al (2.24 min) was used for aluminium concentrations in the range of 33-529 mg kg-1. Two NIST standard reference materials (SRMs) and two IAEA reference materials (RMs) were analyzed by INAA for quantification of aluminium as a part of method validation. (author)

  4. Simultaneous determination of nitrogen and phosphorus in cereals using 14 MeV Neutron Activation Analysis

    International Nuclear Information System (INIS)

    A method using 14 MeV neutron activation analysis was developed form non-destructive simultaneous determination of N and P in cereals. The samples were irradiated 5 min. after 0,5 min. decay time. The induced activities were measured using gamma spectrometry with Nal(Tl) well type detector. The accuracy, precision and detection limits obtained are discussed as well as the analytical results for different types of cereals. (Author) 10 refs., 8 tab., 1 fig

  5. 'Edomite', 'Negbite' and 'Midianite' pottery from the Negev Desert and Jordan: instrumental neutron activation analysis results

    International Nuclear Information System (INIS)

    Edomite, Negbite and Midianite pottery from the Negev desert, Jordan, was subjected to neutron activation analysis to establish the origin of these pottery styles and to shed light on inter-regional contact between different peoples and tribes of the area for the 12th to 6th centuries BC. The pottery is listed with reference to chronological period and style and there are tables giving data on multi-element analysis of the pottery. (UK)

  6. Multi-element analysis of the obese subject by in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    The Leeds facility for in vivo neutron activation analysis has been modified and calibrated for the simultaneous measurement of nitrogen, potassium, sodium, chlorine, phosphorus and calcium in obese patients weighing up to 210 kg. The effects of body size and shape were incorporated into the calibration by measuring 14 anthropomorphic phantoms of known composition representing individual patients being treated for obesity. The phantoms were constructed from tissue substitutes representing lean skeletal and adipose tissues, arranged to simulate the distributions of the corresponding tissues within the patients, as visualised by CT scanning. The precision of the method, determined by measuring a single phantom ten times over a period of ten weeks, is between two and three per cent for all elements except calcium, for which it is 11.3%. Accuracy is estimated to be similar to precision. The procedure has been used to study changes in body composition of patients undergoing therapeutic starvation. (author)

  7. The path of obsidian at the Tajin region. Origin analysis through Neutron Activation Analysis

    International Nuclear Information System (INIS)

    The task of contemporary archaeology is extended every day; new techniques and new instruments have been incorporating to those tools which the archaeologist has in order to achieve a better approach to his study object. The archaeology had been exploring in the physical chemical sciences with the purpose to obtain information beyond the traditional methodologies and so obtaining more and best data. The sudden advance in the knowledge of the basic particles which make up the matter can be applied to these archaeological studies too. Archaeology takes part of the new possibilities which nuclear physics offers in the study of materials such as ceramics, clays, metal alloys, native metals and practically some lithological source. In Latin America the neutron activation analysis was used first for the characterization and determination of the ceramics origin. Some regions have been better studied from the point of view of obsidian exploitation and consumption, such is the case of El Tajin and Oaxaca region in Mexico. (Author)

  8. Multielement analysis of environmental reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Concentrations of trace elements in environmental reference materials prepared by the National Institute for Environmental Studies, Japan (NIES) and by the National Institute of Standards and Technology, USA (NIST) were determined by instrumental neutron activation analysis (INAA). NIES CRM No. 5 Human Hair, No. 6 Mussel, No. 7 Tea Leaves, No. 8 Vehicle Exhaust Particulates, No. 9 Sargasso and No. 10 Rice Flour-unpolished samples (ca. 150 - 1200 mg) and NIST SRM 1632a Bituminous Coal, SRM 1635 Sub-bituminous Coal and SRM 1633a Coal Fly Ash samples (ca. 10 - 150 mg) were irradiated at the Musashi Institute of Technology Research Reactor (MITRR). Concentrations of 28 - 52 elements in these NIES and NIST environmental reference materials were determined by two irradiation methods and four γ-ray counting methods. The determined values were in good agreement with the NIES and NIST certified values. (author)

  9. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  10. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Medkour Ishak-Boushaki, Ghania, E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Boukeffoussa, Khelifa [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Idiri, Zahir [Centre de Recherche Nucleaire d' Alger, 02 Boulevard Frantz-Fanon, BP 399, Algiers (Algeria); Allab, Malika [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)

    2012-03-15

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an {sup 241}Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. - Highlights: Black-Right-Pointing-Pointer Low intensity neutron fields' characterization using thick threshold detectors. Black-Right-Pointing-Pointer Low activity {sup 241}Am-Be neutron source spectrum measurement. Black-Right-Pointing-Pointer Integral quantities required for radiological protection have been derived. Black-Right-Pointing-Pointer The results are in good agreement with those deduced using Bonner spheres. Black-Right-Pointing-Pointer The results are not very sensitive to the chosen deconvolution procedure.

  11. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  12. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x107 n/cm2 s in a 1x1 cm2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,γ) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements

  13. Multi-element characterization of silicon nitride powders by instrumental and radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Franek, M.; Krivan, V. (Ulm Univ. (Germany). Sektion Analytik und Hoechstreinigung)

    1992-07-15

    An optimized instrumental neutron activation analysis method was applied to the comprehensive trace characterization of good- and high- purity silicon nitride powders of different origins. Experimental modes are given for 55 elements leading to limits of detection below 1 ng g[sup -] [sup 1] for 28 elements, between 1 and 100 ng g[sup -1] for 19 elements and higher than 100 ng g[sup -1] for 8 elements. For the removal of the radionuclides [sup 140]La, [sup 182]Ta and [sup 187]W, which cause the major activity in certain types of materials, radiochemical procedures based in cation exchange from 2 M HCl and anion exchange from 2 M HF were developed. [sup 64]Cu was selectively extracted with dithizone from 10 M HF for counting the 511-keV line. By radiochemical neutron activation analysis, the limits of detection were improved by up to three orders of magnitude. Comparison with results obtained by inductively coupled plasma (ICP) atomic emission spectrometry and ICP mass spectrometry shows satisfactory agreement and demonstrates the advantages of neutron activation analysis especially when low elements contents are to be determined. (author). 30 refs.; 2 figs.; 6 tabs.

  14. Instrumental neutron activation analysis of roots and juice of carrot

    International Nuclear Information System (INIS)

    The results are presented of the determination of the contents of Na, Br, Ca, Ba, Fe, Zn, Co, Cr, Sb and Ni. The results of the analysis are in agreement with the usually given concentrations of the elements determined in identical or similar materials. The amount of monitored elements passing from the raw materials into juices was calculated. (J.B.)

  15. Determination of mercury contents in head hair of dentists by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Mercury contents in head hair of 32 dentists and 30 controls were determined by instrumental neutron activation analysis. The precision and accuracy of the analytical results were checked by independent analytical techniques comprising cold vapour atomic absorption spectrometry and neutron activation analysis combined with lead diethyldithiocarbamate as a preconcentrating agent. The normal range was from 1.91 to 5.44 ppm with an arithmetic mean of 3.90+-1.01 ppm, and the geometric mean of 3.76x:1.33 ppm. The range, arithmetic and geometric means of the values for dentists were 4.32-24.14 ppm, 11.68+-4.70 ppm, and 10.77x:4.04 ppm, resp. The mercury contents in the hair of the dentists are significantly higher than those of the controls. It indicates that dentists in Taiwan do not practice good mercury hygiene. However, the mercury contents are considerably below the toxicity level. (author)

  16. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF)

    Energy Technology Data Exchange (ETDEWEB)

    El-Taher, A., E-mail: Atef_Eltaher@hotmail.com [Physics Department, Faculty of Science, Al-Azher University, Assuit 71452 (Egypt); Physics Department, Faculty of Science, Qassium University, Buraydah 51452 (Saudi Arabia)

    2012-01-15

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7 Multiplication-Sign 10{sup 11} n/cm{sup 2} s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. - Highlights: Black-Right-Pointing-Pointer Instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite. Black-Right-Pointing-Pointer The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7 Multiplication-Sign 10{sup 11} n/cm{sup 2} s in the TRIGA Mainz research reactor. Black-Right-Pointing-Pointer Following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U.

  17. Neutron activation analysis for the archaeometric study of Catamarca pottery

    International Nuclear Information System (INIS)

    Samples of pottery and raw materials from the Puna and the mesothermal valleys regions were irradiated in the RA-3 reactor for 5 hours and 22 elements (As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Yb) were determined by instrumental analysis, 37 days after the irradiation. The results allow drawing conclusions on the production and distribution of the pottery in the region. (authors)

  18. Calculation of corrections in the neutron activation analysis of oxygen in powdered and granulated materials

    International Nuclear Information System (INIS)

    Presented is a formula for the correction calculation at the analysis of oxygen in materials by the neutron activation method. A nomogram is plotted for the calculation of corrections taking into account the oxygen of capsule material and of air being in the internal volume of the capsule due to its incomplete filling. The accuracy of corrections according to nomogram is 2-3x10-4 mass %

  19. Multielemental analysis by neutron activation of sediments in the Ana Maria Gulf, Cuba

    International Nuclear Information System (INIS)

    In this paper general samples of marine sediments taken from six control stations of the Ana Maria Gulf (Cuba) were analyzed. For this purpose the thermal neutron activation analysis method was used. 18 elements were determinated. They are: Al, Ce, Co, Cs, Cr, Eu, Fe, Hf, La, Lu, Mo, Mn, Rb, Sc, Ta, Th, Yb and Zn. The accuracy varied between 5 and 30% for all elements. 10 refs

  20. Elementary composition in sewer silt and vermicomposting by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The purpose of this study is to demonstrate elementary composition in sewer silt and vermicomposting method produced by oligoquetas for the application of the technique of instrumental neutron activation analysis. As the gotten results, were possible according to inquire that the texts found in the samples are very below of the acceptable maximum values, North American norm 40 CRF Prat 503, elaborated for the Agency of Ambient Protection of the United States and used as reference in Brazil. (author)

  1. Instrumental neutron activation analysis of human hair and related radiotracer experiments on washing and leaching

    International Nuclear Information System (INIS)

    The work done under the IAEA-contract 2440/RB is summarized. The aim was to develop a fast and reliable system for the determination of tracer elements in human head hair by instrumental neutron activation analysis (INAA) and radiotracer washing experiments. The standardized procedure for INAA was applied to hair samples collected by the Coronel Laboratory of the University of Amsterdam. The correlation between trace element contents is considered

  2. Trace element analysis of human head hair by neutron activation technique

    International Nuclear Information System (INIS)

    28 elements in reference hair sample (HH-1) and 44 hair samples of Seoul, Korea have been analyzed by instrumental neutron activation analysis. The analytical results of reference sample agreed well with those of the IAEA report within 10% deviation except those of some elements. For the 44 hair samples of Seoul, the range of content of each element is fallen in +-3σ from his mean value if rejecting one or two of the highest data. (author)

  3. Determination of trace elements in a cigarette paper by neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of 19 trace elements in a cigarette paper (Zig-Zag Paper Company, France) which is used in making different brands of Iranian cigarettes, has been measured by neutron activation analysis, employing a high-resolution Ge(Li) detector. They include Na, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Br, Sr, Sb, Ba, Ce, Eu, Gd, Au, Hg, and Th. (author)

  4. Elemental concentration determination in certain medicinal leaves by K0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Elemental concentrations of two types of medicinal leaves (neem and eucalyptus) are determined by neutron activation analysis using single comparator (K0 NAA) method. Data obtained on one of the varieties studied (neem), collected from two different places, have also been used to see the effect of soil condition. The method was validated by analysing the SRM-1571 and it was found that the measured elemental concentrations in SRM-1571 are within ±9% of the reported values. (author)

  5. The preparation of synthetic standards for use in instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    An account is given of the formulation and preparation of synthetic standards suitable for the routine analysis of minerals, ores, and ore concentrates by instrumental neutron activation. Fifteen standards were prepared, each containing from one to seven elements. The standards contain forty-four elements that produce isotopes with half-lives longer than 12 hours. An evaluation of the accuracy and precision of the method of preparation is given

  6. Application of the k0 parametric neutron activation technique in the industrial reforestation soil analysis

    International Nuclear Information System (INIS)

    This work identifies and establishes the concentration of some minerals nutrients in Mata Atlantica and Vale do Aco Eucalyptus (Minas Gerais State, Brazil) soils. The k0 method of analysis with neutron activation and X-ray fluorescence were used. Reference material were used to check the accuracy of the analytical results. The k0 method is being introduced in CDTN using the CDTN/CNEN-B H IPR-R1 TRIGA Mark I reactor. (author). 5 refs., 2 tabs

  7. An application of a simple computer program for neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple computer program is designed for estimation of elemental concentration values in complex samples by neutron activation analysis technique. The program is applied for an Egyptian cement sample which irradiated at the Egyptian Research Reactor-1(ET-RR-1). The data obtained is compared with the reported values. The time consumed for such calculations has a remarkable reduction in comparison with the routine work.

  8. Neutron activation analysis of final molasses from cuban sugar industry

    International Nuclear Information System (INIS)

    Thermal and epithermal non-destructive activation analyses have been performed on samples of final molasses from 14 different sugar factories , covering the most important regions in Cuba. From the first measurement after irradiation at the Triga Mark reactor (VTT), the concentration of more than 15 elements is reported. The almost constant elemental composition shows that they can be used equally for different purposes as animal foodstuff and for the manufacture of biotechnological products. This work is part of a research project developed in order to establish a complete characterization of Cuban sugar molasses. (author). 7 refs., 2 tabs

  9. Determination of arsenic in food and dietary supplement standard reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Arsenic was measured in food and dietary supplement standard reference materials by neutron activation analysis for the purpose of assigning certified or reference As mass fractions and to assess material homogeneity. Instrumental neutron activation analysis was used to value assign As in candidate SRM 3532 Calcium Dietary Supplement and candidate SRM 3262 Hypericum perforatum (St. John's Wort) Aerial Parts down to about 100 μg/kg. Values were also determined for two additional candidate St. John's Wort SRMs with As mass fractions 24Na and 82Br limited the reproducibility of the method below 100 μg/kg. For measurement of lower As mass fractions, a radiochemical neutron activation analysis method with extraction of As3+ into diethyl-dithiocarbamate in chloroform and detection limits down to 0.1 μg/kg. As was used to value-assign As mass fractions for SRM 3280 Multivitamin/Multielement Tablets and for candidate SRM 3233 Fortified Breakfast Cereal, and at <10 μg/kg in candidate SRM 1845a Whole Egg Powder. (author)

  10. Application of neutron activation analysis to the study of diabetes

    International Nuclear Information System (INIS)

    INAA was a very convenient method for hair analysis. The preliminary results of our clinical study of elemental composition of hair from patients with insulin - requiring diabetes have proved again that scalp hair is a significant health status indicator. We found statistically significant changes of the concentrations of some essential and non-essential elements in the hair of diabetic patients, which may be related with the metabolic disorders specific for the disease. Future studies will need to provide more information on the possible role of some elements in diabetes. Also we intend to broaden the scope of the investigation to many elements and to other types of diabetes, in order to validate the results and the conclusions. (author)

  11. Neutron activation analysis of Urartian pottery from eastern Anatolia

    International Nuclear Information System (INIS)

    A total of 275 pottery and clay samples from Urartian period sites in eastern Anatolia were analyzed by INAA. The pottery sample originates primarily from the fortress and Outer Town at Ayanis and also includes samples from nearby sites in the Lake Van basin. A small sample of pottery from Bastam, a contemporary Urartian fortress in northwest Iran, and Kef Kalesi, a site on the north shore of Lake Van were also analyzed. Ten distinct compositional groups were identified during the course of the analysis suggesting that pottery was produced at multiple locations throughout the Urartian kingdom. In addition to identifying multiple production locales, the long-distance movement of pottery from the sites of Kef Kalesi and Bastam into the Van Basin and the movement of pottery from Ayanis to Bastam were documented. (author)

  12. Neutron activation analysis of airborne thorium liberated during welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, D.C.; Robinson, L.; Janjovic, J.T.

    1996-02-01

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode which is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and is potentially liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States, have been reported in the literature recently. This study is being undertaken to provide additional data which may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations.

  13. Neutron activation analysis of phytotherapic obtained from medicinal plants; Analise por ativacao com neutrons de fitoterapicos obtidos de plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Henrique S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: hs_moreira@hotmail.com; Saiki, Mitiko; Vasconcellos, Marina B.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mitiko@ipen.br; mbvascon@ipen.br

    2007-07-01

    This paper determines the inorganic constituents in phytotherapic samples for posterior study of the relationship existent among the concentrations of the found elements and the their possible therapeutical effects. The samples of phytotherapic pills (Centella asiatica, Ginkgo biloba and Ginseng) were analysed by using neutron activation analysis (NAA). The As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sc, Se and Zn samples were determined in the phytotherapics, The Centella asiatica presented the higher concentrations of Br, Co, Cr, Fe, K, La, Na, Rb, Sc, Se and Zn. In the sample of Ginko biloba, higher levels of As and Ca were found, while in the sample ol Ginseng the element As were not detected. The found results have shown the the NAA method is appropriated for analysing this type of materials due to his simplicity, multielemental capacity and quality of the results obtained. (author)

  14. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  15. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 ± 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 μg

  16. Determination of radioactive trace elements in ultra low background detectors by means of neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper new analytical methods for the determination of naturally occurring radionuclides are being presented. They combine neutron activation, radiochemical separation and coincidence counting techniques. For complex matrices such as organic liquids and silicon we have obtained detection limits lower than 10-14 g/g for Th, U, La and lower than 10-12 g/g for Cd, In, K, Lu, and Rb with radiochemical separation methods geared to the nuclides investigated. The β-γ coincidence counting techniques used for the determination of U, Th and Lu in the ultra trace region are discussed in detail, with recorded spectra and applied selection criteria for the evaluation of decay events. Impacts of the results on low level experiments in the field of astro and particle physics are being discussed as well as the advantage of neutron activation analysis which is sensitive to most naturally occurring radionuclides. (author)

  17. Air pollution assessment in two Moroccan cities using instrumental neutron activation analysis on bio-accumulators

    International Nuclear Information System (INIS)

    Full text: Biomonitoring is an appropriate tool for the air pollution assessment studies. In this work, lichens and barks have been used as bio-accumulators in several sites in two Moroccan cities (Rabat and Mohammadia). The specific ability of absorbing and accumulating heavy metals and toxic element from the air, their longevity and resistance to the environmental stresses, make those bioindicators suitable for this kind of studies. The Instrumental Neutron Activation Analysis (INAA) is universally accepted as one of the most reliable analytical tools for trace and ultra-trace elements determination. Its use in trace elements atmospheric pollution related studies has been and is still extensive as can be demonstrated by several specific works and detailed reviews. In this work, a preliminary investigation employing lichens, barks and instrumental neutron activation analysis (INAA) was carried out to evaluate the trace elements distribution in six different areas of Rabat and Mohammadia cities characterised by the presence of many industries and heavy traffic. Samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted using high-resolution Germanium-Lithium detectors. More than 30 elements were determined using two modes : short irradiation (1 minute) and long irradiation (17 hours). Accuracy and quality control were assessed using the reference standard material IAEA-336. This was less than 1% for major and about 5 to 10% for traces.

  18. Determination of phosphorus in kiwicha using analysis for activation with fast neutrons

    International Nuclear Information System (INIS)

    In this study it has been used the technique of activation analysis with fast neutrons for nondestructive of Phosphorus in Kiwicha (amaranthus caudatus l.), as an alternative to the conventionally used technique of spectrophotometry. The samples are irradiated during five minutes in the IPEN's neutron generator under a fast flow of around 109n/cm2.s after 30 seconds of the irradiation end, and are counted for 10 minutes in a NaI(Tl) detector type well jointed to a multichannel analyzer. The testing of method exactness was carried out analyzing the IAEA's H5 and H8 reference materials, obtaining a good correspondence with the certified values. The reproducibility of the method was carried out analyzing by repetition a pure standard sample of phosphorus. In the analysis of 8 samples of kiwicha it was found that the phosphorus content is in the rank of 0.3% to 0.5%. (author). 31 refs., 12 tabs., 19 figs

  19. Self-sustainability of a research reactor facility with neutron activation analysis

    International Nuclear Information System (INIS)

    Long-term self-sustainability of a small reactor facility is possible because there is a large demand for non-destructive chemical analysis of bulk materials that can only be achieved with neutron activation analysis (NAA). The Ecole Polytechnique Montreal SLOWPOKE Reactor Facility has achieved self-sustainability for over twenty years, benefiting from the extreme reliability, ease of use and stable neutron flux of the SLOWPOKE reactor. The industrial clientele developed slowly over the years, mainly because of research users of the facility. A reliable NAA service with flexibility, high accuracy and fast turn-around time was achieved by developing an efficient NAA system, using a combination of the relative and k0 standardisation methods. The techniques were optimized to meet the specific needs of the client, such as low detection limit or high accuracy at high concentration. New marketing strategies are presented, which aim at a more rapid expansion. (author)

  20. Forensic and environmental aspects of neutron activation analysis of single human hairs

    International Nuclear Information System (INIS)

    A new analytical procedure consisting of special washing step, irradiation in a thermal neutron flux of 1014n cm-2s-1, and Ge(Li) spectrometry enabled to determine as many as 14 elements in a 3 cm segment of a single human hair by neutron activation analysis. The criminalistic aspects of hair analysis were studied using a new statistical criterion for elimination/identification and an appropriate computer program was constructed. Hair dimensions as measured microscopically were used as additional individualizing attributes. It was shown that despite the dif--ficulties originating from from a relatively large intrinsic variation of the trace element concentration over one head, elimination of most or nearly all of the ''suspects'' could be achieved in simulated cases. Distincly elevated levels of Au as well as Cu and Ag were found in hair of some groups of persons working under specific conditions thus confirming the importance of the environmental factor related to some kinds of occupation. (author)

  1. Instrumental neutron activation analysis of iron and zinc in compact cosmetic products

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis method is described for the determination of iron and zinc in compact eye shadow, compact face powder and compact rouge make-up cosmetic products. The steps of the procedure are: Irradiation of samples with thermal neutrons, counting of gamma-radioactivity of the radioisotopes of iron and zinc produced by this irradiation and calculation of the concentration of these elements from the gamma-ray spectra of samples and standards. Analysis of the I.A.E.A. standard reference material by this procedure give results in close agreement with certified values. The limit of quantitation is 45 μg for iron and 0.35 μg for zinc. The developed procedure could possibly be established as an official method for the simultaneous determination of iron and zinc in compact cosmetic products. (orig.)

  2. Multi-element determination of sandstone rock by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The instrumental neutron activation analysis technique (INAA) was used in the qualitative and quantitative analysis of sandstone samples from Aswan area in South Egypt. The samples were properly prepared together with their standards and simultaneously irradiated in a neutron flux of 7 x 1011 n/cm2.s in the TRIGA Mainz research reactor facilities. Gamma spectra from hyper pure germanium HPGe detector were analysed. The present study provides the basic data of elemental concentrations of sandstone rock. The following elements constituents have been determined: Na, K, Fe, Sc, Cr, Co, Zr, Ce, La, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The x-ray fluorescence (XRF) was used for comparison and to detect elements which can be detected only by XRF. (author)

  3. Trace analysis measurements in high-purity aluminium by means of radiochemical neutron and proton activation analysis

    International Nuclear Information System (INIS)

    The aim of the study consisted in the development of efficient radiochemical composite processes and activation methods for the multi-element determination of traces within the lower ng range in high-purity aluminium. More than 50 elements were determined with the help of activation with reactor neutrons; the selective separation of matrix activity (adsorption with hydrated antimony pentoxide) led to a noticeable improvement of detectability, as compared with instrumental neutron activation analysis. Further improvements were achieved with the help of radiochemical group separations in ion exchangers or with the help of the selective separation of the pure beta-emitting elements. Over 20 elements up to high atomic numbers were determined by means of activating 13 MeV protons and 23 Me protons. In this connection, improvements of the detection limit by as a factor of 10 were achieved with radiochemical separation techniques, as compared with pure instrumental proton activation analysis. (RB)

  4. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    International Nuclear Information System (INIS)

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed

  5. Uncertainty Estimation of Neutron Activation Analysis in Zinc Elemental Determination in Food Samples

    International Nuclear Information System (INIS)

    Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)

  6. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    Science.gov (United States)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  7. Analysis of Essential Elements for Plants Growth Using Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    R. L. Njinga

    2013-01-01

    Full Text Available In this study, a total of ten essential elements for plants growth in the Guinea savanna region of Niger State in Northern Nigeria have been identified in the soils using instrumental neutron activation analysis. The experimental results show good agreement with certified or literature values within the agreed percentage range of ±2.35% to ±8.69%. However, the concentration distributions of the ten identified elements in the soil samples within the studied area for plants growth revealed the following: Fe (123.4 ppm, Mn (2100.7 ppm, K (5544.3 ppm, Al (54752.4 ppm, Ti (3082.9 ppm, Ca (4635 ppm, V (54.3 ppm, Na (857.5 ppm, Mg (13924.1 ppm, and Dy (12.1 ppm. A further analysis of the two fundamental soil physical parameters for healthy growth of some common crops like egusimelon, groundnut, rice, yams, soybeans, cassava, and potato analyzed in this work revealed a pH range of 4.0 pH–8.0 pH and a temperature range of 28.0°C to 29.3°C, which are optimal for plant nutrients availability in the soils within the study area.

  8. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm3. Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  9. Study on bioavailability of zinc for children's diet by using activable isotopic tracer 70Zn and neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Bioavailability of zinc for three groups (low amount of diet zinc, balance amount of diet zinc and high amount of diet zinc) of children's diet is studied by using activable isotopic tracer 70Zn and neutron activation analysis techniques. The results indicate that the fractional absorption of zinc from balance diet zinc group is the highest, up to 33.9%. A procedure of pre-irradiation concentration zinc for fecal samples using anion exchanger is developed, and the enriched 70Zn with isotopic abundance of 18.3% is used for tracer. The mass ratios between 70Zn and 68Zn or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc. Instrumental neutron activation analysis of 64Zn of each original fecal samples and pre-irradiation concentrated zinc samples are used to normalize the chemical yield in order to reduce the uncertainty during the chemical separation procedure

  10. In vivo studies on the nitrogen, chlorine, calcium and phosphorus composition of rats by neutron activation analysis

    International Nuclear Information System (INIS)

    The role of neutron activation analysis 'in vivo' to determine the elementary composition of the rat organism is demonstrated. In part one the possibilities offered by certain methods which establish the elementary composition of living organisms are analyzed, together with the contribution and scope of neutron activation analysis. In part two the technical details of the neutron activation of rats in vivo are determined and the problems raised by application of the method considered. This is followed by an application of neutron activation analysis to research on changes in the nitrogen, chlorine, calcium and phosphorus composition of rats during growth (from 30 to 440 days) and important biological events such as puberty in both sexes, reproduction and lactation. Finally a study of the fertility rate and the effects of repeated irradiations on Sprague-Dawley rats are described

  11. Heavy metal pollution of some Danube Delta lacustrine sediments studied by neutron activation analysis

    International Nuclear Information System (INIS)

    Using neutron activation analysis and radiometric measurements, the vertical distribution of six possible pollutant elements (Zn, Cr, Co, As, Sb and Br), two trace elements of natural origin (Sc and Hf) and radioactive 137Cs were determined in three lakes, Furtuna, Lung and Mesteru, located in an active sedimentary zone of the Danube Delta. The accumulation rate of recent sediments was estimated from radiocesium profiles. Zn, As, Sb and Br were identified as possible pollutants. The vertical profiles of their concentrations reflect recent historic inputs, showing a gradual increase until around 1990, followed by a continuous decrease

  12. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  13. Characterization of ear piercing studs and their corrosion products by neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis has been applied to analyse ear piercing studs manufactured with three different types of metallic materials and also in the analyses of cell culture media in which these studs were immersed. Results obtained in these analyses indicated the release of metal from the studs to the culture media. Zn and Fe were found, respectively, in the extracts of gold coated copper-zinc alloy and stainless steel. These findings were correlated with the results already obtained for studs surface analysis by scanning electron microscopy and for the cytotoxicity tests of culture extracts. (author)

  14. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    International Nuclear Information System (INIS)

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, the data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials. 7 references, 2 figures, 2 tables

  15. Neutron activation analysis and Mossbauer spectroscopy research on coloring mechanism of Chinese Ru porcelain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic spectrum and its main wavelength of Ru porcelain glaze are measured by color difference instrument to determine the relations between glaze color and its main wavelength. The content of the 30 coloring elements in Ru porcelain is determined by neutron activation analysis (NAA), which showed that iron is the major coloring element. M?ssbauer spectroscopy analysis shows that the iron element in the glaze exists in the form of structural iron (Fe2+, Fe3+). The quantitative relationship between the main wavelength of glaze in various colors and the relative content of structural iron (Fe2+/Fe3+) is determined. Thus the coloring mechanism of Ru porcelain is investigated entirely.

  16. Determination of carbon, nitrogen and phosphorus in cattail using cold neutron prompt-gamma activation analysis

    International Nuclear Information System (INIS)

    A method for the determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt-gamma activation analysis (CNPGAA) has been developed and evaluated through the analysis of standard reference materials (SRM). After extensive preparation, approximately 400 mg cattail samples from the lower Apalachicola River floodplain were irradiated in the CNPGAA facility at the National Institute of Standards and Technology (NIST). The results of numerous field samples and two standard reference materials using the nuclear method show favorable comparison to results obtained by a CHNS/O analyzer. (author)

  17. Distribution of platinum in patients treated with cisplatin determined by radiochemical neutron activation analysis

    DEFF Research Database (Denmark)

    Heydorn, K.; Rietz, B.; Krarup-Hansen, A.

    1998-01-01

    Cisplatin is used in a successful treatment of testicular cancer and some related conditions, but several toxic effects have been observed. Knowledge about the distribution of platinum in the human body after treatment with massive doses of cisplatin might provide clues to the origin of side...... effects, and a study was initiated to provide such information by the analysis of postmortem samples by our method of radiochemical neutron activation analysis (RNAA). Autopsy samples of kidney, liver, lung, muscle, and pancreas were taken with stainless steel scalpels together with samples of nerve...

  18. Use of neutron activation analysis for determination of gold in some human scalp hair samples

    International Nuclear Information System (INIS)

    In the Egyptian society, it is usual until now that females wear extensively gold jewelry since their birth. The present work is carried out to determine gold content in scalp hair samples from some selected female donors of various ages. Instrumental Neutron Activation Analysis, with gamma ray spectrometry was applied for this study. The obtained data are compared with the available published data for analysis of hair samples from other countries. The correlation between age and gold concentration in hair samples is discussed. Interpretation of the influence of other factors which possibly may affect the contents of gold in the analyzed hair samples is also presented. (author)

  19. Elemental analysis of human serum and serum protein fractions by thermal neutron activation

    International Nuclear Information System (INIS)

    Some applications of thermal neutron activation for the determination of elemental contents in human serum and human serum protein fractions are presented. Firstly total serum is dealt with, secondly serum protein fractions obtained by gel filtration are described. A brief review on the role of (trace) elements in human health and disease and a compilation of literature data for elemental contents in human serum, as obtained by neutron activation techniques, are given. The most important sources of statistical and systematic errors are evaluated. Results for the contents of sodium, potassium, magnesium, bromine, iron, copper, zinc, selenium, rubidium, cesium and antimony in serum are given, with emphasis on control of accuracy and precision. The possible relation between selenium in blood and cancer occurrence in humans is discussed. The results of elemental analyses from cancer patients and from a patient receiving a cytostatic treatment are presented. A survey of literature results for the determination of protein-bound elemental contents in serum is presented. Subsequently, results from a study on the behaviour of elements during gel filtration are discussed. Gel-element and protein-element interactions are studied. Finally the protein-bound occurrence of trace elements in human serum is determined by gel filtration and neutron activation analysis. Results for both desalting and fractionation are given, for the elements bromine, copper, manganese, vanadium, selenium, zinc, rubidium, iron and iodine. (Auth.)

  20. Prompt gamma-ray neutron activation analysis (PGNAA) system by using a 740 GBq 241Am-Be neutron source

    International Nuclear Information System (INIS)

    A PGNAA system consisting of a 740 GBq 241Am-Be neutron source and a gamma spectrometer with a n-type Ge (REGe) detector was installed at Ankara Nuclear Training and Research Center to measure the prompt gamma-rays produced by the interactions of thermal neutrons in the samples for the analysis of light elements such as B, P, S and Cl, and some trace elements with large cross sections (Cd, Hg, Sm, Gd, etc.). In the irradiation system, a 55 cm diameter cylinder tank filled with the water moderator comprises the neutron source placed in a polypropylene tube that was positioned in lead rings (internal diameter - 9 cm and outer diameter - 21 cm) in order to reduce the gamma rays emitted from the source such as 0.0596 MeV (241Am) and 4.43 MeV (0.6 gamma per neutron) from the 9Be(α, n) reaction in the source. The moderator tank was shielded with paraffin in all sides against fast neutrons. The thickness of paraffin at the front side of the tank is 28 cm and 18 cm at other sides. The neutron irradiation system was also shielded by using chevron lead bricks of 18 cm thickness. The background-prominent gamma-rays which is especially the 2.223 MeV gamma ray from the 1H(n, γ) reaction formed in hydrogenous materials used for neutron moderation was reduced remarkably in view of the permissible gamma dose for overall irradiation room. The neutrons thermalized in moderator travel through the hole with 6 cm diameter for the sample irradiation. The detector was shielded with Li2CO3 powder against thermal neutrons to avoid radiation damage and surrounded by additional lead bricks to reduce gamma-background. The measurements are carried out for efficiency calibration of the detector by using the standard source. The characteristics of PGNAA system with the isotopic neutron source and its analysis capability are discussed

  1. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    We have used a Tomographic Gamma Scanner (TGS) to produce tomographic Prompt Gamma-Ray Neutron Activation Imaging of heterogeneous matrices [T.H. Prettyman, R.J. Estep, G.A. Sheppard, Trans. Am. Nucl. Soc. 69 (1993) 183-184]. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. We are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source to sample coupling term. To assist in the determination of the coupling term we have obtained images for a range of samples that are very well characterized; such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. We then compare the measurements to Monte Carlo N-particle calculations. For an accurate quantitative measurement it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  2. Analysis of human enamel and dentine by neutron activation analysis; Analise de esmalte e dentina de humanos pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marco A.B. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: vankfire@gmail.com; Adachi, Eduardo M.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2005-07-01

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x10{sup 12} n cm{sup -2} s{sup -1} were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the {mu}g g{sup -1} levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  3. Characterization of trace elements in Casearia medicinal plant by neutron activation analysis

    International Nuclear Information System (INIS)

    Leaves of Casearia sylvestris, Casearia decandra and Casearia obliqua plant species, collected at the Atlantic Forest in Brazil, were analyzed by using instrumental neutron activation analysis (INAA). Short and long irradiations using thermal neutron flux of the IEA-R1 nuclear reactor were carried out for these analyses. Concentrations of Ca, K and Mg were found in these samples at the percentage levels, Br, Cl, Fe, Mn, Na, Rb and Zn at the μg g-1 levels and Co, Cr, Cs, La, and Sc at the μg kg-1 levels. Comparisons were made among the element concentrations obtained in these three Casearia species and significant differences were found for the elements Cl, Co, Cs, Cr, La, Mn, Na and Sc. The precision and the accuracy of the results were evaluated by analyzing the certified reference materials NIST-1515 Apple Leaves and NIST-1573a Tomato Leaves

  4. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  5. Determination of hafnium and zirconium in geological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper, neutron activation analysis was developed for determining hafnium and zirconium in geological materials. The USGS geological standard rocks GSP-1 (granodiorite) and W-1 (di abase). The Brazilian geological standards GB-1 (granite) and BB-1 (basalt) from Instituto de Geociencias da Universidade da Bahia and P-1 a uraniferous rock from Pocos de Caldas, MG, Brazil were analyzed. Hafnium present in these rocks was analyzed by purely instrumental method by irradiating with both thermal and epithermal neutrons from IEA-R1 nuclear research reactor. In the case of zirconium depending on the sample a radiochemical separation was required. 154 Eu and 152 Eu radioisotopes emit gamma rays with energies too close to those emitted by 95 Zr and they cause interferences. (author)

  6. Activation analysis on reactor and 14 MeV neutrons in experimental study of oxoplatinum

    International Nuclear Information System (INIS)

    A procedure of the instrumental neutron activation analysis of biomedical material on reactor and 14 MeV neutrons was described for determination of the platinum, silicon, chlorine, phosphorus, sodium and zinc content. The procedure was tested on rat small intestinal samples within the interval of 10 min - 30 days after a single i.v. administration of oxoplatinum (15 mg per 1 kg of the animal body mass). Platinum redistribution with relative concentration maximum on the 15th day was noted. Changes in the phosphorus, chlorine, sodium and silicon content within the interval of 3-30 days were suggestive of a possible toxic effect of oxoplatinum metabolites during this period. In a clinical application of oxoplatinum one should take into account a possible toxic effect of metabolites in a long-term period after repeated administration of the agent

  7. Trace Element Analysis of Human Lung Tissue by Neutron Activation and Instrumental Analysis

    International Nuclear Information System (INIS)

    The measurement of trace elements in tissues in the ppm to pp109 range requires very careful and specialized techniques both in the sample acquisition and in subsequent analysis. Many of the trace elements which are present in human tissues are at lower concentrations than those in super-pure chemical reagents; also, an acid rinse of typical laboratory glassware may contain as much of some trace elements as the tissue sample being studied. An analytical technique based on neutron activation for the measurement of trace elements in tissues has been developed which requires a minimum of pre-irradiation handling followed by the direct measurement of the activation products on a multidimensional or a solid-state gammaray spectrometer. This technique has been applied to a study of trace elements in human lung tissue. Lung tissue contains not only the tissue-bound elements but also those which have been deposited in the cells of the pulmonary alveoli through inhalation. The method permits the direct measurement of 15 trace elements. The analysis of lung tissues thus provides information on the integrated trace element deposition resulting during the life of an individual. The concentrations of several of these including Fe, Br, P, Se, Ag, Zn, Cs, Co, Sc, U and Sb have been measured in several autopsy and biopsy samples of both normal and diseased tissues from several subjects with known case histories. The variations in the observed trace element compositions are presented and considered in terms of the occupational and medical history of the subject. (author)

  8. Applied research and development of neutron activation analysis - The study on human health and environment by neutron activation analysis of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Yoo, Jong Ik; Lee, Jae Kwang; Lee, Sung Jun; Lee, Sang Sun; Jeon, Ki Hong; Na, Kyung Won; Kang, Sang Hun [Yonsei University, Seoul (Korea)

    2000-04-01

    With the development of the precise quantitative analytical method for the analysis of trace elements in the various biological samples such as hair and food, evaluation in view of health and environment to the trace elements in various sources which can be introduced inside human body was done. The trace elemental distribution in Korean total diet and representative food stuff was identified first. With the project the elemental distributions in supplemental healthy food and Korean and Chinese origin oriental medicine were identified. The amount of trace elements ingested with the hair analysis of oriental medicine takers were also estimated. The amounts of trace elements inhaled with the analysis of foundry air, blood and hair of foundry workers were also estimated. The basic estimation method in view of health and environment with the neutron activation analysis of biological samples such as foods and hair was established with the result. Nationwide usage system of the NAA facility in Hanaro in many different and important areas of biological area can be initiated with the results. The output of the project can support public heath, environment, and medical research area. The results can be applied for the process of micronutrients enhanced health food production and for the health safety and health status enhancement with the additional necessary data expansion and the development of various evaluation technique. 19 refs., 7 figs., 23 tabs. (Author)

  9. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    Science.gov (United States)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  10. Multielemental analysis of mineral nutrients in Nagpur Santra (Citrus reticulata Blanco) leaves by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    Mn, Zn, Cu, Na, K, Fe and P have been determined in the Nagpur Santra (Citrus reticulata Blanco) leaves by thermal neutron activation analysis. The irradiated sample was dissolved in aqua regia in the presence of carriers. The β and/or γ activities of the purified elements were measured after radiochemical separations involving solvent extraction and precipitation. The values obtained for the elements are comparable to those reported in literature for Indian citrus leaves. (author)

  11. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  12. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    International Nuclear Information System (INIS)

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  13. Instrumental neutron activation analysis applications in materials science and in forensic surveys

    International Nuclear Information System (INIS)

    Neutron Activation Analysis (NAA) was applied to the characterization of lithious ceramic materials to be used as tritiogenic breeders in future fusion reactors. After neutron irradiation, measurements by γ-spectrometry were performed on the activated impurities, particularly on the ones with large neutron cross section. Irradiated samples were then annealed at rising temperatures, to obtain a fractional release of the tritium [formed by (n,α) reaction on lithium] as element (HT/T2) or tritiated water (HTO/T2O). Barium and antimony were determined by NAA, on request of Italian Courts, as evidence of gunshot residues (GSR), on hands and clothes of suspected people. The sample is left unchanged, even if slightly radioactive, allowing further examinations, in case of controversial results. In some actual cases, NAA was performed on samples already examined by scanning electron microscopy (SEM/EDX), allowing the determination of several more elements and a more definite identification of the ammunitions involved in the crime. (author)

  14. Reference neutron activation library

    International Nuclear Information System (INIS)

    Many scientific endeavors require accurate nuclear data. Examples include studies of environmental protection connected with the running of a nuclear installation, the conceptual designs of fusion energy producing devices, astrophysics and the production of medical isotopes. In response to this need, many national and international data libraries have evolved over the years. Initially nuclear data work concentrated on materials relevant to the commercial power industry which is based on the fission of actinides, but recently the topic of activation has become of increasing importance. Activation of materials occurs in fission devices, but is generally overshadowed by the primary fission process. In fusion devices, high energy (14 MeV) neutrons produced in the D-T fusion reaction cause activation of the structure, and (with the exception of the tritium fuel) is the dominant source of activity. Astrophysics requires cross-sections (generally describing neutron capture) or its studies of nucleosynthesis. Many analytical techniques require activation analysis. For example, borehole logging uses the detection of gamma rays from irradiated materials to determine the various components of rocks. To provide data for these applications, various specialized data libraries have been produced. The most comprehensive of these have been developed for fusion studies, since it has been appreciated that impurities are of the greatest importance in determining the overall activity, and thus data on all elements are required. These libraries contain information on a wide range of reactions: (n,γ), (n,2n), (n,α), (n,p), (n,d), (n,t), (n,3He)and (n,n')over the energy range from 10-5 eV to 15 or 20 MeV. It should be noted that the production of various isomeric states have to be treated in detail in these libraries,and that the range of targets must include long-lived radioactive nuclides in addition to stable nuclides. These comprehensive libraries thus contain almost all the

  15. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70Zn and 68Zn, or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  16. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis

    International Nuclear Information System (INIS)

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of 252Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  17. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  18. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J., E-mail: ghassoun@ucam.ac.ma [EPRA, Department of Physics, Faculty of Sciences, Semlalia, P.O. Box 2390, 40000 Marrakech (Morocco); Mostacci, D., E-mail: domiziano.mostacci@mail.ing.unibo.it [University of Bologna, Montecuccolino Laboratory, via dei Colli 16, I-40136 Bologna (Italy)

    2011-08-15

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of {sup 252}Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  19. Chemical Characterization of Ceramics from Malaysian Archeological Sites by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis technique has been applied in analysis of about 80 Chinese ceramic shards of blue and white porcelain and stoneware collected from two shipwrecks discovered in Malaysian waters as well as samples from kiln site in Jingdezhen, China. The elements determined were Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, Zn and Zr. Statistical analysis including principal component analysis and cluster analysis have been used in data interpretation. The results indicated that the majority of blue and white porcelain found in the shipwrecks were from Jingdezhen. A few samples of blue and white shards were so different in elemental profile compared to those from Jingdezhen. There were also three groups of stoneware but their origin has yet to be identified. (author)

  20. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  1. An investigation of the impurities in native gold by neutron-activation analysis

    International Nuclear Information System (INIS)

    Instrumental and radiochemical methods of neutron-activation analysis, developed for the determination of major, minor, and trace impurities in native gold, are described. The gold was obtained from Witwatersrand reefs and from deposits in the Barberton area. It was extracted by decomposition of the ore in cold hydrofluoric acid. Quantitative results are presented for 14 elements found in native gold, and the significance of these elements in relation to the distribution of gold is discussed. The results suggest that there are geochemical differences in native gold from various reefs and deposits

  2. Separation of antimony from synthetic cloth. Application in forensic science using neutron activation analysis

    International Nuclear Information System (INIS)

    A simple ion-exchange separation procedure was developed for selective removal of antimony from synthetic cloth to facilitate determination of several trace elements frequently used to identify gunshot residues by neutron activation analysis. Radiotracers of Sb, Ba, Cu, Co, As, Zn, Hg and Ag were employed to optimize the developed procedure. The method involves the quantitative retention of the above elements, except of Sb, from 0.2M ammonium carbonate solution using Chelex 100 resin and subsequent quantitative elution of the elements of interest with 2M nitric acid for gamma-ray spectrometry. The procedure was tested by simulated gunshot residues. (author)

  3. Chemical characterization of tin-lead glazed ceramics from Aragon (Spain) by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inanez, J.G. [Smithsonian Institution, Suitland, MD (United States). Museum Conservation Inst.; Barcelona Univ. (Spain). Facultat de Geografia i Historia; Speakman, R.J. [Smithsonian Institution, Suitland, MD (United States). Museum Conservation Inst.; Buxeda i Garrigos, J. [Barcelona Univ. (Spain). Facultat de Geografia i Historia; Glascock, M.D. [Missouri Univ., Columbia, MO (United States). Research Reactor Center

    2010-07-01

    Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops. (orig.)

  4. Multielemental analysis of vegetarian human diets and dietary components by neutron activation

    International Nuclear Information System (INIS)

    Two vegetarian diet samples representative of the Indian sub-continent were prepared (in raw form) by the proportionate blending method for adolescent and adult age groups. These along with its components, viz. wheat, rice flours and pulses, were analyzed for 12 minor and trace elements by instrumental neutron activation analysis (INAA) and high resolution γ-ray spectrometry. Bowen's kale was also analyzed to check the accuracy of the method. The concentrations of Br, Co, Cu, Fe, K, Mn and P are comparable to the non-vegetarian American and European diets. Zinc concentrations are however lower than the recommended dietary allowances (RDA) and the western non-vegetarian diets. (orig.)

  5. Chemical characterization of tin-lead glazed ceramics from Aragon (Spain) by neutron activation analysis

    International Nuclear Information System (INIS)

    Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops. (orig.)

  6. Determination of trace elements in sugar cane refuse by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Multielemental instrumental neutron activation analysis was used for the determination of micro, trace and ultratrace amounts of Al, As, Au, Br, Ca, Cl, Co, Cr, F, Fe, K, La, Lu, Mg, Mn, Na, Sc, V and W in sugar cane refuses of various Egyptian factories. The element concentrations are below the safety baseline levels. Variations of results may be related to different botanic structures, different compositions of sugar cane plants of ecological changes in soil. The method is accurate and precise. The relative errors are in the range of 0.3-12.3%. (author)

  7. Determination of trace elements in human hair by neutron activation analysis

    International Nuclear Information System (INIS)

    F, Al, Cl, Cr, Fe, Co, Cu, Zn, Se, Ag, I and Au have been determined in human hair with the aid of neutron activation analysis. In comparison to values given in literature the Se concentration of 0.3 ppm is low. Increased concentrations have been found of Cr and Mn in the hair of welders and of F in the hair of persons working with fluorine compounds. Women with mammary or thyroid carcinoma showed higher Zn values. In patients with goitre reduced concentrations of I have been determined. (author)

  8. Epithermal neutron activation analysis of Spirulina platensis biomass and extracted C-phycocianin and DNA

    International Nuclear Information System (INIS)

    Epithermal neutron activation analysis (ENAA) was used for study the biomass of Spirulina platensis. The background levels of concentration 27 macro-, micro- and trace elements ranging from 10-3 to 104 ppm was determined. It was found that the biomass of Spirulina does not contain toxic element concentrations above the tolerance level and can be utilized as a matrix of pharmaceuticals. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole Spirulina biomass with that of a refined C-phycocianin preparation was made. (author)

  9. Neutron activation analysis of calcium/phosphorus ratio in rib bone of healthy humans

    International Nuclear Information System (INIS)

    The Ca/P ratio was estimated in intact rib bone samples from healthy humans, 37 women and 45 men, aged from 15 to 55 years using instrumental neutron activation analysis. No statistically significant differences (p>0.05) age- or sex-related differences in the Ca/P ratio were observed. The mean value (M±SD) for the investigated parameter for the whole group studied, 2.33±0.34, was within a very wide range of published data and close to the median value

  10. The Jamaican SLOWPOKE-2 research reactor: neutron activation analysis in environmental and health studies

    International Nuclear Information System (INIS)

    In its 24 years of existence the reactor has been utilized mainly for Neutron Activation Analysis (NAA) and has played an important role in the development of research programs in the areas of archaeology, biology, chemistry, forensics, geochemistry, and mining as well as for the production of short lived radioisotopes for experimental work in the physics department. However, over the last fifth teen years our main thrust has been environmental geochemistry, agriculture and health related studies, with interesting results that have implications for land use, farming practices, diabetic control and dietary intakes during pregnancy. (author)

  11. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea by instrumental neutron activation analysis

    Directory of Open Access Journals (Sweden)

    Bouzid Nedjimi

    2015-04-01

    Full Text Available Red Juniper (Juniperus phoenicea, a local medicinal tree was collected and analyzed for 18 essential, non-essential and toxic elements using instrumental neutron activation analysis (INAA. The GBW 07605 (GSV-4 standard reference material was analyzed simultaneously with the plant samples, the results shown a good recovery and reproducibility of the method. Ca, K and Fe have been detected in good levels in this plant clarifying their possible contribution to curative properties. The data obtained in the present work will be helpful in the synthesis of new synthetic drugs which can be used for medicinal purpose.

  12. Determination of trace elements in Egyptian molasses by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Multielement neutron activation analysis was applied to determine macro, micro and trace amounts of Al, Br, Ca, Cl, Co, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sc and V in molasses of Egyptian cane sugar factories. The threshold element concentrations are acceptable and below the safety. Differences in element concentrations may be related to different botanic textures and structures, different compositions of sugar cane plants, corrosion of containers or changes in soil as a result of geochemical differentiation. The method is sensitive down to 0.038 ppm of V. The relative errors due to counting statistics are in the range of 0.2-11%. (author) 17 refs

  13. Advances on the study of air pollution in Cordoba by neutron activation analysis

    International Nuclear Information System (INIS)

    Air pollution biomonitoring has been carried out in an area of 160.000 km2 by neutron activation analysis of lichen samples (Usnea sp. and Ramalina ecklonii) in the framework of a Co-ordinated Research Programme of the IAEA and an ARCAL Technical Co-operation Project. The samples were irradiated in the RA-3 reactor and after a decay time of 6, 12 and 30 days, 24 elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Zn) were determined by gamma spectrometry. (author)

  14. Advanced liquid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis

    Science.gov (United States)

    Mizera, J.; Kučera, J.; Řanda, Z.; Lučaníková, M.

    2006-01-01

    Radiochemical neutron activation analysis (RNAA) procedures for determination of Re at the ultratrace level based on use of liquid-liquid extraction (LLE) and extraction chromatography (EXC) have been developed. Two different LLE procedures were used depending on the way of sample decomposition using either 2-butanone or tetraphenylarsonium chloride in CHCl3. EXC employed new solid extractant materials prepared by incorporation of the liquid trioctyl-methyl-ammonium chloride into an inert polyacrylonitrile matrix. The RNAA procedures presented have been compared and applied for Re determination in several biological and environmental reference materials.

  15. Neutron activation analysis of low-level element contents in silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Berger, A. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Niese, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Koehler, M. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Matthes, M. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Gawlik, D. [Hahn-Meitner-Institut, Berlin (Germany)

    1997-03-01

    Semiconductor silicon is among the purest materials having ever been produced by modern technology. Thus, it is quite suitable as a primary reference material validating the correctness and the detection capabilities of developed analytical methods. Among them neutron activation analysis plays a competitive role. The U.S. National Institute of Science and Technology (NIST) has initiated and carried out an interlaboratory comparison in order to study the spread of analytical results worldwide evolved by several laboratories dealing with specimens of extreme purity. The outcome of the experiment was intended to review the capabilities of NAA as well as to differentiate between bulk and surface contamination. (orig./DG)

  16. Evaluation of accuracy, precision and determination limit in the human hair analysis using neutron activation method

    International Nuclear Information System (INIS)

    The accuracy, precision and determination limit were evaluated for determination of Al, As, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Sb, Sc, Se, V and Zn in human head hair by instrumental neutron activation analysis. The precision was examined by analyzing human hair sample, and the results of relative standard deviations obtained ranged from 3.9 to 16.2%. The results accuracy was evaluated by using reference materials GBW 09101 Human Hair and NIES 5 Human Hair. Currie criterion was used for calculation of the determination limit. (author). 8 refs., 2 tabs

  17. New procedures of radiochemical neutron activation analysis for ultratrace determination of rhenium

    International Nuclear Information System (INIS)

    Radiochemical neutron activation analysis (RNAA) procedures for determination of Re at the ultratrace level based on use of liquid-liquid extraction (LLE) and extraction chromatography (EXC) have been developed. Two different LLE procedures were used depending on the way of sample decomposition using either 2-butanone or tetraphenylarsonium chloride in CHCl3. EXC employed new solid extractant materials prepared by incorporation of the liquid trialkyl-methylammonium chloride into an inert polyacrylonitrile matrix. The RNAA procedures presented were compared and applied to Re determination in various biological and environmental reference materials. (author)

  18. Determination of trace elements in scalp hair of an elderly population by neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis was applied to assess trace elements concentrations in head hair from healthy elderly people living in the Sao Paulo metropolitan area. Concentrations of As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, La, Mn, Na, Sb, Se and, Zn were determined. Comparisons were made between the results obtained for dyed and non-dyed hair as well as for hair from females and males of two different age groups. The results were also compared with range values established by clinical laboratories and published data. (author)

  19. Comparison of elemental composition of hair between osteoporotic and normal women by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis (INAA) was carried out on hair samples from a group of 20 patients undergoing a study of osteoporosis. Half of these were judged normal. Forteen elements were measured but only calcium was found to have a correlation with the disease state. Calcium levels in hair were significantly lower (99% level) in patients with osteoporosis. Conversely, calcium levels in the blood of osteoporotic patients were significantly higher (95% level) than those in normals. Though the group studied was small it is felt that levels of calcium in hair may be of value in diagnosing osteoporosis. (author)

  20. Comparison of elemental composition of hair between osteoporotic and normal women by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis was carried out on hair samples from a group of twenty patients undergoing a study of osteoporosis. Half of these were judged normal. Fourteen elements were measured but only calcium was found to have a correlation with the disease state. Calcium levels in hair were significantly lower (99% confidence level) in patients with osteoporosis. Conversely, calcium levels in the blood of osteoporotic patients were significantly higher (95% confidence level) than those in normals. Though the group studied was small it is felt that the levels of calcium in hair may be of value in diagnosing osteoporosis. (author) 14 refs

  1. Determination of mineral content of some cereals by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Elemental concentrations of a few varieties of cereals are determined by Instrumental Neutron Activation Analysis using single comparator method (K0 NAA method). A total of 16 elements are measured. The method was validated by analysing the Standard Reference Material (SRM-1571) of NIST. The applicability of the method in nutritional studies has been made by analysing the results on the measured concentrations of major and minor elements in terms of the average intake of mineral content and the role of these elements. (author)

  2. Instrumental neutron activities analysis of Marrubium vulgare L., a valuable medicinal herb

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria). Dept. of Physics

    2016-08-01

    Twenty two chemical elements were identified by Instrumental neutron activation analysis in Marrubium vulgare (Lamiaceae) a traditional medicine plant, used indigenously in Mediterranean basin to cure several diseases. The precision of the results was assessed by analyzing the certified reference material GBW 07605 (GSV-4) Tea leaves. Results showed that K was the dominant chemical element in studied plant (4.40%). The Ca and Fe mass fractions were also relatively high. However potential toxic elements in this Lamiaceae plant were within the safety limits suggested by WHO/FAO.

  3. An evaluation of thermal and epithermal neutron activation analysis compton suppression methods for biological reference materials.

    Science.gov (United States)

    Landsberger, S; Wu, D

    1999-01-01

    For neutron activation analysis (NAA), the usual matrix problems of sodium, chlorine, and bromine are well known to give rise to high backgrounds that inhibit the determination of several trace elements for short-lived or medium-lived NAA. For long counting times in long-lived NAA, very low backgrounds are required to achieve good sensitivities. We have investigated the use of thermal and epithermal NAA in conjunction with Compton suppression to determine several elements such as arsenic, antimony, cadmium, and mercury, at the level of a few nanograms. The values of these techniques are discussed in contrast to the standard radiochemical methods. PMID:10676521

  4. The determination of uranium in food samples by Compton suppression epithermal neutron activation analysis.

    Science.gov (United States)

    Kapsimalis, R; Landsberger, S; Ahmed, Y A

    2009-12-01

    Eight foods common to the Nigerian diet were analyzed for trace amounts of uranium using epithermal neutron activation analysis. Food sample sizes of roughly one-half gram, irradiated for 10 min, with a 15 min decay time and counting time for 10 min yielded detection limits between 0.02 and 0.04 Bq/kg. Dried milk, chicken pasta, spaghetti and biscuits had less than detectable amounts of uranium, while sorghum, wheat and brown beans contained 0.73, 0.23 and 0.16 Bq/kg, respectively. PMID:19541492

  5. Nondestructive determination of arsenic in urine by epithermal neutron activation analysis and Compton suppression.

    Science.gov (United States)

    Landsberger, S; Swift, G; Neuhoff, J

    1990-01-01

    Epithermal neutron activation analysis, in conjunction with Compton suppression, has been employed to determine arsenic levels in artificially doped urine samples. Typical detection limits were of the order of 10 ng/g. Replicate determinations gave precision values between 2 and 12%, whereas accuracy measurements were between +/- 1 and +/- 20%. Biological and geological reference materials from the National Institute of Standards and Technology (NIST) were also analyzed for arsenic content. Typically, the precision achieved again was between 2 and 12%, whereas the accuracy measurements were in excellent agreement with the certified values. PMID:1704729

  6. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    International Nuclear Information System (INIS)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (∼2.5 % of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrogen measurement system. Review of gamma event/time patterns and data from an auxiliary detector showed significant variations among repeated phantom runs. Neutron generator instability had a significant effect on measurement precision. The neutron generator used in our system must be monitored for output consistency. Adjustments must be made to measurement results to correct for generator instability. (author)

  7. Determination of multielements in a typical Japanese diet certified reference material by instrumental neutron activation analysis.

    Science.gov (United States)

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2003-08-01

    Multielements in a typical Japanese diet certified reference material prepared at the National Institute for Environmental Studies (NIES) of Japan, in collaboration with the National Institute of Radiological Sciences (NIRS) of Japan were determined by instrumental neutron activation analysis (INAA). Five samples (ca. 510-1000 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10(12) n cm(-2) s(-1) (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10(12) n cm(-2) s(-1) (central thimble) in the Rikkyo University Research Reactor (TRIGA Mark-II, 100 kW). The irradiated samples were measured by conventional gama-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence gamma-ray spectrometry with a coaxial Ge detector and a well-type NaI(Tl) detector. The concentrations of 38 elements were determined by these methods. PMID:12945682

  8. Neutron-activation analysis for investigation of biochemical manganese in soils cotton soweol zone of Uzbekistan

    International Nuclear Information System (INIS)

    Full text: For many years we neutron activation analysis of soils sampled from different areas of landscape-geochemical regions of Uzbekistan including zone of extreme ecological catastrophe of Aral. Content of manganese and some other elements in the 'soil-cotton' system was investigated. Neutron-activation method of manganese determining with productivity up to 400 samples on shift with detection limit of 1,1 10-5 % and discrepancies not more than 10%. Was developed extremely uniform distribution of manganese in cotton sowed soils of the Republic (340-1800mg/kg) is determined. Practically all soils of cotton-sowed zone of Republic are with lack of manganese. Distribution of manganese on soil profile of separate organs of cotton (leaves seeds etc.) was studied. Correlation between gross concentration of manganese and its active part extracted by distilled water on the basis of quantity analysis was found. Successive comparison of gross content of manganese in the soil with crop capacity of cotton in different zones of Republic made it possible to find interconnection between these quantities, which proves necessity of using micro-additions of manganese in the soils where its low concentration is detected

  9. Comparison of Elemental Composition in Korean Irradiated Foods using Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    The information and role of trace mineral elements from an intake of created and processed foodstuff are important as a indicator of human health and nutritional parameter, as well as a quality control of food and diet. Particularly, special food created for consumption by astronauts in outer space may differ with common food on the earth in order to compensate a decrease of taste and nutrition by strong cosmic rays, a state of nongravitation, low pressure, and enclosed space environment. In April 2008, Korea's first astronaut became a crew member of the international space station and she was brought special space versions of Korea's national dishes such as Kimchi, boiled rice, hot red paste, green tea, ramyun, and so on. Accurate quantitative analysis of trace elements in various kinds of biological samples is also important for data quality. Neutron activation analysis is a sensitive, non-destructive, multi-elemental analytical method, and is proper for tracing elements in a biological sample in order to avoid loss and contamination by chemical pretreatment. This study analyses the distribution of concentrations for both essential and toxic elements in six kinds of Korean space foods developed by KAERI. The quantitative analytical results from instrumental neutron activation analysis are presented

  10. Application of neutron activation analysis to the monitoring of trace elements in Brazilian foodstuffs

    International Nuclear Information System (INIS)

    Due to lack of data on trace element levels in Brazilian foodstuffs, nuclear analytical techniques were used to determine about twenty elements in foods samples collected from local markets of the city of Sao Paulo. Drinking water was also analyzed. The methods employed were mainly instrumental and radiochemical neutron activation analysis. In the case of the analysis of toxic elements, such as mercury, selenium, arsenic and antimony, the purely instrumental approach failed in yielding results for very low concentrations of these elements. For INAA, samples and multielemental synthetic standards were irradiated in the IEA R1 research reactor for periods of time ranging from minutes to several hours, under thermal neutron fluxes from 1011 to 1013 n·cm-2·s-1; after suitable cooling times, γ-ray spectra were measured using a Ge(Li) or Ge solid state detector. The RNAA approach involved the distillation of mercury and selenium in HBr medium; selenium was then reduced to the metal form with sodium metabisulphide and mercury was precipitated as sulphide with thioacetamide. For water analysis, a preconcentration procedure based on retention of several elements in a Chelex-100 resin was employed. The elements retained were Hg, Cr, Zn, Fe, Co while Se was measured in the effluent after absorption on active charcoal. The levels of the trace inorganic elements determined in the Brazilian foodstuffs analyzed were always below the levels established by the existing regulations in our country. (author). 16 refs, 18 tabs

  11. Comparison of Elemental Composition in Korean Irradiated Foods using Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Kim, Sun Ha; Sun, Gwang Min; Lim, Jong Myung; Moon, Jong Hwa; Lee, Kye Hong; Kim, Young Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jong Il; Lee, Joo Eun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-10-15

    The information and role of trace mineral elements from an intake of created and processed foodstuff are important as a indicator of human health and nutritional parameter, as well as a quality control of food and diet. Particularly, special food created for consumption by astronauts in outer space may differ with common food on the earth in order to compensate a decrease of taste and nutrition by strong cosmic rays, a state of nongravitation, low pressure, and enclosed space environment. In April 2008, Korea's first astronaut became a crew member of the international space station and she was brought special space versions of Korea's national dishes such as Kimchi, boiled rice, hot red paste, green tea, ramyun, and so on. Accurate quantitative analysis of trace elements in various kinds of biological samples is also important for data quality. Neutron activation analysis is a sensitive, non-destructive, multi-elemental analytical method, and is proper for tracing elements in a biological sample in order to avoid loss and contamination by chemical pretreatment. This study analyses the distribution of concentrations for both essential and toxic elements in six kinds of Korean space foods developed by KAERI. The quantitative analytical results from instrumental neutron activation analysis are presented

  12. On multielement analysis of biological samples with the aid of neutron activation

    International Nuclear Information System (INIS)

    A main objective of this study was elucidation of problems of sampling and sample preparation methods for multielement analysis of environmental and biological specimens. Another was assessment of the potentials of multielement neutron activation analysis (NAA) in environmental and biological research. In an attempt to explain the great differences in the elemental concentration ranges between biopsy and autopsy samples as reported in the literature, it was shown that post mortem changes induce great variations in the apparent elemental composition of autopsy specimens resulting in serious systematic errors. Applications of NAA to analysis of tissues of experimental animals, human tissues in health and disease, and environmental samples are illustrated with several examples. The suitability of NAA for routine analysis of elements such as Cr, Mo and Se, which are difficult to determine by other methods has been specially discussed. (author)

  13. Determination of the silver content of ancient silver coins by neutron activation analysis

    International Nuclear Information System (INIS)

    A reactor neutron activation analysis procedure for the determination of the silver content of silver coins is described. The samples are irradiated for 1 s, cooled for 85 s and measured for 60 s with a Ge-detector. The analysis is based on the measurement of sup(110)Ag and sup(108)Ag. Aluminium is used for flux monitoring and pulse pile-up correction. A calibration curve is prepared by irradiating and measuring a series of discs with known silver contents. An average precision of +-2.1% is obtained. The analysis of coins with known silver contents shows good agreement with the given values. The analysis time is 2.5 minutes per sample. (author)

  14. Multi-element analysis of wheat flour and white bread by neutron activation

    International Nuclear Information System (INIS)

    One of the best source of feeding even for the human being as for animals are the Cereals. Although they are mainly energetic aliment, due to its composition in starch, they are a very important source of proteins and amino acids. They contribute mineral elements to the diet. Even those elements constitute a very small part of the total diet, they take a very important place in many human metabolic processes. To make a multielemental analysis of an aliment is very important that we are based on a very sensible analytic technique so we are able to find them, just as the Neutronic Activation. This Nuclear technique allows you to make a qualitative and quantitative analysis of the elements that are in a sample, but it does n't show the way in which the elements are presented. It is based in turning those elements into radioactive ones through its exposition to an uniform and constant fluid of neutrons, so then its radioactivity can be determined. The present work has as a main purpose to make a multielemental analysis of the wheat flour and white bread through the Neutronic Activation Technique, using the comparator method and establishing previously the most appropriate work conditions as much irradiation as digestion and measuring of the radioactivity of the sample. In this way, it was able to know that the wheat flour has potassium, chlorine, magnesium, sodium, iron, zinc, manganese, rubidium and selenium elements in a concentration of 2000, 700, 500, 25, 18, 13, 5.5, 0.9 and 0.01 - 0.3 mg/g respectively. In an other hand it was found that the white bread has the same elements than the wheat flour but its concentration was: 1700, 9000, 400, 7000, 52, 13, 6, 1 and 0.05 - 0.3 mg/g respectively. (Author)

  15. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  16. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF).

    Science.gov (United States)

    El-Taher, A

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. PMID:21992845

  17. Design of Stopper of Prompt Gamma Neutron Activation Analysis Facility at China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The PGNAA facility consists of the filtered collimated neutron beam, the shielding of the whole facility, the control system, the detecting equipment and the data acquisition and analysis system. The neutron beam is filtered by a mono-crystalline bismuth filter,

  18. The determination of trace elements in new and used lubricating oils by neutron activation analysis

    International Nuclear Information System (INIS)

    The trace elements on unused and used motor oils of different brands utilized in different light, medium and heavy weight vehicles by neutron activation analysis(N A A) has been measured. To find out the exact amount of trace elements in used motor oil only due to erosion was investigated both qualitatively and quantitatively through neutron activation analysis by thermal neutrons and X ray fluorescence analysis. Forty sample of motor oil with natural basis and ten samples with synthetic basis, plus thirteen samples as filters, gas and oil rings, fix and moving bearing has been provided. For determining the quality of elements in the given samples the time of radiation for short lived elements was from one minute to ten minutes in 1 MW reactor power, using pneumatic rabbit system. The elements Al, V, Ca, and specially S have been recognized. For long lived elements the irradiation time was one hour, one and a half hour and 2 hours. As a whole, for all samples 250 time radiations have been determined. Counting of samples have been done by multichannel analyzers connected to computer P D P/11 and IBM/P C at different times from 200 seconds to 4000 seconds. The time interval between the end of irradiation till start of counting, was from three minutes to a year. Analysis of samples have been provided by software O R A C L in computer P D P/11 and software M A S T E R O in computer IBM/P C. As a whole, nine hundred spectra and analysis have been provide. Thirty one elements have been identified. They are as follows. Al, V, S, Cu, Ca, Mg, Cl, In, Mn, K, Na, As, Br, Cd, Cr, Fe, Sb, Sc, Zn, Ag, Co, Ni, Au, Cs, Eu, Sm, Lu, La, W, Xe, Ba, Hf. These elements were found in all samples. But elements La, Lu, Au, Cs, Ni, Eu, Xe, W, Ba, and Hf were found in some samples. By comparing methods with standards and using thermal neutron flux, the quantitative amounts of elements were found. By using X-ray fluorescence Zn was found in some samples and in some others (used oil) Zn, Br

  19. Determination of Na, Mg, Al, Si, K, Cl, Ca and Fe in cigarette tobacco by fast neutron activation analysis

    International Nuclear Information System (INIS)

    FNAA has been, for many years, a technique for the non-destructive analysis of a wide variety of sample materials - liquids, solids and powders. The important advantages of fast neutron activation analysis are good analytical sensitivity without sample preparation, accuracy and total analysis in a short time. In our work, the concentrations of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in cigarette tobacco of two brands commercially available in Turkey using 14.6 MeV neutron activation analysis. (author)

  20. Verification of the viability of virions detection using neutron activation analysis; Verificacao da viabilidade de deteccao de virions atraves da analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wacha, R.; Silva, A.X. da; Crispim, V.R [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Couceiro, J.N.S.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Microbiologia Professor Paulo de Goes. Dept. de Virologia

    2002-07-01

    The use of nuclear techniques, as Neutron Activation Analysis, can be an alternative way for the microbiological diagnosis, bringing a significant profit in the analysis time, for not needing pre cultivated samples in appropriate way. In this technique, the samples are collected and submitted to a thermal neutron beam. The interaction of these neutrons with the samples generates gamma rays whose energy spectre is a characteristic of the elemental composition of these samples. Of this done one, a virus presence can be detected in the sample through the distinction of its respective elemental compositions allowing, also, carrying through the analysis in real time. In this work, computational simulations had been become fulfilled using the radiation transport code based on the Monte Carlo Method, MCNP4B, to verify the viability of the application of this system for the virus particle detection in its natural collection environment. (author)

  1. Low background gamma spectroscopy and neutron activation analysis for Double Chooz

    International Nuclear Information System (INIS)

    To check the radiopurity of detector components of the reactor neutrino oscillation experiment Double Chooz, low background gamma spectroscopy measurements have been performed at the Garching underground lab using a 150% germanium counter surrounded by active and passive shielding systems. The active shielding consists of an anti-Compton veto and a muon veto. Upper limits on the activities of radioisotopes originating from the uranium and thorium decay chains, as well as potassium-40, can be given in the order of 10-10 g/g. An even higher sensitivity can be obtained by neutron activation analysis performed on the wavelength shifter PPO and the acrylics used for the detector tank. The samples were irradiated for ten minutes at the FRM2 with a thermal neutron flux of (1.63±0.05).1013 cm-2s-1. Thereafter, the spectra of the irradiated samples were recorded using the germanium counting system mentioned above, mainly focussing on the isotope potassium-42. The content of potassium-40 could be determined to be of the order of 10-11 g/g.

  2. Two non-destructive neutron inspection techniques: prompt gamma-ray activation analysis and cold neutron tomography

    OpenAIRE

    Baechler, Sébastien; Dousse, Jean-Claude; Jolie, Jan

    2005-01-01

    Deux techniques d’inspection non-destructives utilisant des faisceaux de neutrons froids ont été développées à la source de neutrons SINQ de l’Institut Paul Scherrer : (1) l’analyse par activation neutronique prompte (PGAA) et (2) la tomographie neutronique. L’analyse par PGA (Prompt Gamma-ray Activation) est une méthode nucléaire qui permet de déterminer la concentration d’éléments présents dans un échantillon. Cette technique consiste à détecter les rayons gamma prompts émis par l’échantill...

  3. Development of Unified Code for Environmental Research by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Yeon; Kim, Young Sik; Lee, Sang Mi; Chung, Sang Uk; Lee, Kyu Sung; Kang, Sang Hun; Cheon, Ki Hong [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    Three codes were developed to improve accuracy and precision of neutron activation analysis with the adoption of IAEA`s recommended `GANAAS` program which has the better peak identification and efficiency calibration algorithm than the currently using commercial program. Quantitative analytical ability of trace element was improved with the codes such that the number of detectable elements including environmentally important elements was increased. Small and over lapped peaks can be detected more efficiently with the good peak shape calibration(energy dependence on peak height, peak base width and FWHM). Several efficiency functions were added to determine the detector efficiency more accurately which was the main source of error in neutron activation analysis. Errors caused by nuclear data themselves were reduced with the introduction of ko method. New graphical program called `POWER NAA` was developed for the recent personal computer environment, Window 95, and for the data compatibility. It also reduced the error caused by operator`s mistake with the easy and comfortable operation of the code. 11 refs., 3 tabs., 9 figs. (author)

  4. In vivo neutron activation analysis: body composition studies in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  5. In vivo neutron activation analysis: body composition studies in health and disease

    International Nuclear Information System (INIS)

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables

  6. Neutron activation analysis of single human hairs and possible applications for forensic purposes

    International Nuclear Information System (INIS)

    A new analytical procedure that enables to determine more than 10 trace elements in single, 3 cm human hair segments by neutron activation analysis (NAA) was elaborated. Application of a special washing procedure of hair (before irradiation) made possible to lower sodium content by two orders of magnitude without affecting trace element content. After irradiation in the thermal neutron flux of about 1014n.cm-2.sec-1 the activity of hair was measured with 70 cm3Ge(Li) detector coupled to 4000 channel pulse height analyser. As an alternative method, a destructive version of NAA with ion exchange group separation of radionuclides was applied. It was found that sometimes high gradients of element concentration along the hair length exist and that there is without any doubt a distinct influence of environmental factor on the content of some trace elements in hair. The criminalistic aspects of hair analysis were also studied using new statistical criterion for elimination (identification). Both possibilities and limitations of the method are discussed. (author)

  7. Neutron activation analysis of Lerna ceramics (Greece) at Early Bronze Age: local production and trade exchanges

    International Nuclear Information System (INIS)

    Neutron activation analysis is a powerful tool for determining the provenance of ancient ceramics. A sophisticated analytical system for gamma-ray spectrometry, designed specifically for the chemical analysis of ceramics by thermal neutron activation, was used to determine the concentrations of twenty elements in samples of ancient pottery. The measurements were made relative to the standard pottery of Perlman and Asaro. The purpose of the work was to study the production of fine pottery at the settlement of Lerna, in the Argolid of Greece, during the Early Bronze Age (third millennium BC). About half of the 50 samples analysed formed the major compositional group, which was attributed to Lerna. It included, besides the majority of the samples from the second phase of the Early Bronze Age (Lerna III), several samples from the third phase (Lerna IV); that is, from levels immediately succeeding the great destruction which marks the end of the Lerna III settlement. A small number of objects forms a second group of local origin and includes 4 of the 5 clay sealings sampled. Among the archaeologically unusual objects, several could be attributed to Lerna, while others were characterized as imports

  8. Environmental monitoring near urban lead refineries by photon and neutron activation analysis

    International Nuclear Information System (INIS)

    Photon activation has been used in conjunction with neutron activation for multielement determinations in airborne particulates, soil, and hair samples collected near two secondary lead refineries in Metropolitan Toronto. Particle size distributions of suspended particulates collected with a high volume Andersen sampler are reported for Al, Sb, As, Br, Cl, Mn, Na, Pb, Ti and V. Increases in the concentrations of Pb, As and Sb associated with particles >3.3 μm diameter on certain days near the refineries has resulted in localized contamination as reflected in higher concentrations of these elements in soil. To assess Pb accumulation in local residents compared with control groups, approximately 250 hair samples were analyzed for Pb by photon activation analysis. Children living close to the refineries, especially boys, exhibit the most elevated levels: up to 20 times urban control values in some cases

  9. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Energy Technology Data Exchange (ETDEWEB)

    Pinault, Jean-Louis [IAEA Expert, 96 rue du Port David, 45370 Dry (France)], E-mail: jeanlouis_pinault@hotmail.fr; Solis, Jose [Instituto Peruano de Energia Nuclear, Av. Canada No. 1470, San Borja, Lima 41 (Peru)

    2009-04-15

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  10. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Science.gov (United States)

    Pinault, Jean-Louis; Solis, Jose

    2009-04-01

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  11. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    International Nuclear Information System (INIS)

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  12. The geographical origin and chemical composition in phellinus mushrooms measured by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    In order to expand the utilization of phellinus mushrooms as a dietary supplement, we attempted to evaluate the chemical composition by measuring its inorganic elemental content with the aid of instrumental neutron activation analysis (INAA). Twenty seven phellinus mushrooms samples were collected from Korea, Cambodia, and Vietnam. A total of 28 elements were analyzed in the phellinus mushroom samples using the INAA. The concentrations of Ca, K, and Mg are much higher than those of other elements in phellinus mushroom samples. The sum of determined elemental concentration in Cambodia samples was about 2-6 times higher than those in Korea and Vietnam samples, respectively. Based on our measurement data, we attempted to discriminate the geographical origin using principal components analysis (PCA) and linear discriminant analysis (LDA). The geographical origins of all samples were clearly classified with correct classification rate of 100%. (author)

  13. Determination of selenium and zinc in rat plasma by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    To evaluate the effects on the thyroid function when simple or multiple zinc, selenium and iodine deficiency are induced, research was carried out in laboratory animals. For simultaneously determining the Zn and Se concentration in rat plasma, an instrumental neutron activation analysis technique was applied. A clean laboratory, was used for the preparation of samples. High purity materials were used for sample collection and storage. Irradiation, decay and counting parameters were optimized to obtain the best sensitivity, accuracy and precision analysis. The Zn and Se concentrations were determined from the peak area of gamma-rays of 1115 and 265 KeV respectively. The analytical methodology used was validated with standard reference materials. The procedure used for the analysis, including the phases of collection, treatment of the samples and analytical determination was considered suitable for the study of trace elements in biological samples, especially plasma. (author)

  14. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Science.gov (United States)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  15. Development of Monte Carlo code for coincidence prompt gamma-ray neutron activation analysis

    Science.gov (United States)

    Han, Xiaogang

    Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) offers a non-destructive, relatively rapid on-line method for determination of elemental composition of bulk and other samples. However, PGNAA has an inherently large background. These backgrounds are primarily due to the presence of the neutron excitation source. It also includes neutron activation of the detector and the prompt gamma rays from the structure materials of PGNAA devices. These large backgrounds limit the sensitivity and accuracy of PGNAA. Since most of the prompt gamma rays from the same element are emitted in coincidence, a possible approach for further improvement is to change the traditional PGNAA measurement technique and introduce the gamma-gamma coincidence technique. It is well known that the coincidence techniques can eliminate most of the interference backgrounds and improve the signal-to-noise ratio. A new Monte Carlo code, CEARCPG has been developed at CEAR to simulate gamma-gamma coincidence spectra in PGNAA experiment. Compared to the other existing Monte Carlo code CEARPGA I and CEARPGA II, a new algorithm of sampling the prompt gamma rays produced from neutron capture reaction and neutron inelastic scattering reaction, is developed in this work. All the prompt gamma rays are taken into account by using this new algorithm. Before this work, the commonly used method is to interpolate the prompt gamma rays from the pre-calculated gamma-ray table. This technique works fine for the single spectrum. However it limits the capability to simulate the coincidence spectrum. The new algorithm samples the prompt gamma rays from the nucleus excitation scheme. The primary nuclear data library used to sample the prompt gamma rays comes from ENSDF library. Three cases are simulated and the simulated results are benchmarked with experiments. The first case is the prototype for ETI PGNAA application. This case is designed to check the capability of CEARCPG for single spectrum simulation. The second

  16. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G [Los Alamos National Laboratory; Goddard, Braden [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Peerani, Paolo [European Commission, EC-JRC-IPSC

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  17. Neutron, gamma and Roentgen fluorescent activation analysis of hair of children suffering from bronchial asthma

    International Nuclear Information System (INIS)

    The aim of present study was the multiparametric study of dangerous microelements content in the hair of children under school and primary school age which included 12 children ill with bronchial asthma and 11 control group persons in the town of Troitsk, Moscow Region. The hair specimens with weight 15-220 mg were analysed with the application of epithermal neutron activation analysis conducted at experimental installation REGATA and neutron source-unique Pulsed Fast Reactor IBR-2, with the application of combined gamma-neutron irradiation at Microtron MT-25 and with Roentgen Fluorescence Analysis device of JINR. The data of elements content in hair were obtained with solid state track detectors and semiconductor electronic spectrometers. The solid state track detectors provide the determination of U, Th, Bi and Be elements at the level of sensitivity up to 10-8-10-9 g/g. These data were compared with more representative information about dangerous microelements concentration obtained with NAA and RFA analyses. The obtained concentrations of most elements vary in a wide range, but in agreement with the known data. The highest degree of element dispersion was observed for U, Th, Pb, I, Br, Sb, Co, K and Be (the radiation coefficient was higher than 100-200%). The presented analysis of results shows that in the clinical picture there is some proved correlation between an increased content of some element in hair and symptoms of their accumulation in the organism of ill children, the revelation of which is the basic idea of our examination

  18. Drawing up of a procedure for vanadium determination in mussels using the neutron activation analysis method

    International Nuclear Information System (INIS)

    This work establishes an adequate procedure for obtaining reliable results for determination of vanadium in mussels, leg by leg by the neutron activation analysis (NAA), viewing the posterior application on the bio monitoring the coastal pollution, particularly near the petroleum terminals.For the evaluation of result quality concerning to the quality of those results, the work analysed the reference material certification NIST SRM 1566b Oyster Tissue. The precision of the results were also analysed using repetitions of mussel samples collected at the coastal of northern Sao Paulo state, Brazil. The NAA procedure consisted of 200 mg of sample and a synthetic standard of vanadium during a period of 8 s and under a thermal neutron flux of 6.6 x 1012 n cm-2 s-1 at the pneumatic station 4 of the IEA-R1 nuclear reactor of IPEN-CNEN/SP. After a 3 min decay, the measurements of the gamma activities of the sample and the standard were done using a Ge hyper pure semi-conductor detector, connected to gamma ray multichannel analyser. The vanadium were determined by the measurement of the gamma activity of the 52V through the 1434.08 keV peak, and half-life time of 3.75 min. The concentration of V were calculated by the comparative method. The obtained results indicated the viability of the NAA procedure established for the determination of vanadium in mussels

  19. Rare earth element (REE) in surface mangrove sediment by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    A study is carried out on the concentrations of rare earth element (REE) elements present in surface mangrove sediments from 10 locations throughout west coast Malaysia. In carrying out the analysis, the best and most convenient method being the instrumental neutron activation analysis (INAA). Samples were obtained, dried, crushed to powdery form and samples prepared for INAA. All the samples for analysis were weighted approximately 150 mg for short irradiation and 200 mg for long irradiation time. As calibration and quality control procedures, blank samples, standard reference material SL-1 were then irradiated with thermal neutron flux of 4 × 1012 cm-2 s-1 at the MINT TRIGA Mark II research reactor which operated at 750 kW by using a pneumatic transport facility. The REE elements of surface sediment samples in this study are Dy, Sm, Eu,Yb, Lu, Tb, La and Ce. It was found that the level of concentrations of all the REE elements varies in the range (0.35-117.4 mg/kg). The geochemical behavior of REEs in surface sediments and normalized pattern (chondrite and shale) has been studied. The degree of sediments contaminations were computed using an enrichment factor. The results showed that the enrichment factor varied in the range (0.75-6.75). (author)

  20. Rare Earth Elements In Egyptian Granite By Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    The mobilization of rare earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in (REEs) chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of (REEs) and related elements. Therefore, (INAA) was applied as a sensitive nondestructive analytical tool for the determination of rare earth elements to find out what information could be obtained about the (REEs) of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi EI-Allaqi, EI-Shelal, Gabel Ibrahim Pacha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 1011n/cm2.s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence XRF was also used

  1. Critical analysis for nuclear data of thermal neutron capture cross section and the resonance integral from library based on neutron activation measurements

    International Nuclear Information System (INIS)

    For research reactor applications of neutron activation analysis, the evaluated neutron reaction cross sections and resonance integrals in some different libraries available were analyzed comparatively. In order to check these data, the thermal neutron capture cross section (σ0) and the resonance integral (I0) of 23Na(n, γ )24Na, 58Fe(n, γ) 59Fe, 59Co(n, γ )60Co, 27Al(n, γ )28Al, 109Ag(n, γ) 110mAg, 197Au(n, γ)198Au and 238U(n, γ )239U reactions from different libraries were used for comparative analysis with experimental measurements based on fundamental neutron activation equation. The targets were irradiated with neutrons in a research nuclear reactor 100 kW power, Triga Mark I. A high purity Ge detector was used for the gamma ray measurements of the irradiated samples. The evaluated results have been in general agreement with the current data according to different library sources. (author)

  2. Characterization of inorganic components in nutritional supplements by neutron activation analysis

    International Nuclear Information System (INIS)

    The control of element composition in nutritional supplements is of great interest due to increasingly high consumption and a large diversity and brands of these products offered in market. Therefore, there is the necessity to evaluate the element contents in the supplements and to compare with those values declared on the labels. In this study neutron activation analysis (NAA) was applied to evaluate the element composition of 11 commercial nutritional supplement brands bought in natural product drugstores and pharmacies. These samples acquired in capsule or tablet forms were ground to a homogeneous powder. The samples were irradiated together with the elemental standards in the IEA-R1 nuclear research reactor. Irradiations of 8 h under a thermal neutron flux of 5 x 1012n cm-2s-1 were carried out for Ca, Co, Cr, Fe, Se and Zn determinations. For Cu, K and Na determinations thermal neutron flux of 1 x 1012n cm-s-1 was used and, the exposure time was 1h. The induced gamma activities were measured using a hyper pure Ge detector coupled to a gamma ray spectrometer. The obtained results compared with the values of the labels of nutritional supplements presented good agreement for most of the elements. Toxic elements such as As, Cd, Hg and Sb were not detected in the samples. For quality control of the analytical data, certified reference materials NIST 1400 Bone Ash and NIST 1633b Coal Fly Ash provided by the National Institute of Standards and Technology were also analysed. Accuracy and precision of these results were evaluated. The obtained Z score values were lower than 2 indicating that the data are within the ranges of certified values at 95% confidence level (author)

  3. Application of cold neutron prompt-gamma activation analysis in environmental studies of aquatic plants

    International Nuclear Information System (INIS)

    This paper describes the use of cold-neutron prompt-gamma activation analysis (CNPGAA) to determine carbon, nitrogen, and phosphorus in the aquatic plant Typha domingensis, commonly known as cattail, during spring and fall seasons. According to studies of the Florida Everglades, cattail replaces sawgrass as a result of nutrient enrichment from farm water runoff. Nutrient enrichment, especially phosphorus, in sediment and the water column can lead to undesirable expansion. Early signs of this expansion are apparent in the Apalachicola River floodplain near Apalachicola, Florida, USA. This research project is designed to use cattails as biomonitors of nutrient enrichment in the lower Apalachicola River floodplain. Determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt-gamma activation has been developed in our previous studies at the CNPGAA facility at the National Institute of Standards and Technology (NIST), USA. The results of numerous field samples, collected from the study area during spring and fall seasons in 2002, will be presented in this paper. (author)

  4. Determination of uranium and thorium by neutron activation analysis applied to fossil samples dating

    Energy Technology Data Exchange (ETDEWEB)

    Ticianelli, Regina B.; Figueiredo, Ana Maria Graciano; Zahn, Guilherme S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Kinoshita, Angela; Baffa, Oswaldo [Universidade de Sao Paulo (FFCRLP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica

    2011-07-01

    Electron Spin Resonance (ESR) dating is based on the fact that ionizing radiation can create stable free radicals in insulating materials, like tooth enamel and bones. The concentration of these radicals - determined by ESR - is a function of the dose deposed in the sample along the years. The accumulated dose of radiation, called Archaeological Dose, is produced by the exposition to environmental radiation provided by U, Th, K and cosmic rays. If the environmental dose rate in the site where the fossil sample is found is known, it is possible to convert this dose into the age of the sample. The annual dose rate coming from the radioactive elements present in the soil and in the sample itself can be calculated by determining the U, Th and K concentration. Therefore, the determination of the dose rate depends on the concentration of these main radioactive elements. Neutron Activation Analysis has the sensitivity and the accuracy necessary to determine U, Th and K with this objective. Depending on the composition of the sample, the determination of U and Th can be improved irradiating the sample inside a Cd capsule, reducing the thermal neutron incidence on the sample and, therefore, diminishing the activation of possible interfering nuclides. In this study the optimal irradiation and counting conditions were established for U and Th determination in fossil teeth and soil. (author)

  5. Prompt gamma neutron activation analysis facility at the RA-6 research reactor

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation activation analysis facility was developed at the 500 kw thermal power RA-6 research reactor of the Bariloche Atomic Center, Argentina.This facility consist of a radial beam port with external positioning of the sample.The gamma radiation is reduced by a bismuth filter placed inside the extraction tube and the beam diameter is limited by a set of two collimators up to 5 cm.The neutron flux at the sample position is 7 106 n/cm2s with a Cadmium ratio of 20/1.The gamma detector is a 50 % efficiency type p HPGe rounded by a NaI(Tl) for Compton suppressioning.The gamma spectra is measured through 0 to 8.5 MeV.The background have counting rate of 350 cps without sample. In this work is shown the efficiency curve, the calculed sensibilities and the lower detection limits for B, Cd, Sm, Gd, H, Cl, Hg, Eu, Ti, Ag, Au, Mo. The RA-6's PGNAA facility is fully working, although the analytic capacity is under improvement

  6. Kinetic study of human hand sodium using local in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Using local 'in vivo' activation analysis, turnover of human hand sodium is studied in 14 subjects, 7 controls and 7 decalcified osteoporotics patients. The hand of each subject is irradiated with neutrons emitted by 52Cf sources; the equivalent dose delivered is 8 cGy. The 24Na activity variation is plotted as function of time and the experimental curve so obtained is fitted to two exponentials. Two compartements are identified: a rapidly exchangeable one, with a half life of 1 h; an other, with a very slow turnover, the half lifes varying from 79 h to 35 h as the calcium concentration becomes sub-normal. The ratios calcium to slowly exchangeable sodium and rapidly to slowly exchangeable sodium appear to be promising for the evaluation of bone disease

  7. Determination of trace elements in metallic materials by neutron activation analysis

    Science.gov (United States)

    Grassi, B.; La Vecchia, G. M.; Manera, S.; Salvini, A.; Zenoni, A.

    2006-05-01

    The aim of the present paper is to verify the applicability of neutron activation analysis to a metallurgic problem as a possible alternative technique to the standard investigation methodologies. A first series of measurements was performed in order to check the feasibility of irradiation and counting over metallic samples. Some of the feared problems concerned an excessive activation of the matrix and the consequent difficulties in the spectrum interpretation, as well as the removal of the radioactive waste created by the irradiation. Afterwards, a second series of measurements was performed to collect results aimed at the solution of a specific metallurgic case. The tests were performed at the TRIGA MARK II reactor facility of the LENA (Laboratorio Energia Nucleare Applicata) Institute of the Pavia University.

  8. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  9. Application of neutron activation analysis for the determination of essential elements in egg samples

    International Nuclear Information System (INIS)

    The eggs are among the twenty foods consumed by the population of the five major regions of Brazil. Among the types of eggs, there are differences in nutritional value, which can vary according to the food of the bird. This study evaluating the elements Cl, K, Mg, Mn and Na considered essential micronutrients in food, because they are fundamental in several metabolic processes necessary for the maintenance and training of the human body. We analyzed three types of eggs: egg whites, of the quail, and the colonial in cooked and raw form, using the Instrumental Neutron Activation Analysis method (INAA). The egg samples were lyophilized and pulverized before analysis. To validate the methodology, reference materials NIST RM 8415 Whole Egg Powder and NIST SRM 1567 Wheat Flour were analyzed. The samples, reference materials and standards of the elements were irradiated for 20 seconds under a thermal neutron flux of 6,6x1012 cm -2 s -1 in the nuclear research reactor IEA-R1 of IPEN-CNEN / SP. The results were consistent with the values of the Brazilian Table of Food Composition (TACO)

  10. Application of the neutron activation analysis method to the multielemental determination of food samples

    International Nuclear Information System (INIS)

    The application of thermal neutron activation analysis method for determining elements presented at low concentration and level of traces in bread and dried milk samples, using non-destructive and chemical analyses, was studied. The non-destructive analyses were based on measurements of gamma spectrometry of samples and standards irradiated by thermal neutron flux on the order of 1012n cm-2s-1. The irradiation time varied from some minutes to 8 hours. The Na, Cl, Mn, Br, Fe, Zn, Rb, Sb, Cr and Sc elements in bread samples were determined. The Na, K, Cl, Ca, Mg, Br, Al, Zn, Rb, Sb and Cr elements in dried milk samples were determined. In destructive analysis, the 24Na radioisotope was separeted by retention on hydrated antimony pentoxide column from 8N HCL after digestion of organic matter. The bread was dissolved in HNO3 concentrated and 70% of HCLO4 and the dried milk was dissolved in HNO3 concentrated and H2O2. The 64Cu, 69mZn and 140La radioisotopes determined. The concentrations obtained for dried milk were compared with data obtained by other authors from different contries. Basic considerations on detection limit related to its application on the technique used in this work, were done. The detection limits and trace elements using the Currie and Girardi methods were determined. The accuracy of results obtained for trace element detection limits is discussed. (Author)

  11. Application of the neutron activation analysis method to the multielemental determination of food samples

    International Nuclear Information System (INIS)

    The thermal neutron activation analysis method was applied to the determination of elements present at low concentrations and trace levels in samples of bread and milk powder using non-destructive analyses were based on gamma ray spectrometric measurements of samples and standards irradiated for periods which varied from some minutes to eight hours in a thermal neutron flux of about 1012n cm-2s-1. The concentrations obtained for milk powder were compared with the data obtained by other autors from different contries. For the bread, that comparison was not possible, because data about trace analysis in bread samples were not found. Besides, the results obtained for the various brands of bread and milk by means of non destructive and destructive analyses were compared using Student's t criterion. Some basic considerations about 'Detection Limit' were done, mainly in relation to its application in the technique used in the present work. The detection and determination limits of the trace elements analysed by destructive and non destructive techniques in bread and milk powder samples were determined using the Currie and Girardi methods. The precision of the analyses and the results obtained for the detection limits of the analysed trace elements are discussed. (Author)

  12. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    Science.gov (United States)

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area. PMID:10676491

  13. Microcomputer-based pneumatic controller for neutron activation analysis. [For analyzing uranium ore samples

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S.; Sand, R.J.

    1976-10-01

    A microcomputer-based pneumatic controller for neutron activation analysis was designed and built at the Savannah River Laboratory for analysis of large numbers of geologic samples for locating potential supplies of uranium ore for the National Uranium Resource Evaluation program. In this system, commercially available microcomputer logic modules are used to transport sample capsules through a network of pressurized air lines. The logic modules are interfaced to pneumatic valves, solenoids, and photo-optical detectors. The system operates from programs stored in firmware (permanent software). It also commands a minicomputer and a hard-wired pulse height analyzer for data collection and bookkeeping tasks. The advantage of the system is that major system changes can be implemented in the firmware with no hardware changes. This report describes the hardware, firmware, and software for the electronics system.

  14. Using instrumental neutron activation analysis to study the elemental distribution in Turangi Swamp, New Zealand

    International Nuclear Information System (INIS)

    Peat and sediment samples were collected in Turangi Swamp, North Island, New Zealand, and analysed by Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence (XRF). Variations in elemental distribution are used to distinguish between a short-term anthropogenic influence and a long-term natural impact. Discharge of sewage effluent has resulted in elevated zinc concentrations in the surface sediment near the point of effluent inflow into the wetland. Increased arsenic, bromine and antimony concentrations are attributed to seepage of groundwater originating in the nearby Tokaanu-Waihi geothermal field, and are found in particular on the western side of the wetland. Due to its sensitivity, INAA was useful to determine the subtle changes in Br and Sb concentrations, which could not be detected by XRF. Analysis of the ashed residue by INAA shows that As and Zn are mostly associated with the inorganic fraction, whereas Br has a strong organic affinity. (authors)

  15. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  16. Instrumental neutron activation analysis of marine sediment in-house reference material

    International Nuclear Information System (INIS)

    Reference materials play an important role in demonstrating the quality and reliability of analytical data. The advantage of using in-house reference materials is that they provide a relatively cheap option as compared to using commercially available certified reference material (CRM) and can closely resemble the laboratory routine test sample. A marine sediment sample was designed as an in-house reference material, in the framework of quality assurance and control (QA/QC) program of the Neutron Activation Analysis (NAA) Laboratory at Nuclear Malaysia. The NAA technique was solely used for the homogeneity test of the marine sediment sample. The CRM of IAEA- Soil 7 and IAEA- SL1 (Lake Sediment) were applied in the analysis as compatible matrix based reference materials for QA purposes. (Author)

  17. Comparison of elemental contents of Korean space foods using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The analysis of mineral contents in space foods is needed to obtain an information on a comprehensive elemental composition as well as the investigation on the effects of human nutrition and health based on the dietary intake of mineral elements. Recently, six items of new Korean space foods (KSFs) such as kimchi, bibimbap, bulgogi, a ramen, a mulberry beverage and a fruit punch which was developed by the KAERI, and the contents of more than 15 elements in the samples were examined by using instrumental neutron activation analysis (INAA). Five biological certified reference materials, NIST SRM were used for analytical quality control. The results were compared with those of common Korean foods reported, and these results will be applied toward the identification of irradiated foods. (author)

  18. Duplicate diet study of Korean geriatric population by neutron activation analysis

    International Nuclear Information System (INIS)

    One day duplicate diet samples of 30 Korean geriatric populations over 60 years old were collected. Samples were analyzed by NAA (Neutron Activation Analysis) after sample preparation such as homogenization and freeze-drying. SRM(Standards Reference Materials) from NIST were analyzed for quality control of the analytical method. Analytical results were classified into two groups such as macro elements (Ca, K, Mg, Na) and minor elements (Cr, Fe, Mn, Se, Zn). Analytical results for daily intake of geriatric population in Korea were showed that macro and minor elements were lower than RDA and literature except Na. In conclusion, NAA is proved to be a sensitive analytical method useful for performing both qualitative and quantitative multi-elemental analysis of macro and minor elements in diet or biological materials. (author)

  19. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C., E-mail: id@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Lab. de Ativacao Neutronica

    2011-07-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k{sub 0}-standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  20. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, W.A.; Gardner, R.P. E-mail: gardner@ncsu.edu

    2004-06-11

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  1. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    Science.gov (United States)

    Metwally, W. A.; Gardner, R. P.

    2004-06-01

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  2. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k0-standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  3. Determination of arsenic and mercury in facial cosmetics by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The presence of arsenic and mercury in some chilean facial cosmetics was investiged. Since in Chile there is no regulations dealing with the maximum permisible concentration of some chemical elements in cosmetics products, the national industry control neither the presence nor the quantity, if any, of those elements. The study was performed on compact or powder eye shadows by means of instrumental neutron activation analysis. The samples were analized without any chemical treatment and with minimum manipulation to avoid any possible contamination. A total of 67 samples from 9 different cosmetic industries were analysed. Arsenic was detected and determined quantitatively in 46 samples, ranging from 0.32 to 136 ppm. Mercury was not detected in any sample. The contamination of arsenic is due to the high concentration of this element in some of the raw material used in the manufacturing of the cosmetics, as was demonstrated by the analysis of these materials. (EC)

  4. Multi-element study of Rutile sands using the Non Destructive Technique of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    The objective of the method is to analyze qualitative and quantitative elements Ti, Al, Cr, Fe, and Zr in Rutile sands. By this analytical technique, the sample does not require a previous preparation and is then irradiated with a thermal neutron flux in the TRIGA-1 Salazar Reactor. The sample is then counted in a gamma spectrometer fitted with a High-purity detector which make possible the simultaneous determination of the elements in the qualitative and quantitative forms. The elements analyzed in Rutile sands were Ti, Mn, Al, Hf, Dy, Au, W, La, Eu, Ca, Cr, Sc, No and Fe. Nuclear Activation Analysis is a wide used technique for the analysis of trace elements in pure materials or with several major elements. (Author)

  5. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate

    Institute of Scientific and Technical Information of China (English)

    A. El-Shershaby; A. Sroor; F. Ahmed; A.S. Abdel-Haleem; Z. Abdel

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h( in the Second The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system( HPGe).Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10-4The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  6. Linking laboratory and in situ activation analysis of rock-forming elements using a 14 Mev neutron source. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Truax, J.

    1995-10-06

    This work examines the ability of a borehole-conveyed delayed neutron activation system to perform elemental analysis of earth formations with the combination of a neutron generator and a large germanium spectrometer. High purity germanium spectrometers are now made large enough that detection efficiency rivals that of borehole-compatible scintillators. Elemental concentrations of silicon, aluminum, magnesium, and sodium are important quantities used in the characterization of rocks. A series of activation spectrometry experiments was performed on chemically pure compounds of these elements in a neutron moderating environment similar to what would pertain in a borehole measurement. Then, the geometry of the experimental setup was entered into a radiation transport modeling code based on a Monte Carlo process. The purpose of this exercise was to compare the measured responses with those predicted by the reaction cross sections in the library of the model, which are often ill-defined for high energy neutron interactions.

  7. Study on the manganese distribution in the soil of an agricultural field using neutron activation analysis method

    International Nuclear Information System (INIS)

    Manganese distribution in the soil of an agricultural field was evaluated by neutron activation analysis. The accuracy and precision of the method were verified by the analysis of two Standard Reference Materials with different manganese concentration in the experimental field, through one schematic diagram. (author). 7 refs., 1 fig., 2 tabs

  8. Recent activities on neutron beam utilization

    International Nuclear Information System (INIS)

    In Japan, the utilization of neutron beam brought out in research reactors had mainly been carried out in KUR of Kyoto University and JRR-2 of Japan Atomic Energy Research Institute (JAERI) in the fields of neutron scattering experiment, neutron radiography, neutron induced prompt-gamma ray analysis, medical and biological irradiation and so on. After the completion of upgrading work of JRR-3 in JAERI in 1990 (JRR-3M), the quality and quantity for the neutron beam experiments are extremely improved by means of its high intensity of neutron flux and high signal-to-noise ratio of cold and thermal neutron beams at more than twenty neutron beam ports. Especially, the cold neutron beam has brought the field of the utilization expanded and the neutron guide tubes have increased the number of neutron beam facilities as if there are three research reactors. These facilities induced to more active use of research reactors and increased the researchers in the many fields. At present, research reactors are utilized widely in various fields of not only nuclear researches but also non-nuclear researches and industrial uses. The JRR-3M has been operated only for about three years, however, interesting results have already been obtained using cold and thermal neutron beams. The current status of the neutron beam utilization using the research reactors in JAERI is reported and also several research topics obtained at JRR-3M are introduced in this presentation. (author)

  9. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    Science.gov (United States)

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks. PMID:27235886

  10. Determination of aluminum in green tea and hijiki by neutron activation analysis and X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    The quantitive determination of aluminum in Japanese green tea and hijiki (spindle-shaped bladder leaf) was carried out by means of the 14 MeV neutron activation analysis (NAA) and X-ray fluorescence analysis (XFA). From the results obtained, aluminum contents in 100 g dry green tea were 0.214±0.039 g for NAA and 0.215±0.013 g for XFA, and in 100 g dry hijiki, 0.545±0.058 g for NAA and 0.611±0.031 g for XFA. (author)

  11. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  12. Instrumental Neutron Activation Analysis- INAA: environmental studies in Das Velhas Basin, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    The Instrumental Neutron Activation Analysis - INAA was applied to determine concentrations of several elements in unpolluted areas and in the mining and farming region of the Das Velhas Basin, Minas Gerais State, Brazil. INAA was applied using the TRIGA Mark I IPR - R1 reactor at the Nuclear Technology Development Center of the National Committee of Nuclear Energy (CDTN/CNEN), in Belo Horizonte city, Minas Gerais State. At 100 kW of potency the flux of neutrons is 6.6 1011 n.cm-2.s-1. The samples analyzed were: water; sediment; gravel of gold mine and forage. The obtained results for the Das Velhas Basin in water and sediment samples - mining companies region - show a high level (μg/g) of contamination with the analyzed elements, mainly in the sediment samples. During the period of floods, in farming region hundreds of kilometers away, contamination is found in fish and forage, reaching and harming both people and animals that live in the marginal region. (Author)

  13. Essential and toxic element determination in edible mushrooms by neutron activation analysis

    International Nuclear Information System (INIS)

    In this study concentrations of As, Br, Co, Cr, Cs, Fe, K, Na, Rb, Se and Zn were determined in edible mushrooms acquired from commercial establishments in the city of Sao Paulo and directly from Mogi das Cruzes, Suzano, Juquitiba and Mirandopolis producers. The analytical technique used for determining these elements in edible mushrooms was Instrumental Neutron Activation Analysis (INAA). Species of the Agaricus, Lentinus and Pleurotus genera were acquired during the period from November, 2006 to March, 2007. About 150 to 200 mg of freeze-dried mushrooms were irradiated in a neutron flux of 1012 cm-2 s-1 for 8 hours in the IEA-R1 nuclear research reactor at IPEN-CNEN-SP. In order to evaluate the precision and accuracy of the methodology, four reference materials: INCT-MPH-2 Mixed Polish Herbs and INCT-TL-1 Tea Leaves, NIST SRM 1577b Bovine Liver, and the material Mushroom from IAEA were analyzed. Results showed some variation in the element concentrations among the different genera. In some samples, arsenic was found but in low concentrations. Arsenic is probably derived from the contamination from pesticides used in the cultivation, in their the substrates where mushrooms uptake their nutrients. Although there are element concentration variations, mushrooms can still be considered a very rich nutritional source, mainly because of their low concentrations of Na, and due to the good source of K, Fe and Zn. (author)

  14. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    Science.gov (United States)

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. PMID:26405840

  15. Characteristic of elements in coal bottom ash and fly ash by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Coal-fired power plant and industrial stacks that using coal produce solid waste such as bottom ash and fly ash. Determination of elements in these wastes qualitatively and quantitatively is usually the first step taken for subsequent evaluation of the associated environmental and biological risks. In this study, the determination of trace elements in bottom ash and fly ash by instrumental neutron activation analysis was carried out. The samples were irradiated at rabbit facility in G.A. Siwabessy reactor with neutron flux ~ 1013 n.cm-2.s-1, and then counted by HPGe spectrometer gamma detector. The validation of method was performed by characterization of standard reference material (SRM) 1633b coal fly ash from National Institute of Standards and Technology (NIST). Some elements such as Al, As, Ce, Co, Cr, Cs, Fe, K, La, Mn, Na, Sc, Sm, Ti and V were detected in both samples. The concentration of environmentally toxic elements, As and Cr in bottom ash were 6.24 and 137.4 mg/kg, whereas in fly ash were 6.37 and 39.0 mg/kg respectively. Arsenic concentrations had been over the standard value based on PP no.85/1999. (author)

  16. Determination of essential elements in commercial baby foods by INAA (Instrumental Neutron Activation Analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Vallinoto, Priscila; Maihara, Vera A., E-mail: pvallinoto@ipen.br, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The World Health Organization recommends that infants be breast feed exclusively at least six months after birth. After this period, it is recommended to introduce complementary foods, in order to meet nutritional amounts, minerals and energy needs of children. Commercial food products intended for infants form an important part of the diet for many babies, so it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of malnutrition in developing countries. In this study, essential elements: Ca, Co, Cr, Cs, Fe, K, Na and Zn levels were determined in seven different commercial food products samples by Instrumental Neutron Activation Analysis. The seven baby food samples were acquired in the markets of Sao Paulo city. After 8-hour irradiations in the IEA-R1 nuclear research reactor under a thermal neutron flux of 10{sup 12} n cm{sup -2} s{sup -1}, the essential elements were determined and the concentrations obtained were lower than the WHO requirements. For validation of the methodology, INCT MPH-2 Mixed Polish Herbs and NIST SRM 1577{sup b} Bovine Liver were analysed. (author)

  17. Determination of mercury in urine through Neutron activation analysis in dentists, as a measure of occupational exposure

    International Nuclear Information System (INIS)

    The mercury level was studied in urine to a dentists group belonging at the Universidad Autonoma del Estado de Mexico to determine the grade of contamination to the exposure of this element during their occupational activity. It was used the Neutron activation analysis which is an analytical method based in the irradiation with neutrons toward a stable nuclide. This can suffer a nuclear transformation to produce a radioactive nuclide and so it will be able to realize a quantitative analysis of itself. The TRIGA Mark III Reactor at the Nuclear Center in Mexico was used to realize this type of analysis due to the neutron fluxes which can be obtained as well as to the facilities in the irradiation of the sample.The purpose of this work is to determine the concentrations of mercury in the occupational exposed personnel such as dentists and so giving the recommendations of safety required to their production. (Author)

  18. Analysis and databasing software for integrated tomographic gamma scanner (TGS) and passive-active neutron (PAN) assay systems

    International Nuclear Information System (INIS)

    The CTEN-FIT program, written for Windows 9x/NT in C++,performs databasing and analysis of combined thermal/epithermal neutron (CTEN) passive and active neutron assay data and integrates that with isotopics results and gamma-ray data from methods such as tomographic gamma scanning (TGS). The binary database is reflected in a companion Excel database that allows extensive customization via Visual Basic for Applications macros. Automated analysis options make the analysis of the data transparent to the assay system operator. Various record browsers and information displays simplify record keeping tasks

  19. The obsidian of the Maltrata valley, Veracruz, origin analysis of the raw material with neutron activation analysis

    International Nuclear Information System (INIS)

    51 archaeological pieces of obsidian coming from the Maltrata valley were analyzed by means of the analysis technique by neutron activation, with the purpose of determining the interchange routes of that region. In accordance with the statistical study of the results, the obsidians of this investigation come from 5 deposits located in: Sierra de las Navajas, Pico de Orizaba, Zaragoza-Oyameles, Otumba and Paredon. The analyzed obsidian fragments were selected in accordance with their raw material type, size, weight, morphology, excavation context and surface. The irradiation of the samples was carried out in the research reactor TRIGA Mark III of the Nuclear Center of Mexico, with a neutrons flow of 1·1013 n·cm-2·s-1. (Author)

  20. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  1. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    Directory of Open Access Journals (Sweden)

    Pasquale Avino

    2013-01-01

    Full Text Available Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb the levels measured are only slight lower than those proposed as air ambient standard.

  2. Neutron activation analysis at CDTN/CNEN using the IPR-R1 Triga Mark I reactor

    International Nuclear Information System (INIS)

    This paper describes in summary the activities developed by the Laboratory for Neutron Activation Analysis since the starting up of the IPR-R1 TRIGA Mark I research reactor in 1960. This Laboratory is located at Centro de Desenvolvimento da Tecnologia Nuclear (Nuclear Technology Development Centre) / Comissao Nacional de Energia Nuclear (Brazilian Commission for Nuclear Energy), CDTN/CNEN. The activities of the Laboratory comprise the delayed fission neutron activation analysis, instrumental (comparative and parametric methods) and radiochemical / chemical methods. These methods are responsible for significant percentage of CDTN's analytical demand, meeting the clients' analytical needs and researches developed by the Laboratory, by CDTN and by other institutions. Over the years the work has been linked to the goals of the country and the institutions. Nowadays the neutron activation analysis is responsible for 70% of the analytical demand and the k0- Instrumental method for 80% of this demand answering clients' request and researches. In Brazil, CDTN is the only Institute that fully masters the Instrumental Neutron Activation Analysis k0-method using its own nuclear reactor. (author)

  3. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    Science.gov (United States)

    Abubakar, Sani; Usman, Ahmed Rufa'i.; Isa, Nasiru Fage; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-01

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  4. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 x 107 n/cm2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values

  5. Neutron activation analysis of the provenance relation of the ancient Yaozhou porcelain glaze

    International Nuclear Information System (INIS)

    The contents of 29 elements in ancient Yaozhou porcelain glaze samples and the soil ore nearby museum of Yaozhou kiln are measured by neutron activation analysis (NAA), the NAA data are statistically treated by fuzzy cluster method and the trend fuzzy cluster diagram is obtained. The results indicate that the ancient Yaozhou porcelain had absolutely different glaze pigments and were made from different kilns, their sources are comparatively complex. The sources of raw materials of the black glazes in Tang dynasty are very concentrated, the green glazes and the white glazes are scattered. The sources of raw materials of the dark reddish brown glazes and the glaze of rabbit hair in Song dynasty are similar with black glazes in Tang dynasty. The sources of raw material of the green glazes in Song dynasty are similar with bluish white glazes in Jin dynasty. The sources of raw material of the Tang three color are scattered, and obviously not the same as other samples

  6. Dating ancient Chinese celadon porcelain by neutron activation analysis and bayesian classification

    International Nuclear Information System (INIS)

    Dating ancient Chinese porcelain is one of the most important and difficult problems in porcelain archaeological field. Eighteen elements in bodies of ancient celadon porcelains fired in Southern Song to Yuan period (AD 1127-1368) and Ming dynasty (AD 1368-1644), including La, Sm, U, Ce, etc., were determined by neutron activation analysis (NAA). After the outliers of experimental data were excluded and multivariate normal distribution was tested, and Bayesian classification was used for dating of 165 ancient celadon porcelain samples. The results show that 98.2% of total ancient celadon porcelain samples are classified correctly. It means that NAA and Bayesian classification are very useful for dating ancient porcelain. (authors)

  7. Classification of medieval ceramics in the Rhineland and neighbouring areas by neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis (INAA) is known to be well suited for provenance determinations of ceramics, since more than 25 minor and trace elements can be measured with precisions high enough to discriminate between different pottery production workshops. INAA-data are presented for more than 1500 shards, mostly wasters, produced in different places such as Brueggen/Elmpt, Brunssum/Schinveld, Frechen/Cologne, Hoehr-Grenzhausen, Mayen, Paffrath, Pingsdorf/Bruehl, Raeren and Siegburg, to name only the most important earthen and stoneware production centres of the Rhine area in medieval and post medieval times. It turned out, that the wares of these different centres, although by archeological criteria often very similar, can be clearly recognized by INAA. This large reference databank can now be used to determine export pieces from these centres and to trace trade relations in the Middle Ages. An examples of a provenance determination of questionable finds of Pingsdorf and Paffrath Ware from Emden is given. (author)

  8. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    Science.gov (United States)

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  9. The accuracy of instrumental neutron activation analysis of kilogram-size inhomogeneous samples.

    Science.gov (United States)

    Blaauw, M; Lakmaker, O; van Aller, P

    1997-07-01

    The feasibility of quantitative instrumental neutron activation analysis (INAA) of samples in the kilogram range without internal standardization has been demonstrated by Overwater et al. (Anal. Chem. 1996, 68, 341). In their studies, however, they demonstrated only the agreement between the "corrected" γ ray spectrum of homogeneous large samples and that of small samples of the same material. In this paper, the k(0) calibration of the IRI facilities for large samples is described, and, this time in terms of (trace) element concentrations, some of Overwater's results for homogeneous materials are presented again, as well as results obtained from inhomogeneous materials and subsamples thereof. It is concluded that large-sample INAA can be as accurate as ordinary INAA, even when applied to inhomogeneous materials.

  10. Instrumental neutron activation analysis of an enriched 28Si single-crystal

    CERN Document Server

    DAgostino, G; Giordani, L; Mana, G; Oddone, M

    2013-01-01

    The determination of the Avogadro constant plays a key role in the redefinition of the kilogram in terms of a fundamental constant. The present experiment makes use of a silicon single-crystal highly enriched in 28Si that must have a total impurity mass fraction smaller than a few parts in 109. To verify this requirement, we previously developed a relative analytical method based on neutron activation for the elemental characterization of a sample of the precursor natural silicon crystal WASO 04. The method is now extended to fifty-nine elements and applied to a monoisotopic 28Si single-crystal that was grown to test the achievable enrichment. Since this crystal was likely contaminated, this measurement tested also the detection capabilities of the analysis. The results quantified contaminations by Ge, Ga, As, Tm, Lu, Ta, W and Ir and, for a number of the detectable elements, demonstrated that we can already reach the targeted 1 ng/g detection limit.

  11. Determination of Mineral Contents in Unpolished Rice and Bean Samples by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    As scientists have focused their researches on the health impacts caused by mineral nutrient deficiencies and hazardous elements, public concern regarding mineral intake from dietary food is rising. In this reason, the dietary habits of Koreans have been shifted from white rice to more nutrient rice like unpolished rice and rice mixed with beans. It is known that unpolished rice and beans contain more protein, vitamin and mineral contents than white rice and are more beneficial to human health, even though they sometimes cause indigestion or allergy. The objectives of this study were to determine the mineral contents in unpolished rice and bean samples by a neutron activation analysis (NAA) and to compare the level of mineral contents between the samples

  12. Analysis of toxic trace elements in sea food samples by neutron activation

    International Nuclear Information System (INIS)

    The contents of toxic and essential trace element were analysed such as As, Hg, Se and Zn by neutron activation analysis in coastal fishes consumed by the general population of Malaysia. The mean values of the elements analysed expressed in mg/kg fresh weight ranged 1.42-5.61, 0.06-0.42, 4.2-20.6, 0.41-1.28 for As, Hg, Zn and Se, respectively. The maximum permissible limit for As in food was set at 1.0 mg/kg under the Malaysian Food Regulations. The results showed that consumption of coastal fishes is not permitted under the regulations, while the levels of Hg, Se and Zn were within the permissible limits. The daily dietary intake of As and Hg at 400 μg and 30 μg respectively are still within the tolerance levels. (author) 9 refs.; 2 tabs

  13. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    Science.gov (United States)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  14. A quality assurance programme for the determination of selenium in foods by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Selenium is unevenly distributed through the biosphere. The levels, species and bioavailability of selenium in foods depend greatly on the geochemical environment in which they are grown. Variation in geochemical conditions can not only lead to certain diseases in animals but also influence the selenium body burden in humans. For these reasons, there is an increasing interest in monitoring selenium levels in foods and diets. A quality assurance programme has been developed for the determination of low levels of selenium in foods and diets by cyclic and pseudo-cyclic instrumental neutron activation analysis (INAA) using the short-lived (half-life = 17.4 s) 77Sem nuclide. Both conventional and anti-coincidence gamma ray spectrometry techniques have been employed. Pseudo-cyclic INAA in conjunction with anti-coincidence counting has been found to provide the most reliable results. Internal and external quality assessments have been done using a number of parameters. (author)

  15. Development of distinction method of production area of ginsengs by using a neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Chung, Yongsam; Sim, Chulmuu; Sun, Gwangmin; Lee, Yuna; Yoo, Sangho

    2011-01-15

    During the last 2 years of the project, we have tried to develop the technology to make a distinction of the production areas for Korean ginsengs cultivated in the various provinces in Korea and foreign countries. It will contribute to secure the health food safety for public and stability of its market. In this year, we collected ginseng samples cultivated in the northeastern province in Chinese mainland such as Liaoning province, Jilin province and Baekdu mountain within Jilin province. 10 ginseng samples were collected at each province. The elemental concentrations in the ginseng were analyzed by using a neutron activation analysis technique at the HANARO research reactor. The distinction of production area was made by using a statistical software. As a result, the Chinese Korean ginsengs were certainly differentiated from those cultivated in the famous province in Korea though there was a limitation that the number of our sample we analyzed is very small.

  16. Application of neutron activation analysis for the determination of wines originating from different vineyards

    International Nuclear Information System (INIS)

    Neutron activation analysis has been used for the determination of trace elements in different wines originating from various french vineyards. Non-destructive technologies are used for short and middle half-life radionuclides (28Al - 76As - 49Ca - 38Cl - 42K - 27Mg - 56Mn - 24Na - 52V). A radiochemical separation is necessary for longer half-life radionuclides (60Co - 52Cr - 134Cs - 59Fe - 86Rb - 65Zn). The results of the study show that the identification of vineyards based on the determination of specific oligo-elements is feasible. However, more data are needed to demonstrate that the knowledge of the amounts of specific oligo-elements in a wine corresponding to a given vineyard can be used to disclose frauds, particularly in the cases of wine watering or mixtures of wines originating from different vineyards. (author)

  17. Determination of Mineral Contents in Unpolished Rice and Bean Samples by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, J. H.; Kim, S. H.; Baek, S. Y.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    As scientists have focused their researches on the health impacts caused by mineral nutrient deficiencies and hazardous elements, public concern regarding mineral intake from dietary food is rising. In this reason, the dietary habits of Koreans have been shifted from white rice to more nutrient rice like unpolished rice and rice mixed with beans. It is known that unpolished rice and beans contain more protein, vitamin and mineral contents than white rice and are more beneficial to human health, even though they sometimes cause indigestion or allergy. The objectives of this study were to determine the mineral contents in unpolished rice and bean samples by a neutron activation analysis (NAA) and to compare the level of mineral contents between the samples

  18. Concentration of 24 Trace Elements in Human Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    By means of neutron-activation analysis, human heart tissue from autopsy of 20 victims of traumatic accidents has been investigated with respect to the concentration of 24 different trace elements. A recently developed ion-exchange technique combined with gamma spectrometry has been used, which permits simultaneous determination of a large number of trace elements. The following trace elements have been determined quantitatively: Ag, As, Au, Ba, Br; Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Pt, Rb, Sb, Se, Se, Sm, Zn, W. In some heart samples, Hf and Os were determined qualitatively. The mean and standard deviation are given for the elements Cu, Fe, Se and Zn, Since none of the other quantitatively determined trace elements were normally distributed, the median is given as the central value. When possible, comparisons with values from other investigations have been made. No marked differences in the trace-element concentrations with age or sex could be detected

  19. Determination of arsenic, scandium, chromium, cobalt and nickel in asbestos by neutron activation analysis

    International Nuclear Information System (INIS)

    As, Sc, Cr, Co and Ni were determined by neutron activation analysis in various Chrysolite-Asbestos from Canada, Russia, Italy in an asbestos plate, and in dry, as well as in wet manufactured asbestos. Following concentration values were found: for As 0.01-5.5 ppm, for Sc 5.4-14.80 ppm, for Cr 79.5-918.8 ppm, for Co 10.8-80.9 ppm, for Ni 148-1786 ppm. Statistically significant differences (t=0.05) in contents of As, Sc, Cr, Co and Ni were detected in the different samples of asbestos. The concentration of As and Cr in Italian asbestos were considerably higher than in Canadian chrysolite. (author)

  20. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  1. Determination of elements in cisadane river sediments by neutron activation analysis

    International Nuclear Information System (INIS)

    Determination of elements in Cisadane river sediments by neutron activation analysis has been conducted. Samples of sediments were obtained from some location along Cisadane river, i.e. Leuranji, Karanggan, Cibigo, Cisauk, Warung Mangga Pintu Air and Estuary Teluk Naga. the elements analysed were Al, Mn, Mg, V, K, Na, Fe, Cr, Co, U and Zn, and the results were compared to the SRM of sediment sample from IAEA. Generally, the results showed that the mean concentration of elements were found in Cibogo, Cisauk, Pintu Air and Muara Teluk Naga which were higher than others. Concentration factor of elements in sediments were in between of 0,02 - 3,45, this factor indicated that Cisadane river sediments have not been contaminated. CRM sediments 2704 from IAEA used as NAA Quality Control (author)

  2. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abubakar, Sani; Isa, Nasiru Fage [Bayero University, Kano Nigeria (Nigeria); Usman, Ahmed Rufa’i [University of Malaya, Kuala Lumpur (Malaysia); Umaru Musa Yar’adua University, Katsina Nigeria (Nigeria); Khandaker, Mayeen Uddin [University of Malaya, Kuala Lumpur (Malaysia); Abubakar, Nuraddeen [Center for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria (Nigeria)

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  3. On the accuracy of protein determination in large biological samples by prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation analysis (PGNAA) facility has been developed for the determination of nitrogen and thus total protein in large volume biological samples or the whole body of small animals. In the present work, the accuracy of nitrogen determination by PGNAA in phantoms of known composition as well as in four raw ground meat samples of about 1 kg mass was examined. Dumas combustion and Kjeldahl techniques were also used for the assessment of nitrogen concentration in the meat samples. No statistically significant differences were found between the concentrations assessed by the three techniques. The results of this work demonstrate the applicability of PGNAA for the assessment of total protein in biological samples of 0.25-1.5 kg mass, such as a meat sample or the body of small animal even in vivo with an equivalent radiation dose of about 40 mSv

  4. Neutron activation analysis of archaeological ceramics from the Central Valley and Turrialba, Costa Rica

    International Nuclear Information System (INIS)

    Neutron activation analysis of 56 ceramic samples is oriented toward a better understanding of the interaction and autonomy among late Period V (A.D. 500-1000) and Period VI (A.D. 1000-1550) societies in the Central Valley and Turrialba. Samples are selected from three sites, Guayabo, Agua Caliente and La Ribera, the samples correspond to (1) local types and (2) polychrome types considered trade goods coming from Guanacaste/Nicoya. Data have supported the Guanacaste-Nicoyan origen of the polychrome pottery. Regarding the Central Valley and Turrialba local types, very little evidence was found for their exchange among communities. This result is explicable on the basis of political autonomy and economic autarky of first-tier chiefdom sites such as Agua Caliente and Guayabo. (author)

  5. Trace element determination in beauty products by k0-instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    A recent study on trace elements in beauty products and cosmetics sold on the Asian market has shown the presence of high levels of U, Th and rare earth elements in so called 'Hormesis cosmetics'. For the purpose of comparison, some more information about trace elements in European cosmetics would be useful. In this paper the results obtained using k0-standardised Instrumental Neutron Activation Analysis (k0-INAA) for more than 20 trace elements in 20 different beauty products collected from the European market are presented. We found traces of Ba, As and Sb which is in breach with European legislation. For some of the other elements like Cr and Co further speciation is needed in order to evaluate their presence in beauty products. (author)

  6. Determination of chemical pollutants in the atmosphere of the Valley of Toluca by neutron activation analysis

    International Nuclear Information System (INIS)

    The studies about the presence of contaminants in the atmosphere of diverse cities have been increased widely because to the problems that those cause to public health. Because of this in 1986 was made an Atmospheric Monitoring Program in the Valley of Toluca including the city of Toluca and Toluca- Lerma industrial corridor. That program consist of a preliminary net of sampling for the recollection of total suspended particles on glass-fiber filters, the sampling was performed two times a week in five different zones. To date have been analyzed some of these filters by atomic absorption in the Chemistry School of the Mexico's State University. In this work, is showed the establishment of chemical treatment technique and the results of quantitative analysis through neutron activation in filters of recent monitoring. (Author)

  7. Neutron activation analysis of neonate and maternal hair sampled in areas with different levels of pollution

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis was performed on human head hair of newborns and mothers sampled in two areas with different levels of environmental exposure. The group of neonates from the exposed area (polluted by thermal power plants burning brown coal and by chemical industry) exhibited higher levels of several trace elements in hair, e.g. Se, Zn, Hg and Sb in comparison with the control group. Moreover, the mean concentrations of Se, Hg, Zn and Br in neonate hair were found to be higher than in mothers' hair. Although the study revealed statistically significant differences in the composition of neonate hair samples in areas with different levels of environmental exposure, the differences are relatively small. Only a thorough long-term study both with environmental and medical observations can prove a direct connection of the elevated levels of some trace elements in neonate hair with the higher incidence of mental diseaes of children living in the exposed area. (author)

  8. Determination of trace elements in human head hair by neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis was used to measure concentrations of elements in hair samples from a group of patients of a medical clinic and from a control group. Elements Al, As, Br, Ca, Cd, Cl, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Sb, Sc, Se, V and Zn were analyzed and comparisons were made between the results obtained for these two groups of individuals. Normal ranges for elemental hair by commercial laboratories are also presented, for comparison, with those results obtained for the control group of individuals living in Sao Paulo, Brazil. Precision and accuracy of the results were evaluated by analyzing NIES No. 5 Human Hair and SHINR GBW09101 Human Hair reference materials. (author)

  9. Instrumental neutron activation analysis of hair for mercury determination in case of possible professional contamination. 1

    International Nuclear Information System (INIS)

    The results of neutron-activation determination of Hg in hair of the staff working with laboratory Hg-equipment are presented. The accuracy of the analysis has been tested including the possible Hg losses from phenol-formaldehyde resigns base standards in Al foils and from hair samples in polyethylene ampoules during their irradiation in water-filled nuclear reactor channel. The mean content of Hg in hair has been found to be 1.42+-0.42 (n=22) for the staff, and 1.05+-0.21 (n=10) μg for the controls. A staff group with a higher Hg content in hair (7.3+-3.0, n=10) has been singled out

  10. Neutron activation analysis technique for the investigation of environmental contamination with 129I

    International Nuclear Information System (INIS)

    A neutron activation technique is described which does not require specialized apparatus or immediate access to irradiation facilities, but is sufficiently sensitive to measure 129I at the levels encountered around the BNFL nuclear fuel reprocessing plant at Sellafield in west Cumbria, UK. The method allows analysis of a wide range of media and is therefore well suited to environmental investigations. One such application is described in which the deposition pattern of 129I in west Cumbria has been measured, and hence the importance of transfer from sea as a route of terrestrial contamination has been assessed. The current program of research is also described briefly. This involves measurement of 129I in a range of media important in the human food chain and aims to elucidate transfer mechanisms. 4 references, 2 figures

  11. Isotope identification of Saudi Arabian rock samples from Umm Al-Birak using neutron activation analysis

    International Nuclear Information System (INIS)

    Forty eight geological samples from Umm Al-Birak area in the northwest part of Saudi Arabia are analyzed qualitatively and quantitatively using the instrumental neutron activation analysis technique. Samples are properly prepared and irridiated in the reactor facilities of the National Tsing-Hue University in Taiwan. Gamma spectra from high resolution detector are analyzed using BRUTAL code. Final calculations are made by two independent programs, namely, ELCAL and SMPCL. Twenty trace elements are identified and their concentrations are used in the investigation of the geochemistry of the Umm Al-Birak microgranite site. These elements are: Co, Cr, Eu, Fe, Hf, K, La, Lu, Na, Rb, Sc, Sm, Ta, Tb, Th, U, Yb, Zn and Zr. It is shown that high grade area is a differentiated rock that crystallized in a late stage of Umm Al-Birak microgranite area. 43 Ref

  12. Elementary composition of the siderurgy slag by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The slag has been applied to the ground to neutralize its acidity, in similar way to the calcareous rock, contributing in the agriculture as corrective of the acidity alone it and source of nutrients for the plants. However, the alternative for the agricultural slag exploitation is related to metal texts heavy gifts in the slag. The objective of the present work was to survey of the chemical composition of trashes generated in blast high-oven, steel, oven of pan and fertilizers that had used in its manufacture slag of siderurgy for the technique of instrumental neutron activation analysis. The results had evidenced the existence of high variations in the elements Ce, Cr, In, K, Sb and Zn in the distinct analyzed samples. (author)

  13. Instrumental neutron activation analysis applied to the chemical composition of steel

    International Nuclear Information System (INIS)

    In the technological application of steel, the knowledge of its chemical composition is of fundamental importance as it is directly related to various properties, such as, mechanical properties, corrosion resistance, temperability and others. Instrumental Neutron Activation Analysis, INAA, is an appropriate technique in the evaluation of the chemical composition of steel and other metallurgical materials due to the possibility of simultaneous determination of a great number of elements without the inconvenience of sample dissolution. Element determination is achieved with good accuracy and precision for major and minor constituents as well as for trace elements. In this paper, INAA was used in the determination of As, Co, Cu, Mn, Mo, V and W in steel and iron samples and in certified reference materials. The obtained accuracy and precision were less than 10% for most of the elements confirming the possibility of its use in the study of metallic samples and in the certification of new reference materials. (author)

  14. Origin identification for Cantona, Puebla, obsidians by the analysis method of neutron activation (NAA)

    International Nuclear Information System (INIS)

    There are tests that most of the obsidian worked in the workshops of Cantona, Puebla, is coming from the mineral deposits of Oyameles-Zaragoza, but also has been detected obsidian that macroscopically belongs to other mineral deposits. The present work has as purpose to determine the provenance of an obsidian sample obtained in the Cantona Site to know if there was the presence of obsidian of other mineral deposits. For the study the neutron activation analysis was used to identify the presence of other deposits. An explanation on the treatment to the selected pieces is included, the preparation of the same ones for its irradiation in the nuclear reactor, the counting and statistical study of the results. Finally the results of the selected samples are presented, indicating their origin places, that time comes and the interpretation of the results is given. (Author)

  15. Use of neutron activation analysis for the control of air pollution of Algiers

    International Nuclear Information System (INIS)

    The urban zone needs clean air to assure public health. To achieve this goal several filter samples were collected in different sites in Algiers city. Toxic elements such as: Na, Mg, Cl, Sc, Cr, Ti, V, Fe, Co, Cu, Zn, Se, Br, Ag, Sb, Ce, La, Hf, Ta and Hg have been measured in the filters using neutron activation analysis technique. Irradiation of filter samples and standards were carried out in Es-Salem reactor. The experimental procedure and the results are discussed. We noted during this work that the upper limit values for suspended dusts and the high concentrations for some toxic elements found are due to the weather conditions and intense road traffic around collecting sites. (authors)

  16. The determination of molybdenum in geological samples by neutron activation analysis

    International Nuclear Information System (INIS)

    A metal-silicate extraction technique combined with neutron activation analysis was developed to determine molybdenum in geological samples. The samples are equilibrated with Fe-metal powder at high temperatures. Molybdenum is completely extracted into the metal phase because of very reducing conditions in the furnace. The metal spherule is separated from the silicates, irradiated and dissolved in an acid solution. The molybdenum is precipitated as a sulfide and the precipitate is dissolved in aqua regia and counted on a Ge(Li)-detector. The radiochemical yield is obtained by irradiation of the solution. The method avoids production of sup(99)Mo from induced fission of sup(235)U by performing the metal-silicate separation before irradiation. The precipitation step may be necessary to remove the high background from the decay of sup(59)Fe. Mo concentrations down to 15 ng/g were obtained using this method. (author)

  17. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria)

    2015-09-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  18. Assessment of some chemical element contents in Traganum nudatum Del shrub using instrumental neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    Bouzid Nedjimi; Brahim Beladel

    2015-01-01

    Instrumental neutron activation analysis (INAA) has been used to determine some chemical element contents (K, Ca, Na, Fe, Zn, Co, Eu, Sb, and Sc) in Traganum nudatum Del (Chenopodiaceae family) consumed in North African rangelands by sheep livestock. Samples were collected from the area of Djelfa in an arid steppe of Algeria. Results show that pasture halophyte had sufficient levels of K, Ca, Zn, and Co to meet the requirements of ruminants. However, it seems that this halophyte shrub had substantial amounts of Na, higher than the critical level established by the National Research Council (NRC). Eu, Sb, and Sc were within the safety baseline of all the assayed elements recommended by the NRC. The high Na content (∼10 g/kg) in this halophytic species requires elevated intake of water by livestock.

  19. Bromine determination by neutron activation analysis and its distribution in the atmosphere

    International Nuclear Information System (INIS)

    Bromine, one of the main participants in ozone layer destruction, is 10 to 100 times more effective than chlorine. There are two principal sources of methyl bromide emissions: the oceans and some pesticides that are used in farming. Bromine was detected in 'premium' and 'magna sin' gasolines (2.86±0.96 and 1.54±0.38 ppm, respectively) as well as in condensed water found in exhaust pipes of vehicles. In addition, samples of rainwater were also analyzed to determine atmospheric bromine concentration. In water samples Br concentrations ranging from 2.09 to 0.06 ppm were found. The techniques utilised were neutron activation analysis and high voltage electrophoresis, the latter to determine the chemical form of bromine in condensed water samples. Finally, suspended particles from rainwater were also analysed by scanning electron microscopy (SEM). (author)

  20. Study of the long-range transport of atmospheric pollutants by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Aerosol samples were collected to study the characteristics of marine aerosols in the different western Pacific ocean areas. During the first cruise from 15 October to 25 November 1989, aerosol samples were collected with a kA-200 Andersen cascade impactor and a kB-120 sampler. Instrumental neutron activation analysis was used to determine the elemental composition of the aerosols. The concentrations of crustal and pollution elements in aerosols were higher over the ocean area close to the China coast and decreased very rapidly with increasing distance from land. The morphology and elemental composition of aerosol particles showed that the seasalt particles may conglomerate with small crustal and pollution particles from land to form large particles. (author). 4 refs, 1 fig., 1 tab

  1. Monte Carlo Calculation for Landmine Detection using Prompt Gamma Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seungil; Kim, Seong Bong; Yoo, Suk Jae [Plasma Technology Research Center, Gunsan (Korea, Republic of); Shin, Sung Gyun; Cho, Moohyun [POSTECH, Pohang (Korea, Republic of); Han, Seunghoon; Lim, Byeongok [Samsung Thales, Yongin (Korea, Republic of)

    2014-05-15

    Identification and demining of landmines are a very important issue for the safety of the people and the economic development. To solve the issue, several methods have been proposed in the past. In Korea, National Fusion Research Institute (NFRI) is developing a landmine detector using prompt gamma neutron activation analysis (PGNAA) as a part of the complex sensor-based landmine detection system. In this paper, the Monte Carlo calculation results for this system are presented. Monte Carlo calculation was carried out for the design of the landmine detector using PGNAA. To consider the soil effect, average soil composition is analyzed and applied to the calculation. This results has been used to determine the specification of the landmine detector.

  2. Air pollution biomonitoring in Argentina, application of neutron activation analysis to the study of biomonitors

    International Nuclear Information System (INIS)

    The assessment of baseline levels of atmospheric pollutants and the identification of polluted areas is a complex problem, as pollutant contents at a certain geographical location is usually a combination of contributions from various diverse sources, including long-range transport. Elemental chemical characterization of atmospheric pollutants is thus of great importance and Neutron Activation Analysis has proved to be a powerful technique for multielemental determination of trace elements in biomonitors and aerosols. The general objective of this project is to study the use of biomonitors, specially lichens, for evaluating pollutant levels over a wide geographic area of Argentina and for establishing baseline values and assessing time trends. Two lichen species (Usnea sp. and Ramalina ecklonii (Spreng.) Mey. and Flot) have been identified as suitable monitors of air pollution, with potential regional application at the central area of the country (province of Cordoba) and pilot studies have been initiated to test the practicability of sampling and sample collection. An area of approximately 40,000 km2 will be covered by a sampling network, using in situ growing lichens. The distribution maps for the two selected species are already drawn and sampling of local soils will also be conducted. Current efforts at the Neutron Activation Analysis laboratory are put on assessing, for the selected lichen species, the influence of sample preparation methods on trace element concentrations. The use of other analytical techniques will allow the evaluation of the bioindicator chemical response and its relationship to different atmospheric quality levels. Source identification and apportionment will be done by statistical fingerprinting of the elemental concentrations, as sources of pollution are characterized by being composed of different mixtures of elements in different proportions. In this way and as a long-term objective, regional maps will be drawn showing the

  3. Whole body analysis of the knockout gene mouse model for cystic fibrosis using thermal and fast neutron activation analysis

    International Nuclear Information System (INIS)

    A genetically engineered 'knockout gene' mouse model for human cystic fibrosis (CF) has been utilized to study bone mineralization. In CF, the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride ion channel, is either absent or defective. To produce the animal model the murine CFTR gene has been inactivated producing CF symptoms in the homozygotic progeny. CF results in abnormal intestinal absorption of minerals and nutrients which presumably results in substandard bone mineralization. The objective of this study was to determine the feasibility of using whole-body thermal and fast neutron activation analysis to determine mineral and trace-element differences between homozygote controls (+/+) and CF (-/-), murine siblings. Gender-matched juvenile +/+ and -/- litter mates were lyophilized and placed in a BN capsule to reduce thermal-neutron activation and irradiated for 10 seconds at φfast ∼ 1 x 1013 n x cm-2 x s-1 using the MURR pneumatic-tube facility. Phosphorus was measured via the 31P15(n,α)28Al13 reaction. After several days decay, the whole-body specimens were re-irradiated in the same facility, but without thermal-neutron shielding, for 5 seconds and the gamma-ray spectrum was recorded at two different decay periods allowing measurement of 77mSe, 24Na, 27mg, 38Cl, 42k, 49Ca, 56Mn, 66Cu and 80Br from the corresponding radiative-capture reactions. (author)

  4. Trace element determination study in human hair by neutron activation analysis

    International Nuclear Information System (INIS)

    Human hair analysis studies have been subject of continuous interest due to the fact that they can be used as an important tool to evaluate trace element levels in the human body. These determinations have been carried out to use hair for environmental and occupational monitoring, to identify intoxication or poisoning by toxic metals, to assess nutritional status, to diagnose and to prevent diseases and in forensic sciences. Although hair analysis presents several advantages over other human tissue or fluid analyses, such as organ tissue, blood, urine and saliva, there are some controversies regarding the use of hair analysis data. These controversies arise from the fact that it is difficult to establish reliable reference values for trace elements in hair. The purpose of this study was to evaluate the factors that affect element concentrations in hair samples from a population considered healthy and residing in the Sao Paulo metropolitan area. The collected human head hair was cut in small pieces, washed, dried and analyzed by neutron activation analysis (NAA). Aliquots of hair samples and synthetic elemental standards were irradiated at the IEA-R1 nuclear research reactor for 16 h under a thermal neutron flux of about 5x1012 n cm-2 s-1 for As, Br, Ca, Co, Cr, Cs, Cu, Fe, K, La, Na, Sb, Sc, Se and Zn determinations. The induced gamma activities of the standards and samples were measured using a gamma ray spectrometer coupled to an hiperpure Ge detector. For quality control of the results, IAEA- 85 Human Hair and INCT-TL-1 Tea Leaves certified reference materials (CRMs) were analyzed. Results obtained in these CRMs presented for most of elements, good agreement with the values of the certificates (relative errors less than 10%) and good precision (variation coefficients less than 13.6%). Results of replicate hair sample analysis showed good reproducibility indicating homogeneity of the prepared sample. Results obtained in the analyses of dyed and non-dyed hair

  5. Neutron Activation Analysis of Single Grains Recovered by the Hayabusa Spacecraft

    Science.gov (United States)

    Ebihara, M.; Sekimoto, S.; Hamajima, Y.; Yamamoto, M.; Kumagai, K.; Oura, Y.; Shirai, N.; Ireland. T. R.; Kitajima, F.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Tsuchiyama, A.; Uesugi, M.; Yurimoto, H.; Zolensky, M. E.; Abe, M.; Fujimura, A.; Mukai, T.; Yada, T.

    2011-01-01

    The Hayabusa spacecraft was launched on May 9, 2003 and reached an asteroid Itokawa (25143 Itokawa) in September 2005. After accomplishing several scientific observations, the spacecraft tried to collect the surface material of Itokawa by touching down to the asteroid in November. The spacecraft was then navigated for the earth. In encountering several difficulties, Hayabusa finally returned to the earth on June 12, 2010 and the entry capsule was successfully recovered. Initially, a g-scale of solid material was aimed to be captured into the entry capsule. Although the sample collection was not perfectly performed, it was hoped that some extraterrestrial material was stored into the capsule. After careful and extensive examination, more than 1500 particles were recognized visibly by microscopes, most of which were eventually judged to be extraterrestrial, highly probably originated from Itokawa [1]. Several years before the launching of the Hayabusa spacecraft, the initial analysis team was officially formed under the selection panel at ISAS. As a member of this team, we have been preparing for the initial inspection of the returned material from many scientific viewpoints [2]. Once the recovered material had been confirmed to be much less than 1 g, a scheme for the initial analysis was updated accordingly [3]. In this study, we aim to analyze tiny single grains by instrumental neutron activation analysis (INAA). As the initial analysis is to be started in mid-January, 2011, some progress for the initial analysis using INAA is described here. Analytical procedure

  6. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    Directory of Open Access Journals (Sweden)

    Wallace Barton

    2014-03-01

    Full Text Available Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes [3] involved was used to create a statistical model. Maximum likelihood estimation was combined with metaheuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT and quasi-particle (QP. The approach used seems to be able to translate well into other fields of research.

  7. Analysis of medicinal plant extracts by neutron activation method; Analise de extratos de plantas medicinais pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Sandra Muntz

    1995-12-31

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed 70 refs., 13 figs., 15 tabs

  8. Application of neutron activation analysis method in leaves of Casearia obliqua medicinal plant

    International Nuclear Information System (INIS)

    The pharmacological properties of medicinal plants have been related to the presence of organic compounds, however elements are also known to have an important participation in the active compounds constitution process. In this study, instrumental neutron activation analysis (INAA) was applied to determine elements in leaves of Casearia obliqua medicinal plant collected at two different locations in the Atlantic Forest, Brazil, SP. Soil samples collected from where this plant was grown were also analyzed in order to verify if there is a correlation between the elements present in soils and plant leaves. Br, Ca, Cl, Co, Cr, Cs, Fe, K, La, Mn, Na, Rb, Sb, Sc and Zn were determined in C. obliqua leaves and the elements As, Ca, Ce, Eu, Fe, Hf, La, Lu, Nd, Rb, Sc, Sm, Tb, Th, U and Zn in soils. Soil samples collected from two different locations presented similar concentrations for most elements. Likewise, C. obliqua leaves collected from the two locations presented similar elemental contents. These results suggest that analysis of extracts from these leaf samples and the evaluation of their pharmacological activities should be carried out. Certified reference materials IAEA-Soil-7, USGS W-1, NIST 1573a Tomato Leaves and NIST 1515 Apple Leaves were analyzed and the quality of the obtained results was assured. (author)

  9. Multielement analysis of human hair reference material by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    A Human Hair (NIES No. 5) as an environmental reference material prepared by the National Institute for Environmental Studies of Japan (NIES) was analyzed by an instrumental neutron activation method. The human hair samples (ca. 200∼500 mg) were irradiated for 2 min or 5 h at Musashi Institute of Technology Research Reactor. The activated samples were measured by four gamma-ray spectrometories, namely a spectrometry using a coaxial Ge detector, anticoincidence and coincidence counting spectrometries using a coaxial Ge detector, and a well-type NaI (Tl) detector, and a low energy photon spectrometry (LEPS) using a planer Ge detector, to determine as many trace elements as possible with high sensitivity. Concentrations of 43 elements (Na, Mg, Al, Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Sn, Sb, I, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Hf, Ta, Au, Hg, Th, U) were determined by these measurements. The analyzed values of many elements except Sr were in good agreement with NIES certified values determined by nine different analytical methods. (author)

  10. NEUTRON ACTIVATION ANALYSIS FOR SIMULTANEOUS DETERMINATION OF TRACE ELEMENTS IN AMBIENT AIR COLLECTED ON GLASS-FIBER FILTERS

    Science.gov (United States)

    Arsenic with 25 other elements are simultaneously determined in ambient air samples collected on glass-fiber filter composites at 250 United States sites. The instrumental neutron activation analysis (NAA) technique combined with the power of a dedicated mini-computer resulted in...

  11. Determination of trace elements in seawater using Mg-scavenger as preconcentration agent, and neutron activation analysis

    International Nuclear Information System (INIS)

    In order to determine trace elements in seawater, a preconsentration method based on coprecipitation on Mg(OH) 2 is presented. Different parameters influencing the carrying effects have been investigated using model solutions and radioactive tracers. The deposit and solution are separated by filtration. Filter with deposit is stored in quarts ampules for later determination of trace elements by means of neutron activation analysis

  12. Application of neutron activation analysis in determining the mineral contents of the olive fruit fly and its food

    International Nuclear Information System (INIS)

    The composition of the olive fruit mesocarp and of the olive fruit fly, Dacus oleae, pupae in Na, K, Ca, Mg and Mn determined by neutron activation analysis (NAA) and atomic absorption spectrophotometry (AAS) is reported. The AAS was used as a standard method to evaluate the results obtained by NAA because of problems encountered with this method. (Auth.)

  13. Neutron activation analysis of lichens for atmospheric pollution study in Sao Paulo city

    International Nuclear Information System (INIS)

    In the present study instrumental neutron activation analysis has been applied to determine the elements accumulated in samples of Canoparmelia texana, a specie of lichen, collected in regions with different levels of pollution: Intervales State Park, an area considered non polluted that belongs to Atlantic Forest ecosystem and distinct sites in the metropolitan region of Sao Paulo city. The results obtained in the analysis showed that samples collected in the clean area indicated lower concentrations of elements than those obtained for samples from metropolitan region. The concentrations of the elements Ba, Ca, Cl, Fe, K, Mn, Na, Rb and Zn were obtained at μg g-1 levels and the elements As, Br, Co, Cr, Cs, La, Sb, Sc, Se and U at ng g-1 levels. Cluster analysis was applied to classify into distinct groups the sites using the element concentrations in these samples. The accuracy and precision of the results were evaluated by IAEA 336 Lichen reference material analysis and the data given for this material were in agreement with certified values with relative standard deviations lower than 11,4%. (author)

  14. Archaeometric investigation of medieval Bulgarian glasses and sgraffito ceramics by neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis was used to determine the content of Au, Ba, Ca, Ce, Cl, Cr, Co, Cs, Cu, Eu, Fe, Hf, La, Lu, Mn, Na, Rb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, Sb, V and Yb in glass samples excavated from medieval glassworkshops in Pliska and Preslav and in 20 glass finds from Preslav. Sgraffito ceramic samples excavated in Veliko Tarnovo were also analysed and the elements Al, As, Au, Ba, Br, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mg, Mn, Na, Nd, Rb, Sb, Sc, Si, Sm, Ta, Tb, Th, Ti, U, V and Yb were determined. In order to localize the production site of the archaeological finds, the results from the analysis were subjected to cluster analysis, and stepwise discriminant analysis using the program package BMDP. A variety of the production of the medieval glass workshop in Preslav was identified and evaluated. It was proved that a part of the sgraffito ceramics samples have been produced in one and the same place and that the chemical composition might be successfully used to differentiate between the production of two workshops

  15. Determination of Chromium Content in Human Skin by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Chromium eczema is a well-known phenomenon in dermatological practice. Different explanations may be given for it. According to one of these the specific texture of the skin of patients is assumed to allow more chromium to pass through the upper layers. As a result, the chromium accumulates faster in the dermis of patients so that a critical value is reached sooner. Another explanation might be that die sensitivity threshold for chromium in patients is lower than in normal persons and can more easily be exceeded. To distinguish between these possibilities and to obtain more information, an investigation was started in which the chromium content in the skin was compared for eczema patients and normal people. The sample weight (10 mg) and the chromium content (0.2 - 0.4 ppm) involved require a sensitive technique. Neutron activation analysis is well suited to this purpose. Under our operation conditions (irradiation time 10 days, neutron flux 1014n/cm2s) it is possible to determine quantities as low as 5 x 10-11 g of chromium. Preliminary experiments show relatively large variations in chromium content of comparable samples, even in skin samples taken from the back of a single person. It is further suggested by the results of these experiments that the chromium content in the skin of eczema patients is lower than in that of normal patients. The results of the analysis may be seriously affected by chromium contamination during sample preparation. Therefore chromium-free instruments must be used. To avoid chromium migration in the skin due to degeneration processes, samples must be taken from persons alive or shortly after their death. (author)

  16. Forensic activation analysis

    International Nuclear Information System (INIS)

    Basic principles of neutron activation analysis are outlined. Examples of its use in police science include analysis for gunshot residues, toxic element determinations and multielement comparisons. Advantages of neutron activation analysis over other techniques are described. (R.L.)

  17. Utilization of a TRIGA nuclear reactor for neutron activation analysis and isotope production

    International Nuclear Information System (INIS)

    In this paper, some examples of utilization of the TRIGA reactor at Casaccia research center of ENEA are described, including neutron activation analysis (NAA), isotope production and tritium release studies. 1) NAA - Determination of trace elements by NAA has been performed, in the last years upon a variety of matrices: a) environmental: suspended particulate matter (SPM) and sediments collected in some Italian seas and rivers were analyzed for about 30 elements. Different types of filters were also tested to choose the most suitable for the collection of SPM. b) forensic: many applications of NAA have been performed on request of Italian Courts for determination of gunshot residues; firing distances were also determined in some cases. c) agricultural: the uptake of Zn and Co by cereals has been studied in pot in co-operation with the Istituto per la Cerealicoltura of Rome. d) geological: some USGS reference materials were analyzed by thermal and epithermal NAA, for evaluating accuracy and precision of both methods. Rock samples from the basaltic plateau of Kenya were then analyzed by ENAA, chiefly for rare earth elements, whose concentration patterns can give useful informations about petrogenesis. e) reference materials: several elements have been determined in lake and river sediment samples and in three plant materials (tobacco, apple-tree and peach-tree), in order to provide data for their certification as reference materials to be used in different fields. f) nuclear materials: trace elements have been determined in LiAlO2 to be used in the blanket of fusion reactors, as well as in cements for building nuclear plants, in order to evaluate the activity at the time of plant decommissioning. 2) Isotope production a) A program for the utilization of TRIGA reactor at Casaccia to prepare a 191m-Ir generator to be used in pediatric angiography has been drawn up. b) Preparation of 18-F to be used in positron emission tomography (PET) for studies of cerebral diseases

  18. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    International Nuclear Information System (INIS)

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  19. Biomonitoring of air pollution with heavy metals in the Republic of Macedonia by neutron activation analysis

    International Nuclear Information System (INIS)

    Atmospheric deposition of trace metals was studied over the entire territory of the Republic of Macedonia in 2002 and 2005. Samples of the terrestrial mosses Hypnum cupressiforme, Camptothecium lutescens, and Homalothecium sericeum were collected at 73 sites in 2002 and at 72 sites in 2005. Instrumental neutron activation analysis allowed determination of 41 elements in 2002 and 38 elements in 2005. Principal component factor analysis was used to identify the most polluted areas and characterize different pollution sources. The most important sources of trace metal deposition are ferrous and non-ferrous smelters, oil refineries, fertilizer production plants, and central heating station. four areas appear to be particularly exposed to metal pollution: Veles, Skopje, Tetovo, and Kavadarci - Negotino. Comparison of the results from the first and the second moss survey, showed that there is no significant difference in median values of elemental concentrations determined, besides Ni. The more then twofold increase of its median value is explained by renewed activity of ferronickel smelter in Kavadartsi. (Author)

  20. Determination of trace elements in beach asphalts by neutron activation analysis

    International Nuclear Information System (INIS)

    The feasibility of using trace multielement data obtained from neutron activation analysis to identify the source of crude oil residues was recently demonstrated. This paper presents the concentrations of Br, Co, Cr, Sb, Sc, Zn and V/Ni, for 30 crude oil residues collected from beaches (beach asphalt), using 1 g samples. The method does not require chemical separation or post-irradiation concentration. The samples for all analyses were collected by Department of Oceanography, Texas A and M University, and represent various localites along the Texas coast as well as differing times of the year. Thirty samples were chosen at random in this study to provide an adequate sample of beach asphalt population. About 0.5 g of the sample was weighted into a small, 1 g capacity polyethylene vial as primary container. The vial was heat-sealed to prevent any spillage associated with expansion of asphalts during thermal activation analysis. The marked, encapsulated samples were irradiated for 8 hrs. The samples were counted after 372.32 hrs using a high resolution spectrometer. The average standard deviation for the V/Ni ratio was +-0.39. (T.G.)

  1. Dynamics of elements in soil treated with increasing doses sewage sludge for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    In this work the dynamics of the elements was analyzed The, Br, Ce, Co, Cr, Cs, Fe, Hf, La, In the, Sb, Sc, Sm, Ta, Th, U, Yb and Zn in a profile of a red-yellow latossolo, in the depths of 0-5, 5-10, 10-30 and 30-50 cm, and dose of the biosolid of 0, 25, 124 and 375 t ha-1, of the station of treatment of sewer of Barueri, Sao Paulo. The experiment was carried out in areas of 3,05 m2 in the times of 2,2; 4,0; 6,6; 14,3 and 21 months. For analysis of the elementary composition, it was used of the analysis technique by instrumental neutron activation analysis (INAA). The experiment was submitted under normal tropical conditions in a forest station in Itatinga, Sao Paulo, of the University of Sao Paulo. For better details, the factors depth, doses and times statistical analyses of the results of the elementary composition of the soil samples were made. For all the biossolid doses conditioned with polymeric and applied in the soil, the composition of 17 of the 18 elements in the soil were not altered, with exception for Cr in the studied times. The elements As, Br, Ce, Co, Fe, Hf, La, Sm, Ta, Th, U and Yb presented higher levels in the deepest layers of soil; already the elements Cr, In the, Sb and Zn presented higher concentrations in the superficial layers. (author)

  2. The stability of trace metals suspensions in heavy crudes as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    The importance of trace elements in petroleum has increased, since the role of nonhydrocarbon components has been recognized in the elucidation of the mechanisms of migration and origin of crudes. Knowledge of trace elements in petroleum is also important in the refining and processing of crudes. In developing different instrumental analytical techniques for trace analysis of crudes, little attention has been devoted to the scatter of data due to poor sampling and to the proper nature of the matrix. In the present paper the results of the determination of 17 trace elements including Co, Zn, Fe, V, Ni, Mo, Ba, Cs, Au, Br, Se, Sc, As, Mn, La, Eu and Cu are presented. A multielemental neutron activation analysis in a purely instrumental form was performed on a homogenized sample and the results are compared with those obtained on the same sample after a seven-month period. The results clearly show that the crude loses its induced homogeneous nature and that a standard heavy crude can not be stocked for comparison purposes. For the heavy asphaltene fractions, results of the analysis of the same trace elements are presented and the possibility of its use as a standard is discussed. (T.G.)

  3. Study on trace element determination in human head hair using neutron activation analysis

    International Nuclear Information System (INIS)

    Trace element determination in human hair has become increasingly popular for monitoring environmental exposure, assessing nutritional status, evaluating intoxication and diagnosing diseases. However, there are controversies of this use due to the difficulty in the removal of only exogenous origin elements from the hair, the small correlation data between elements contents in the hair and other tissues and the poor quality of analytical results for certain elements. In this study, adequate experimental conditions have been established for human scalp hair analysis in order to obtain further reliable reference value ranges. Neutron activation analysis (NAA) was used for the determination of fourteen trace elements. Irradiations were performed at the IEA-R1 nuclear research reactor. Aliquots of samples from three individuals were analyzed and the results presented good reproducibility, indicating the sample homogeneity. The quality control of the results was assessed analyzing certified materials. The relative errors lower than 8% and relative standard deviations varying from 1.2 to 15% were obtained for most of elements in the reference materials analysis. Hair samples from voluntary donors from Sao Paulo State, aged from 15 to 60 years were studied and the results obtained indicate that As, Co, Cr, Cs, La, Sb, Sc and Se are present in the hair at a low level of 7g kg-1 and the elements Br, Ca, Fe, K, Na and Zn, at μg kg-1 level. There is a necessity of obtaining reliable reference values or intervals for hair trace elements for a defined healthy population. (author)

  4. Neutron activation analysis applied to the chemical composition of metallic materials

    International Nuclear Information System (INIS)

    The physical properties of metallic materials, such as mechanical properties, corrosion resistance and others are determined by their chemical composition, which influences the various steps of the production process and the economic value attained by the materials. Instrumental neutron activation analysis was used in this work to evaluate the chemical composition of iron, steel, silicon and ferrosilicon reference materials. The concentration of the elements As, Co, Cr, Mn, Mo, Ni, V and W were analyzed in the iron and steel samples whereas As, Br, Co, Cr, K, Eu, Fe, La, Mn, Mo, Na, Nd, U, Th, Sb, Sc, Sm, Tb, V, W and Yb were determined in silicon and ferrosilicon samples. Accuracy was assessed comparing obtained results to reference materials certified values. Results of about 10 % were achieved for most of the elements. Precision was assessed by replicate measurements, and the results of about 10 % were also achieved. Accuracy and precision results showed that the technique is suitable for the metallic materials composition analysis. Interferences of Cr and Mn in V, Fe and Co in Mn; Co in Fe and Cr in Ti were quantified and only the last one was critical to the analysis of the materials employed in this work. (author)

  5. Neutron activation analysis application to the study of air pollution bio monitors

    International Nuclear Information System (INIS)

    Full text: This work has been done within the IAEA Research Contract Arg 9929, Research Co-ordinated Programme on Validation and application of plants as bio monitors of trace-element atmospheric pollution, analysed using nuclear and related techniques. Knowledge on air pollution levels and identification of polluted areas and potential emission sources are of increasing concern all over the world. Chemical characterisation of atmospheric aerosol, especially its heavy metal contents, is therefore of great importance and neutron activation analysis is a powerful technique for its determination. The advantages of using bio monitors instead of direct sampling lies not only on its lower cost but also on the possibility of using them to measure and/or evaluate deposition over large areas. The general objective of this project is the use of lichen to evaluate pollution levels in an area of Cordoba province (Argentina) and to establish baseline levels and temporal trends and draw distribution maps of pollutants. Based on lichen distribution maps, two species were selected: Raumalina ecklonii and Usnea amblyoclada. Different tests were done to adjust sample preparation methodologies previous to irradiation. The tests included grinding and drying assays to investigate their influence on the following determination using NAA. Sample grinding with and without the addition of liquid nitrogen was tried and oven-dry and freeze-dry were tried on samples of the two selected species. Elemental determination was done using instrumental Neutron Activation Analysis. Samples were irradiated for 5 hours at the RA-3 reactor of the Ezeiza Atomic Center (thermal flux 3.1013cm-2-2.s-1-1, 4.5 M w), and measured twice with different decay times 86 and 30 days) for the determination of medium and long-lived nuclides. The measurements were done using GeHP detectors (30 % efficiency, resolution 1.9 keV for 6060Co 1332.5 keV peak) coupled to a Canberra Series 85 multichannel analyser

  6. Application of different methods of neutron activation analysis to the determination of trace elements in rock samples

    International Nuclear Information System (INIS)

    In this report three different methods of neutron activation analysis applied to the determination of up to 20 trace elements in Egyptian rock samples and the results obtained are discussed. In Part I a physical approach is described for instrumental multielement activation analysis with whole neutron spectrum (without Cd-cover) using the monostandard (single comparator) method. 15 Samples representing different Egyptian granite rocks were analyzed. As many as 21 trace elements beside Fe, K and Na were determined. The accuracy of the method for nondestructive multielement analysis agrees within 3% with the relative method using multielement standards. In Part II a method is described for epithermal neutron activation analysis of 20 elements in granite rock samples using only one standard. Gold has been used as a single comparator due to its relatively high resonance integral value (Io = 400) and in addition, it is preferable on Co in order to obtain a large epithermal activation in a short irradiation. The method of calculation is simple and rapid and can be done using small calculator. In Part III experiments are described in which a neutron capture gamma-ray spectroscopy facility assembled at the Institute of Radiochemistry, KfK (for analytical purposes) using Cf252 neutron source of strength ∝ 6x107 n/sec, has been used to check its applicability and sensitivity for quantitative analyses of ores. The analysis of Sm, Gd and Mn in phosphate and monazite rock samples has been carried out. The results from this study show a variation of about 25% from the values determined by RNAA method. The reasons for this discrepancy are discussed and suggestions are made to optimize the conditions of measurement and irradiation. (orig./RB)

  7. Determination of chemical elements in Eucalyptus grandis, manured with Ballad's, by neutrons activation analysis

    International Nuclear Information System (INIS)

    The biosolid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown in to sanitary lands, in forest cultures like the Eucalyptus grandis. The objective of this work was to detect which chemical elements are present in Eucalyptus grandis samples, fertilized with different quantities of biosolid. The eucalyptuses of Estacao Experimental de Ciencias Florestais of Itatinga were planted in March of 1998 and collected with five years old. The used biosolid was produced by Station of Treatment of Sewer of Barueri - SP, classified as kind B. For the determination of the presence and quantity of chemical elements in the eucalyptus samples, an analysis technique by neutronic activation (NAA) was used followed by gamma rays spectroscopy. The samples were irradiated in the Nuclear Reactor IEA-R1 of IPEN-SP, followed by the measure of induced gamma rays activity, using a Detector HPGe. The presence, mainly of Br, Mn, Na and K, was detected in all analyzed samples. (author)

  8. Determination of heavy metals in Eucalyptus grandis, manured with biosolid, by neutrons activation analysis

    International Nuclear Information System (INIS)

    The biosolid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown in the sanitary lands. The utilization of biosolid in forest cultures, as the Eucalyptus grandis, is of great economic and scientific interest, because it promotes not only the use of sewage residues, but also a fertilization prices reduction. The objective of this work was to detect the presence of heavy metals in Eucalyptus grandis sample fertilized with different quantities of biosolid. For the experiment, we used the plantation of Estacao Experimental de Ciencias Florestais of Itatinga, linked to ESALQ of Universidade de Sao Paulo - USP. The eucalyptus were planted in March of 1998 and collect with five years old. The used biosolid was produced by ETE of Barueri - SP, classified as kind B. The samples were prepared in Universidade Estadual Paulista of Itapeva. For the determination of heavy metals presence in eucalyptus samples, an analysis technique by neutronic activation (NAA) was used followed by gamma rays spectroscopy. The samples were irradiated in the Nuclear Reactor IEA-R1 of IPEN-SP, followed by the measure of induced gamma rays activity, using a Detector HPGe. The presence, mainly of Br, Mn, Na and K, was detected in all analyzed samples. (author)

  9. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  10. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    Science.gov (United States)

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. PMID:22406218

  11. Development of an elemental tracer using neutron activation analysis for application in an estuarine environment

    International Nuclear Information System (INIS)

    Selection of an activable tracer that could be used to study dispersion patterns in an English estuary is described and was carried out in connection with the development and testing of a particle-tracking computer model. Understanding estuarine dynamics will assist in the decision-making process for estuarine management and in contingency planning. Neutron activation analysis (NAA) has been used to characterize the concentration and natural variation of 40 trace elements in suspended particulate matter and inter-tidal bed sediment in order to identify a suitable tracer. Results have shown that europium, terbium and ytterbium would be suitable to use in a tracer study as they have low background concentrations in sediments and little variability, (Eu: 1.31 mg x kg-1±13%, Tb: 0.90 mg x kg-1±16% and Yb: 2.91 mg x kg-1±18%). The ratios of these elements are constant throughout the estuary and experiments have shown that increases in concentration of any of these elements due to the addition of artificial elemental tracer could be quantitatively determined by changes in the ratio constant. (author)

  12. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Ilfov County (Romania); Carmo Freitas, M. do [Technological and Nuclear Institute (ITN), Sacavem (Portugal); Ene, A. [Dunarea de Jos Univ. of Galati (Romania). Dept. of Chemistry, Physics and Environment; Steinnes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemistry

    2013-03-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  13. Determination of antimony in nail and hair by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of antimony in nail and hair was determined by thermal neutron activation analysis. Samples were collected from the workers of an antimony refinery, inhabitants near the refinery, and residents in control area. They were irradiated by Kyoto University 5000 kW Reactor for 1 h, and cooled for 30 to 100 days. After cooling, the concentration of Sb in nail and hair was estimated by measuring the intensity of γ-ray from 124Sb of the samples, then the samples were washed by 0.1 % aqueous solution of nonionic surface active agent in an ultrasonic cleaner. The γ-ray spectrometry was done again (after washing). The concentration of Sb in nail before washing was 730 ppm for the workers, 2.46 ppm for habitants near the refinery, and 0.19 ppm for the control; after washing, it became 230 ppm for the workers, 0.63 ppm for habitants, and 0.09 ppm for the control. The concentration of Sb in hair before and after washing was 222 ppm and 196 ppm for the workers, and 0.21 ppm and 0.15 ppm for the control, respectively. (author)

  14. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    Science.gov (United States)

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for. PMID:10355102

  15. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method

    International Nuclear Information System (INIS)

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+α epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the γ-ray cascade and the HPGe detector efficiency were determined and corrected for

  16. Determination of essential elements in dietetic sample by neutron activation analysis

    International Nuclear Information System (INIS)

    In the last years there has been an increase of the dietetic product consumption by people who suffer from diabetes, heart disease and by people concerned about having a healthy life as well. Despite the increase of dietetic product presents in the diet of the Brazilian population, the use of these products is still controversial. The analysis of the nutritional composition of these products is becoming important because a great number of people is changing their traditional food by dietetic products. In the literature, there is no information about the inorganic composition, mainly related to the essential elements, in the dietetic products: diet and light . In this study are presented preliminary results of the concentrations of Br, Ca, Cr, Fe, Na and Zn determined by Instrumental Neutron Activation Analysis in aspartame, saccharin and cyclamate sodium , and stevia based sweetener samples. Gelatin samples, diet and light, were also analyzed. Methodology validation was done analyzing NIST reference materials Tea Leaves (INCT-TL-1) and Mixed Polish Herbs (INCT-MPH-2). (author)

  17. Quality evaluation of the k0-standardized neutron activation analysis on Dalat research reactor

    International Nuclear Information System (INIS)

    Laboratory for neutron activation analysis (NAA) at the 500 kW Dalat Research Reactor( DRR) has been accredited following ISO/IEC 17025: 2005 (TCVN VILAS-519). Successful introduction of the k0-based NAA using Ko-Dalat software written in house at DRR has allowed to extend its applications in petroleum, archaeology and environment besides other traditional fields, i.e. geology, biomedicine, industry and materials. This study aimed to assess the quality of k0-NAA by analyzing a number of standard reference materials: SMELS, NIST-1547, NIST-2711a, IAEA-Soil-7 and IAEA-V-10. The laboratory has also participated in proficiency testing schemes organized by IAEA and FNCA. External and internal quality assessment revealed that the k0-NAA using Ko-Dalat software established at DRR has met the requirements of multi-element analysis in the intended applications. About 42 elements: Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Hf, I, In, K, La, Mg, Mn, Mo, Na, Nd, Pr, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn and Zr, were determined in the above mentioned materials. The results were evaluated and reported in this paper. (author)

  18. Organization of commercial neutron activation analysis at the Interfaculty Reactor Institute

    International Nuclear Information System (INIS)

    In a period of declining funds, curriculum reconsiderations, and unpopular image among the general public of anything nuclear related, (university) research reactor establishments should have strategies to justify the existence and continuation of their expensive facilities. At the Interfaculty Reactor Institute (IRI), part of this strategy is to focus the potential of instrumental neutron activation analysis (NAA) on problems of economical and social importance. Development and application of NAA is one of the principal research tasks of the radiochemistry department of the institute. A multidisciplinary team of nine (analytical) chemists, physicists, computer experts, electronic engineers, and technicians is responsible for innovative developments and maintenance of the INAA facilities. For long, the facilities have been made available for open-quotes routineclose quotes use to non-radiochemists from other universities. Interactively operating software and manuals enable these guests to perform INAA independently after a short introductory period. No special demands were set for the educational level of the users; universities did not have to pay for use of the facilities. In the early 1980s, other (governmental) research institutes became interested in the potential of INAA, and cooperation started on projects with a large sample throughput; in these projects, some financial support was included. Over the years, the number of requests for multielement determinations via INAA grew steadily, not only from the universities, which were charged for a part of the total analysis' cost, but also from industry

  19. Epithermal neutron activation analysis of Cr(VI)-reducer basalt-inhabiting bacteria.

    Science.gov (United States)

    Tsibakhashvili, Nelly Yasonovna; Frontasyeva, Marina Vladimirovna; Kirkesali, Elena Ivanovna; Aksenova, Nadezhda Gennadievna; Kalabegishvili, Tamaz Levanovich; Murusidze, Ivana Georgievich; Mosulishvili, Ligury Mikhailovich; Holman, Hoi-Ying N

    2006-09-15

    Epithermal neutron activation analysis (ENAA) has been applied to study elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance, demonstrating that the bacteria differ in their rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 microg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements were determined in each type of bacteria simultaneously starting with the major to ultratrace elements. The range of concentrations spans over 8 orders of magnitude.

  20. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  1. Determination of essential elements in herbal extracts by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisconi, Lucilaine S.; Goncalves, Rodolfo D.M.R.; Silva, Paulo S.C. da, E-mail: lfrancisconi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Different types of therapies have been introduced as an alternative treatment to various types of human disorders, among them,the use of herbal teas have been highlighted due to its low cost, easiness of acquisition and administration. The aim of this study was to evaluate the concentrations of the elements As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in extracts of medicinal plants whose use is regulated by ANVISA. The relevance of this analysis is justified by the need of contributing to the recommendation of these plants as secure sources of mineral elements both for therapeutic and dietary purpose. The technique showed good sensitivity in determining the appropriate concentration of all the determined elements. Elements potentially toxic were found at concentration that do not present threats to the organism and the elements that present important roles in metabolism were determined at concentrations that can assist both therapeutic and nutritional purposes. (author)

  2. Determination of essential elements in commercial infant foods by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Eating habits are important determinants of health conditions during childhood. Commercial infant food is an important part of the diet for many babies. As such it is necessary that such food contain sufficient amounts of essential elements. Inadequate complementary feeding is a major cause of high rates of malnutrition throughout the world. Commercial infant food is classified into four different stages: Stages 1 and 2 are adequate for babies older than 6 months, but new flavors and food are introduced in stage 2; Stage 3 is offered to 8 month old babies; Junior Stage is recommended to children over 1 year old. In this study, essential elements: Ca, Cl, Co, Cr, Fe K, Mg, Mn, Na, Se and Zn were determined in commercial infant food samples by Instrumental Neutron Activation Analysis (INAA). Twenty-seven infant food samples were bought in stores around Sao Paulo city during 2011. These samples were freeze-dried and homogenized before analysis. The powdered samples were irradiated in the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. For validation of the methodology, INCT MPH-2 Mixed Polish Herbs and NIST-SRM 1577b Bovine Liver reference materials were analyzed. Most of the concentration results were below the World Health Organization's recommended daily intake for infants from 6 to 12 months old. These low essential element concentration results in commercial infant foods obtained in our study indicate that infants should not only be fed with commercial baby foods. (author)

  3. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  4. Determination of elemental composition in dietary supplements by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vitor I.; Saiki, Mitiko, E-mail: vitor.ito@outlook.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Dietary supplements intake has grown in the last years because of their potential health benefits. This supplementation is very common among athletes, elderly population and consumers that want to increase the total daily nutrient intake. Consequently, elemental composition evaluation in these supplements is of great interest due to its increasingly high consumption and the brand variety offered in the market. This study aimed to evaluate the elemental composition in three types of dietary supplements acquired in a pharmacy and drugstore in Sao Paulo city. Concentrations of As, Br, Ca, Co, Cr, Cu, Fe, K, La, Na, Sb, Sc, Se and Zn were determined in these supplements by applying neutron activation analysis (NAA) followed by a gamma ray spectrometry. from the concentrations obtained in the dietary supplement analyses, the data obtained were compared to the values presented on the product label. These comparisons indicated in general, a good agreement of the data obtained and the values of the product label depending on the supplement. From the results obtained it can be concluded that NAA is an important tool for the analysis of this type of products due to its reliability of results and its multielemental character. (author)

  5. Comparative measurement of inorganic elements in Korean space foods using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    In April 2008, Korea's first astronaut became a crew member of the international space station and she brought special space versions of traditional Korean dishes such as kimchi, boiled rice, hot red pepper paste, soybean paste soup, ginseng tea, green tea, and ramyun. To date, seventy kinds of Korean space foods (KSFs) have been developed by KAERI. The information and role of trace mineral elements from an intake of created and processed foodstuff are important as a indicator of human health and nutrition, as well as a quality control of food and diet. In particular, special food created for consumption by astronauts in outer space may differ with common food on the earth to compensate a decrease in taste and nutrition by hygienic sterilization processing as well as strong cosmic rays, a state of non gravitation, low pressure, and an enclosed space environment. An accurate quantitative analysis of trace elements in various kinds of biological samples is serious work for analytical data quality. An neutron activation analysis is a sensitive, non destructive, multi elemental analytical method without loss and contamination of a sample by chemical pre treatment. The aim of this study is to identify and to compare the distribution of concentrations for essential and functional inorganic elements in six kinds of Korean space foods developed by KAERI in 2011 using INAA

  6. Undergraduate research opportunities in neutron activation analysis for local, regional and international students

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) remains an excellent technique to introduce undergraduate students to nuclear science and engineering coming from different academic areas. The NAA methods encompass an appreciation of basic reactor engineering concepts, radiation safety, nuclear instrumentation and data analysis. At the Nuclear Engineering Teaching Lab at the University of Texas at Austin we have continued to provide opportunities through outreach programs to Huston-Tillotson University in Austin and Florida Memorial University in Miami Gardens, both Historically Black Colleges and Universities, and Southwestern University in Georgetown, Texas. Furthermore, in the past four years we have established a strong educational collaboration with the Ecole Nationale Superieure d'Ingenieurs de Caen (ENSICAEN), France. Undergraduate students at ENSICAEN are required to have an internship outside of France. While many of the students stay in neighboring European countries others have chosen the United States. The cornerstone of these programs is to secure a relationship with each institution through clear educational and research objectives and goals. (author)

  7. Determination of essential elements in herbal extracts by neutron activation analysis

    International Nuclear Information System (INIS)

    Different types of therapies have been introduced as an alternative treatment to various types of human disorders, among them,the use of herbal teas have been highlighted due to its low cost, easiness of acquisition and administration. The aim of this study was to evaluate the concentrations of the elements As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in extracts of medicinal plants whose use is regulated by ANVISA. The relevance of this analysis is justified by the need of contributing to the recommendation of these plants as secure sources of mineral elements both for therapeutic and dietary purpose. The technique showed good sensitivity in determining the appropriate concentration of all the determined elements. Elements potentially toxic were found at concentration that do not present threats to the organism and the elements that present important roles in metabolism were determined at concentrations that can assist both therapeutic and nutritional purposes. (author)

  8. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    International Nuclear Information System (INIS)

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 37000K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 31200K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs

  9. Neutron activation analysis for assessing chemical composition of dry dog foods

    International Nuclear Information System (INIS)

    Brazil holds the second largest population of domestic dogs in the world, with 33 million dogs, only behind the United States. The annual consumption of dog food in the country is 1.75 million tons, corresponding to the World's sixth in trade turnover. Dog food is supposed to be a complete and balanced diet, formulated with high quality ingredients. All nutrients and minerals required for an adequate nutrition of dogs are added to the formulation to ensure longevity and welfare. In this context, the present study aimed at assessing the chemical composition of dry dog foods commercialized in Brazil. Thirty-four samples were acquired in the local market of Piracicaba and analyzed by instrumental neutron activation analysis (INAA) to determine the elements As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Se, U, and Zn. In general, the concentrations of Ca, Fe, K, Na, and Zn complied with the values required by the Association of American Feed Control Officials (AAFCO). To evaluate the safety of dog food commercialized in Brazil, further investigation is necessary to better understand the presence of toxic elements found in this study, i.e. Sb and U. INAA was useful for the screening analysis of different types and brands of dry dog foods for the determination of both essential and toxic elements. (author)

  10. Determination of elemental composition in dietary supplements by neutron activation analysis

    International Nuclear Information System (INIS)

    Dietary supplements intake has grown in the last years because of their potential health benefits. This supplementation is very common among athletes, elderly population and consumers that want to increase the total daily nutrient intake. Consequently, elemental composition evaluation in these supplements is of great interest due to its increasingly high consumption and the brand variety offered in the market. This study aimed to evaluate the elemental composition in three types of dietary supplements acquired in a pharmacy and drugstore in Sao Paulo city. Concentrations of As, Br, Ca, Co, Cr, Cu, Fe, K, La, Na, Sb, Sc, Se and Zn were determined in these supplements by applying neutron activation analysis (NAA) followed by a gamma ray spectrometry. from the concentrations obtained in the dietary supplement analyses, the data obtained were compared to the values presented on the product label. These comparisons indicated in general, a good agreement of the data obtained and the values of the product label depending on the supplement. From the results obtained it can be concluded that NAA is an important tool for the analysis of this type of products due to its reliability of results and its multielemental character. (author)

  11. Determination of essential elements in commercial infant foods by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vallinoto, Priscila; Maihara, Vera A., E-mail: pvallinoto@ipen.br, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Eating habits are important determinants of health conditions during childhood. Commercial infant food is an important part of the diet for many babies. As such it is necessary that such food contain sufficient amounts of essential elements. Inadequate complementary feeding is a major cause of high rates of malnutrition throughout the world. Commercial infant food is classified into four different stages: Stages 1 and 2 are adequate for babies older than 6 months, but new flavors and food are introduced in stage 2; Stage 3 is offered to 8 month old babies; Junior Stage is recommended to children over 1 year old. In this study, essential elements: Ca, Cl, Co, Cr, Fe K, Mg, Mn, Na, Se and Zn were determined in commercial infant food samples by Instrumental Neutron Activation Analysis (INAA). Twenty-seven infant food samples were bought in stores around Sao Paulo city during 2011. These samples were freeze-dried and homogenized before analysis. The powdered samples were irradiated in the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. For validation of the methodology, INCT MPH-2 Mixed Polish Herbs and NIST-SRM 1577b Bovine Liver reference materials were analyzed. Most of the concentration results were below the World Health Organization's recommended daily intake for infants from 6 to 12 months old. These low essential element concentration results in commercial infant foods obtained in our study indicate that infants should not only be fed with commercial baby foods. (author)

  12. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    Science.gov (United States)

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  13. Validation of methodology and uncertainty assessment of antimony determination in environmental materials using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122Sb and 124Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)

  14. Comparative measurement of inorganic elements in Korean space foods using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Kim, Sun Ha; Baek, Sung Ryel; Sun, Gwang Min; Moon, Jong Hwa; Choi, Jong Il; Lee, Joo Eun [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In April 2008, Korea's first astronaut became a crew member of the international space station and she brought special space versions of traditional Korean dishes such as kimchi, boiled rice, hot red pepper paste, soybean paste soup, ginseng tea, green tea, and ramyun. To date, seventy kinds of Korean space foods (KSFs) have been developed by KAERI. The information and role of trace mineral elements from an intake of created and processed foodstuff are important as a indicator of human health and nutrition, as well as a quality control of food and diet. In particular, special food created for consumption by astronauts in outer space may differ with common food on the earth to compensate a decrease in taste and nutrition by hygienic sterilization processing as well as strong cosmic rays, a state of non gravitation, low pressure, and an enclosed space environment. An accurate quantitative analysis of trace elements in various kinds of biological samples is serious work for analytical data quality. An neutron activation analysis is a sensitive, non destructive, multi elemental analytical method without loss and contamination of a sample by chemical pre treatment. The aim of this study is to identify and to compare the distribution of concentrations for essential and functional inorganic elements in six kinds of Korean space foods developed by KAERI in 2011 using INAA.

  15. Environmental monitoring for uranium and neptunium at Yucca Mountain using Epithermal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Epithermal Neutron Activation Analysis (ENAA) is investigated as an analysis method for uranium and neptunium in environmental samples from Yucca Mountain. The design and construction of a facility for this technique are described. Theoretical improvement in sensitivity for ENAA over thermal NAA (TNAA) is discussed and compared to experimental results for different sample types. Uranium is analyzed in eight different sample matrices, including samples from Yucca Mountain. Neptunium has been studied only in AGV-1 Granite. As predicted by theory, uranium shows a high experimental sensitivity improvement factor (average = 7.76), while neptunium has a factor of only 0.49. Detection limits for uranium using ENAA range from 6 to 52 ppb by weight (2.6 to 17 ng in sample) for the different matrices. Neptunium shows a detection limit of 57 ppb by weight (6.2 ng in sample) in AGV-1 Granite using ENAA. Using TNAA, neptunium can be analyzed to 35 ppB by weight (3.4 ng in sample)

  16. Neutron multiplicity analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Scott L [Los Alamos National Laboratory

    2010-01-01

    I describe the capabilities of the EXCOM (EXcel based COincidence and Multiplicity) calculation tool which is used to analyze experimental data or simulated neutron multiplicity data. The input to the program is the count-rate data (including the multiplicity distribution) for a measurement, the isotopic composition of the sample and relevant dates. The program carries out deadtime correction and background subtraction and then performs a number of analyses. These are: passive calibration curve, known alpha and multiplicity analysis. The latter is done with both the point model and with the weighted point model. In the current application EXCOM carries out the rapid analysis of Monte Carlo calculated quantities and allows the user to determine the magnitude of sample perturbations that lead to systematic errors. Neutron multiplicity counting is an assay method used in the analysis of plutonium for safeguards applications. It is widely used in nuclear material accountancy by international (IAEA) and national inspectors. The method uses the measurement of the correlations in a pulse train to extract information on the spontaneous fission rate in the presence of neutrons from ({alpha},n) reactions and induced fission. The measurement is relatively simple to perform and gives results very quickly ({le} 1 hour). By contrast, destructive analysis techniques are extremely costly and time consuming (several days). By improving the achievable accuracy of neutron multiplicity counting, a nondestructive analysis technique, it could be possible to reduce the use of destructive analysis measurements required in safeguards applications. The accuracy of a neutron multiplicity measurement can be affected by a number of variables such as density, isotopic composition, chemical composition and moisture in the material. In order to determine the magnitude of these effects on the measured plutonium mass a calculational tool, EXCOM, has been produced using VBA within Excel. This

  17. Development of a data base system and concentration calculation for neutron activation analysis as per the k0 method

    International Nuclear Information System (INIS)

    One of the most important nuclear analytical techniques is the neutron activation analysis used to determine which elements and their proportion are included within an analysis sample. A sample is undergone to the procedures of the technique, and the information, which is dispersed, is generated in each phase of this process. Therefore, it is necessary this information should be organized properly for its better use

  18. The development of an automatic sample-changer and control instrumentation for isotope-source neutron-activation analysis

    International Nuclear Information System (INIS)

    An automatic sample-changer was developed at the Council for Mineral Technology for use in isotope-source neutron-activation analysis. Tests show that the sample-changer can transfer a sample of up to 3 kg in mass over a distance of 3 m within 5 s. In addition, instrumentation in the form of a three-stage sequential timer was developed to control the sequence of irradiation transfer and analysis

  19. A study on chemical element determinations in human nails by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, Thalita Pinheiro; Saiki, Mitiko, E-mail: thalitapsanches@usp.br, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nail analyses have been the object of study in order to assess the levels of elements accumulated in the human organism and to use this tissue to monitor environmental and occupational exposure, to evaluate the nutritional status, to verify intoxication by toxic metals and to diagnose or to prevent diseases. Nail analyses present advantages due to easy sample collection, storage, transportation and this tissue provides element level accumulation over time. However, there is controversy regarding the application of nail analysis data due to difficulties to establish reliable reference values or element concentration ranges as control values. The objective of this study was to evaluate the factors that can affect nail element concentrations for further sample analyses of a group of individuals by applying neutron activation analysis (NAA). Fingernails and toenails collected from adult individuals of both genders, aged 18 to 71 years, living in the Sao Paulo Metropolitan Region were cut in small fragments, cleaned and dried for analyses. Samples and element standards were irradiated for 16 h under a thermal neutron flux of about 4.5 x 10{sup 12} n cm{sup -2} s{sup -1} at the IEA-R1 nuclear research reactor followed by gamma ray spectrometry. Element concentrations for As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Se and Zn were determined. For quality control of the analytical results, certified reference materials were analysed and the results showed good accuracy and precision with relative errors and relative standard deviations lower than 5.1 % and 11.6 %, respectively. Preliminary assays indicated that the contribution due to impurities from plastic involucres used in the irradiation as well as those from nail polishes is very low and could be considered negligible. Results from the nail sample cleaning process using distinct procedures indicated that HNO{sub 3} solution may cause sample dissolution. Sample homogeneity was verified by analysis of a sample in

  20. A study on chemical element determinations in human nails by neutron activation analysis

    International Nuclear Information System (INIS)

    Nail analyses have been the object of study in order to assess the levels of elements accumulated in the human organism and to use this tissue to monitor environmental and occupational exposure, to evaluate the nutritional status, to verify intoxication by toxic metals and to diagnose or to prevent diseases. Nail analyses present advantages due to easy sample collection, storage, transportation and this tissue provides element level accumulation over time. However, there is controversy regarding the application of nail analysis data due to difficulties to establish reliable reference values or element concentration ranges as control values. The objective of this study was to evaluate the factors that can affect nail element concentrations for further sample analyses of a group of individuals by applying neutron activation analysis (NAA). Fingernails and toenails collected from adult individuals of both genders, aged 18 to 71 years, living in the Sao Paulo Metropolitan Region were cut in small fragments, cleaned and dried for analyses. Samples and element standards were irradiated for 16 h under a thermal neutron flux of about 4.5 x 1012 n cm-2 s-1 at the IEA-R1 nuclear research reactor followed by gamma ray spectrometry. Element concentrations for As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Se and Zn were determined. For quality control of the analytical results, certified reference materials were analysed and the results showed good accuracy and precision with relative errors and relative standard deviations lower than 5.1 % and 11.6 %, respectively. Preliminary assays indicated that the contribution due to impurities from plastic involucres used in the irradiation as well as those from nail polishes is very low and could be considered negligible. Results from the nail sample cleaning process using distinct procedures indicated that HNO3 solution may cause sample dissolution. Sample homogeneity was verified by analysis of a sample in replicate. A comparison

  1. Activation analysis

    International Nuclear Information System (INIS)

    The neutron activation analysis, which appears to be in limits for further advance, is the most suitable for providing information on the principal as well as the microcomponents in any sample of solid form. Then, instrumental activation analysis is capable of determination of far many elements in various samples. Principally on the neutron activation analysis, the following are described in literature survey from 1982 to middle 1984: bibliography, review, data collection, etc.; problems in spectral analysis and measurement; activation analysis with neutrons; charged particle and photo-nucleus reactions; chemical separation, isotopic dilution activation analysis; molecular activation analysis; standard materials; life and its relation samples; environmental, food, court trial and archaeological samples; space and earth sciences. (Mori, K.)

  2. The rapid determination of manganese, vanadium, and aluminium by instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    Aluminium, manganese, and vanadium were determined in chromuim, ferrochromium, and slags. Because of the short-lived isotopes produced, the technique is rapid, and the total analysis time per sample is 15 minutes. The reproducibility is 3 to 4 per cent, and this value can be improved by certain modifications, particularly to the irradiation facilities. A similar method could be applied to on-line or in-plant analysis if an isotopic source of neutrons were used

  3. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Science.gov (United States)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  4. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  5. Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents

    International Nuclear Information System (INIS)

    Prompt gamma ray neutron activation analysis methodologies were standardized using a reflected neutron beam and Compton suppressed γ-ray spectrometer to quantify boron from trace to major concentrations. Neutron self-shielding correction factors for higher boron contents (0.2-10 mg) in samples were obtained from the sensitivity of chlorine by irradiating KCl with and without boron. This method was validated by determining boron concentrations in six boron compounds and applied to three borosilicate glass samples with boron contents in the range of 1-10 mg. Low concentrations of boron (10-58 mg kg-1) were also determined in two samples and five reference materials from NIST and IAEA. (author)

  6. Application of neutron activation analysis to trace element determinations in lung samples

    International Nuclear Information System (INIS)

    The purpose of this work was to apply the instrumental neutron activation analysis method to determine trace elements in lung samples from smokers and non smokers. Samples of lung tissues and lymph nodes from pulmonary hilum analyzed were collected from autopsies by researchers from the Medicine College of the University of Sao Paulo, SP, Brazil. Adequate conditions for preparation and analysis of samples were previously established. The preparation of samples consisted of homogenization, lyophilization and sterilization in 60Co source. The samples and standards were irradiated in the IEA-R1 reactor under thermal neutron flux of 3.7 x 1011 n.cm-2.s-1 for 30 min to determine Cl, K, Mn and Na and for 16 h under flux of 1019 n.cm-2.s-1 for the determination of Au, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Rb, Sb, Sc, Se, Th and Zn. The counting were carried out with a hiperpure (ge) detector connected to a 4096 channels analyzer and a microcomputer. the results obtained for lung sample analyses indicated a good reproducibility of the method for most of the elements determined with relative standard deviations lower than 10.5%. The accuracy of the method was evaluated by analyzing reference materials such as IAEA Animal Muscle H-4, NIST Bovine Liver 1577a, IUPAC Bowen's Kale and NIES Vehicle Exhaust Particulates. The results obtained from these analyzes agreed with the values of the literature for several elements with relative errors less than 20%. Less precise and accurate results were obtained for elements with concentrations at the Mup/Kg levels. Elemental concentrations obtained in the lung tissue analyses were within the range of reference values for normal subjects presented in the literature, except for the Cl concentrations for non smokers, Hf in both groups and Sb for the smokers. By comparing results obtained for lung samples from smokers and non smokers, the concentrations of Ce, Cr and Sb were higher in lungs from smokers and the others elements were found in

  7. Provenance study of amerindian pottery figurines with prompt-gamma neutron activation analysis

    International Nuclear Information System (INIS)

    A prompt-gamma activation analysis facility has been under development at the Budapest Neutron Centre since 1996. Its applicability to archaeological research has already been established by several studies. This facility has been used in collaboration with the Universidad Simon Bolivar, Venezuela to determine the provenance of some pre-Hispanic pottery figurines by the use of PGNAA. Samples were selected from five archaeological sites excavated in the Los Roques Archipelago, where almost five hundred figurines were recovered in four sites. Amerindian groups from adjacent Venezuela mainland were identified as island sites' occupants, between 1200 A.D. and the European contact period. For preliminary research purposes three samples from Lake Valencia Basin and five from Los Roques were selected. For the study discussed here a total of 40 samples were used. Microscopic properties of pottery, such as chemical composition, can shed light on its origin, place of manufacture, raw material origin, production method and trade, among others. PGNAA was selected as the most convenient non-destructive method to measure major and trace elements. We show that these results contribute in determining the origin of the pottery. The samples were irradiated with a cold (20K) neutron beam of 5·107 cm-2 s-1 and the prompt-gamma ray spectra were collected with an HPGe-BGO detector system. The element identification and concentration calculations were performed based on the Center data library. We were able to determine the major components of H2O, Na2O, MgO, Al2O3, SiO2, K2O, CaO, TiO2, and MnO, Fe2O3 parallel with trace elements of B, S, Cl, Sc, V, Cr, Ba, Sm, Eu, and Gd. The preliminary measurements of the concentration of K2O, Cl and Cr showed significant differences between the samples from Lake Valencia Basin (mainland) and from Los Roques Islands. However, the discussed here analysis of a large set of samples, from both the mainland and the islands sites, provides support to the

  8. Determination of iodine species in cow milk by preconcentration epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: Iodine is an essential trace element for human beings. The main source of iodine is generally food items such as fish and milk. Either the lack or the excess of iodine can cause health problems. Iodine deficiency disorder is fairly common in many countries of Africa and Asia. There exists an increasing interest in the determination of total iodine as well as various species of iodine in milk. One of the problems in the analysis of iodine is the lack of highly sensitive methods. Neutron Activation Analysis (NAA) is one of the techniques, particularly when the irradiation is done using epithermal neutrons which is called ENAA, that can provide low detection limits. These limits can be further improved when ENAA is used in conjunction with an anti-coincidence (ENAA-AC) counting system. We have developed an ENAA-AC method for the determination of ppb levels of iodine. We have also employed chemical separation methods prior to ENAA-AC to measure the species-specific concentrations of iodine in cow milk. We have separated lipid-bound iodine using solvent extraction followed by further fractionation using a silica gel column. We have used ammonium sulfate precipitation to separate protein-bound iodine. We precipitated whole casein-bound iodine at pH=4.6. We separated the inorganic species, such as iodide and iodate, using ion exchange chromatography. We have measured the following iodine concentrations in homogenized milk (milk fat 3.25%): 0.475±0.005 μg mL-1 of total iodine, 0.432 ±0.003 μg mL-1 iodide, 0.016±0.005 μg mL-1 iodate, 0.013±0.003 μg mL-1 of lipid-bound iodine, 0.032±0.002 μg mL-1 protein-bound iodine, and 0.026±0.001 μg mL-1 casein-bound iodine. We have observed that ENAA-AC is a powerful technique for the determination of iodine and its species when used in conjunction with chemical separation methods. The detection limits are low and the precision and accuracy are high. (author)

  9. Rare-earth and thorium in soil and manioc: determination using neutron activation analysis

    International Nuclear Information System (INIS)

    This paper reports the elements rare-earth and Thorium determined in soil and manioc during an assessment carried out to evaluate the elemental concentration in several matrixes connected with the chain food. One site studied is in the Iron Quadrangle, Minas Gerais, Brazil, that presented mineral exploration activity in the past. Another site is without any mining activity and it is outside the Quadrangle. The objective was to evaluate the influence of a mining activity on the elemental concentration in the soil and manioc is grown around the mining area. The elemental determination was achieved by applying the k0-instrumental Neutron Activation. (author)

  10. Applications of neutron activation spectroscopy

    CERN Document Server

    Silarski, M

    2013-01-01

    Since the discovery in 1932, neutrons became a basis of many methods used not only in research, but also in industry and engineering. Among others, the exceptional role in the modern nuclear engineering is played by the neutron activation spectroscopy, based on the interaction of neutron flux with atomic nuclei. In this article we shortly describe application of this method in medicine and detection of hazardous substances.

  11. Radiochemical neutron activation analysis of zinc for stable isotope tracer studies in human nutrition

    International Nuclear Information System (INIS)

    Stable isotopes are beginning to be used to study trace element nutrition in humans. As they do not expose subjects to radiation, they will be very useful for population groups that can not be studied with radioactive tracers (pregnant women and persons under the age of 18). The zinc stable isotope used in experiments was 70Zn whose abundance was increased from 0.62% to 66%. Blood, urine and feces samples were collected at various times after the administration of the tracer and the ratios of Zn-70/Zn-64 and Zn-70/Zn-68 were determined in the collected samples. Neutron Activation Analysis (NAA) was used to determine the Zn isotopes. As biological samples contain large quantites of Na, Cl, Br, K it was necessary to separate these in order to detect Zn isotopes. Pre and post-irradiation separations were done. Chelex-100 was used for former, Mn was precipitated as MnO2 and Cu was separated by dithizone extraction. The yields for pre and post-irradiation separations for 90 samples were 86+-16% and 70+-13% respectively. (author)

  12. Toxic trace element content of local fruits using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    An important route of entry of environmental contaminants into the human system is through food intake. To study the effect of environmental pollution on the food chain, base line levels of toxic element content of commonly available food articles must be established. This study was undertaken to determine the toxic meal content of Pakistani fruits. The techniques of instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS) were employed for this purpose. Fourteen fruits apple, apricot, banana, data guava, kino, mango, melon, orange, peach, pear, plum, pomegranate and watermelon, as well as, the peels of apple and pear have been investigated and the results are discussed in this paper. The results were found to lie within 95 % confidence limit using Student's t test. Hg, As and Sb were detected, using INAA, in pear, pomegranate and water melon in low amounts (ppb levels) but were not detected in orange, plum and melon. Lesser amounts of toxic elements were detected in the peels of pear and high amounts were detected in apple peel as compared to the edible part of the fruit. Cadmium and lead were determined using Graphite Furnace atomic absorption Spectrometry. Cadmium was found to lie in the range of 18-42 ppb, in most fruits, whereas the amount of lead varied between 39-128 ppb. Lead was below detection limit in melon, guava, mango, and peach contained the highest amount of As, Cd, Hg and Pb. (author)

  13. Determination of barium and antimony in gun shot residues by neutron activation analysis

    International Nuclear Information System (INIS)

    The antimony contents on both hands of 7 persons before and after firing an automatic pistol were determined by instrumental neutron activation analysis. The gun shot residues were removed from hands by a 4% solution of cellulose acetate in acetone. The average content of antimony on both hands before firing obtained from 70 measurements (35 from each hand) was 0.040 ± 0.010 micro gram, whereas the average contents on the right and the left hands after 1 firing were 0.385 ± 0.036 and 0.144 ± 0.029 micro gram respectively. The ration of the antimony contents after 1 firing to the normal level (before firing) was 9.9 for the right and 3.6 for the left. No significant difference was observed between male and female, smoker and non-smoker. The antimony content after several firings was not much different from that of 1 firing and it reduced to the normal level within 2 days after firing. The barium contents before and after firing were studied from one person. Barium was precipitated as Ba SO4 before counting. An average contents of 0.936 ± 0.551 micro gram for both hands before firing, 4.092 ± 2.687 micro gram for the right hand and 1.363 ± 0.879 micro gram for the left hand after 1 firing were found

  14. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  15. Marine Gradients of Halogens in Moss Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2002-01-01

    Epithermal neutron activation analysis is known to be a powerful technique for the simultaneous study of chlorine, bromine and iodine in environmental samples. In this paper it is shown to be useful to elucidate marine gradients of these elements. Examples are from a transect study in northern Norway where samples of the feather moss Hylocomium splendens were collected at distances 0-300 km from the coastline. All three elements decreased exponentially as a function of distance from the ocean in the moss samples, strongly indicating that atmospheric supply from the marine environment is the predominant source of these elements to the terrestrial ecosystem. These results are compared with similar data for surface soils along the same gradients. Comparison is also made with previous data for halogens in moss in Norway obtained by conventional NAA and covering similar transects in other geographical regions. The Cl/Br and Br/I ratios in moss showed a regular change distance from the ocean in all transects, and h...

  16. Analysis of some ores and soils by x-ray fluorescence and neutron activation

    International Nuclear Information System (INIS)

    This study was carried out to investigate the compositions of some samples from Ingassana region, some marble samples, and some ceramic samples which were collected from different parts of Sudan. The investigations involved the use of two nuclear analytical techniques, namely x-ray fluorescence (XRF) and neutron activation analysis (NAA). The elements of interest in this study were Al, Si, Ca, Ti, Cr, Fe, Ni, Au and Pt. It is to be noted that Au and Pt were determined by using XRF for the first time in this laboratory. Some of the results were compared with those obtained by chemical method. It was found that the NAA method gave better results for low z elements such as Al, Si and XRF gave better results for higher z elements such as Ca, Ti, Cr, Fe, Ni, Au and Pt. The results showed low concentrations from the economic point of view for Cr, higher concentrations of Ni, but considerable concentrations of Au and Pt in the samples obtained from Ingassana region. The marble samples showed high values of Ca in 2 samples. The ceramic samples showed good results with regard to ceramic work in most of the samples. (Author)

  17. Neutron activation analysis of alternative phosphate rocks used in animal nutrition

    International Nuclear Information System (INIS)

    Since 1980's, Bovine Sponghiform Encephalophaty has insidiously created a fierce battleground between farmers, scientists, environmentalists and consumers. The use of meat and bone meals is currently prohibited in ruminant feeds throughout the world. Some inorganic sources offer the combination of high phosphorus content and acceptable animal digestibility make them options as supplemental phosphorus, for instance phosphate rocks, general term applied to minerals valued chiefly for their phosphorus content. However, phosphate rocks are long been known containing hazardous elements, make them sometimes unsuitable for animal nutrition. Neutron Activation Analysis has been supportive to the mineral evaluation of alternative phosphate rocks. This evaluation is subject of on-going doctoral thesis which has been carried-out by the main author. The NAA method has been very efficient due to its highly sensitive and multi-elemental nature. In this paper results of Vanadium content from three different phosphate rocks are presented. Their values have been pointed out that Brazilian phosphate rocks present hazardous elements at the same levels of phosphate rocks from some countries of Africa, North America and Middle East, data from our study (Brazilian data) and FAO - Food and Agriculture Organization (others countries). (author)

  18. Trace Elements in Human Myocardial Infarction Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1965-05-15

    By means of neutron activation analysis, injured and adjacent uninjured human heart tissue from 12 autopsy cases with myocardial infarction are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent y-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, Zn and W. In the injured tissue compared to the uninjured, calculation on a wet weight basis showed a decrease in Co, Cs, K, Mo, P, Rb and Zn, and an increase in Br, Ca, Ce, La, Na, Sb and Sm. The differences in Ca, La, Mo, P and Zn are dependent on the age of the myocardial infarction, and the regression lines for these elements are given. The concentration of the trace elements in uninjured tissue from infarcted hearts is compared to the concentration of these elements in normal heart tissue, determined in a previous study. In the uninjured tissue from infarcted hearts a decrease is found in Cu and Mo, and an increase in As and Ce.

  19. Studies of generalized elemental imbalances in neurological disease patients using INAA [instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases

  20. Neutron activation analysis techniques for identifying elemental status in Alzheimer's disease

    International Nuclear Information System (INIS)

    Brain tissue (hippocampus and cerebral cortex) from Alzheimer's disease and control individuals sampled from Eastern Canada and the United Kingdom were analyzed for Ag, Al, As, B, Br, Ca, Cd, Co, Cr, Cs, Cu, Fe, Hg, I, K, La, Mg, Mn, Mo, Ni, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ti, V and Zn. Neutron activation analysis (thermal and prompt gamma-ray) methods were used. Very highly significant differences (S**: probability less than 0.005) for both study areas were shown between Alzheimer's disease (AD) and control (C) individuals: AD>C for Al, Br, Ca and S, and AD< C for Se, V and Zn. Aluminium content of brain tissue ranged form 3.605 to 21.738 μg/g d.w. (AD) and 0.379 to 4.768 μg/g d.w. (C). No statistical evidence of aluminium accumulation with age was noted. Possible zinc deficiency (especially for hippocampal tissue), was observed with zinc ranges of 31.42 to 57.91 μg/g d.w. (AD) and 37.31 to 87.10 μg/g d.w. (C), for Alzheimer's disease patients. (author)