WorldWideScience

Sample records for analysis neutron activation

  1. Neutron Activation Analysis of Water - A Review

    Science.gov (United States)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  2. Introduction of Prompt Gamma Thermal Neutron Activation Analysis at CARR

    Institute of Scientific and Technical Information of China (English)

    WANG; Xing-hua; XIAO; Cai-jin; ZHANG; Gui-ying; YAO; Yong-gang; JIN; Xiang-chun; WANG; Ping-sheng; HUA; Long; NI; Bang-fa

    2013-01-01

    CARR will provide with maximal neutron flux in Asia,the third of the world.By using the high quality neutron beam and the advanced international experience,Prompt Gamma Neutron Activation Analysis(PGNAA)facility will be setup at high level.PGNAA on CARR will promote the development of nuclear analysis technology and improve Chinese status in the nuclear analysis field.

  3. Fast neutron activation analysis by means of low voltage neutron generator

    Science.gov (United States)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  4. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  5. Opportunities for innovation in neutron activation analysis

    NARCIS (Netherlands)

    Bode, P.

    2011-01-01

    Neutron activation laboratories worldwide are at a turning point at which new staff has to be found for the retiring pioneers from the 1960s–1970s. A scientific career in a well-understood technique, often characterized as ‘mature’ may only be attractive to young scientists if still challenges for f

  6. Neutron Activation Analysis of Inhomogeneous Large Samples; An Explorative Study

    NARCIS (Netherlands)

    Baas, H.W.

    2004-01-01

    Neutron activation analysis is a powerful technique for the determination of trace-element concentrations. Since both neutrons that are used for activation and gamma rays that are detected have a high penetrating power, the technique can be applied for relatively large samples (up to 13 L), as demon

  7. Progress in neutron activation analysis for uranium

    Institute of Scientific and Technical Information of China (English)

    杜鸿善; 李贵群; 董桂芝; 李俊兰; K.H.Chiu; C.M.Wai

    1996-01-01

    A new type of extractant, sym-dibenzo-16-crown-5-oxyhydroxamic acid (HL) is introduced. The extractions of UO22+, Na+, K+, Sr2+, Ba2+ and Br- were studied with HL in chloroform. The results obtained show that UO22+ can be quantitatively extracted at pH values above 5, whereas the extractions of K+, Na+, Sr2+, Ba2+ and Br- are negligible in the pH range of 2 - 7. The dependence of the distribution ratio of U(VI) on both the concentration of the HL and pH are linear, and they have the same slope of 2. This suggests that U(VI) appears to form a 1:2 complex with ligand. Uranium(VI) can be selectively separated and concentrated from interfering elements such as Na, K, Sr and Br by solvent extraction with HL under specific conditions. The recovery of uranium is nearly 100% and the radionudear purity of uranium is greater than 99.99%. Therefore, neutron activation analysis has greatly improved the sensitivity and accuracy for the detection of trace uranium from seawater.

  8. Quantitative neutron capture resonance analysis verified with instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M. E-mail: blaauw@iri.tudelft.nl; Postma, H.; Mutti, P

    2003-06-01

    The newly developed elemental analysis technique Neutron Resonance Capture Analysis (NRCA) was verified by analyzing a prehistoric bronze arrowhead with both NRCA and Instrumental Activation Analysis (INAA). In NRCA, elements are identified through their neutron resonance capture energies as determined through detection of prompt capture gamma-rays as a function of time of flight. The quantification is obtained from the resonance peak areas. Corrections are required for neutron-energy-dependent dead time and self-shielding, the latter also depending on Doppler broadening. The analysis program REFIT, of which the intended use is the determination of the resonance parameters, was used to this end. The agreement observed between INAA and NRCA results indicates that the NRCA results obtained are accurate.

  9. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  10. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  11. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  12. Instrumental neutron activation analysis of some ayurvedic medicines: Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rajurkar, N.S.; Vinchurkar, M.S. (Poona Univ., Pune (India). Dept. of Chemistry)

    1992-12-01

    Several medicines have been manufactured and prescribed to overcome mineral deficiencies in the human body. Such medicines are mixtures of several components. The present work is undertaken to analyze various Ayurvedic medicines, mainly of herbal origin and used for different purposes, for their elemental contents, by neutron activation analysis. (author).

  13. Instrumental Neutron Activation Analysis Technique using Subsecond Radionuclides

    DEFF Research Database (Denmark)

    Nielsen, H.K.; Schmidt, J.O.

    1987-01-01

    The fast irradiation facility Mach-1 installed at the Danish DR 3 reactor has been used in boron determinations by means of Instrumental Neutron Activation Analysis using12B with 20-ms half-life. The performance characteristics of the system are presented and boron determinations of NBS standard...

  14. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  15. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  16. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    illustrated how the activated water would propagate along that pipe. C) Combustion products. In order to investigate the oxidation in combustion products (deposits), the total amount of oxygen in the deposits collected from combustion chambers of a modern gasoline engine was measured, using cyclic fast neutron activation analysis (FNAA). As a compartment, the organic compounds containing oxygen were identified using {sup 13}C solid-state nuclear magnetic resonance (NMR) spectroscopy. The results of FNAA showed that the amount of oxygen in deposits varies depending on where the deposits have been formed. {sup 13}C NMR has showed that the carbon backbone of the deposits exists as highly oxidized poly aromatics and/or graphitic structure. D) On-line fast neutron activation analysis. On-line neutron activation analysis was used to detect the amount of oxygen in bulk liquids. The method was optimised for on-line detection of oxygen in rapeseed oil. The goal was to develop a non-intrusive method for measurement of the total amount of oxygen in oil during combustion/oxidation.

  17. Neutron activation analysis applied to nutritional and foodstuff studies

    Energy Technology Data Exchange (ETDEWEB)

    Maihara, Vera A.; Santos, Paola S.; Moura, Patricia L.C.; Castro, Lilian P. de, E-mail: vmaihara@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Avegliano, Roseane P., E-mail: pagliaro@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Coordenadoria de Assistencia Social. Div. de Alimentacao

    2009-07-01

    Neutron Activation Analysis, NAA, has been successfully used on a regularly basis in several areas of nutrition and foodstuffs. NAA has become an important and useful research tool due to the methodology's advantages. These include high accuracy, small quantities of samples and no chemical treatment. This technique allows the determination of important elements directly related to human health. NAA also provides data concerning essential and toxic concentrations in foodstuffs and specific diets. In this paper some studies in the area of nutrition which have been carried out at the Neutron Activation Laboratory of IPEN/CNEN-SP will be presented: a Brazilian total diet study: nutritional element dietary intakes of Sao Paulo state population; a study of trace element in maternal milk and the determination of essential trace elements in some edible mushrooms. (author)

  18. Chemical weapons detection by fast neutron activation analysis techniques

    Science.gov (United States)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  19. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  20. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  1. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  2. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  3. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  4. An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam

    Science.gov (United States)

    Riley, Kent J.; Harling, Otto K.

    1998-09-01

    The performance of the prompt gamma neutron activation analysis (PGNAA) facility at the MIT Research Reactor has been improved by a series of modifications. These modifications have increased the flux by a factor of three at the sample position to 1.7 × 10 7 n/cm 2 s, and have increased the sensitivity, on average, by a factor of 2.5. The background for many samples of interest is dominated by unavoidable neutron interactions that occur in or near the sample. Other background components comprise only 20% of the total background count rate. The implementation of fast electronics has helped to keep dead time reasonable, in spite of the increased count rates. The PGNAA facility at the MIT Research Reactor continues to serve as a major analytical tool for quantifying 10B in biological samples for Boron Neutron Capture Therapy (BNCT) research. The sensitivity for boron-10 in water is 18 750 cps/mg. The sensitivity for pure elements suitable for PGNAA analysis is reported. Possible further improvements are discussed.

  5. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  6. Towards a methodology for large-sample prompt-gamma neutron-activation analysis

    NARCIS (Netherlands)

    Degenaar, I.H.

    2004-01-01

    Large-sample prompt-gamma neutron-activation analysis, or shortly LS PGNAA, is a method by which mass fractions of elements can be determined in large samples with a mass over 1 kg. In this method the large sample is irradiated with neutrons. Directly (prompt) after absorption of the neutrons photon

  7. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  8. Current status of neutron activation analysis using the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Suc; Nguyen Mong Sinh [Nuclear Research Institute, Dalat (Viet Nam)

    1999-10-01

    Neutron activation analysis is one of the most sensitive, rapid, accurated methods for determination of trace elements in different materials. A review is made of the current status of the activities and the results in studying and developing NAA (Neutron Activation Analysis) at the Dalat Nuclear Research Institute and applying this method to different sectors of science and technology in Vietnam. (author)

  9. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    Science.gov (United States)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  10. Neutron activation analysis of multimetallic accumulation in dolomites

    Directory of Open Access Journals (Sweden)

    Zovko Emira

    2008-01-01

    Full Text Available The reason for exploring polymetallic ores, which are found in dolomite structures of the Veovača and Borovica zone near Vareš, lies in the fact that there is very little information about its chemical structure. The isolated concentrates that we analyzed from surface mines, have shown significant difference in quantity of trace elements. Deep probing of the whole area was not performed, but there are presumptions that there are roots of ore-rich dolomites in the areas of 30 - 40 km. The future concept of exploitation of these mines in the Vareš zone would probably require deeper probing. There are prospects for finding higher quality deposits with significant quantities of polymetallic components. By the method of neutron activation analysis the existence of mercury in amounts of about 0.4 % was confirmed. Because of the presence of mercury, these concentrates are not appropriate for pyrometallurgy, since it may result in environment contamination.

  11. Analysis of natural neutron flux in a seismically active zone

    Directory of Open Access Journals (Sweden)

    V. F. Ostapenko

    2003-01-01

    Full Text Available In a seismically active zone in the near Almaty area (Kazakhstan since 1996 observations of variations of a natural neutron flux have been conducted. Sometimes the neutron flux rises sharply within the one-hour interval in comparison with the background. It occurs on the eve of activation of seismic processes. Increase of the neutron flux level had taken place from 1 h to 10 days prior to earthquakes. It is also indicated a tendency of growth of the anomaly level in accordance with the growth of energetic class of the subsequent earthquake. A character of connection between the neutron flux and earthquakes is still not clear. It is proposed that the neutron flux anomalies caused by variations of cosmic radiation intensity under action of fluxes of solar material, which is burst into interplanetary space (solar wind during solar flares. Energy of the solar wind transferred to Earth puts into action a trigger mechanism of the process of initiation of earthquakes at those places where conditions have already been prepared for them. The neutron flux anomalies can be used as substantial additional information for classical geophysical methods of short-term earthquake prediction.

  12. Application of neutron activation analysis system in Xi'an pulsed reactor

    CERN Document Server

    Zhang Wen Shou; Yu Qi

    2002-01-01

    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  13. Medical application of in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking.

  14. A package for gamma-ray spectrum analysis and routine neutron activation analysis

    Indian Academy of Sciences (India)

    M E Medhat; A Abdel-Hafiez; Z Awaad; M A Ali

    2005-08-01

    A package for gamma spectrum analysis (PGSA) was developed using object oriented Borland C++ design for MS-windows. This package consists of five programs which can be used for gamma-ray spectrum analysis and routine neutron activation analysis. The advantages of PGSA are its simple algorithms and its need for only minimum amount of input information.

  15. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  16. Computer programs for absolute neutron activation analysis on the nuclear data 6620 data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Wade, J.W.; Emery, J.F.

    1982-03-01

    Five computer programs that provide multielement neutron activation analysis are discussed. The software package was designed for use on the Nuclear Data 6620 Data Acquisition System and interacts with existing Nuclear Data Corporation software. The programs were developed to make use of the capabilities of the 6620 system to analyze large numbers of samples and assist in a large sample workload that had begun in the neutron activation analysis facility of the Oak Ridge Research Reactor. Nuclear Data neutron activation software is unable to perform absolute activation analysis and therefore was inefficient and inadequate for our applications.

  17. Development of Distinction Method of Production Area of Ginsengs by Using a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chung, Yong Sam; Sun, Gwang Min; Lee, Yu Na; Yoo, Sang Ho [KAERI, Daejeon (Korea, Republic of)

    2010-05-15

    Distinction of production area of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). A distribution of elements has varied according to the part of plant clue to the difference of enrichment effect and influence from a soil where the plants have been grown. So correlation study between plants and soil has been an Issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis

  18. Neutron activation analysis and provenance study of Tupiguarani Tradition pottery

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Gleikam Lopes de Oliveira [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/ CNEN-MG), Belo Horizonte, MG (Brazil). Curso de Mestrado em Ciencia e Tecnologia das Radiacoes, Minerais e Materiais], e-mail: gleikam@yahoo.com.br; Menezes, Maria Angela de B.C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/ CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Ribeiro, Loredana; Jacome, Camila [Cooperativa dos Empreendedores em Acoes Culturais - COOP. CULTURA, Belo Horizonte, MG (Brazil). Lab. de Arqueologia], e-mail: loredana.ribeiro@gmail.com

    2009-07-01

    Archaeology can fill the gap between ancient population and modern society elucidating the evidences found in archaeological sites. The fingerprint identified, that is the chemical composition of the ceramics, can help understanding this connection between the past and the present. The Tupiguarani Tradition vestiges found by archaeologists will be a way to know about the last two millennia of the Brazilian prehistory. This archaeological site is located along the coast of the Brazilian State of Espirito Santo, where the main evidence is a pretty ceramic with the occurrence of plastic and painted decoration. When the Portuguese settlers arrived in this region, in sixteenth century, several Missoes Jesuiticas (Jesuitical Missions) were built along the Brazilian coast. In spite of living within the Mission and been catechized, the Indians kept on producing traditional handicraft, as the decorated ceramic, however, they introduced European elements to the decoration. During the research expeditions made to the archaeological site of the Tupiguarani Tradition, many sherds were found. The identification and classification of ceramics through a multielemental chemistry analysis will be used to determine if they have the same origin. This paper shows the first elemental concentration results of the sherds collected from archaeological site determined at CDTN/CNEN, Belo Horizonte, Minas Gerais, using the TRIGA Mark I IPR-R1 nuclear reactor, applying the neutron activation technique, k{sub 0}-method. (author)

  19. Elementary concentration of Peruibe black mud by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Ponciano, Ricardo; Silva, Paulo S.C da, E-mail: jeffkoy@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  20. Inorganic constituents in herbal medicine by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  1. Essential trace elements in edible mushrooms by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia L.C.; Maihara, Vera A.; Castro, Lilian P. de [Instituto de Pesquisa e Energetica e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: patricialandim@ig.com.br; vmaihara@ipen.br; lilian.Pavanelli@terra.com.br; Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil)]. E-mail: figueiraru@yahoo.com.br

    2007-07-01

    Mushrooms are excellent nutritional sources since they provide proteins, fibers and mineral, such as K, P, Fe. They have also been the focus of medical research. In Brazil mushrooms are not consumed in large quantities by the general population since people know little about the nutritional and medicinal benefits that mushrooms offer. Hence, this study intends to contribute to a better understanding of the essential element content in edible mushrooms, which are currently commercialized in Sao Paulo state. Br Fe, K, Na and Zn concentrations were determined by Instrumental Neutron Activation Analysis in the following mushroom species: Shitake (Lentinus edodes), Shimeji (Pleurotus ssp), Paris Champignon (Agaricus bisporus), Hiratake ( Pleurotus ssp) and Eringue (Pleurotus Eryngu. The mushroom samples were acquired from commercial establishments in the city of Sao Paulo and directly from the producers. Essential element contents in mushrooms varied between Br 0.03 to 4.1 mg/kg; Fe 20 to 267 mg/kg; K 1.2 to 5.3 g/kg, Na 10 to 582 mg/kg and Zn 60 to 120 mg/kg. The results confirm that mushrooms can be considered a good source of K, Fe and Zn. The low Na level is a good nutritional benefit for the consumer. (author)

  2. Neutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast.

    Science.gov (United States)

    Rades-Rohkohl, E; Hirsch, P; Fränzle, O

    1979-12-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 mum) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components.

  3. Neutron formation temperature gauge and neutron activation analysis brine flow meter. Final report, October 1, 1976--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Vagelatos, N.; Steinman, D.K.; John, J.

    1978-03-31

    Feasibility studies of nuclear techniques applicable to the determination of geothermal formation temperature and two-phase brine flow downhole have been performed. The formation temperature gauging technique involves injection of fast neutrons into the formation and analysis of the moderated slow neutron energy distribution by appropriately filtered neutron detectors. The scientific feasibility of the method has been demonstrated by analytical computational and experimental evaluation of the system response. A data analysis method has been developed to determine unambiguously the temperature, neutron absorption cross section and neutron moderating power of an arbitrary medium. The initial phase of a program to demonstrate the engineering feasibility of the technique has been performed. A sonde mockup was fabricated and measurements have been performed in a test stand designed to simulate a geothermal well. The results indicate that the formation temperature determined by this method is independent of differences between the temperature in the borehole fluid and the formation, borehole fluid density, and borehole fluid salinity. Estimates of performance specifications for a formation temperature sonde have been made on the basis of information obtained in this study and a conceptual design of a logging system has been developed. The technique for the determination of fluid flow in a well is based on neutron activation analysis of elements present in the brine. An analytical evaluation of the method has been performed. The results warrant further, experimental evaluation.

  4. Estimates of iodine in biological materials by epithermal neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T. (Tokyo Metropolitan Inst. for Neurosciences, Fuchu (Japan)); Kato, T. (Tohoku Univ., Sendai (Japan). Coll. of General Education)

    1982-01-01

    Iodine abundances in NBS biological SRMs and various organs of rats were evaluated by epithermal neutron activation analysis with a boron carbide filter. The detectability of iodine in different biological materials by this method is discussed.

  5. Determination of europium content in Li2SiO3(Eu) by neutron activation analysis using Am-Be neutron source.

    Science.gov (United States)

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-12-01

    Circulardiscs of Li2SiO3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the (151)Eu(n,γ)(152m)Eu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined.

  6. In-situ soil composition and moisture measurement by surface neutron activation analysis

    Science.gov (United States)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  7. Elemental analysis of rain- and fresh water by neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analysis of rain-and fresh water for trace constituents is a manda tory part of environmental monitoring. This text gives a survey of neutron activation analysis (NAA) within the framework of current environmental water research pro grammes, based on the practice developed in co-operation with the Dutch Energy Research Centre at Petten (ECN). While the procedures reported in literature cover about thirty five elements, our routine procedures of instrumental neutron activation analysis (INAA) is limited to ten to fifteen elements. The use of some dedicated ra diochemical separations (RNAA) adds another six, some of which are speciated as well. Current contributions of NAA to water analysis center on determination and speciation of anionic trace elements, notably Br, I, As. and Se, on the assay of some ultra traces like Ag, Au and Hg and on validation.

  8. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  9. SWAN - Detection of explosives by means of fast neutron activation analysis

    Science.gov (United States)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  10. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2012-07-01

    This study shows the application of semi-absolute k{sub 0} instrumental neutron activation analysis (k{sub 0}-INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k{sub 0}-INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  11. In-vivo neutron activation analysis: principles and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  12. Clinical applications of in vivo neutron-activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  13. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun

    2000-05-01

    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques.

  14. Neutron activation analysis via nuclear decay kinetics using gamma-ray spectroscopy at SFU

    Science.gov (United States)

    Domingo, Thomas; Chester, Aaron; Starosta, Krzysztof; Williams, Jonathan

    2016-09-01

    Gamma-ray spectroscopy is a powerful tool used in a variety of fields including nuclear and analytical chemistry, environmental science, and health risk management. At SFU, the Germanium detector for Elemental Analysis and Radiation Studies (GEARS), a low-background shielded high-purity germanium gamma-ray detector, has been used recently in all of the above fields. The current project aims to expand upon the number of applications for which GEARS can be used while enhancing its current functionality. A recent addition to the SFU Nuclear Science laboratory is the Thermo Scientific P 385 neutron generator. This device provides a nominal yield of 3 ×108 neutrons/s providing the capacity for neutron activation analysis, opening a major avenue of research at SFU which was previously unavailable. The isotopes created via neutron activation have a wide range of half-lives. To measure and study isotopes with half-lives above a second, a new analogue data acquisition system has been installed on GEARS allowing accurate measurements of decay kinetics. This new functionality enables identification and quantification of the products of neutron activation. Results from the neutron activation analysis of pure metals will be presented.

  15. Elemental analysis of some Egyptian ores and industrial iron samples by neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Elemental analysis of iron ore samples and first industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were determined by instrumental neutron activation analysis technique. Five samples from each kind were irradiated for a 48 hours at a thermal neutron flux of 4x1012 n/(cm2.s) in the first Egyptian research reactor ET-PP-1. Also the pneumatic irradiation rabbit system (PIRS) attached to the reactor in Inshass, was used to measure the elements of short-life time.The gamma-ray spectra were recorded by means of the hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. The long and short lived isotopes were considered. A comparative study and a discussion on the elemental concentration values are given.

  16. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis.

    Science.gov (United States)

    Sroo, A; Abdel-Basset, N; Abdel-Haleem, A S; Hassan, A M

    2001-03-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4 x 10(12) n/cm2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The gamma-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented.

  17. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M

    2001-03-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10{sup 12} n/cm{sup 2} s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The {gamma}-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented.

  18. Elemental analysis of some Egyptian ores and industrial iron samples by neutron activation analysis.

    Science.gov (United States)

    Srror, A; Abdel-Basset, N; Abdel-Haleem, A S; Hassan, A M

    2001-01-01

    Elemental analysis of iron ore samples and first industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were determined by instrumental neutron activation analysis technique. Five samples from each kind were irradiated for a 48 hours at a thermal neutron flux of 4 x 10(12) n/(cm2.s) in the first Egyptian research reactor ET-RR-1. Also the Pneumatic irradiation Rabbit system (PIRS) attached to the reactor in Inshass, was used to measure the elements of short-life time. The gamma-ray spectra were recorded by means of the hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. The long and short lived isotopes were considered. A comparative study and a discussion on the elemental concentration values are given.

  19. Large sample neutron activation analysis: a challenge in cultural heritage studies.

    Science.gov (United States)

    Stamatelatos, Ion E; Tzika, Faidra

    2007-07-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined.

  20. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    Science.gov (United States)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  1. Low Temperature Irradiation Applied to Neutron Activation Analysis of Mercury In Human Whole Blood

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.

    1966-02-15

    The distribution of mercury in human whole blood has been studied by means of neutron activation analysis. During the irradiation procedure the samples were kept at low temperature by freezing them in a cooling device in order to prevent interferences caused by volatilization and contamination. The mercury activity was separated by means of distillation and ion exchange techniques.

  2. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  3. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)], E-mail: mnnasri@kashanu.ac.ir; Jalali, M. [Isfahan Nuclear Science and Technology Research Institute, Atomic Energy organization of Iran (Iran, Islamic Republic of); Mohammadi, A. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2007-10-15

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF{sub 3} detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  4. Availability of essential trace elements in Ayurvedic Indian medicinal herbs using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V.; Garg, A.N. [Nagpur Univ. (India). Dept. of Chemistry

    1997-01-01

    Specific parts of several plants (fruits, leaves, stem, bark and roots) often used as medicines in the Indian Ayurvedic system have been analysed for 20 elements (As, Ba, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Mo, Na, P, Rb, Sb, Sc, Se, Sr and Zn) by employing instrumental neutron activation analysis (INAA). The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted using high resolution gamma ray spectrometry. Most of the medicinal herbs have been found to be rich in one or more of the elements under study. (Author).

  5. Determination of Lithium by Instrumental Neutron Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Skanborg, Preben Zacho; Gwozdz, R.

    1977-01-01

    The fast transfer system in the DR 2 reactor for irradiation at a thermal neutron flux density of 1013 n·cm−2·sec−1 was used for the determination of lithium by the7Li(n, γ)8Li reaction. β-counting with a large perspex Cerenkov detector begun at 0.3 s after the end of irradiation, and multi...

  6. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K.

    1966-09-15

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min.

  7. The determination of platinum in tissue of different human organs by means of neutron activation analysis

    DEFF Research Database (Denmark)

    Rietz, Bernd; Heydorn, Kaj; Krarup-Hansen, Anders

    2002-01-01

    . It was demonstrated that radiochemical neutron activation analysis can be used for these studies because of its sensitivity and precision and a low detection limit for platinum (similar to1 ng). Tissues of the following organs were analyzed for platinum: liver, kidney, testis, lung, pancreas and muscle. This study...

  8. Software for neutron activation analysis at reactor IBR-2, FLNP, JINR

    CERN Document Server

    Zlokazov, V B

    2004-01-01

    A Delphi program suite, developed for processing gamma-spectra of induced activity of nuclei, obtained from the neutron activation measurements at the reactor IBR-2, FLNF, JINR, is reported. This suite contains components, intended for carrying out all the operations of the analysis cycle, starling with a data acquisition program for gamma -spectrometers Gamma (written in C++ Builder) and including Delphi programs for steps of the analysis. (6 refs).

  9. Analysis of Neutron Induced Gamma Activity in Lowbackground Ge - Spectroscopy Systems

    Science.gov (United States)

    Jovančević, Nikola; Krmar, Midrag

    Neutron interactions with materials of Ge-spectroscopy systems are one of the main sources of background radiation in low-level gamma spectroscopy measurements. Because of that detailed analysis of neutron induced gamma activity in low-background Ge-spectroscopy systems was done. Two HPGe detectors which were located in two different passive shields: one in pre-WW II made iron and the second in commercial low background lead were used in the experiment. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal and shield materials (lead, iron, hydrogen, NaI) were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. The relative intensities of several gamma lines emitted after the inelastic scattering of neutrons (created by cosmic muons) in 56Fe were report. These relative intensities of detected gamma lines of 56Fe are compared with the results collected in the same iron shield by the use of the 252Cf neutrons.

  10. Analysis of umayyad islamic silver coins (Dirhams) by using instrumental neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Islamic silver coins (Dirhams) running the period between 107 to 126 Hijri (726-743AD), which belong to the Umayyad Empire period, 41-132 hijri (661-750AD), were selected for analysis by using instrumentalneutron activation analysis techniques.During this period (105-126H),(724-743AD), the Caliph Hisham Eben Abdlemalek ruled the Umayyad Empire.Dirhams were irradiated in a reactor neutron activation facility.Levels of various elements viz.Cu, Ag and Au were estimated.It was found that the average silver concentration, the baseconstituent of the Dirham, was about 88wt%.Correlation between thecomposition of Dirhams and the historical implications was discussed.

  11. Abundance of lanthanoids in rock salts determined by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Teruyuki; Nozaki, Tetsuya [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab.; Yui, Mitsuaki; Kikawada, Yoshikazu; Oi, Takao

    1998-06-01

    Contents of lanthanoids (Ln`s) of rock salts have been measured by the neutron activation analysis. Original salt samples were treated in advance of neutron irradiation so that Ln`s were enriched and amounts of interfering nuclides were reduced. The contents of Ln`s were at ppt-sub ppb levels and were comparable with or slightly lower than those of solar salts. The Ln abundance patterns of the salts were those with relative depletion in the heavy Ln`s, thus having negative slopes. It was indicated that, when salt deposit was formed, Ln`s were taken up by anhydrite more preferentially than by halite. (author)

  12. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    Science.gov (United States)

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  13. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  14. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    OpenAIRE

    Wallace Barton

    2014-01-01

    Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage o...

  15. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    Science.gov (United States)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  16. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    Science.gov (United States)

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  17. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Medkour Ishak-Boushaki, Ghania, E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Boukeffoussa, Khelifa [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Idiri, Zahir [Centre de Recherche Nucleaire d' Alger, 02 Boulevard Frantz-Fanon, BP 399, Algiers (Algeria); Allab, Malika [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)

    2012-03-15

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an {sup 241}Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. - Highlights: Black-Right-Pointing-Pointer Low intensity neutron fields' characterization using thick threshold detectors. Black-Right-Pointing-Pointer Low activity {sup 241}Am-Be neutron source spectrum measurement. Black-Right-Pointing-Pointer Integral quantities required for radiological protection have been derived. Black-Right-Pointing-Pointer The results are in good agreement with those deduced using Bonner spheres. Black-Right-Pointing-Pointer The results are not very sensitive to the chosen deconvolution procedure.

  18. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  19. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  20. Identification of the provenience of Majolica from sites in the Caribbean using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olin, J.S.; Sayre, E.V.

    1975-01-01

    Tin-enamelled earthenware pottery from five early Spanish Colonial sites in the Dominican Republic and Venezuela were sampled and analyzed by neutron activation analysis in an attempt to determine whether these sherds had a common source. The tentative conclusion was that although several sources were indicated for the specimens analyzed the overall similarity in composition indicated that these sources were probably closely related. (JSR)

  1. An application of a simple computer program for neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple computer program is designed for estimation of elemental concentration values in complex samples by neutron activation analysis technique. The program is applied for an Egyptian cement sample which irradiated at the Egyptian Research Reactor-1(ET-RR-1). The data obtained is compared with the reported values. The time consumed for such calculations has a remarkable reduction in comparison with the routine work.

  2. An application of a simple computer program for neutron activation analysis.

    Science.gov (United States)

    Abdel Basset, N

    2001-01-01

    A simple computer program is designed for estimation of elemental concentration values in complex samples by neutron activation analysis technique. The program is applied for an Egyptian cement sample which irradiated at the Egyptian Research Reactor-1(ET-RR-1). The data obtained is compared with the reported values. The time consumed for such calculations has a remarkable reduction in comparison with the routine work.

  3. Neutron activation analysis of phytotherapic obtained from medicinal plants; Analise por ativacao com neutrons de fitoterapicos obtidos de plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Henrique S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: hs_moreira@hotmail.com; Saiki, Mitiko; Vasconcellos, Marina B.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mitiko@ipen.br; mbvascon@ipen.br

    2007-07-01

    This paper determines the inorganic constituents in phytotherapic samples for posterior study of the relationship existent among the concentrations of the found elements and the their possible therapeutical effects. The samples of phytotherapic pills (Centella asiatica, Ginkgo biloba and Ginseng) were analysed by using neutron activation analysis (NAA). The As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sc, Se and Zn samples were determined in the phytotherapics, The Centella asiatica presented the higher concentrations of Br, Co, Cr, Fe, K, La, Na, Rb, Sc, Se and Zn. In the sample of Ginko biloba, higher levels of As and Ca were found, while in the sample ol Ginseng the element As were not detected. The found results have shown the the NAA method is appropriated for analysing this type of materials due to his simplicity, multielemental capacity and quality of the results obtained. (author)

  4. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    Science.gov (United States)

    Mohseni, Hedieh K; Chettle, David R

    2016-01-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades.

  5. Studies on application of radiation and radioisotopes -Studies on application of neutron activation analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Sam; Jung, Yung Joo; Jung, Eui Sik; Lee, Sang Mee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Nak Bae [Korea Institute of Geology, Mining and Materials, Taejon (Korea, Republic of)

    1995-07-01

    To apply Neutron activation analysis to routine analysis of environmental samples utilizing the research reactor (TRIGA MK-III), improving effects of analytical sensitivity have been investigated using both of thermal and epithermal neutron irradiating technique. Identification and development of analytical procedure was carried out using three kinds of standard reference materials (urban particulate matter, coal fly ash, soil). In addition, the confidence of this method was established by participation in collaborative research for the training and apply of international credit of analytical procedure. Practical studies on air dust samples have also been carried out regionally and seasonally. For the investigation on emission source of special element, enrichment factor was calculated in urban and rural area. Besides, a suitable process of biological sample (pine needle) analyses has been established by carrying out identification of uncertainty using standard reference material. The concentration of elements in practical samples were also determined regionally and seasonally. 14 figs, 26 tabs, 67 refs. (Author).

  6. Routine determination of trace elements in fly ashes by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szopa, Z.; Dybczynski, R.; Kulisa, K.; Sterlinski, S. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1994-12-31

    A method making possible routine determination of 24 trace elements in fly ashes by instrumental neutron activation analysis (INAA) is described. The method employs elemental standards, and the correction for neutron flux gradient in the irradiation package is performed with the aid of Au flux monitors. Important features of the method as: detectability, precision and accuracy are discussed in detail. Reliability of the method was demonstrated by the analysis of several certified reference materials (CRMs). Special attention was devoted to comparison of the experimentally obtained detection limits with those predicted by computer spectra simulation (CSS) method. The elemental enrichment factors calculated for Polish coal fly ash were compared with those typical for Chinese and Canadian fly ashes. (author). 21 refs, 7 figs.

  7. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  8. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis.

    Science.gov (United States)

    Abdel-Sabour, M F; Abdel-Basset, N

    2002-07-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  9. Application of spectral decomposition analysis to in vivo quantification of aluminum by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D.C. E-mail: comsadc@mcmaster.ca; Prestwich, W.V.; McNeill, F.E.; Byun, S.H

    2004-12-01

    The toxic effects of aluminum are cumulative and result in painful forms of renal osteodystrophy, most notably adynamic bone disease and osteomalacia, but also other forms of disease. The Trace Element Group at McMaster University has developed an accelerator-based in vivo procedure for detecting aluminum body burden by neutron activation analysis (NAA). Further refining of the method was necessary for increasing its sensitivity. In this context, the present study proposes an improved algorithm for data analysis, based on spectral decomposition. A new minimum detectable limit (MDL) of (0.7{+-}0.1) mg Al was reached for a local dose of (20{+-}1) mSv. The study also addresses the feasibility of a new data acquisition technique, the electronic rejection of the coincident events detected by a NaI(Tl) system. It is expected that the application of this technique, together with spectral decomposition analysis, would provide an acceptable MDL for the method to be valuable in a clinical setting.

  10. Analysis of human enamel and dentine by neutron activation analysis; Analise de esmalte e dentina de humanos pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marco A.B. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: vankfire@gmail.com; Adachi, Eduardo M.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2005-07-01

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x10{sup 12} n cm{sup -2} s{sup -1} were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the {mu}g g{sup -1} levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  11. Analysis of Essential Elements for Plants Growth Using Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    R. L. Njinga

    2013-01-01

    Full Text Available In this study, a total of ten essential elements for plants growth in the Guinea savanna region of Niger State in Northern Nigeria have been identified in the soils using instrumental neutron activation analysis. The experimental results show good agreement with certified or literature values within the agreed percentage range of ±2.35% to ±8.69%. However, the concentration distributions of the ten identified elements in the soil samples within the studied area for plants growth revealed the following: Fe (123.4 ppm, Mn (2100.7 ppm, K (5544.3 ppm, Al (54752.4 ppm, Ti (3082.9 ppm, Ca (4635 ppm, V (54.3 ppm, Na (857.5 ppm, Mg (13924.1 ppm, and Dy (12.1 ppm. A further analysis of the two fundamental soil physical parameters for healthy growth of some common crops like egusimelon, groundnut, rice, yams, soybeans, cassava, and potato analyzed in this work revealed a pH range of 4.0 pH–8.0 pH and a temperature range of 28.0°C to 29.3°C, which are optimal for plant nutrients availability in the soils within the study area.

  12. Neutron activation analysis and Mossbauer spectroscopy research on coloring mechanism of Chinese Ru porcelain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic spectrum and its main wavelength of Ru porcelain glaze are measured by color difference instrument to determine the relations between glaze color and its main wavelength. The content of the 30 coloring elements in Ru porcelain is determined by neutron activation analysis (NAA), which showed that iron is the major coloring element. M?ssbauer spectroscopy analysis shows that the iron element in the glaze exists in the form of structural iron (Fe2+, Fe3+). The quantitative relationship between the main wavelength of glaze in various colors and the relative content of structural iron (Fe2+/Fe3+) is determined. Thus the coloring mechanism of Ru porcelain is investigated entirely.

  13. Neutron-activation analysis of hot particles from the vicinity of the Chernobyl Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lyul`, A.Yu.; Kolesov, G.M.; Cherkezyan, V.O. [V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    1994-04-10

    A considerable portion of the radioactive contamination of the surface layers of soil after the accident at the Chernobyl Nuclear Power Plant was caused by hot particles or aggregates with a diameter of several tens microns and a specific activity >n{center_dot}10{sup {minus}11} Ci. They consist of primary particles of the dispersed material of the nuclear fuel and secondary particles formed as a result of the interaction of the fuel and uranium fission products with the structural materials of the reactor and the destroyed active zone. The radionuclide composition of the hot particles characterizes the nuclear fuel used and the temperature conditions in the reactor during the first weeks after the accident and their chemical composition reflects the conditions and processes leading to their formation, which must be known in order; to ascertain the mechanism of the formation of the radioactive emission from the reactor and to evaluate the degree of ecological danger posed by the particles. All this promotes the urgency and importance of studying the radiation-chemical characteristics of such hot particles. Their small sizes and masses impose definite restrictions; on the investigative methods used, which must be highly sensitive and must offer the possibility of performing a nondestructive analysis. One such method is neutron-activation analysis. The purpose of the present investigation was to apply instrumental neutron-activation analysis to the simultaneous determination of the elemental composition of hot particles and establishment of the isotopic composition of the uranium in them.

  14. A prompt gamma neutron activation analysis facility using a diffracted beam

    Science.gov (United States)

    Harling, Otto K.; Chabeuf, Jean-Michel; Lambert, Frédérique; Yasuda, Gopika

    1993-12-01

    A prompt gamma neutron activation analysis facility has been constructed at the MIT Research Reactor using a diffracted beam from a multilayered graphite monochromator. A beam of 0.0143 eV neutrons of intensity 6 × 10 6{n}/{cm 2}s is available at the sample position. Backgrounds are low due to the use of the diffracted beam and are further improved by a sapphire crystal in the beam line. This design allowed the Ge detecting crystal to be placed close to the sample position, 4 cm, with a resultant high detection efficiency. The sensitivity of the facility is reported for several representative pure elements. The major impetus for the construction of this facility was the need for accurate analyses of 10B in biological samples for neutron capture therapy research. Detailed results for this type of analysis are provided. The sensitivity of this diffracted beam facility currently exceeds that of two representative direct beam facilities using reactors of twice the power of the MITR-II. Possible major improvements in sensitivity, more than an order of magnitude, and in background levels are outlined for future development.

  15. Determination of uranium fission product interference factor for molybdenum quantification by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Junior, Ibere S.; Saiki, Mitiko; Genezini, Frederico A.; Zahn, Guilherme S., E-mail: ibere@usp.br, E-mail: mitiko@ipen.br, E-mail: fredzini@ipen.br, E-mail: gzahn@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Instrumental Neutron Activation Analysis (INAA) is a technique that provides high precision and accuracy results for the concentration determinations of several elements in different kinds of matrices. However, if the sample contains high uranium concentration in their composition, INAA can provide inaccurate results due to uranium fission product interferences. The molybdenum is one of these elements that suffers interference by uranium fission product, because the {sup 99}Mo radioisotope formed by {sup 98}Mo neutron capture, used in INAA, is the same that formed in the uranium fission. This kind of interference can be solved by separation of uranium before irradiation or by determining the uranium interference factor to the radioisotope of interest and applying the correction. The present study aims at the following: (1) determination of the Mo interference factor (F{sub Exp}{sup Mo}) due to the uranium fission product {sup 99}Mo by irradiating standards of Mo and U with known masses of these elements (experimental interference factor); (2) determination of the theoretical F{sub Th}{sup Mo}, in this case it was necessary to determine the epithermal to thermal neutron flux ratio and use the reported nuclear parameters; (3) comparison of the results of the interference factor obtained with values reported in the literature. The interference factor for Mo analysis was obtained in a position 14b shelf 3 of the IEA-R1 nuclear research reactor. (author)

  16. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  17. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  18. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  19. Development of Neutron Activation Analysis for Scientific Interpretation on Cultural Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Ho; Kim, Na Young; Ko, Min Chung; Kim, Min Ji; Cho, Su Mi; Kang, Ji Eun [Kongju National University, Gongju (Korea, Republic of)

    2010-05-15

    This research is tried to set up the application of neutron activation analysis and to evaluate the historical information about ceramics materials at production kilns for the standardized technology of NAA. This project is measured the 112 samples from Jijong-dong, Daejeon and 4 production kiln sites in Kyongsangdo by using NAA and XRF and classified as types and production site by PCA and applied of factor analysis, discruminant analysis and cluster analysis. As the results, we know that it is classified as pottery and roof tile as measured 11 elements and that it is not classified major and trace elements as the production kiln sites because raw materials is 2nd clay. At last, it is investigated the comparative evaluation of raw material as production kiln sites by cluster analysis as the basis of the data of NA

  20. Verification of the viability of virions detection using neutron activation analysis; Verificacao da viabilidade de deteccao de virions atraves da analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wacha, R.; Silva, A.X. da; Crispim, V.R [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Couceiro, J.N.S.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Microbiologia Professor Paulo de Goes. Dept. de Virologia

    2002-07-01

    The use of nuclear techniques, as Neutron Activation Analysis, can be an alternative way for the microbiological diagnosis, bringing a significant profit in the analysis time, for not needing pre cultivated samples in appropriate way. In this technique, the samples are collected and submitted to a thermal neutron beam. The interaction of these neutrons with the samples generates gamma rays whose energy spectre is a characteristic of the elemental composition of these samples. Of this done one, a virus presence can be detected in the sample through the distinction of its respective elemental compositions allowing, also, carrying through the analysis in real time. In this work, computational simulations had been become fulfilled using the radiation transport code based on the Monte Carlo Method, MCNP4B, to verify the viability of the application of this system for the virus particle detection in its natural collection environment. (author)

  1. Neutron activation analysis of low-level element contents in silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Berger, A. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Niese, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Koehler, M. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Matthes, M. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Gawlik, D. [Hahn-Meitner-Institut, Berlin (Germany)

    1997-03-01

    Semiconductor silicon is among the purest materials having ever been produced by modern technology. Thus, it is quite suitable as a primary reference material validating the correctness and the detection capabilities of developed analytical methods. Among them neutron activation analysis plays a competitive role. The U.S. National Institute of Science and Technology (NIST) has initiated and carried out an interlaboratory comparison in order to study the spread of analytical results worldwide evolved by several laboratories dealing with specimens of extreme purity. The outcome of the experiment was intended to review the capabilities of NAA as well as to differentiate between bulk and surface contamination. (orig./DG)

  2. Instrumental neutron activities analysis of Marrubium vulgare L., a valuable medicinal herb

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria). Dept. of Physics

    2016-08-01

    Twenty two chemical elements were identified by Instrumental neutron activation analysis in Marrubium vulgare (Lamiaceae) a traditional medicine plant, used indigenously in Mediterranean basin to cure several diseases. The precision of the results was assessed by analyzing the certified reference material GBW 07605 (GSV-4) Tea leaves. Results showed that K was the dominant chemical element in studied plant (4.40%). The Ca and Fe mass fractions were also relatively high. However potential toxic elements in this Lamiaceae plant were within the safety limits suggested by WHO/FAO.

  3. Chemical characterization of tin-lead glazed ceramics from Aragon (Spain) by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inanez, J.G. [Smithsonian Institution, Suitland, MD (United States). Museum Conservation Inst.; Barcelona Univ. (Spain). Facultat de Geografia i Historia; Speakman, R.J. [Smithsonian Institution, Suitland, MD (United States). Museum Conservation Inst.; Buxeda i Garrigos, J. [Barcelona Univ. (Spain). Facultat de Geografia i Historia; Glascock, M.D. [Missouri Univ., Columbia, MO (United States). Research Reactor Center

    2010-07-01

    Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops. (orig.)

  4. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea by instrumental neutron activation analysis

    Directory of Open Access Journals (Sweden)

    Bouzid Nedjimi

    2015-04-01

    Full Text Available Red Juniper (Juniperus phoenicea, a local medicinal tree was collected and analyzed for 18 essential, non-essential and toxic elements using instrumental neutron activation analysis (INAA. The GBW 07605 (GSV-4 standard reference material was analyzed simultaneously with the plant samples, the results shown a good recovery and reproducibility of the method. Ca, K and Fe have been detected in good levels in this plant clarifying their possible contribution to curative properties. The data obtained in the present work will be helpful in the synthesis of new synthetic drugs which can be used for medicinal purpose.

  5. Performance of neutron activation analysis in the evaluation of bismuth iodide purification methodology

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Ferraz, Caue de Mello; Hamada, Margarida M., E-mail: marmelin@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2015-07-01

    Bismuth tri-iodide (BrI{sub 3}) is an attractive material for using as a semiconductor. In this paper, BiI{sub 3} crystals have been grown by the vertical Bridgman technique using commercially available powder. The impurities were evaluated by instrumental neutron activation analysis (INAA). The results show that INAA is an analytical method appropriate for monitoring the impurities of: Ag, As, Br, Cr, K, Mo, Na and Sb in the various stages of the BiI{sub 3} purification methodology. (author)

  6. Neutron activation analysis of chemical impurities in manipulated samples of omeprazole

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, Fernanda Peixoto; Leal, Alexandre Soares; Gomes, Tatiana Cristina Bomfim; Menezes, Maria Angela de Barros Correia; Silva, Maria Aparecida, E-mail: asleal@cdtn.br [Nuclear Technology Development Centre/Brazilian Commission for Nuclear Energy (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    In this work, samples of Omeprazole (C{sub 17}H{sub 19}N{sub 3}O{sub 3}S), a largely used drug in the treatment of dyspepsia and peptic ulcer, were acquired from five different pharmacies of manipulation - or retail pharmacies which prepare personalized drugs under medical recommendation - in Belo Horizonte/Brazil and investigated using the k{sub 0} - Neutron Activation Analysis (NAA). The preliminary results showed the presence of elements not foreseen in the original formula. It confirms the potential risk offered by medicines without suitable inspection. (author)

  7. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  8. Design of Stopper of Prompt Gamma Neutron Activation Analysis Facility at China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The PGNAA facility consists of the filtered collimated neutron beam, the shielding of the whole facility, the control system, the detecting equipment and the data acquisition and analysis system. The neutron beam is filtered by a mono-crystalline bismuth filter,

  9. Two non-destructive neutron inspection techniques: prompt gamma-ray activation analysis and cold neutron tomography

    OpenAIRE

    Baechler, Sébastien; Dousse, Jean-Claude; Jolie, Jan

    2005-01-01

    Deux techniques d’inspection non-destructives utilisant des faisceaux de neutrons froids ont été développées à la source de neutrons SINQ de l’Institut Paul Scherrer : (1) l’analyse par activation neutronique prompte (PGAA) et (2) la tomographie neutronique. L’analyse par PGA (Prompt Gamma-ray Activation) est une méthode nucléaire qui permet de déterminer la concentration d’éléments présents dans un échantillon. Cette technique consiste à détecter les rayons gamma prompts émis par l’échantill...

  10. Application of instrumental neutron activation analysis for the examination of oil pigments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.S.; Kim, S.H.; Sun, G.M.; Lim, J.M.; Moon, J.H.; Kim, Y.J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, S.J.; Song, Y.N.; Kim, K. [National Museum of Contemporary Art, Gwacheon, Gyeonggi-do (Korea, Republic of)

    2011-07-01

    This study is to investigate the applicability of instrumental neutron activation analysis (INAA) as a non-destructive examination tool for the quantitative chemical composition analysis associated with authentication, restoration and conservation of art objects in the field of cultural heritage. The quantitative analysis of major, minor and trace elements in Rembrandt's {sup registered} oil pigments recently collected at the Korean market as one of the art objects was carried out using INAA facilities of the HANARO research reactor at the Korea Atomic Energy Research Institute in collaboration with the National Museum of Contemporary Art in Korea. Analytical quality control was implemented using NIST SRM 2709, certified reference materials and metal standards. The analytical results for seventeen characteristic elements of thirty-one measured elements were statistically treated to identify the characteristic correlations and patterns between color and source of oil pigment and similarity degree of constituents using a cluster and discriminate analysis. (orig.)

  11. Activation analysis of indium, KCl, and melamine by using a laser-induced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungman; Lee, Kitae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cha, Hyungki [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2014-04-15

    A laser-induced repetitively operated fast neutron source with a neutron yield of 4 x 10{sup 5} n/pulse and a pulse repetition rate of 5 Hz, which was developed using a deuterated polystyrene film target and a 24-TW femtosecond laser, was applied for laser activation analyses of indium, KCl, and melamine samples. The nuclear reactions of the measured gamma spectra for the activated samples were identified as (n, γ), (n, n'), and (n, 2n) reactions. These indicate possible usage of the neutron source for practical activation analyses of various materials.

  12. Neutron, gamma and Roentgen fluorescent activation analysis of hair of children suffering from bronchial asthma

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, O.A.; Belov, A.G.; Frontasyeva, M.V.; Gundorina, S.F.; Gustova, M.V.; Kusmenko, L.G.; Perelygin, V.P. E-mail: pergam@cv.jinr.ru; Zaverioukha, O.S

    2001-06-01

    The aim of present study was the multiparametric study of dangerous microelements content in the hair of children under school and primary school age which included 12 children ill with bronchial asthma and 11 control group persons in the town of Troitsk, Moscow Region. The hair specimens with weight 15-220 mg were analysed with the application of epithermal neutron activation analysis conducted at experimental installation REGATA and neutron source-unique Pulsed Fast Reactor IBR-2, with the application of combined gamma-neutron irradiation at Microtron MT-25 and with Roentgen Fluorescence Analysis device of JINR. The data of elements content in hair were obtained with solid state track detectors and semiconductor electronic spectrometers. The solid state track detectors provide the determination of U, Th, Bi and Be elements at the level of sensitivity up to 10{sup -8}-10{sup -9} g/g. These data were compared with more representative information about dangerous microelements concentration obtained with NAA and RFA analyses. The obtained concentrations of most elements vary in a wide range, but in agreement with the known data. The highest degree of element dispersion was observed for U, Th, Pb, I, Br, Sb, Co, K and Be (the radiation coefficient was higher than 100-200%). The presented analysis of results shows that in the clinical picture there is some proved correlation between an increased content of some element in hair and symptoms of their accumulation in the organism of ill children, the revelation of which is the basic idea of our examination.

  13. Neutron activation analysis at the Livermore pool-type reactor for the environmental research program. [Identification of trace element contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Ragaini, R.C.; Heft, R.E.; Garvis, D.

    1976-07-02

    Instrumental neutron activation analysis is a technique of trace analysis using measurements of radioactivity induced in the sample by exposure to a source of neutrons. The induced activity is measured by the emitted gamma radiation. Each gamma emitter can then be identified by the energy of the photopeaks produced as the nuclide decays and by the half-life of the neutron-induced activity. A complex computer program GAMANAL has been used to accomplish the major tasks of nuclide identification and quantification. The nuclide data output from GAMANAL is processed by a second computer code NADAC, which develops elemental abundance data from disintegration rates observed. The methods are those employed at the Livermore Pool-Type Reactor in support of the environmental research trace element analysis program. Among the procedures described and discussed are sample preparation, irradiation, analysis, and application of the technique.

  14. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    N. Salim

    2013-04-01

    Full Text Available Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was used to determine the arsenic contents in seaweed products namely catoni from domestic product and nori from foreign products. The total arsenic concentration in the samples analyzed ranges from 0.79 mg/kg to 30.14 mg/kg with mean concentration 14.39 mg/kg. The estimated exposure to arsenic contributed by the analyzed products is from 0.07% up to 8.54% of the established provisional tolerable daily intake (PTDI which is still far below the maximum tolerable level

  15. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Energy Technology Data Exchange (ETDEWEB)

    Pinault, Jean-Louis [IAEA Expert, 96 rue du Port David, 45370 Dry (France)], E-mail: jeanlouis_pinault@hotmail.fr; Solis, Jose [Instituto Peruano de Energia Nuclear, Av. Canada No. 1470, San Borja, Lima 41 (Peru)

    2009-04-15

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  16. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Science.gov (United States)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  17. Experimental determination of detection limits for performing neutron activation analysis for gold in the field

    Energy Technology Data Exchange (ETDEWEB)

    Jarzemba, M.S.; Weldy, J.; Pearcy, E.; Prikryl, J.; Pickett, D.

    1999-11-01

    Measurements are presented of gold concentration in rock/soil samples by delayed neutron activation analysis using a device and method that are potentially field portable. The device consists of a polyethylene moderator and {sup 252}Cf as the source of neutrons for activating the samples and a high-purity germanium detector to measure the 412-keV gamma-ray emissions from activated gold. This information is used to extract the gold concentration in the sample. Two types of samples were investigated: (1) pure SiO{sub 2} doped with a known amount of gold chloride and (2) US Geological Survey standards. The former types were used to evaluate optimum device performance and to calibrate the device and method. The latter types were used to show typical system performance for the intended application (field exploration for gold deposits). It was found that the device was capable of determining gold concentrations to {approximately}10 ppb with a turnaround time (the sum of irradiation, decay, and counting times) of {approximately}10 days. For samples where the gold concentration was much higher (i.e., gold ore), turnaround times are {approximately}2 days and could be shortened further by sacrificing accuracy (e.g., lessening irradiation, decay, and counting times) or by augmenting source strength.

  18. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  19. Determination of uranium and thorium by neutron activation analysis applied to fossil samples dating

    Energy Technology Data Exchange (ETDEWEB)

    Ticianelli, Regina B.; Figueiredo, Ana Maria Graciano; Zahn, Guilherme S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Kinoshita, Angela; Baffa, Oswaldo [Universidade de Sao Paulo (FFCRLP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica

    2011-07-01

    Electron Spin Resonance (ESR) dating is based on the fact that ionizing radiation can create stable free radicals in insulating materials, like tooth enamel and bones. The concentration of these radicals - determined by ESR - is a function of the dose deposed in the sample along the years. The accumulated dose of radiation, called Archaeological Dose, is produced by the exposition to environmental radiation provided by U, Th, K and cosmic rays. If the environmental dose rate in the site where the fossil sample is found is known, it is possible to convert this dose into the age of the sample. The annual dose rate coming from the radioactive elements present in the soil and in the sample itself can be calculated by determining the U, Th and K concentration. Therefore, the determination of the dose rate depends on the concentration of these main radioactive elements. Neutron Activation Analysis has the sensitivity and the accuracy necessary to determine U, Th and K with this objective. Depending on the composition of the sample, the determination of U and Th can be improved irradiating the sample inside a Cd capsule, reducing the thermal neutron incidence on the sample and, therefore, diminishing the activation of possible interfering nuclides. In this study the optimal irradiation and counting conditions were established for U and Th determination in fossil teeth and soil. (author)

  20. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate.

    Science.gov (United States)

    El-Shershaby, A; Sroor, A; Ahmed, F; Abdel-Haleem, A S; Abdel, Z

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h (in the Second Research Egyptian Reactor(Et-RR-2)) with thermal neutron flux 5.9 x 10(13) n/(cm2 x s). The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system(HPGe). Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10(-4) kg/(m2 x s). The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  1. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    Science.gov (United States)

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area.

  2. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  3. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C., E-mail: id@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Lab. de Ativacao Neutronica

    2011-07-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k{sub 0}-standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  4. Neutron activation analysis of ceramic tiles and its component and radon exhalation rate

    Institute of Scientific and Technical Information of China (English)

    A. El-Shershaby; A. Sroor; F. Ahmed; A.S. Abdel-Haleem; Z. Abdel

    2004-01-01

    The concentrations of 20 trace elements in several ceramics tiles and ceramic composites used in Egypt were elementally analyzed by neutron activation analysis(NAA) technique. The samples and standard were irradiated with reactor for 4 h( in the Second The gamma-ray spectra obtained were measured for several times by means of the hyper pure germanium detection system( HPGe).Also a solid state nuclear track detector(SSNTD) CR-39, was used to measure the emanation rate of radon for these samples. The radium concentrations were found to vary from 0.39-3.59 ppm and the emanation rates were found to vary from (0.728-5.688) x 10-4The elemental analysis of the ceramic tiles and ceramic composites have a great importance in assigning the physical properties and in turn the quality of the material.

  5. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  6. Instrumental Neutron Activation Analysis- INAA: environmental studies in Das Velhas Basin, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo V, M.A.; Andrade Q, M.T. [Researcher of National Council for Scientific and Technological Development, CNPq, Center University of the East of Minas Gerais State, UNILESTE-MG (Brazil); Araujo M, R. [CDTN (Brazil); Albernaz A, I. [SCA- CNRS/USR/059, Lyon (France); Oliveira, A.H. de [Federal University of Minas Gerais State (Brazil)]. e-mail: marvv@cdtn.br

    2006-07-01

    The Instrumental Neutron Activation Analysis - INAA was applied to determine concentrations of several elements in unpolluted areas and in the mining and farming region of the Das Velhas Basin, Minas Gerais State, Brazil. INAA was applied using the TRIGA Mark I IPR - R1 reactor at the Nuclear Technology Development Center of the National Committee of Nuclear Energy (CDTN/CNEN), in Belo Horizonte city, Minas Gerais State. At 100 kW of potency the flux of neutrons is 6.6 10{sup 11} n.cm{sup -2}.s{sup -1}. The samples analyzed were: water; sediment; gravel of gold mine and forage. The obtained results for the Das Velhas Basin in water and sediment samples - mining companies region - show a high level ({mu}g/g) of contamination with the analyzed elements, mainly in the sediment samples. During the period of floods, in farming region hundreds of kilometers away, contamination is found in fish and forage, reaching and harming both people and animals that live in the marginal region. (Author)

  7. Analysis of medicinal plant extracts by neutron activation method; Analise de extratos de plantas medicinais pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Sandra Muntz

    1995-12-31

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed 70 refs., 13 figs., 15 tabs

  8. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Abubakar, Sani; Isa, Nasiru Fage [Bayero University, Kano Nigeria (Nigeria); Usman, Ahmed Rufa’i [University of Malaya, Kuala Lumpur (Malaysia); Umaru Musa Yar’adua University, Katsina Nigeria (Nigeria); Khandaker, Mayeen Uddin [University of Malaya, Kuala Lumpur (Malaysia); Abubakar, Nuraddeen [Center for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria (Nigeria)

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  9. Determination of Mineral Contents in Unpolished Rice and Bean Samples by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, J. H.; Kim, S. H.; Baek, S. Y.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    As scientists have focused their researches on the health impacts caused by mineral nutrient deficiencies and hazardous elements, public concern regarding mineral intake from dietary food is rising. In this reason, the dietary habits of Koreans have been shifted from white rice to more nutrient rice like unpolished rice and rice mixed with beans. It is known that unpolished rice and beans contain more protein, vitamin and mineral contents than white rice and are more beneficial to human health, even though they sometimes cause indigestion or allergy. The objectives of this study were to determine the mineral contents in unpolished rice and bean samples by a neutron activation analysis (NAA) and to compare the level of mineral contents between the samples

  10. Environmental variation of arsenic levels in human blood determined by neutron activation analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj

    1970-01-01

    Arsenic levels in blood plasma and red cells from patients with Blackfoot disease, a peripheral arteriosclerosis endemic to a small area in Taiwan, were studied in relation to healthy individuals from the same and other parts of Taiwan and compared with arsenic levels in a control group from...... Denmark. Arsenic was determined by neutron activation analysis with radiochemical separation and re-irradiation yield determination. The precision and accuracy of the results have been carefully evaluated in order to permit quantitative tests for the significance of the observed differences. The results...... from Taiwan followed a logarithmic normal distribution, and no difference was found between Blackfoot patients and their healthy family members. However, their overall arsenic levels were higher than the Taiwan average, presumably because of arsenic in their drinking water. Much lower levels were found...

  11. Neutron activation analysis for assessing the concentrations of trace elements in laboratory detergents

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, F.Y.

    1986-01-01

    Nondestructive instrumental neutron activation analysis was used to assess the concentration of 20 elements in the following laboratory detergents: Micro, Cavi-Clean liquid, RBS-35, Liqui-Nox, Treg-A-Zyme, Alcojet, Alconox, Alcotabs and Radiacwash: and a detergent additive: CaviClean additive. The upper detected limits or the concentration ranges for the detergents are (element concentration in ..mu..g/g): Ba, <20; Ce, <0.8; Cl, 27-10000; Co, <0.1; Cr, <1; Cs, <0.6; Eu, <0.009; Fe, <3-45; Hf, <0.07; Mn, <10; Ni, <5; Rb, <0.08-0.89; Sb, <0.006-1.8; Sc, <0.0003-0.008; Se, <0.05; Sr <30; Th, <0.6; U, <0.1; V, <10; Zn, <0.2-2.0. The concentrations of trace elements in the examined laboratory detergents are below those reported in the literature for household detergents.

  12. Chemical contents in Lygeum spartum L. using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nedjimi, Bouzid [Djelfa Univ. (Algeria). Lab. of Exploration and Valorization of Steppe Ecosystem; Beladel, Brahim [Djelfa Univ. (Algeria)

    2015-09-01

    The present investigation was conducted to determine the chemical contents of Lygeum spartum L. (Poaceae). Samples were analyzed in order to determine essential (Ca, K, Na, Fe, Co) and some potentially toxic elements (Eu, Sb, Tb) using instrumental neutron activation analysis (INAA). In general chemical element contents were in substantial amounts to meet adult sheep requirements. Potential intake of Ca, K, Zn, Co and Fe by ruminant weighing 50 kg BW consuming 2.0 kg per day DM was sufficient to satisfy their requirements. However, only Na level was still insufficient to meet the requirements for grazing ruminants. Potential toxic elements in this species were within the safety baseline of all the assayed elements recommended by NRC. Na supplementation would seem to be necessary in this zone, for optimum productivity of grazing animals.

  13. Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction

    Science.gov (United States)

    Eftekhari-Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.

    2017-02-01

    Determination of concentration of major elements such as Ca, Si, Al, and Fe in cement is very important for quality control during its production, correct classification according to the existing standards, and thus for appropriate use in the construction industry. For this purpose, neutron activation analysis is very suitable. In this preliminary theoretical work, the irradiation and consecutive measurement of the percentage of the constituent elements in different cement samples were done using MCNPX with γ-ray spectra as the output. Specific peaks of Ca, Si, Al, and Fe obtained from these spectra were used as input for artificial neural network (18 of them for training and 8 for testing) resulting in the determination of each element in the given sample. The mean absolute errors of the results are less than 0.4%, which is very promising for the future experimental work where the uncertainties are usually one order higher.

  14. Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction

    Indian Academy of Sciences (India)

    E EFTEKHARI-ZADEH; S A H FEGHHI; G H ROSHANI

    2017-02-01

    Determination of concentration of major elements such as Ca, Si, Al, and Fe in cement is very important for quality control during its production, correct classification according to the existing standards, and thus for appropriate use in the construction industry. For this purpose, neutron activation analysis is verysuitable. In this preliminary theoretical work, the irradiation and consecutive measurement of the percentage of the constituent elements in different cement samples were done using MCNPX with γ -ray spectra as the output. Specific peaks of Ca, Si, Al, and Fe obtained from these spectra were used as input for artificial neural network (18 of them for training and 8 for testing) resulting in the determination of each element in the given sample. The mean absolute errors of the results are less than 0.4%, which is very promising for the future xperimental work where the uncertainties are usually one order higher.

  15. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    Science.gov (United States)

    Abubakar, Sani; Usman, Ahmed Rufa'i.; Isa, Nasiru Fage; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-01

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  16. The accuracy of instrumental neutron activation analysis of kilogram-size inhomogeneous samples.

    Science.gov (United States)

    Blaauw, M; Lakmaker, O; van Aller, P

    1997-07-01

    The feasibility of quantitative instrumental neutron activation analysis (INAA) of samples in the kilogram range without internal standardization has been demonstrated by Overwater et al. (Anal. Chem. 1996, 68, 341). In their studies, however, they demonstrated only the agreement between the "corrected" γ ray spectrum of homogeneous large samples and that of small samples of the same material. In this paper, the k(0) calibration of the IRI facilities for large samples is described, and, this time in terms of (trace) element concentrations, some of Overwater's results for homogeneous materials are presented again, as well as results obtained from inhomogeneous materials and subsamples thereof. It is concluded that large-sample INAA can be as accurate as ordinary INAA, even when applied to inhomogeneous materials.

  17. Instrumental neutron activation analysis of an enriched 28Si single-crystal

    CERN Document Server

    DAgostino, G; Giordani, L; Mana, G; Oddone, M

    2013-01-01

    The determination of the Avogadro constant plays a key role in the redefinition of the kilogram in terms of a fundamental constant. The present experiment makes use of a silicon single-crystal highly enriched in 28Si that must have a total impurity mass fraction smaller than a few parts in 109. To verify this requirement, we previously developed a relative analytical method based on neutron activation for the elemental characterization of a sample of the precursor natural silicon crystal WASO 04. The method is now extended to fifty-nine elements and applied to a monoisotopic 28Si single-crystal that was grown to test the achievable enrichment. Since this crystal was likely contaminated, this measurement tested also the detection capabilities of the analysis. The results quantified contaminations by Ge, Ga, As, Tm, Lu, Ta, W and Ir and, for a number of the detectable elements, demonstrated that we can already reach the targeted 1 ng/g detection limit.

  18. Monte Carlo Calculation for Landmine Detection using Prompt Gamma Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seungil; Kim, Seong Bong; Yoo, Suk Jae [Plasma Technology Research Center, Gunsan (Korea, Republic of); Shin, Sung Gyun; Cho, Moohyun [POSTECH, Pohang (Korea, Republic of); Han, Seunghoon; Lim, Byeongok [Samsung Thales, Yongin (Korea, Republic of)

    2014-05-15

    Identification and demining of landmines are a very important issue for the safety of the people and the economic development. To solve the issue, several methods have been proposed in the past. In Korea, National Fusion Research Institute (NFRI) is developing a landmine detector using prompt gamma neutron activation analysis (PGNAA) as a part of the complex sensor-based landmine detection system. In this paper, the Monte Carlo calculation results for this system are presented. Monte Carlo calculation was carried out for the design of the landmine detector using PGNAA. To consider the soil effect, average soil composition is analyzed and applied to the calculation. This results has been used to determine the specification of the landmine detector.

  19. Development of distinction method of production area of ginsengs by using a neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Chung, Yongsam; Sim, Chulmuu; Sun, Gwangmin; Lee, Yuna; Yoo, Sangho

    2011-01-15

    During the last 2 years of the project, we have tried to develop the technology to make a distinction of the production areas for Korean ginsengs cultivated in the various provinces in Korea and foreign countries. It will contribute to secure the health food safety for public and stability of its market. In this year, we collected ginseng samples cultivated in the northeastern province in Chinese mainland such as Liaoning province, Jilin province and Baekdu mountain within Jilin province. 10 ginseng samples were collected at each province. The elemental concentrations in the ginseng were analyzed by using a neutron activation analysis technique at the HANARO research reactor. The distinction of production area was made by using a statistical software. As a result, the Chinese Korean ginsengs were certainly differentiated from those cultivated in the famous province in Korea though there was a limitation that the number of our sample we analyzed is very small.

  20. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    Science.gov (United States)

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  1. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    Directory of Open Access Journals (Sweden)

    Pasquale Avino

    2013-01-01

    Full Text Available Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb the levels measured are only slight lower than those proposed as air ambient standard.

  2. Neutron activation analysis of medullar and cortical bone tissues from animals; Analise por ativacao com neutrons de tecidos osseos medular e cortical de animais

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Marcelo Kazuo; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radioquimica

    2000-07-01

    In this work, neutron activation analysis was applied in the determination of the elements Ba, Br, Ca, Cl, Cr, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sc, Sr and Zn present in animal bone tissues. The obtained results indicated a significant difference between the elemental concentrations present in medullar and cortical tissues. The results obtained for bone tissues from distinct animal species were also different. (author)

  3. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    Directory of Open Access Journals (Sweden)

    Wallace Barton

    2014-03-01

    Full Text Available Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes [3] involved was used to create a statistical model. Maximum likelihood estimation was combined with metaheuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT and quasi-particle (QP. The approach used seems to be able to translate well into other fields of research.

  4. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. E-mail: mhajek@ati.ac.at; Berger, T.; Schoener, W.; Vana, N

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ({sup 6}LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150{+-}15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210{+-}15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  5. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Mostafaei, F.; McNeill, F.E.; Chettle, D.R.; Matysiak, W.; Bhatia, C.; Prestwich, W.V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  6. Using Instrumental Neutron Activation Analysis for geochemical analyses of terrestrial impact structures: Current analytical procedures at the University of Vienna Geochemistry Activation Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Dieter [Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)], E-mail: dieter.mader@univie.ac.at; Koeberl, Christian [Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)], E-mail: christian.koeberl@univie.ac.at

    2009-12-15

    The Instrumental Neutron Activation Analysis Gamma Spectroscopy Laboratory at the Department of Lithospheric Research, University of Vienna, has been upgraded in the year 2006. This paper describes the sample preparation, new instrumentation and data evaluation for hundreds of rock samples of two terrestrial impact structures. The measurement and data evaluation are done by using Genie{sup TM} 2000 and a custom-made batch software for the used analysis sequences.

  7. Santos estuarine sediments, Brazil - metal and trace element assessment by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Eduardo P.; Favaro, Deborah I.T., E-mail: ducamorim@yahoo.com.b, E-mail: defavaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Berbel, Glaucia; Braga, Elisabete S., E-mail: edsbraga@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos (LABNUT)

    2009-07-01

    The Santos estuary system is an intricate pattern of tidal channels and small rivers originating from the adjacent Pre-Cambrian slopes. These two major estuaries share a common area in the upper portion of the region which interacts with each other. The largest harbor in Latin America is located at the eastern outlet of the Santos estuary. This intricate and sensitive ecosystem is highly susceptible to human impact from industrial activities, urban sewage and polluted solid wastes disposal. Due to its high vulnerability CETESB (Environmental Control Agency of the Sao Paulo State) sporadically monitors the contamination levels of water, sediment and marine organisms in this region. The present study reports results concerning the distribution of some major, trace and rare earth elements in the Santos estuarine marine sediments. Thirty two bottom sediment samples (SS0601 to SS0616 (summer) and SW0601 to SW0616 (winter) were collected in this estuary, including regions of Sao Vicente, Santos, Cubatao and Vicente de Carvalho, by a vanVeen sampler in the summer and winter of 2006. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA). The concentration values obtained for As and metals Cr and Zn in the sediment samples were compared to Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL values) and are adopted by CETESB. (author)

  8. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, A. [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Magurele, Ilfov County (Romania); Carmo Freitas, M. do [Technological and Nuclear Institute (ITN), Sacavem (Portugal); Ene, A. [Dunarea de Jos Univ. of Galati (Romania). Dept. of Chemistry, Physics and Environment; Steinnes, E. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemistry

    2013-03-01

    Instrumental neutron activation analysis (INAA) was used to determine concentrations of 42 elements in samples of surface soil collected at seven sites polluted from various anthropogenic activities and a control site in a relatively clean area. Elements studied were Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Eu, Fe, Gd, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Ti, U, V, W, Yb, Zn, and Zr. The results are compared with data for trace elements atmospheric deposition in lichen transplants from the same sites. The most severe soil contamination was observed at Copsa Mica from non-ferrous metallurgy. Appreciable soil contamination was also indicated at Baia Mare (non-ferrous mining and metallurgy), Deva (coal-fired power plant, cement and building materials industry), Galati (ferrous metallurgy), Magurele and Afumati (general urban pollution), and Oradea (chemical and light industries). In most cases excessive levels of toxic metals in soils matched correspondingly high values in lichen transplants. Compared to Romanian norms, legal upper limits were exceeded for Zn and Cd at Copsa Mica. Also, As and Sb occurred in excessive levels at given sites. (orig.)

  9. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  10. Determination of essential elements in commercial infant foods by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vallinoto, Priscila; Maihara, Vera A., E-mail: pvallinoto@ipen.br, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Eating habits are important determinants of health conditions during childhood. Commercial infant food is an important part of the diet for many babies. As such it is necessary that such food contain sufficient amounts of essential elements. Inadequate complementary feeding is a major cause of high rates of malnutrition throughout the world. Commercial infant food is classified into four different stages: Stages 1 and 2 are adequate for babies older than 6 months, but new flavors and food are introduced in stage 2; Stage 3 is offered to 8 month old babies; Junior Stage is recommended to children over 1 year old. In this study, essential elements: Ca, Cl, Co, Cr, Fe K, Mg, Mn, Na, Se and Zn were determined in commercial infant food samples by Instrumental Neutron Activation Analysis (INAA). Twenty-seven infant food samples were bought in stores around Sao Paulo city during 2011. These samples were freeze-dried and homogenized before analysis. The powdered samples were irradiated in the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. For validation of the methodology, INCT MPH-2 Mixed Polish Herbs and NIST-SRM 1577b Bovine Liver reference materials were analyzed. Most of the concentration results were below the World Health Organization's recommended daily intake for infants from 6 to 12 months old. These low essential element concentration results in commercial infant foods obtained in our study indicate that infants should not only be fed with commercial baby foods. (author)

  11. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  12. Epithermal neutron activation analysis of Cr(VI)-reducer basalt-inhabiting bacteria.

    Science.gov (United States)

    Tsibakhashvili, Nelly Yasonovna; Frontasyeva, Marina Vladimirovna; Kirkesali, Elena Ivanovna; Aksenova, Nadezhda Gennadievna; Kalabegishvili, Tamaz Levanovich; Murusidze, Ivana Georgievich; Mosulishvili, Ligury Mikhailovich; Holman, Hoi-Ying N

    2006-09-15

    Epithermal neutron activation analysis (ENAA) has been applied to study elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance, demonstrating that the bacteria differ in their rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 microg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements were determined in each type of bacteria simultaneously starting with the major to ultratrace elements. The range of concentrations spans over 8 orders of magnitude.

  13. Determination of elemental composition in dietary supplements by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vitor I.; Saiki, Mitiko, E-mail: vitor.ito@outlook.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Dietary supplements intake has grown in the last years because of their potential health benefits. This supplementation is very common among athletes, elderly population and consumers that want to increase the total daily nutrient intake. Consequently, elemental composition evaluation in these supplements is of great interest due to its increasingly high consumption and the brand variety offered in the market. This study aimed to evaluate the elemental composition in three types of dietary supplements acquired in a pharmacy and drugstore in Sao Paulo city. Concentrations of As, Br, Ca, Co, Cr, Cu, Fe, K, La, Na, Sb, Sc, Se and Zn were determined in these supplements by applying neutron activation analysis (NAA) followed by a gamma ray spectrometry. from the concentrations obtained in the dietary supplement analyses, the data obtained were compared to the values presented on the product label. These comparisons indicated in general, a good agreement of the data obtained and the values of the product label depending on the supplement. From the results obtained it can be concluded that NAA is an important tool for the analysis of this type of products due to its reliability of results and its multielemental character. (author)

  14. Comparative measurement of inorganic elements in Korean space foods using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Kim, Sun Ha; Baek, Sung Ryel; Sun, Gwang Min; Moon, Jong Hwa; Choi, Jong Il; Lee, Joo Eun [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In April 2008, Korea's first astronaut became a crew member of the international space station and she brought special space versions of traditional Korean dishes such as kimchi, boiled rice, hot red pepper paste, soybean paste soup, ginseng tea, green tea, and ramyun. To date, seventy kinds of Korean space foods (KSFs) have been developed by KAERI. The information and role of trace mineral elements from an intake of created and processed foodstuff are important as a indicator of human health and nutrition, as well as a quality control of food and diet. In particular, special food created for consumption by astronauts in outer space may differ with common food on the earth to compensate a decrease in taste and nutrition by hygienic sterilization processing as well as strong cosmic rays, a state of non gravitation, low pressure, and an enclosed space environment. An accurate quantitative analysis of trace elements in various kinds of biological samples is serious work for analytical data quality. An neutron activation analysis is a sensitive, non destructive, multi elemental analytical method without loss and contamination of a sample by chemical pre treatment. The aim of this study is to identify and to compare the distribution of concentrations for essential and functional inorganic elements in six kinds of Korean space foods developed by KAERI in 2011 using INAA.

  15. Determination of essential elements in herbal extracts by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisconi, Lucilaine S.; Goncalves, Rodolfo D.M.R.; Silva, Paulo S.C. da, E-mail: lfrancisconi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Different types of therapies have been introduced as an alternative treatment to various types of human disorders, among them,the use of herbal teas have been highlighted due to its low cost, easiness of acquisition and administration. The aim of this study was to evaluate the concentrations of the elements As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in extracts of medicinal plants whose use is regulated by ANVISA. The relevance of this analysis is justified by the need of contributing to the recommendation of these plants as secure sources of mineral elements both for therapeutic and dietary purpose. The technique showed good sensitivity in determining the appropriate concentration of all the determined elements. Elements potentially toxic were found at concentration that do not present threats to the organism and the elements that present important roles in metabolism were determined at concentrations that can assist both therapeutic and nutritional purposes. (author)

  16. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  17. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    CERN Document Server

    Hajek, M; Schoener, W; Vana, N

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ( sup 6 LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the ...

  18. Search for accuracy in activation in activation analysis of trace elements in different matrices. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, S.; Ganzerli-Valentini, M.T.; Caramella-Crespi, V.; Maxia, V.; Maggi, L.; Pisani, U.; Soma, R.; Borroni, P.

    1976-01-01

    Different factors may affect accuracy in activation analysis of trace elements. The evaluation of these factors often requires a number of time consuming experiments, but the statement of accuracy in activation analysis is of great value to cast some light on the overall reliability of the method itself. It can be pointed out that accuracy is often inversely proportional to the number of steps of the whole analytical procedure, from sampling to calculation of results. Several techniques of activation analysis were developed and applied to the determination of trace element content in standard reference materials and in samples chosen for intercomparison among laboratories. Emphasis was put on limiting the number of steps to improve the accuracy and on achieving the best of precision. Results are presented and discussed, together with the criteria for the choice of the most appropriate separation technique. Other sources of systematic errors, such as the reliability of the content of the reference standards and dead-time corrections when short-lived isotopes are involved, were taken into account and discussed.

  19. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  20. Trace Elements in Human Myocardial Infarction Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1965-05-15

    By means of neutron activation analysis, injured and adjacent uninjured human heart tissue from 12 autopsy cases with myocardial infarction are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent y-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, Zn and W. In the injured tissue compared to the uninjured, calculation on a wet weight basis showed a decrease in Co, Cs, K, Mo, P, Rb and Zn, and an increase in Br, Ca, Ce, La, Na, Sb and Sm. The differences in Ca, La, Mo, P and Zn are dependent on the age of the myocardial infarction, and the regression lines for these elements are given. The concentration of the trace elements in uninjured tissue from infarcted hearts is compared to the concentration of these elements in normal heart tissue, determined in a previous study. In the uninjured tissue from infarcted hearts a decrease is found in Cu and Mo, and an increase in As and Ce.

  1. Determination of Trace Elements in Ghanaian Shea Butter and Shea Nut by Neutron Activation Analysis (NAA

    Directory of Open Access Journals (Sweden)

    Erwin Alhassan

    2011-01-01

    Full Text Available The aim of the study is to determine the concentrations of trace elements in Ghanaian shea nut and shea butter. As part of the study, measurements of the elemental composition of shea butter and shea nut samples were carried out by Neutron Activation Analysis (NAA using the Ghana Research Reactor-1 (GHARR-1. Samples collected from local markets in the Northern region of Ghana and the National Institute of Standards and Technology (NIST Standard Reference Material (SRM 1547 Peach leaves were irradiated at the GHARR-1 facility. Validation of the method was done using NIST SRM Orchard Leaves (1571 under the same experimental conditions. Six trace elements (Na, Mn, Al, Cl, Ca and K were detected with maximum concentration of Na found to be 15±1 mg/kg in SN5, Mn; 7.4±0.8 mg/kg in SN6, Al; 259±3 mg/kg in SN1, Cl; 666±27 mg/kg in SN1, Ca; 0.21±0.04 wt.% in SN4, K; 2.0±0.04 wt.% in SN1, Ce; 3.2±0.06 mg/kg in SN2, Se; 0.12±0.004 mg/kg in SN4, and Sc; 0.40±0.02 mg/kg in SN2 . The concentrations of the trace elements were within the limit laid down for safe human consumption.

  2. Essential elements in different types of eggs by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ambrogi, Jessica B.; Gomes, Bruna G.; Avegliano, Roseane P.; Maihara, Vera A., E-mail: jessica.ambrogi@hotmail.com, E-mail: brunagabrielegomes@gmail.com, E-mail: avegliano@uol.com.br, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Eggs are excellent sources of protein and provide essential nutrients to human nutrition. Neither the color of the shell nor that of the yolk affects the egg nutritive value, even though this value can vary according to the eggs from different poultries, and as well as according to the feed given to them. The egg consumption of the Brazilian southeastern population is 9.9 g/day, which represents 0.61% of the daily food consumption per capita. The objective of this study was to determine the concentrations of the elements Br, Ca, Cr, Cs, Fe, Na, Rb, Se, Sc and Zn in three types of eggs (hen, free-range and quail eggs). The edible parts of the eggs (egg white and egg yolks) were analyzed Hard-boiled and Raw. The Neutron Activation Analysis (INAA) was applied to determine the element concentrations. The samples were irradiated for approximately eight hours in flux of 4.5-5.5 10{sup 12} n cm{sup -2} s{sup -1}, at nuclear research reactor IEA-R1 of the Nuclear and Energy Research Institute, IPEN/CNEN-SP, Sao Paulo, Brazil. There was variation in the elements concentrations among the types of eggs and between Hard-boiled and Raw eggs. (author)

  3. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1965-08-15

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent {gamma}-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences ({mu}g/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn.

  4. Marine Gradients of Halogens in Moss Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2002-01-01

    Epithermal neutron activation analysis is known to be a powerful technique for the simultaneous study of chlorine, bromine and iodine in environmental samples. In this paper it is shown to be useful to elucidate marine gradients of these elements. Examples are from a transect study in northern Norway where samples of the feather moss Hylocomium splendens were collected at distances 0-300 km from the coastline. All three elements decreased exponentially as a function of distance from the ocean in the moss samples, strongly indicating that atmospheric supply from the marine environment is the predominant source of these elements to the terrestrial ecosystem. These results are compared with similar data for surface soils along the same gradients. Comparison is also made with previous data for halogens in moss in Norway obtained by conventional NAA and covering similar transects in other geographical regions. The Cl/Br and Br/I ratios in moss showed a regular change distance from the ocean in all transects, and h...

  5. Analyses of hemolymph from Amblyomma cajennense (Acari: ixodidae) using neutron activation analysis (NAA)

    Energy Technology Data Exchange (ETDEWEB)

    Simons, Simone M.; Oliveira, Daniella G.L.; Chudzinski-Tavassi, Ana M., E-mail: daniellaoliveira@butantan.gov.b, E-mail: amchudzinki@butantan.gov.b [Instituto Butantan, Sao Paulo, SP (Brazil); Zamboni, Cibele B., E-mail: czamboni@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Instrumental neutron activation analysis technique (INAA) was applied to determine the elemental composition of hemolymph from Amblyomma cajennense tick. This biological material came from Butantan Institute (Sao Paulo city, Brazil) and it was investigated using the IEA-R1 nuclear reactor (4MW, pool type) at IPEN/CNEN-SP - Brazil. The concentration values for: Br (0.0032 {+-} 0.0005gL{sup -1}), Ca (0.104 {+-} 0.029gL{sup -1}), Cl (4.41 {+-} 0.25gL{sup -1}), I (76 {+-} 27{mu}gL{sup -1}), K (0.38 {+-} 0.09gL{sup -1}), Mg (0.038 {+-} 0.011gL{sup -1}), Na (4.30 {+-} 0.26gL{sup -1}) and S (1.35 {+-} 0.37gL{sup -1}) were determined for the first time. These data were compared with the concentration values established for Americanum and Anatolicum Excavatum tick species to clarify the ion balance in this biological material (hemolymph). This comparison suggests that Na concentration, majority in these species, has a similar behavior. These data also contribute to the understanding of hemolymph composition complementing its characterization as well as for the understanding of several physiological processes, especially those related to salivary secretion. (author)

  6. Analysis of bioactive ingredients in the brown alga Fucus vesiculosus by capillary electrophoresis and neutron activation analysis.

    Science.gov (United States)

    Truus, Kalle; Vaher, Merike; Koel, Mihkel; Mähar, Andres; Taure, Imants

    2004-07-01

    Two different types of bioactive components of the seaweed Fucus vesiculosus were analysed: (1) polyphenols (phlorotannins) by capillary electrophoresis (CE) and (2) mineral part (including bioactive microelements) by neutron activation analysis (NAA). CE experiments were carried out using a UV detector (at 210 nm) and an uncoated silica capillary. The best separation was achieved at a voltage of 20 kV using borate or acetate buffer in a methanol/acetonitrile mixture as background electrolyte. The CE analysis data were confirmed by high-performance liquid chromatography (HPLC). Determination of mineral composition of algal biomass by NAA was performed on the basis of various nuclides; the best results (from 38 elements determined) were obtained for Mn, Fe, Zn, As, Br, Sr, I, Ba, Au and Hg.

  7. Characteristic Elemental Composition of Oil Pigments using Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Kim, Sun Ha; Sun, Gwang Min; Lim, Jong Myung; Moon, Jong Hwa; Kim, Young Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Sung Jin; Song, Yu Na; Kim, Ken [National Museum of Contemporary Art, Gwacheon (Korea, Republic of)

    2009-10-15

    The principal aim of this study is to identify the applicability of instrumental neutron activation analysis as a non-destructive examination tool for the quantitative composition analysis associated with authentication, restoration, and conservation of art objects in the field of cultural heritage. Generally, the chemical composition of pigments are associated with the colors such as white, yellow, orange, red, green, blue and black, and it varies with raw materials of pigments. According to the colors of a different pigments, chemical compositions are as follows; for example, white pigments were used for a mixture of Pb(CO{sub 3}){sub 2}, PbSO{sub 4}, PbO, Pb(OH){sub 2}, ZnO, ZnS, TiO{sub 2}, BaSO{sub 4}, CaCO{sub 3}, Al{sub 2}O{sub 3}, As{sub 2}S{sub 3}, etc.; black pigments were series of carbon black, borne ash, MnO+Mn{sub 2}O{sub 3}, etc.; red pigments were Fe{sub 2}O{sub 3}, Pb{sub 3}O{sub 4}, HgS, PbMo{sub 4}, CdS+CdSe, etc.; brown and yellow pigments were PbCrO{sub 4}, ZnCrO{sub 4}, CdS-ZnS, K{sub 3}[Co(NO{sub 2}){sub 6}], Pb(SbO{sub 3}){sub 2}, C{sub 19}H{sub 16}O{sub 11}Mg, SrCrO{sub 4}, etc.; green pigments were Cr{sub 2}O{sub 3}, Cr{sub 2}O(OH){sub 4}, Cu(C{sub 2}H{sub 3}O{sub 2})-2Cu(OH){sub 2}), Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-CoO, etc.; blue pigments were Fe{sub 4}[Fe(CN){sub 6}]{sub 3}, CoO-Al{sub 2}O{sub 3}, Na{sub 8}-{sub 10}Al{sub 6}Si{sub 6}O{sub 24}S{sub 2-4}, etc. This first step is to obtain quantitative data on the concentrations of major, minor and trace elements in oil pigments and to explain pigment sources by statistical treatment as reported in many literatures. The determination of major, minor and micro elements in the subject materials are essential in many fields of basic science and technology as well as commercial and industrial fields. In particular, direct analysis of a sample offers a more effective investigation method in these fields. Instrumental neutron activation analysis (INAA) has an inherent advantage of being a

  8. Trace elements determination in human bone tissue by neutron activation analysis; Determinacao de elementos de traco em tecido osseo humano pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Marcelo K.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radioquimica; Sumita, Nairo M.; Saldiva, Paulo H.N.; Pasqualucci, Carlos A. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Lab. Experimental de Poluicao Atmosferica

    2002-07-01

    Determination of trace elements in human bones is of the great interest for evaluating nutritional state and for prevention, control and study of several diseases caused by mineral or trace element imbalance. In this study, neutron activation analysis (NAA) was applied for trace elements in human rib bone tissue. Elements Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Rb, Sr and Zn were determined in total bone tissue and in its subcompartments (cortical and trabecular tissue) separately. Irradiations were performed at IEA-R1 nuclear research reactor of IPEN-CNEN/SP. Short irradiations of 4 minutes were carried out under thermal neutron flux of 4.5x10{sup 11} n cm{sup -2} s{sup -1} and long irradiations of 16 hours under neutron flux of 10{sup 12} n cm{sup -2} s{sup -1}. Results obtained showed a variability between elemental concentrations found for bones from different individuals. A comparative study made between the data obtained for cortical and trabecular bones indicated that these two tissues present different elemental concentrations. Concentrations of Ca, Mg, Na and P obtained for cortical tissue were the same magnitude of those published data. (author)

  9. Dynamics of elements in soil treated with increasing doses sewage sludge for instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Helder de; Mortatti, Jefferson; Vendramini, Diego; Lopes, Renato A.; Nolasco, Murilo M. [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis]. E-mail: helder@cena.usp.br; Sarries, Gabriel A. [Escola Superior de Agricultura ' Luiz de Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas]. E-mail: gabriel@carpa.ciagri.usp.br; Furlan, Adriana [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas. Dept. de Petrologia e Metalogenia]. E-mail: adriana_furlangumiere@yahoo.com.br

    2007-07-01

    In this work the dynamics of the elements was analyzed The, Br, Ce, Co, Cr, Cs, Fe, Hf, La, In the, Sb, Sc, Sm, Ta, Th, U, Yb and Zn in a profile of a red-yellow latossolo, in the depths of 0-5, 5-10, 10-30 and 30-50 cm, and dose of the biosolid of 0, 25, 124 and 375 t ha{sup -1}, of the station of treatment of sewer of Barueri, Sao Paulo. The experiment was carried out in areas of 3,05 m{sup 2} in the times of 2,2; 4,0; 6,6; 14,3 and 21 months. For analysis of the elementary composition, it was used of the analysis technique by instrumental neutron activation analysis (INAA). The experiment was submitted under normal tropical conditions in a forest station in Itatinga, Sao Paulo, of the University of Sao Paulo. For better details, the factors depth, doses and times statistical analyses of the results of the elementary composition of the soil samples were made. For all the biossolid doses conditioned with polymeric and applied in the soil, the composition of 17 of the 18 elements in the soil were not altered, with exception for Cr in the studied times. The elements As, Br, Ce, Co, Fe, Hf, La, Sm, Ta, Th, U and Yb presented higher levels in the deepest layers of soil; already the elements Cr, In the, Sb and Zn presented higher concentrations in the superficial layers. (author)

  10. Rapid determination of halogenes in milk by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alfassi, Z.B.; Lavi, N.

    1985-07-01

    The absolute concetrations of iodine, bromine and chlorine in milk were determined by epithermal neutron activation followed by high resolution gamma-ray spectrometry. Two kinds of milk commonly consumed in Israel were investigated. The concentration of iodine, bromine and chlorine were found to be 0.18-0.30 ..mu..g/ml, 2.02-2.85 ..mu..g/ml and 0.65 mg/ml, respectively. The method is fast, selective, accurate and highly sensitive.

  11. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    Science.gov (United States)

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared.

  12. Development of a database for prompt gamma-ray neutron activation analysis: Summary report of the third research coordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, Richard M.; Firestone, Richard B.; Pavi, ???

    2003-04-01

    The main discussions and conclusions from the Third Co-ordination Meeting on the Development of a Database for Prompt Gamma-ray Neutron Activation Analysis are summarized in this report. All results were reviewed in detail, and the final version of the TECDOC and the corresponding software were agreed upon and approved for preparation. Actions were formulated with the aim of completing the final version of the TECDOC and associated software by May 2003.

  13. Simultaneous determination of 76As, 122Sb and 153Sm in Chinese medicinal herbs by epithermal neutron activation analysis.

    Science.gov (United States)

    Chen, Chien-Yi

    2009-01-01

    Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.

  14. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M.

    1993-11-15

    The subject is the computerized analysis of the gamma-ray spectra in INAA. This analysis can be separated in three parts: The conversion of the spectra to information on {gamma}-ray energies and their relative intensities (spectrum reduction), the determination of the relation between the intensity of a {gamma}-ray and the amount of the corresponding element present in the sample (standardization) and the attribution of the {gamma}-ray energies to the elements, including the subsequent computation of the amounts of the elements (interpretation). A {gamma}-ray spectrum can be considered to be the linear sum of the {gamma}-ray spectra of the individual radionuclides present in the sample. Knowing the relative activities of the different radionuclides that may be produced by activation of a single element, a {gamma}-ray spectrum in INAA can also be considered to be the linear sum of the spectra of the elements. This principle has hitherto not been used in INAA to analyze the spectra by linear least squares methods, using all {gamma}-ray energies observed in the spectrum. The implementation of this `holistic` approach required that attention be paid to both spectrum reduction, standardization and interpretation. The thesis describes the methods developed for the holistic analysis of {gamma}-ray spectra in INAA, and present results of experimental comparisons between the holistic and other approaches. (orig./HP).

  15. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, J., E-mail: jonathan.hampel@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Boldt, F.M. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Gerstenberg, H. [ZWE FRM-II der Technischen Universitaet Muenchen, D-85748 Garching (Germany); Hampel, G.; Kratz, J.V. [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Reber, S. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Wiehl, N. [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)

    2011-10-15

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: > We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. > We make first experiments of

  16. Analysis by Neutron activation of the Calakmul jadeite mask; Analisis por activacion neutronica de la mascara de jadeita de Calakmul

    Energy Technology Data Exchange (ETDEWEB)

    Alemon A, E.; Herrera V, L. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    It is very important to know the elemental composition of archaeological materials with the purpose to find relations that allow to establish their origin standards. the origin and present localization of pre hispanic archaeological pieces can lead to the determination of commercial routes and of technology transfer among different ancient cultures. In the present work it has been realized a systematic analysis using the Instrumental neutron activation analysis technique of three samples obtained from Calakmul jadeite mask, tomb I, that in addition to give a composition of constituent and trace elements detected by this technique it has leaded to establish an applicable methodology to the routine analysis of ceramics of historical interest. (Author)

  17. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  18. Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys

    Science.gov (United States)

    Couet, Adrien; Motta, Arthur T.; Comstock, Robert J.; Paul, Rick L.

    2012-06-01

    We propose a novel use of a non-destructive technique to quantitatively assess hydrogen concentration in zirconium alloys. The technique, called Cold Neutron Prompt Gamma Activation Analysis (CNPGAA), is based on measuring prompt gamma rays following the absorption of cold neutrons, and comparing the rate of detection of characteristic hydrogen gamma rays to that of gamma rays from matrix atoms. Because the emission is prompt, this method has to be performed in close proximity to a neutron source such as the one at the National Institute of Technology (NIST) Center for Neutron Research. Determination shown here to be simple and accurate, matching the results given by usual destructive techniques such as Vacuum Hot Extraction (VHE), with a precision of ±2 mg kg-1 (or wt ppm). Very low levels of hydrogen (as low as 5 mg kg-1 (wt ppm)) can be detected. Also, it is demonstrated that CNPGAA can be applied sequentially on an individual corrosion coupon during autoclave testing, to measure a gradually increasing hydrogen concentration. Thus, this technique can replace destructive techniques performed on "sister" samples thereby reducing experimental uncertainties.

  19. Development of Pneumatic Transfer Irradiation Facility (PTS no.1) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer system (PTS no.1) involving a manual system and an semiautomatic system were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of these system (PTS no.1) was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  20. Determination of macro, micro nutrient and trace element concentrations in Indian medicinal and vegetable leaves using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, G.R.K.; Balaji, T. [Department of Chemistry, S.V. University, Tirupati (India); Denschlag, H.O.; Mauerhofer, E.; Porte, N. [Institut fuer Kernchemie, Johannes Gutenberg Universitaet, Mainz (Germany)

    1999-05-01

    Leafy samples often used as medicine in the Indian Ayurvedic system and vegetables were analyzed for 20 elements (As, Ba, Br, Ca, Ce, Cr, Cs, Co, Eu, Fe, K, La, Na, Rb, Sb, Sc, Sm, Sr, Th, Zn) by employing Instrumental Neutron Activation Analysis (INAA). The samples were irradiated at the 100 kW TRIGA-MAINZ nuclear reactor and the induced activities were counted by gamma ray spectrometry using an efficiency calibrated high resolution High Purity Germanium (HPGe) detector. The concentration of the elements in the medicinal and vegetable leaves and their biological effects on human beings are discussed.

  1. Comparison between different types of glass and aluminum as containers for irradiation samples by neutron activation analysis.

    Science.gov (United States)

    Sroor, A; El-Dine, N W; El-Shershaby, A; Abdel-Haleem, A S

    2000-01-01

    Three different types of glass and four different kinds of aluminum sheet have been analyzed using neutron activation analysis. The irradiation facilities of the first Egyptian research reactor (ET-RR-1) and a hyper-pure germanium (HPGe) detection system were used for the analysis. Among the 34 identified elements, the isotopes 60Co, 65Zn, 110mAg, 123mTe, 134Cs, 152Eu and 182Ta are of special significance because of their long half-lives, providing a background interference for analyzed samples. A comparison between the different types of containers was made to select the preferred one for sample irradiation.

  2. Use of particles other than neutrons in activation analysis; Emploi de particules autres que les neutrons en analyse par actuation

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-15

    Nuclear reactions obtained by irradiation in {gamma} Bremsstrahlung, {alpha} particles and protons are particularly suitable for dosing very small traces of light elements. We consider the possibilities presented by activation in {gamma} radiation of 28 MeV maximum energy, mainly for the measurement of C, F, N, O, P and S. Non-destructive methods of analysis for beryllium are described. Under certain conditions they may also be used for other elements such as B, Ca, Li and Na. We give also the results of our first experiments carried out in an attempt to find a method for dosing carbon and oxygen by irradiation in {alpha} particles and protons. For each type of activation the possible types of interference with other nuclear refections are considered. (author) [French] Des reactions nucleaires obtenues par irradiation dans des rayons {gamma} de freinage, des particules {alpha} et des protons, sont particulierement indiquees pour les dosages de traces ultimes de certains elements legers. Nous etudions les possibilites offertes par les activations en rayons {alpha} d'energie maximum 28 MeV, principalement pour les dosages de C, F, N, O, P et S. Des methodes d'analyse non destructives appliquees au beryllium sont decrites. Sous certaines conditions, elles peuvent egalement etre utilisees pour d'autres materiaux comme B, Ca, Li et Na. Nous donnons d'autre part les resultats de nos premieres experiences effectuees pour la mise au point des methodes de dosage du carbone et de l'oxygene par irradiation dans les particules {alpha} et les protons. Pour chaque type d'activation, les possibilites d'interferences avec d'autres reactions nucleaires sont examinees. (auteur)

  3. 30Si Mole Fraction of a Silicon Material Highly Enriched in 28Si Determined by Instrumental Neutron Activation Analysis

    CERN Document Server

    D'Agostino, Giancarlo; Mana, Giovanni; Oddone, Massimo; Pramann, Axel; Prata, Michele

    2016-01-01

    The latest determination of the Avogadro constant, carried out by counting the atoms in a pure silicon crystal highly enriched in 28Si, reached the target 2x10-8 relative uncertainty required for the redefinition of the kilogram based on the Planck constant. The knowledge of the isotopic composition of the enriched silicon material is central; it is measured by isotope dilution mass spectrometry. In this work, an independent estimate of the 30Si mole fraction was obtained by applying a relative measurement protocol based on Instrumental Neutron Activation Analysis. The amount of 30Si isotope was determined by counting the 1266.1 keV gamma-photons emitted during the radioactive decay of the radioisotope 31Si produced via the neutron capture reaction 30Si(n,gamma)31Si. The x(30Si) = 1.043(19)x10-6 mol mol-1 is consistent with the value currently adopted by the International Avogadro Coordination.

  4. (30)Si mole fraction of a silicon material highly enriched in (28)Si determined by instrumental neutron activation analysis.

    Science.gov (United States)

    D'Agostino, Giancarlo; Di Luzio, Marco; Mana, Giovanni; Oddone, Massimo; Pramann, Axel; Prata, Michele

    2015-06-01

    The latest determination of the Avogadro constant, carried out by counting the atoms in a pure silicon crystal highly enriched in (28)Si, reached the target 2 × 10(-8) relative uncertainty required for the redefinition of the kilogram based on the Planck constant. The knowledge of the isotopic composition of the enriched silicon material is central; it is measured by isotope dilution mass spectrometry. In this work, an independent estimate of the (30)Si mole fraction was obtained by applying a relative measurement protocol based on Instrumental Neutron Activation Analysis. The amount of (30)Si isotope was determined by counting the 1266.1 keV γ-photons emitted during the radioactive decay of the radioisotope (31)Si produced via the neutron capture reaction (30)Si(n,γ)(31)Si. The x((30)Si) = 1.043(19) × 10(-6) mol mol(-1) is consistent with the value currently adopted by the International Avogadro Coordination.

  5. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  6. Essential and toxic element determination in edible mushrooms by neutron activation analysis; Determinacao de elementos essenciais e toxicos em cogumelos comestiveis por analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia Landim da Costa

    2008-07-01

    In this study concentrations of As, Br, Co, Cr, Cs, Fe, K, Na, Rb, Se and Zn were determined in edible mushrooms acquired from commercial establishments in the city of Sao Paulo and directly from Mogi das Cruzes, Suzano, Juquitiba and Mirandopolis producers. The analytical technique used for determining these elements in edible mushrooms was Instrumental Neutron Activation Analysis (INAA). Species of the Agaricus, Lentinus and Pleurotus genera were acquired during the period from November, 2006 to March, 2007. About 150 to 200 mg of freeze-dried mushrooms were irradiated in a neutron flux of 1012 cm{sup -2} s{sup -1} for 8 hours in the IEA-R1 nuclear research reactor at IPEN-CNEN-SP. In order to evaluate the precision and accuracy of the methodology, four reference materials: INCT-MPH-2 Mixed Polish Herbs and INCT-TL-1 Tea Leaves, NIST SRM 1577b Bovine Liver, and the material Mushroom from IAEA were analyzed. Results showed some variation in the element concentrations among the different genera. In some samples, arsenic was found but in low concentrations. Arsenic is probably derived from the contamination from pesticides used in the cultivation, in their the substrates where mushrooms uptake their nutrients. Although there are element concentration variations, mushrooms can still be considered a very rich nutritional source, mainly because of their low concentrations of Na, and due to the good source of K, Fe and Zn. (author)

  7. Trace element determination study in human hair by neutron activation analysis; Estudo da determinacao de elementos traco em cabelos humanos pelo metodo de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Frazao, Selma Violato

    2008-07-01

    Human hair analysis studies have been subject of continuous interest due to the fact that they can be used as an important tool to evaluate trace element levels in the human body. These determinations have been carried out to use hair for environmental and occupational monitoring, to identify intoxication or poisoning by toxic metals, to assess nutritional status, to diagnose and to prevent diseases and in forensic sciences. Although hair analysis presents several advantages over other human tissue or fluid analyses, such as organ tissue, blood, urine and saliva, there are some controversies regarding the use of hair analysis data. These controversies arise from the fact that it is difficult to establish reliable reference values for trace elements in hair. The purpose of this study was to evaluate the factors that affect element concentrations in hair samples from a population considered healthy and residing in the Sao Paulo metropolitan area. The collected human head hair was cut in small pieces, washed, dried and analyzed by neutron activation analysis (NAA). Aliquots of hair samples and synthetic elemental standards were irradiated at the IEA-R1 nuclear research reactor for 16 h under a thermal neutron flux of about 5x10{sup 12} n cm{sup -2} s{sup -1} for As, Br, Ca, Co, Cr, Cs, Cu, Fe, K, La, Na, Sb, Sc, Se and Zn determinations. The induced gamma activities of the standards and samples were measured using a gamma ray spectrometer coupled to an hiperpure Ge detector. For quality control of the results, IAEA- 85 Human Hair and INCT-TL-1 Tea Leaves certified reference materials (CRMs) were analyzed. Results obtained in these CRMs presented for most of elements, good agreement with the values of the certificates (relative errors less than 10%) and good precision (variation coefficients less than 13.6%). Results of replicate hair sample analysis showed good reproducibility indicating homogeneity of the prepared sample. Results obtained in the analyses of dyed and

  8. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    CERN Document Server

    D'Agostino, Giancarlo; Giordani, Laura; Mana, Giovanni; Massa, Enrico; Oddone, Massimo; 10.1088/0026-1394/49/6/696

    2013-01-01

    Analytical measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or under-estimated uncertainties. A review of the existing data confirms the high-purity of silicon with respect to a large number of elements. In order to obtain a direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro crystal WASO 04. The investigation concerned twenty-nine elements. The mass fraction of Au was quantified to be 1.03(18) x 10-12. For the remaining twenty-eight elements, the mass fractions are below the detection limits, which range between 1 x 10-12 and 1 x 10-5.

  9. Epithermal Neutron Activation Analysis of Spirulina platensis Biomass, of the C-Phycocianin and of DNA Extracted from It

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Kirkesali, E I; Khizanishvili, A I; Pomyakushina, E V

    2002-01-01

    The epithermal neutron activation analysis (ENAA) was used for study of the biomass of Spirulina platensis. The background levels of concentration 27 macro-, micro- and trace elements ranging from 10^{-3} up to 10^{4} ppm were determined. It was found that the biomass of spirulina does not contain toxic elements above the tolerance levels and can be utilized as a matrix of pharmaceuticals based on it. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole spirulina biomass with that of a refined C-phycocianin preparation was made.

  10. Application of Epithermal Neutron Activation Analysis to Investigate Accumulation and Adsorption of Mercury by Spirulina platensis Biomass

    CERN Document Server

    Mosulishvili, L M; Khizanishvili, A I; Frontasyeva, M V; Kirkesali, E I; Aksenova, N G

    2004-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamics of accumulation of Hg was investigated over several days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was carried out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations \\sim 100 {\\mu}g/l.

  11. Chemical Composition by Neutron Activation Analysis (INAA of Neo-Assyrian Palace Ware from Iraq, Syria and Israel

    Directory of Open Access Journals (Sweden)

    Alice M W Hunt

    2013-05-01

    Full Text Available Neo-Assyrian Palace Ware is an 8th-7th century B.C.E. fine-ware which originated in Northern Mesopotamia and spread throughout the greater Levant. The mechanism by which Palace Ware moved across the Neo-Assyrian imperial landscape (trade or local imitation/emulation is of great archaeological interest. This dataset provides chemical compositional data, generated using instrumental neutron activation analysis (INAA, for Palace Ware vessels from Nimrud and Nineveh, in the Assyrian imperial core (Iraq, Dūr-Katlimmu, in one of the annexed provinces (Syria, and Tell Jemmeh, located outside the Neo-Assyrian provincial system (Israel.

  12. Investigation of Kpong carbonatite as a potential source for rare earth elements (REEs) using instrumental neutron activation analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Hayford, M.S.; Akiti, T.T.; Serfor-Armah, Y.; Dampare, S.B. [Ghana Univ., Accra (Ghana). School of Nuclear and Allied Sciences; Ghana Atomic Energy Commission (GAEC), Legon-Accra (Ghana). Nuclear Chemistry and Environmental Research Centre

    2013-07-01

    Instrumental neutron activation analysis (INAA) was used to investigate REEs in carbonatite from Kpong southeastern, Ghana. Total rare earth element (TREEs) obtain were in the range of 540 mg/kg to 705 mg/kg. The total number of rare earth elements (REEs) determined by INAA in the carbonatite rocks from Kpong were 11, namely; La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, Lu. The INAA results from the carbonatite show a high enrichment of light rare earth elements (LREEs) deposits, marking the Kpong carbonatite as a potential REE source. (orig.)

  13. Determination of mercury in dentists through Neutron activation analysis; Determinacion de mercurio en odontologos mediante Analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Padilla M, M.A.; Granados C, F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was determined the mercury levels in urine through Neutron activation analysis to 25 dentists who have been exposed to mercury by several time periods, because of the routine manipulations of amalgams. The determined concentrations of mercury were less to 10 {mu} g Hg/l of urine. The results were founded inside the safety limits reported in the literature. The mercury levels in the dentists are associated with a wide variety of factors that contribute to their exposure as: number of years of dental practice, number of amalgams manipulated between others. (Author)

  14. Development of Pneumatic Transfer Irradiation Facility (PTS no.3) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-04-15

    A pneumatic transfer system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide. The pneumatic transfer irradiation system (PTS no.3) involving a manual system and an semi-automatic system were reconstructed with new designs of a functional improvement at the HANARO research reactor and NAA laboratory of RI building in 2006. In this technical report, the design, operation and control of these system (PTS no.3) was described. Also the experimental results and the characteristic parameters measured from a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  15. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  16. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    Science.gov (United States)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  17. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B. [Technical Support Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia); Salim, Nazaratul Ashifa Bt. Abdullah [Division of Waste and Environmental Technology, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia); Ismail, Nadiah Binti [Fakulti Kejuruteraan Elektrik, UiTM Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang (Malaysia)

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  18. Overview of Ignitor Neutronics and Activation

    Science.gov (United States)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  19. Matrix problems in the certification analysis of botanical materials by neutron activation analysis

    DEFF Research Database (Denmark)

    Damsgaard, E.; Heydorn, K.

    1995-01-01

    residue should not contain the determinand. In BCR certification analysis for As and Se by RNAA the irradiated sample was decomposed with sulphuric and nitric acids, and CRM 279 Sea Lettuce and CRM 402 White Clover left an insoluble residue. Unirradiated material was then digested without carrier addition......, and the insoluble residue separated by filtration. No significant content of Se was found by INAA, but about 5% of the total amount of As was found in CRM 402. The ramifications of making a correction are discussed, and it is concluded that a correction for an insoluble fraction may lead to a positive bias....

  20. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis

    Science.gov (United States)

    Arafa, Wafaa M.; Badawy, Wael M.; Fahmi, Naglaa M.; Ali, Khaled; Gad, Mohamed S.; Duliu, Octavian G.; Frontasyeva, Marina V.; Steinnes, Eiliv

    2015-07-01

    The distributions of 36 major and trace elements in 40 surface soil and sediment samples collected from the Egyptian section of the river Nile were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust and North American Shale Composite. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering on Ethiopian highlands and transported by the Blue Nile, the Nile main tributary. The distributions of the nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with metals from local human activity. The geographical distributions of Na, Cl, and I as well as results of principal component analysis suggest atmospheric supply of these elements from the ocean. In general the present data may contribute to a better understanding of the geochemistry of the Nile sediments.

  1. Analysis of Cl, Mn, Na, Zn in Food Samples by a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jong Hwa; Kim, Sun Ha; Chung, Yong Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Ok Hee [YongIn University, Yongin (Korea, Republic of)

    2008-10-15

    Due to their westernized dietary habit, Korean children are still threatened by the increasing risks of chronic disease such as obesity, hypertension, low immunity, etc. In addition, they are often exposed to a deficiency of Ca, Mg, Fe and micro-minerals which are necessary for their growth, immunity, and prevention of anemia. Nonetheless, the nutritional adequacy of mineral intakes for children is difficult to assess because of a lack of related studies and a nutritional database with respect to Korean children's foods. In this study, ninety kinds of foods consisting of lunch meals from an elementary and a middle school and children's favorite snacks were collected and prepared for an analysis. INAA which has an advantage of a non-destructive technique was employed to determine the elements like Cl, Mn, Na, Cl in the pretreated food samples. Quality control was carried out by using certified reference materials. From the analytical results, elemental concentration range in the collected samples according to the food groups was summarized.

  2. Application of instrumental neutron activation analysis for the analysis of six fish species

    Energy Technology Data Exchange (ETDEWEB)

    Moon, J. H.; Oh, M.; Kim, S. H.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    According to the meeting report of the Food and Agriculture Organization (FAO), annual food fish supply per capita has increased from an average of 9.9 kg in the 1960s to 18.4 kg in 2009, and fish consumption was lowest in Africans (9.1 kg per capita), while Asians consumed 20.7 kg per capita. From the viewpoint of food safety, fish accumulates environmental contaminants and an analysis of hazardous chemical species including toxic heavy metals is important for human health. The aims of this study were to determine the inorganic elemental content in six popular fish species of Korea by NAA and to aid in the evaluation of dietary intake levels in terms of toxic and essential elements. An INAA for the six fish species that are popular in Korea was performed, and sixteen elemental contents were determined. Based on these analytical data and survey data in 2010, intake levels for 3 toxic heavy metals by each fish species are evaluated for Koreans. These dietary intake values for heavy metals can be used for an assessment of human health risk.

  3. Elemental characterization of trifala powders and tablets by instrumental neutron activation analysis, thermal analysis and spectral studies of gallic acid.

    Science.gov (United States)

    Choudhury, R Paul; Kumar, A; Garg, A N

    2007-01-01

    Trifala is one of the most popular herbal formulations, marketed either as powder or a tablet and is used in all parts of India. It is an effective laxative, antioxidant, anticancer and antidiabetic agent, and is used to refresh the eyes. In order to understand the therapeutic uses of trifala, the powder and tablet forms from Zandu Pharmaceuticals, Mumbai, were analyzed for six minor (Na, K, Mg, Ca, Cl and P) and 23 trace (Al, Ba, Br, Cd, Co, Cr, Cs, Cu, Fe, Eu, Hf, Hg, La, Mn, Ni, P, Pb, Rb, Sb, Se, Th, V and Zn) elements. The elements were determined by employing instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). A comparison of the elemental contents in the powder and tablets showed wide variations. The powder was rich in Cr, Fe, Se and Zn, whereas the tablet contained a four-fold higher Mn compared to the powder. Column and thin layer chromatography (TLC) in ethyl acetate/methanol (7:3) were used for the separation of gallic acid in ethanolic extract. It was further confirmed by elemental analysis and spectral methods and quantitatively estimated to the extent of approximately 2%. Thermogravimetric decomposition studies show a three stage process, first a slow process with approximately 20% wt loss at temperatures up to 200 degrees C followed by a fast process losing another 30-35% wt at approximately 300 degrees C for both the powder and tablets. At 700 degrees C metal oxide residue of 7.5 and approximately 16% were left for powder and tablets, respectively.

  4. Determination of As, Se and Sb in different trades and blends of tobacco by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisconi, Lucilaine S.; Damatto, Sandra R.; Silva, Paulo S.C. da, E-mail: pscsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The concentrations of As, Se and Sb were determined in two different cigarette trades (M and F). For each trade, four blends were selected for analysis: red, blue, silver and gold for M and red, blue, silver and fresh for F. The As, Se and Sb concentrations were determined by neutron activation analysis. For the analysis the samples were dried to eliminate moisture and the results were given in dry weight. Samples were irradiated together reference standards materials in the IEA-R1 IPEN reactor and counted in Ge-hiperpure detector. It was observed that As and Sb showed higher concentrations in M than in F and no significant differences were observed between the blends. (author)

  5. Simultaneous multi-element determination in different seed samples of Dodonaea viscosa hopseed using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Sweify, Fatma H.; El-Amir, Mahmoud A.; Mostafa, Mohamed; Ramadan, Hala E.; Rashad, Ghada M. [Atomic Energy Authority, Cairo (Egypt). Hot Lab. Center

    2016-07-01

    Instrumental neutron activation analysis technique (INAA) was applied for nondestructive multi-element analysis of seed samples of the plant Dodonaea viscosa hopseed. This plant is distributed all over Egypt, because of its suitable properties. The samples were collected from some bushes grown at different sites in some governorates, in July of each year during the period from 2004 to 2011. The determined elements are: Co, Cs, Eu, Fe, Hg, Ni, Rb, Sc, Se, Sr and Zn, under the chosen irradiation and cooling times. The content of some elements has been compared with data obtained from previous work on analysis of various kinds of seeds. The influence of some parameters on the determined elemental content is discussed. Standard reference materials IAEA-155 and IAEA-V-10 were used to assure quality control, accuracy and precision of the technique.

  6. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    Science.gov (United States)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  7. Determination of essential elements in dietetic sample by neutron activation analysis; Determinacao de elementos essenciais em alimentos dieteticos pela tecnica de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Siquelli, Murilo V.; Maihara, Vera A. Maihara [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica]. E-mail: murilo_siquelli@hotmail.com; vmaihara@ipen.br

    2005-07-01

    In the last years there has been an increase of the dietetic product consumption by people who suffer from diabetes, heart disease and by people concerned about having a healthy life as well. Despite the increase of dietetic product presents in the diet of the Brazilian population, the use of these products is still controversial. The analysis of the nutritional composition of these products is becoming important because a great number of people is changing their traditional food by dietetic products. In the literature, there is no information about the inorganic composition, mainly related to the essential elements, in the dietetic products: diet and light . In this study are presented preliminary results of the concentrations of Br, Ca, Cr, Fe, Na and Zn determined by Instrumental Neutron Activation Analysis in aspartame, saccharin and cyclamate sodium , and stevia based sweetener samples. Gelatin samples, diet and light, were also analyzed. Methodology validation was done analyzing NIST reference materials Tea Leaves (INCT-TL-1) and Mixed Polish Herbs (INCT-MPH-2). (author)

  8. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Oak Ridge National Laboratory (ORNL), One Bethel Valley Road, Oak Ridge, TN (United States); Burr, Tom [International Atomic Energy Agency (IAEA), Vienna (Austria); Favalli, Andrea [Los Alamos National Laboratory (LANL), MS E540, Los Alamos, NM 87545 (United States); Nicholson, Andrew [Oak Ridge National Laboratory (ORNL), One Bethel Valley Road, Oak Ridge, TN (United States)

    2016-03-01

    The declared linear density of {sup 238}U and {sup 235}U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of {sup 235}U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  9. Atmospheric Deposition of Heavy Metals in Serbia Studied by Moss Biomonitoring, Neutron Activation Analysis and GIS Technology

    CERN Document Server

    Frontasyeva, M V; Kumar, M; Matavuly, M; Pavlov, S S; Radnovic, D; Steinnes, E

    2002-01-01

    The results of a pilot study on atmospheric deposition of heavy metals and other trace elements using the moss biomonitoring technique in the northern part of Serbia and some areas of Bosnia are presented. Samples of Hypnum cupressiforme along with some other moss types were collected at 92 sites during the summer of 2000. A total of 44 elements were determined by instrumental neutron activation analysis using epithermal neutrons. The observed levels of Cu, Zn, As, Ag, Cd, In, Sb, etc. in the area surrounding the town of Bor (Serbia) are comparable to those reported from similar industrial areas in other countries such as the Copper Basin in Poland and the South Urals of Russia. In the same region the maximum Se and Mo concentrations are the highest ever recorded in biomonitoring studies using mosses. High median concentrations of Fe and Ni in Serbian mosses are associated with a crustal component as apparent from factor analysis of the moss data. This component could be a result of windblown soil dust (most ...

  10. Rapid and accurate determination of barium by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Maihara, Vera A.; Saiki, Mitiko, E-mail: marmelin@ipen.br, E-mail: vmaihara@ipen.br, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Trevizam, Anderson R., E-mail: aanrt@hotmail.com [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil)

    2013-07-01

    Barium is an alkaline earth metal naturally present in soils. When available at a high level in the soil it can cause toxicity to plants and animals. Not all the barium is readily available to living organisms. Inorganic and organic barium compounds can be presented as soluble or insoluble forms in the soil. The soluble form of BaS is extremely toxic to humans, animals and plants. Researchers have noted a decrease of K absorption in the plant when Ba concentrations are increased and a change in overall plant growth. In case of animals, Ba tends to be concentrated in the bones which may compete with calcium, although only about 2% barium ingested in dietary is absorbed by the body. Another effect is that the Ba can interfere with the availability of sulfur in the soil due to the sulphate formation of low solubility. Barium and some other elements are considered palioclimatic proxies. For some researchers, barite is perhaps the most appropriate indicator of paleoproductivity because of a high resistance to dissolution. As explained about the barium effects in various situations, it was considered important to study the more appropriated experimental conditions for determination of this element by INAA. Conditions established for this analysis were: a) Irradiation time, 15 and 40 seconds, under thermal flux neutron about 4 x 10{sup 12} n cm{sup -2} s{sup -1}, for determining barium in geological and biological matrices, respectively; b) Decay time, approximately of 4 minutes; c) Counting time of 30 minutes; d) Radionuclide measured {sup 139}Ba. The quality of Ba results was evaluated from the analysis of certified reference materials. The performance of the method was satisfactory, according to the criterion of E.ζ score. Results obtained in this study indicate INAA is a good alternative for Ba determination in geological and biological samples. (author)

  11. Comparison between different types of glass and aluminum as containers for irradiation samples by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sroor, A.; El-Dine, N. Walley; El-Shershaby, A.; Abdel-Haleem, A.S

    2000-01-01

    Three different types of glass and four different kinds of aluminum sheet have been analyzed using neutron activation analysis. The irradiation facilities of the first Egyptian research reactor (ET-RR-1) and a hyper-pure germanium (HPGe) detection system were used for the analysis. Among the 34 identified elements, the isotopes {sup 60}Co, {sup 65}Zn, {sup 110m}Ag, {sup 123m}Te, {sup 134}Cs, {sup 152}Eu and {sup 182}Ta are of special significance because of their long half-lives, providing a background interference for analyzed samples. A comparison between the different types of containers was made to select the preferred one for sample irradiation.

  12. Study of some Ayurvedic Indian medicinal plants for the essential trace elemental contents by instrumental neutron activation analysis and atomic absorption spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, R.S.; Singare, P.U.; Andhele, M.L. [Dept. of Chemistry, Univ. of Mumbai, Santacruz, Mumbai (India); Acharya, R.; Nair, A.G.C.; Reddy, A.V.R. [Radiochemistry Div., Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2009-07-01

    Elemental analysis of some medicinal plants used in the Indian Ayurvedic system was performed by employing instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) techniques. The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. Most of the medicinal plants were found to be rich in one or more of the elements under study. The variation in elemental concentration in same medicinal plants samples collected in summer, winter and rainy seasons was studied and the biological effects of these elements on human beings are discussed. (orig.)

  13. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source; Determinacao de manganes em minerios, por analise por ativacao, usando californio-252 como fonte de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Antonio

    1976-07-01

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction {sup 55}Mn (n.gamma){sup 56} Mn, high concentration of manganese in the matrix and short half - life of {sup 56}Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions {sup 56}Fe(n,p){sup 56}Mn and {sup 59} Co (n, {alpha}){sup 56} were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  14. Semiautomatic exchanger of samples for carry out neutron activation analysis; Intercambiador semiautomatico de muestras para realizar analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Quintana C, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Torres R, C. E.; Mejia J, J. O., E-mail: fortunato.aguilar@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2015-09-15

    In this paper the design methodology and implementation of a semiautomatic exchanger of samples for the Analysis Laboratory by Neutron Activation of the Reactor department is presented. Taking into account the antecedents, the necessities of improvement are described, as well as the equipment that previously contained the Laboratory. The project of the semiautomatic exchanger of samples was developed at Instituto Nacional de Investigaciones Nucleares, with its own technology to increase independence from commercial equipment. Each element of the semiautomatic exchanger of samples is described both in the design phase as construction. The achieved results are positive and encouraging for the fulfillment of the proposed objective that is to increase the capacity of the Laboratory. (Author)

  15. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  16. Evaluation of clinoptilolite for removal of ammoniacal nitrogen produced in aquaculture by Neutron activation analysis and UV-VIS spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Bibiano C, L.; Iturbe G, J.L.; Lopez M, B.E.; Martinez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In fish culture system, ammonia is excreted in the water as a metabolic by-product. In this work, sorption properties of clinoptilolite were determined and it was applied in culture of the rainbow trout Oncorhynchus mykiss for the removal of the ammoniacal nitrogen. The original clinoptilolite was treated with 1N NaCl solution from 24 to 192 h, for exchange NH{sub 4} ions produced in fish culture. The content of Na in the clinoptilolite was determined by neutron activation analysis. The ammonium ion content in the exchange was analysed by UV-VIS spectrophotometry. Maximum uptake of sodium was reached between 24 and 48 hours at neutral pH with granules of the clinoptilolite from 14 to 24 mesh size. The adsorption capacity was from 3.28 to 6.8 mg of ammonium per gram of clinoptilolite. (Author)

  17. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1995-02-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson`s disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson`s disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author).

  18. Platinum determination by instrumental neutron activation analysis with special reference to the spectral interference of Sc-47 on the platinum indicator nuclide Au-199

    DEFF Research Database (Denmark)

    Alfassi, Z.B.; Probst, T.U.; Rietz, B.

    1998-01-01

    A method of instrumental neutron activation analysis (INAA) is developed for the determination of platinum by the Au-199 daughter of Pt-199 in the presence of the spectral interference from the Sc-47 daughter of Ca-47. The contributions of the Pt and Ca signals to the integral 157-161 keV peak were...

  19. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Queirolo, F. (Universidad Catolica del Norte, Antofagasta (Chile). Dept. of Chemistry Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Ostapczuk, P. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Valenta, P.; Stegen, S. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Marin, C.; Vinagre, F.; Sanchez, A. (Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry)

    1991-05-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF).

  20. Studies on the method for determination of fluoride concentration in rat hard tissues by neutron activation analysis using sup 20 F

    Energy Technology Data Exchange (ETDEWEB)

    Nakakura, Tadao (Nippon Dental Univ., Tokyo (Japan))

    1991-04-01

    Neutron activation analysis method (non disruptive analysis, short time period measurement) has been recognized as a high precision analysis of fluoride concentration in hard tissue. Heat neutron irradiation analysis using instrumental neutron activation analysis (INAA) method was used to investigate {sup 20}F concentration. Results were as follows. F concentration in a dried material of hard tissue using INAA method can be fixed by measuring the {sup 20}F's energy peak for 10 seconds after neutron irradiation under 1 x 10 n/cm{sup 2}center dots for 10 seconds. Non responding time that is caused by short half reduction time of {sup 20}F can be recovered enough by a revise calculation. Reproducibility of measured fluoride concentration using INAA method was well stabilized. Rat hard tissue which takes no fluoride can be determined fluoride concentration without sodium restriction. Femur fluoride concentrations using INAA method had significant correlation with conventional microdiffusion analysis method (r=0.997, regression line: Y=1.13X + 2.98). Increase of fluoride density in dentine of rat molars under growing period according to fluoride intake was 1/3 of femurs and mandibles. (author).

  1. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    Science.gov (United States)

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.

  2. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  3. Fast neutron activation dosimetry with TLDS

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.W.; Moran, P.R.

    1975-01-01

    Fast neutron activation using threshold reactions is the only neutron dosimetry method which offers complete discrimination against gamma-rays and preserves some information about the neutron energy. Conventional activation foil technique requires sensitive radiation detectors to count the decay of the neutron induced activity. For extensive measurements at low neutron fluences, vast outlays of counting equipment are required. TL dosimeters are inexpensive, extremely sensitive radiation detectors. The work of Mayhugh et al. (Proc. Third Int. Conf. on Luminescence Dosimetry, Riso Report 249, 1040, (1971)) showed that CaSO/sub 4/: DyTLDs could be used to measure the integrated dose from the decay of the radioactivity produced in the dosimeters by exposure to thermal neutrons. This neatly combines the activation detector and counter functions in one solid state device. This work has been expanded to fast neutron exposures and other TL phosphors. The reactions /sup 19/F(n, 2n)/sup 18/F, /sup 32/S(n,p)/sup 32/P, /sup 24/Mg(n,p)/sup 24/, and /sup 64/Zn(n,p)/sup 64/Cu were found useful for fast neutron activation in commercial TLDs. As each TLD is its own integrating decay particle counter, many activation measurements can be made at the same time. The subsequent readings of the TL signals can be done serially after the induced radioactivity has decayed, using only one TL reader. The neutron detection sensitivity is limited mainly by the number statistics of the neutron activations. The precision of the neutron measurement is within a factor of two of conventional foil activation for comparable mass detectors. Commercially available TLDs can measure neutron fluences of 10/sup 9/n/cm/sup 2/ with 10 percent precision.

  4. A preliminary study of archaeological ceramic from the Sao Paulo II, Brazil, archaeological site by Instrumental Neutron Activation Analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rogerio B.; Munita, Casimiro S.; Oliveira, Paulo M.S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Neves, Eduardo G.; Tamahara, Eduardo K., E-mail: edgneves@usp.br [Museu de Arqueologia e Etnologia (MAE/USP), Sao Paulo, SP (Brazil)

    2011-07-01

    The determination of trace elements plays an important role in the characterization of archaeological ceramics. It is well established that ceramics can be grouped based on similarities/dissimilarities derived from chemical data. Different analytical methods can be applied to determine the sample composition. Instrumental neutron activation analysis (INAA) is the method preferred because present several advantages in relation to the other techniques. In this work, the elements determined were As, K, La, Lu, Na, Nd, Sb, Sm, U, Yb, Ba, Ce, Co, Cr, Cs, I, Fe, Hf, Rb, Sc, Ta , Tb, Th and Zn to carry out a preliminary chemical characterization in 44 ceramic samples from Sao Paulo II archaeological site by INAA. The site is located in Coari city, 363 km from Manaus, Amazonas state (AM). The elementary concentration results were studied using multivariate statistical methods. The similarity/dissimilarity among the samples was studied by means of discriminant analysis. The compositions group classification was done through cluster analysis, showing the formation of the three distinct groups of the ceramics. (author)

  5. Preliminary chemical composition study of pre-colonial ceramics from Pantanal Sul Mato-Grossense by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Felicissimo, M.P.; Munita, C.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica]. E-mail: mafelici@iqsc.usp.br; camunita@ipen.br; Peixoto, J.L. [Mato Grosso do Sul Univ., Corumba, MS (Brazil). Dept. de Ciencias do Ambiente]. E-mail: peixotoj@ceuc.ufms.br

    2005-07-01

    Trace element concentration of potsherds from two archaeological sites was measured by neutron activation analysis. The archaeological sites are located in the flood plains of Paraguay River in the heart of South America in a singular area of natural preservation called Pantanal. Archaeological studies in this region began in 1990, with the classification of c.a. 200 sites. These archaeological sites present a large amount of ceramic material not only on the surface but also along a depth profile, where the most antique dating is 2.640 B.P. Discriminant Analysis was applied in the data treatment in order to obtain more conclusive information. The measured elements were Na, Lu, U, Yb, La, Th, Cr, Cs, Sc, Rb, Fe, Eu, Ce, Hf, and Tb. The composition analysis results enable to attribute a significant distinction to potsherds coming from the archaeological site MSCP- 71 and MS-CP-61. Both sites were characterized as long term settlements of great importance to the study of the ancient population that inhabited this area. (author)

  6. Investigations of Ancient Terra-cotta Sarcophagi, Excavated in Enez (Ainos Turkey, by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    Sevim Akyuz

    2015-12-01

    Full Text Available Ten terra-cotta sarcophagi, together with a terra-cotta aryballos (perfume jar, excavated in Su Terazisi necropolis of Enez-Turkey (Ancient Ainos, were investigated by Instrumental Neutron Activation Analysis (INAA, to determine the concentration of thirty two chemical elements: Na, K, Ca, Fe, Sc, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Lu, Hf, Ta, Th and U. The dataset was submitted to multivariate statistical analysis. The classification was done by cluster analysis. The results demonstrated the occurrence of two different groups of terra-cotta samples. Group I contains nine sarcophagi and terra-cotta aryballos whereas group II contains only one sample (E09-ST5-M26. High correlations between La and Ce (r2 = 0.92, and U and Th (r2 = 0.91 indicated that local clay was used for manufacturing the terra-cotta sarcophagi and aryballos but probably the claybed used for E09-ST5-M26 was different from that of others.

  7. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  8. Application of multiparameter coincidence spectrometry using a Ge detectors array to neutron activation analysis

    CERN Document Server

    Hatsukawa, Y; Hayakawa, T; Toh, Y; Shinohara, N

    2002-01-01

    The method of multiparameter coincidence spectrometry based on gamma-gamma coincidence is widely used for the nuclear structure studies, because of its high sensitivity to gamma-rays. In this study, feasibility of the method of multiparameter coincidence spectrometry for analytical chemistry was examined. Two reference igneous rock samples (JP-1, JB-1a) issued by the Geological Survey of Japan were irradiated at a research reactor, and the gamma-rays from the radioisotopes produced via neutron capture reactions were measured using an array of 12 Ge detectors with BGO Compton suppressors, GEMINI. Simultaneously 24 elements were analyzed without chemical separation. The observed smallest component was Eu contained in JP-1 with abundance of 4 ppb.

  9. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  10. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    Energy Technology Data Exchange (ETDEWEB)

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  11. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    Science.gov (United States)

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  12. Determination of reference values of elements in whole blood of the wistar rats using neutron activation analysis (NAA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Laura C.; Zamboni, Cibele B., E-mail: laura@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Some investigations, especially biochemistry analysis, can be performed using whole blood if the normality limits are established. The present study deals with the determination of reference values for elements of clinical interest, in whole blood of Wistar rats using the Neutron Activation Analysis technique. Usually these small-sized animals are used as guinea-pig on experiments that involves testing new medicines and medical diagnostic studies. In this investigation, the reference values for blood were determined for: Br (0.0011 - 0.0095 gL{sup -1}), Ca (0.0 - 0.66 gL{sup -1}), Cl (2.35 - 4.91 gL{sup -1}), K (1.00 - 3.12 gL{sup -1}), Mg (0.044 - 0.108 gL{sup -1}), Na (1.13 - 3.09 gL{sup -1}) and S (0.53 - 1.81 gL{sup -1}). These data will allow researchers to optimize their studies, both in terms of cost and time by selecting species that fits to the experimental model as a clinical reference as well as performing biochemical analyses in whole blood using small quantities (few {mu}L) compared to the conventional analyses performed in serum (few mL). (author)

  13. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    Science.gov (United States)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  14. Epithermal neutron activation, radiometric, correlation and principal component analysis applied to the distribution of major and trace elements in some igneous and metamorphic rocks from Romania

    Energy Technology Data Exchange (ETDEWEB)

    Cristache, C.I. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125 Magurele, Ilfov (Romania); Duliu, O.G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele, Ilfov (Romania)], E-mail: duliu@b.astral.ro; Culicov, O.A.; Frontasyeva, M.V. [Joint Institute of Nuclear Research, 6, Joliot Curie str. 141980, Dubna (Russian Federation); Ricman, C. [Geological Institute of Romania, 1 Caransebes Street, 012271 Bucharest (Romania); Toma, M. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125 Magurele, Ilfov (Romania)

    2009-05-15

    Six major (Na, Al, K, Ca, Ti, Fe) and 28 trace (Sc, Cr, V, Mn, Co, Zn, Cu, As, Br, Sr, Rb, Zr, Mo, Sn, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Hf, Ta, W, Th and U) elements were determined by epithermal neutron activation analysis (ENAA) in nine Meridional Carpathian and Macin Mountains samples of igneous and metamorphic rocks. Correlation and principal factor analysis were used to interpret data while natural radionuclides radiometry shows a good correlation with ENAA results.

  15. Epithermal neutron activation, radiometric, correlation and principal component analysis applied to the distribution of major and trace elements in some igneous and metamorphic rocks from Romania.

    Science.gov (United States)

    Cristache, C I; Duliu, O G; Culicov, O A; Frontasyeva, M V; Ricman, C; Toma, M

    2009-05-01

    Six major (Na, Al, K, Ca, Ti, Fe) and 28 trace (Sc, Cr, V, Mn, Co, Zn, Cu, As, Br, Sr, Rb, Zr, Mo, Sn, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Hf, Ta, W, Th and U) elements were determined by epithermal neutron activation analysis (ENAA) in nine Meridional Carpathian and Macin Mountains samples of igneous and metamorphic rocks. Correlation and principal factor analysis were used to interpret data while natural radionuclides radiometry shows a good correlation with ENAA results.

  16. Arsenic monitoring in intensive systems of production of bovine for analyzes by neutron activation analysis; Monitoracao do arsenio em sistemas intensivos de producao de bovino pela analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, M.J.A.; Piasentin, R.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radioquimica; Primavesi, O. [Empresa Brasileira de Pesquisa Agropecuaria, Sao Carlos, SP (Brazil). Centro de Pesquisa de Pecuaria do Sudeste

    2000-07-01

    Neutron activation analysis was applied to determine Arsenic in samples of several kinds of soils collected at two depths, 0-20 and 20-40 cm, and roots and leaves of grasses cultivated on them, to check the end level of Arsenic in leaves that are used in animal feeding. The results showed that Arsenic from limestones, fertilizers and agrochemicals applied to soil, to increase soil fertility, presents remote potential to injure cattle health. (author)

  17. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  18. Forensic comparison of shotshell-pellet specimens by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, T.H.

    1986-01-01

    The very rapid INAA method, developed by Guinn and Purcell, works well for the determination of Sb, Ag, and Cu in shotshell pellets. Arsenic is also of interest to this study because it is added during the production of shotshell pellets to increase sphericity during pellet formation in the shot tower. Unfortunately, the one arsenic (n,..gamma..), product, 26.32 h /sup 76/As, is not susceptible to analysis via the rapid method. In the present study, a method involving a one-hour irradiation in the UCl TRIGA Mark 1 nuclear reactor was found to be effective in the determination of arsenic content in lead samples. This method also facilitates a second determination of antimony and copper levels via /sup 122/Sb and /sup 64/Cu activities. Several methods for the resolution of the 559-keV /sup 76/As/564-keV /sup 122/Sb photopeak doublet were evaluated. Also, two new gamma attenuation models, for disc and spherical lead samples, were developed. These models respond to the recognition that the gamma rays employed to assay the concentrations of the various elements are themselves attenuated within the sample - a lead matrix. After demonstrating that ammunition from different manufacturers, as well as inter-lot variances within a single manufacturer's ammunition, can readily be differentiated, this study also led to a statistically rigorous assignment of the probability of common origin of shotshell-pellet, or bullet-lead specimens, of analytically indistinguishable or nearly indistinguishable compositions. Additionally, the dissertation contains an Appendix detailing the development of the shotgun and its ammunition for those who are not very familiar with forensic ballistics.

  19. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    Science.gov (United States)

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background.

  20. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k{sub 0}-standardization method

    Energy Technology Data Exchange (ETDEWEB)

    Abugassa, I.; Sarmani, S.B. [Department of Nuclear Science, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Samat, S.B. [Department of Physics, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    1999-06-01

    This paper focuses on the evaluation of the k{sub 0} method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E{sup 1+{alpha}} epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the {gamma}-ray cascade and the HPGe detector efficiency were determined and corrected for.

  1. Development of a gamma ray spectrometry software for neutron activation analysis using the open source concept; Desenvolvimento de um software de espectrometria gama para analise por ativacao com neutrons utilizando o conceito de codigo livre

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Silvio Rogerio de

    2008-07-01

    This study developed a specific software for gamma ray spectra analysis for researchers of the Neutron Activation Laboratory (LAN), which was named SAANI (Instrumental Neutron Activation Analysis Software). The LAN laboratory of the Institute for Research and Nuclear Energy (IPEN-CNEN/SP), uses a multielemental analytical technique, based on irradiation of a sample by a flux of neutrons from a nuclear reactor, which induces radioactivity. The sample is then placed in a gamma-ray spectrometer, to obtain the spectrum. With free software philosophy in mind, this software will replace the existing software VISPECT / VERSION 2. The new software's main features are: a friendlier interface; easier standardization procedure carried out by LAN staff and researchers; adapted to the use of plug technology; multi platform and code free. The software was developed using the programming Python language, the library Trolltech Qt graphics and some of their scientific extensions. Preliminary results using the SANNI software were compared to those obtained with the existing software and were considered good. There were some errors in accuracy during the implementation of the software. The SAANI software has been installed in selected computers to be used for routine analysis in order to verify its strength, accuracy and usability. (author)

  2. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Richard B.; Trkov, Andrej

    2005-10-31

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrum peak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  3. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Richard B.; Trkov, Andrej

    2005-10-01

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrumpeak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  4. The synchronous active neutron detection assay system

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  5. Implementation of the k{sub 0}-standardization Method for an Instrumental Neutron Activation Analysis: Use-k{sub 0}-IAEA Software as a Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Kim, Hark Rho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Ho, Manh Dung [Nuclear Research Institute, Dalat (Viet Nam)

    2006-03-15

    Under the RCA post-doctoral program, from May 2005 through February 2006, it was an opportunity to review the present work being carried out in the Neutron Activation Analysis Laboratory, HANARO Center, KAERI. The scope of this research included: a calibration of the counting system, a characterization of the irradiation facility ,a validation of the established k{sub o}-NAA procedure.The k{sub o}-standardization method for an Neutron Activation Analysis(k{sub o}-NAA), which is becoming increasingly popular and widespread,is an absolute calibration technique where the nuclear data are replaced by compound nuclear constants which are experimentally determined. The k{sub o}-IAEA software distributed by the IAEA in 2005 was used as a demonstration for this work. The NAA no. 3 irradiation hole in the HANARO research reactor and the gamma-ray spectrometers No. 1 and 5 in the NAA Laboratory were used.

  6. Metal and trace element sediment assessment from Ribeira do Iguape river, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Francisco J.V. de; Quinaglia, Gilson A., E-mail: franciscovc@cetesbnet.sp.gov.br, E-mail: gilsonn@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELTA - Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Laboratorio de Analise por Ativacao Neutronica; Franklin, Robson L.; Ferreira, Francisco J., E-mail: robsonf@cetesbnet.sp.gov.br, E-mail: franciscoj@cetesbnet.sp.gov.br [CETESB - Companhia Ambiental do Estado de Sao Paulo, SP (Brazil). ELAI - Setor de Quimica Inorganica

    2011-07-01

    The watershed region of the Ribeira do Iguape River and the estuarine complex of the Paranagua-Iguape- Cananeia and the various river basins located between this region and the Atlantic Ocean, is known as the Ribeira Valley. The Ribeira do Iguape River runs a total length of approximately 470 km, being the main source of fresh water in the Estuarine Complex of the Iguape-Cananeia-Paranagua (Lagamar). The Ribeira do Iguape River is the last major river in the State of Sao Paulo that has not been altered by dams. During virtually the entire 20th century, the region of the Ribeira Valley was the scene of constant environmental degradation resulting from the intense exploration and refining of lead, zinc and silver ores that were processed in the mines of the region, in a rudimentary way and without any control over environmental impacts. Since 1996, all such activities ceased, however, leaving behind a huge amount of environmental liabilities. This study aims to investigate the presence and concentration levels of metals and semi-metals arsenic (As), cadmium (Cd) and lead (Pb) in the sediment and water of aquatic systems of Ribeira do Iguape River and its tributaries, for an environmental assessment and monitoring of the region. The determination of these elements was carried out by GF AAS technique for water samples and ICP OES for the sediment samples. This study also assessed the occurrence of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cs, Hf, Rb, Sb, Sc, Se, Ta, Th, U, Zn) and rare earth elements (La, Ce, Eu, Nd, Sm, Lu, Tb and Yb) by Neutron Activation Analysis (NAA). Validation of both methodologies, according to precision and accuracy, was done by reference material analyses. The results obtained for As, Cd and Pb were compared to the Canadian Environmental oriented values (TEL and PEL). The results obtained for multielemental analyses in the sediment samples were compared to UCC values (Upper Continental Crust). (author)

  7. Performance test results of noninvasive characterization of Resource Conservation and Recovery Act surrogate waste by prompt gamma neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, R.J.; Streier, G.G.

    1997-03-01

    During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personal contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.

  8. Neutron activation analysis of sources of raw material of Emperor Qin Shi Huang's Terracotta Warriors and Horses

    Institute of Scientific and Technical Information of China (English)

    高正耀; 赵维娟; 李国霞; 谢建忠; 韩国河; 冯松林; 范东宇; 张颖; 柴之芳; 李融武; 张仲立; 朱君孝

    2003-01-01

    There have been selected 83 samples of terracotta warriors and horses of Emperor Qin Shi Huang's Mausoleum, 20 samples of clays taken from around Qin's Mausoleum and 2 samples of Yaozhou porcelain bodies. All these samples have been measured by instrument neutron activation analysis (INAA) and as many as 32 kinds of element contents of each sample are measured. The following conclusion has been reached when fuzzy cluster analysis is conducted to element contents of all these samples: (i) The samples are roughly classified into five categories: namely, samples from pits No. 1 and No. 2; samples from pit No. 3; loam layers; the mixture of loam and loess; and Yaozhou porcelain bodies. (ii) The terracottawarriors and horses in pits No. 1, No. 2 and No. 3 are relatively independent from one another. The clays from which they were made are not entirely identical.We have found that samples in pit No. 3 are very closely related and their claysources are comparatively concentrated. Samples in pits No. 1 and No. 2 are less related and their clay sources are comparatively scattered. (iii) The clays from which the terracotta warriors and horses were made are closely related to theloam layer near Qin's Mausoleum, particularly to the loam layer of Zaoyuan village and Gaoxing village, but they are not so related to loess layers there, nor to the loam layers of Anhoubao, even less related to Yaozhou porcelain bodies. Arational deduction thus drawn is that the raw material of clays from which the terracotta warriors and horses were made might probably be taken from loam layers around Zaoyuan and Gaoxing, or loam layers near Qin's Mausoleum whose properties are identical with those of loam layers of Zaoyuan and Gaoxing, rather than loess layers around the above places. Since the raw material of the terracotta warriors and horses was taken from loam near Qin's Mausoleum, it could be deductedthat the kiln sites might be located in around Qin's Mausoleum.

  9. Sample container for neutron activation analysis. Probenbehaelter fuer die Neutronen-Aktivierungsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Lersmacher, B.; Verheijke, M.L.; Jaspers, H.J.

    1983-06-23

    The sample container avoids contaminating the sample substance by diffusion of foreign matter from the wall of the sample container into the sample. It cannot be activated, so that the results of measurements are not falsified by a radioactive container wall. It consists of solid carbon.

  10. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon. Contributions of /sup 28/Al activities from /sup 31/P (n,. cap alpha. ) /sup 28/Al and /sup 28/Si (n,p) /sup 28/Al reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Yoshihiko (Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology); Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using pneumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the /sup 28/Al activity produced from /sup 27/Al(n, ..gamma..) /sup 28/Al reaction by thermal neutrons to that from /sup 31/P(n, ..cap alpha..)/sup 28/Al reaction by fast neutrons, and to that from /sup 28/Si(n, p)/sup 28/Al reaction were measured by ..gamma..-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the /sup 28/Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of /sup 28/Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined.

  11. Utilization of ko-factors for quality assurance in neutron activation analysis

    DEFF Research Database (Denmark)

    Heydorn, K.; Damsgaard, E.

    1994-01-01

    deviations from unity in case of stoichiometric or other gross errors. Quality assurance based on the Analysis of Precision of k0-ratios from replicate analyses detects unexpected variability associated with inaccurate comparator standards. In two actual cases of cerification lack of statistical control...

  12. Determination of rare earth and uranium in reference biological materials certified by the method of neutron activation analysis; Determinacao de terras raras e de uranio em materiais biologicos de referencia certificados pelo metodo de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Lais H.P.; Saiki, Mitiko, E-mail: laispaciulli@gmail.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of this study was to evaluate the precision and accuracy of the determinations of Sc, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu and U in certified reference materials (CRMs). To solve the problem of interference from fission products of U in the determination of lanthanides were obtained correction factors for this interference for {sup 140}La, {sup 141}Ce, {sup 143}Ce, {sup 153}Sm and {sup 147}Nd. The experimental procedure of Neutron Activation Analysis consisted of irradiating aliquots of each of the CRMs with synthetic standards of elements under thermal neutron flux of the IEA-R1 nuclear reactor, followed by gamma-ray spectrometry using a high-resolution hyperpurity GE detector. The analyzes of CRMs indicate good accuracy and precision of results, demonstrating the feasibility of applying of established procedure in NAA of elements studied in organic vegetable matrices.

  13. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  14. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  15. Reliability assessment of high energy particle induced radioactivity calculation code DCHAIN-SP 2001 by analysis of integral activation experiments with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Maekawa, Fujio; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki [Sumitomo Atomic Energy Industries, Ltd., Tokyo (Japan)

    2002-03-01

    Reliability assessment for the high energy particle induced radioactivity calculation code DCHAIN-SP 2001 was carried out through analysis of integral activation experiments with 14-MeV neutrons aiming at validating the cross section and decay data revised from previous version. The following three kinds of experiments conducted at the D-T neutron source facility, FNS, in JAERI were employed: (1) the decay gamma-ray measurement experiment for fusion reactor materials, (2) the decay heat measurement experiment for 32 fusion reactor materials, and (3) the integral activation experiment on mercury. It was found that the calculations with DCHAIN-SP 2001 predicted the experimental data for (1) - (3) within several tens of percent. It was concluded that the cross section data below 20 MeV and the associated decay data as well as the calculation algorithm for solving the Beteman equation that was the master equation of DCHAIN-SP were adequate. (author)

  16. Neutron activation analysis of the 30Si content of highly enriched 28Si: proof of concept and estimation of the achievable uncertainty

    CERN Document Server

    D'Agostino, Giancarlo; Oddone, Massimo; Prata, Michele; Bergamaschi, Luigi; Giordani, Laura

    2014-01-01

    We investigated the use of neutron activation to estimate the 30Si mole fraction of the ultra-pure silicon material highly enriched in 28Si for the measurement of the Avogadro constant. Specifically, we developed a relative method based on Instrumental Neutron Activation Analysis and using a natural-Si sample as a standard. To evaluate the achievable uncertainty, we irradiated a 6 g sample of a natural-Si material and modeled experimentally the signal that would be produced by a sample of the 28Si-enriched material of similar mass and subjected to the same measurement conditions. The extrapolation of the expected uncertainty from the experimental data indicates that a measurement of the 30Si mole fraction of the 28Si-enriched material might reach a 4% relative combined standard uncertainty.

  17. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N., E-mail: mnnasrabadi@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Bakhshi, F.; Jalali, M.; Mohammadi, A. [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-12-11

    Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by {sup 14}N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A {sup 252}Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C{sub 3}H{sub 6}N{sub 6}). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.

  18. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    Science.gov (United States)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  19. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis; Determinacion de plata, oro, zinc y cobre en muestras minerales mediante diversas tecnicas de analisis por activacion de neutrones instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Yoho, M.; Landsberger, S., E-mail: neisla126@hotmail.com [University of Texas at Austin, Nuclear Engineering Teaching Laboratory, Austin 78712, Texas (United States)

    2015-09-15

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide {sup 110}Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide {sup 199}Au and 438.6 keV of metastable radionuclide {sup 69m}Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide {sup 66}Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used

  20. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    Science.gov (United States)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  1. Contents evaluation of some essential and toxic elements in children and elders diet by neutron activation analysis; Avaliacao do conteudo de alguns elementos essenciais e toxicos em dietas de criancas e idosos pelo metodo de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Maihara, Vera Akiko

    1996-12-31

    Essential and toxic elements in the 19 diet samples from pre-school children and 23 diet samples from elderly people, have been determined by neutron activation analysis. The diet samples were collected by duplicate portion method. A radiochemical separation procedure was developed and applied for determining Cd, Co, Cr, Fe, Mo, Sb, U, Th, W and Zn, based on retention of these elements in a Chelex-100 resin. In the case of As and Se, the procedure was based on retention in inorganic exchanger TDO (tin dioxide). The contents of proteins, lipids and carbohydrates were also analysed. The results have been presented and discussed 135 refs., 29 figs., 36 tabs.

  2. Analysis of toxic elements in two pigeonpea (Cajanus cajan (L.) Millsp) cultivars, in fertilized soils, by neutron activation; Analise de elementos toxicos em duas variedades de guandu (Cajanus cajan (L.) Millsp), cultivadas em solos tratados, por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Piasentin, Ricardo M.; Armelin, Maria Jose A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Divisao de Radioquimica; Primavesi, Odo [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Centro de Pesquisa de Pecuaria do Sudeste

    2000-07-01

    Samples of whole leaves, from thirty-six plants belonging to two pigeonpea cultivars were analysed by Instrumental Neutron Activation Analysis. Each plant was cultivated under either single dose or double one of some mineral fertilizers, such as, B, Co, Cu, Fe, Mn, Mo, V and Zn, individually, to the soil; besides limestone and phosphorus. The aim of this paper is to evaluate the contribution of these treatments to the increase in the concentrations of As, Sb, Th and U, since these elements can be toxic to plants and animals. (author)

  3. Comparative study between the PIXE technique and neutron activation analysis for Zinc determination; Estudo comparativo entre a tecnica de inducao de raios X por particulas e analise por ativacao com neutrons na determinacao do metal pesado zinco

    Energy Technology Data Exchange (ETDEWEB)

    Cruvinel, Paulo Estevao; Crestana, Silvio [Empresa Brasileira de Pesquisa Agropecuaria, Sao Carlos, SP (Brazil). CNPDIA. E-mail: cruvinel@cnpdia.embrapa.br; Armelin, Maria Jose Aguirre [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Artaxo Netto, Paulo Eduardo [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1997-07-01

    This work presents a comparative study between the PIXE, proton beams and neutron activation analysis (NAA) techniques, for determination of total zinc concentration. Particularly, soil samples from the Pindorama, Instituto Agronomico de Campinas, Sao Paulo State, Brazil, experimental station have been analysed and measuring the zinc contents in {mu}g/g. The results presented good correlation between the mentioned techniques. The PIXE and NAA analyses have been carried out by using the series S, 2.4 MeV proton beams Pelletron accelerator and the IPEN/CNEN-IEA-R1 reactor, both installed at the Sao Paulo - Brazil university.

  4. Neutron activation analysis of sources of raw material of Emperor Qin Shi Huang's Terracotta Warriors and Horses

    Science.gov (United States)

    Gao, Zhengyao; Zhao, Weijuan; Li, Guoxia; Xie, Jianzhong; Han, Guohe; Feng, Songlin; Fan, Dongyu; Zhang, Ying; Chai, Zhifang; Li, Rongwu; Zhang, Zhongli; Zhu, Junxiao

    2003-02-01

    There have been selected 83 samples of terracotta warriors and horses of Emperor Qin Shi Huang’s Mausoleum, 20 samples of clays taken from around Qin’s Mausoleum and 2 samples of Yaozhou porcelain bodies. All these samples have been measured by instrument neutron activation analysis (INAA) and as many as 32 kinds of element contents of each sample are measured. The following conclusion has been reached when fuzzy cluster analysis is conducted to element contents of all these samples: (i) The samples are roughly classified into five categories: namely, samples from pits No. 1 and No. 2; samples from pit No. 3; loam layers; the mixture of loam and loess; and Yaozhou porcelain bodies. (ii) The terracotta warriors and horses in pits No. 1, No. 2 and No. 3 are relatively independent from one another. The clays from which they were made are not entirely identical. We have found that samples in pit No. 3 are very closely related and their clay sources are comparatively concentrated. Samples in pits No. 1 and No. 2 are less related and their clay sources are comparatively scattered. (iii) The clays from which the terracotta warriors and horses were made are closely related to the loam layer near Qin’s Mausoleum, particularly to the loam layer of Zaoyuan village and Gaoxing village, but they are not so related to loess layers there, nor to the loam layers of Anhoubao, even less related to Yaozhou porcelain bodies. A rational deduction thus drawn is that the raw material of clays from which the terracotta warriors and horses were made might probably be taken from loam layers around Zaoyuan and Gaoxing, or loam layers near Qin’s Mausoleum whose properties are identical with those of loam layers of Zaoyuan and Gaoxing, rather than loess layers around the above places. Since the raw material of the terracotta warriors and horses was taken from loam near Qin’s Mausoleum, it could be deducted that the kiln sites might be located in around Qin’s Mausoleum.

  5. Characterization of the volcanic eruption emissions using neutron activation analysis; Caracterizacion de las emisiones de una erupcion volcanica mediante analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Rita R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Radioquimica, Tecnicas Analiticas Nucleares; Tafuri, Victoria V. [Servicio Meteorologico Nacional, Buenos Aires (Argentina). Centro de Contaminacion del Aire

    1997-10-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs.

  6. The platinum group elements and gold: analysis by radiochemical and instrumental neutron activation analysis and relevance to geological exploration and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.; Plimer, I. R. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    This paper presents an overview of research conducted with the support of the Australian Institute of Nuclear Science and Engineering, at the University of Melbourne, School of Earth Sciences, Radiochemical Neutron Activation Laboratory. The primary objective of this research is to realize the high potential of the platinum group elements (PGE) and gold to the solution of petrogenetic problems, the study of magma generation and magmatic processes in mafic/ultramafic rock suites, as tracers in hydrothermal ore formation. The PGEs (Os, Ru, Ir, Pt, Pd and Rh) are among the least abundant of all elements on earth with unique properties such as high melting points, high electrical and thermal conductivity, high density, strength and toughness as alloys. They exhibit both siderophile and chalcophile characteristics and are valuable tools in providing information about magmatic processes, in particular S-saturation, as well as crystal fractionation trends. Two distinct groups of PGEs are discerned; the IPGEs (Ru, Os, Ir) and the PPGEs (Pt, Pd, Rh, Au) on the basis of their behaviour during fractionation processes. Using chondrite normalized PGE patterns it is possible to distinguish between sulphides that segregated from primitive magmas, such as komatiites, and sulphides which segregated from more fractionated magmas, such as tholeiites. It is critical to the understanding of these processes to be able to analyse key elements, such as the PGE and gold, in the parts per billion to parts per trillion range. Platinum group elements and Au were determined by radiochemical neutron activation analysis using a modified NiS fire-assay preconcentration technique, adapted from procedures first used by Robert, R.V. D. and van Wyk, E. (1975) . Detection limits are generally 0.005-0.01 ppb (Au and Ir), 0.1-0.2 ppb (Pd and Pt), and 0.1-0.5 ppb for Ru. 9 refs.

  7. Analysis of mercury and selenium in biological samples by neutron activation analysis; Analise de mercurio e selenio em materiais biologicos pelo metodo de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Catharino, Marilia Gabriela Miranda

    2002-07-01

    In the present work, hair samples from populations suspected of contamination by mercury, in the localities of Serra do Navio, Vila Nova and Tartarugalzinho, in the State of Amapa, were analyzed. Hair samples of children under odontopediatric treatment were also analyzed for mercury, in order to study the possibility of transfer of mercury from the dental amalgam and also to obtain data of hair mercury in a control population of children. Another step of the work was the development of a method for the determination of selenium, by using the short-lived radioisotope {sup 77}mSe. After the certification of the method it was applied to the analysis of hair, nails and a vitamin supplement. A comparison was made with the results obtain ed by using the long-lived radioisotope of selenium, {sup 75}Se. The results obtained for mercury in the hair samples of populations living in the State of Amapa have shown that the mercury concentrations in these populations are much higher than in the controls. As for the hair samples of children under treatment with mercury amalgam, no significant differences were found in the concentrations of mercury after the treatment. On the other hand, these data were important to obtain data for a control population of children. The results obtained by using the radioisotope {sup 77}mSe showed that the method developed was suitable for the analyzed matrixes and the results were similar to the ones obtained by employing the usual AANI method, with the radioisotope {sup 75}Se. (author)

  8. Major and trace elemental analysis in milk powder by inductively coupled plasma-optical emission spectrometry (ICP-OES) and instrumental neutron activation analysis(INAA)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Major and trace element in seven different kinds of milk powder were studied. The concentration of 24 elements were determined byICP-OES method, from these elements 9 elements determined by INAA. The determination of trace element contents of foodstuffs, especiallymilk as daily drink for all peoples age which being a complex food has great importance. The elemental analysis of milk is important both as anindicator of environmental contamination and because milk is a significant pathway for toxic metal intake and a source of essential nutrients forhumans. The major elements are Ca, K, Mg, Na, P and S. While trace element are B, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Sb, Se,Sn, Sr, V, W and Zn.ICP-OES technique is shown to be a powerful tool for trace determinations in powder samples. This is shown by its use for analysis of aseries of the milk powders mentioned and comparative results of other direct technique such as instrumental neutron activation analysis.Analysis of both standard reference material A-11 milk powder and NBS Orchard leaves for quality accurance had been completed, andused for a relative method calculate. The importance of the major and trace elements to human health was discussed.

  9. The development and application of k -standardization method of neutron activation analysis at Es-Salam research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alghem, L. [Departement d' Analyse par Activation Neutronique, CRNB, BP 180, Ain Oussera 17200, W Djelfa (Algeria)]. E-mail: lylia_25@hotmail.com; Ramdhane, M. [Departement de physique, Universite Mentouri de Constantine (Algeria); Khaled, S. [Departement d' Analyse par Activation Neutronique, CRNB, BP 180, Ain Oussera 17200, W Djelfa (Algeria); Akhal, T. [Departement d' Analyse par Activation Neutronique, CRNB, BP 180, Ain Oussera 17200, W Djelfa (Algeria)

    2006-01-01

    In recent years the k -NAA method has been applied and developed at the 15 MW Es-Salam research reactor, which includes: (1) the detection efficiency calibration of {gamma}-spectrometer used in k -NAA (2) the determination of reactor neutron spectrum parameters such as {alpha} and f factors in the irradiation channel, and (3) the validation of the developed k -NAA procedure by analysing SRM, namely AIEA-Soil7 and CRM, namely IGGE-GSV4. The analysis results obtained by k -NAA with 27 elements of Soil-7 standard and 14 elements of GSV-4 standard were compared with certified values. The analysis results showed that the deviations between experimental and certified values were mostly less than 10%. The k -NAA procedure established at Es-Salam research reactor has been regarded as a reliable standardization method of NAA and as available for practical applications.

  10. Drawing up of a procedure for vanadium determination in mussels using the neutron activation analysis method; Estabelecimento de procedimento para determinacao de vanadio em mexilhoes pelo metodo de analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Daniele, E-mail: danyseo@uol.com.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias Biologicas e da Saude; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vasconcellos, Marina B.A.; Saiki, Mitiko; Catharino, Marilia G.M.; Moreira, Edson G., E-mail: mbvascon@ipen.b, E-mail: mitiko@ipen.b, E-mail: mgcatharino@uol.com.b, E-mail: emoreira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sousa, Eduinetty C.P.M. de; Pereira, Camilo D.S., E-mail: edvinett@usp.b, E-mail: camilo.pereira@usp.b [Universidade de Sao Paulo (IO/USP), SP (Brazil). Inst. Oceanografico. Lab. de Ecotoxicologia Marinha

    2009-07-01

    This work establishes an adequate procedure for obtaining reliable results for determination of vanadium in mussels, leg by leg by the neutron activation analysis (NAA), viewing the posterior application on the bio monitoring the coastal pollution, particularly near the petroleum terminals.For the evaluation of result quality concerning to the quality of those results, the work analysed the reference material certification NIST SRM 1566b Oyster Tissue. The precision of the results were also analysed using repetitions of mussel samples collected at the coastal of northern Sao Paulo state, Brazil. The NAA procedure consisted of 200 mg of sample and a synthetic standard of vanadium during a period of 8 s and under a thermal neutron flux of 6.6 x 10{sup 12} n cm{sup -2} s{sup -1} at the pneumatic station 4 of the IEA-R1 nuclear reactor of IPEN-CNEN/SP. After a 3 min decay, the measurements of the gamma activities of the sample and the standard were done using a Ge hyper pure semi-conductor detector, connected to gamma ray multichannel analyser. The vanadium were determined by the measurement of the gamma activity of the {sup 52}V through the 1434.08 keV peak, and half-life time of 3.75 min. The concentration of V were calculated by the comparative method. The obtained results indicated the viability of the NAA procedure established for the determination of vanadium in mussels

  11. Influence of elemental concentration in soil on vegetables applying analytical nuclear techniques: k{sub 0}-instrumental neutron activation analysis and radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil). Servico de Reator e Irradiacao]. E-mail: menezes@cdtn.br; Mingote, Raquel Maia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil). Servico de Quimica e Radioquimica; Silva, Lucilene Guerra e; Pedrosa, Lorena Gomes [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Faculdade de Farmacia

    2005-07-01

    Samples from two vegetable gardens where analysed aiming at determining the elemental concentration. The vegetables selected to be studied are grown by the people for their own use and are present in daily meal. One vegetable garden studied is close to a mining activity in a region inserted in the Iron Quadrangle (Quadrilatero Ferrifero), located in the Brazilian state of Minas Gerais. This region is considered one of the richest mineral bearing regions in the world. Another vegetable garden studied is far from this region and without any mining activity It was also studied as a comparative site. This assessment was carried out to evaluate the elemental concentration in soil and vegetables, matrixes connected with the chain food, applying the k{sub 0}-Instrumental Neutron Activation Analysis (k{sub 0}-INAA) at the Laboratory for Neutron Activation Analysis. However, this work reports only the results of thorium, uranium and rare-earth obtained in samples collected during the dry season, focusing on the influence of these elements on vegetable elemental composition. Results of natural radioactivity determined by Gross Alpha and Gross Beta measurements, are also reported. This study is related to the BRA 11920 project, entitled 'Iron Quadrangle, Brazil: assessment of health impact caused by mining pollutants through chain food applying nuclear and related techniques', one of the researches co-ordinated by the IAEA (Vienna, Austria). (author)

  12. Analysis of the pore structure of activated carbons produced from paper mill sludge using small angle neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G.; Khalil, N. R.; Littrell, K.; Thiyagarajan, P.

    1999-12-13

    A novel, cost-effective, and environmentally benign process was developed to produce highly efficient carbon-based adsorbents (CBAs) from paper mill sludge. The production process required chemical activation of sludge using zinc chloride and pyrolysis at 750 C in N{sub 2} gas. The produced CBAs were characterized according to their surface area and pore size distribution using N{sub 2}-BET adsorption isotherm data. Further characterization of the surface and pore structure was conducted using a unified exponential/power law approach applied to small angle neutron scattering (SANS) data. The structural features analyzed by SANS revealed the dependence of porosity with zinc chloride concentration. The presence of inaccessible pores was also determined by contrast-match experiments.

  13. The feasibility of in vivo detection of gadolinium by prompt gamma neutron activation analysis following gadolinium-based contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, J.L., E-mail: grafejl@mcmaster.c [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S-4K1 (Canada); McNeill, F.E.; Byun, S.H.; Chettle, D.R.; Noseworthy, M.D. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S-4K1 (Canada)

    2011-01-15

    The feasibility of using the McMaster University in vivo prompt gamma neutron activation analysis system for the detection of gadolinium has been investigated. Phantoms have been developed for the kidney, liver, and the leg muscle. The initial detection limits are determined to be 7.2{+-}0.3 ppm for the kidney, 3.0{+-}0.1 ppm for the liver, and 2.33{+-}0.08 ppm for the lower leg muscle. A few system optimizations have been tested and show significant detection limit reduction from these initial values. The technique is promising and shows feasibility for in vivo studies of gadolinium retention.

  14. Comparison of Reference Values in Whole Blood of DMDmdx/J and C57BL/6J Mice Using Neutron Activation Analysis

    Science.gov (United States)

    Metairon, S.; Zamboni, C. B.; Suzuki, M. F.; Júnior, C. R. B.; Sant'Anna, O. A.

    2011-08-01

    The Br, Ca, Cl, K, Na and S concentrations in whole blood of DMDmdx/J and C57BL/6J mice were determined using Neutron Activation Analysis technique. Reference values obtained from twenty one whole blood samples of these strains were analyzed in the IEA-R1 nuclear reactor at IPEN (São Paulo, Brasil). These data contribute for applications in veterinary medicine related to biochemistry analyses using whole blood as well as to evaluate the performance of treatments in muscular dystrophy.

  15. Determination of tungsten in geochemical reference material basalt Columbia River 2 by radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Samuel S.; Beck, Chelsie L.; Bowen, James M.; Eggemeyer, Tere A.; Hines, Corey C.; Liezers, Martin; Metz, Lori A.; Morley, Shannon M.; Restis, Kaitlyn R.; Snow, Mathew; Wall, Donald E.; Clark, Sue B.; Seiner, Brienne N.

    2017-01-02

    Environmental tungsten (W) analyses are inhibited by a lack of reference materials and practical methods to remove isobaric and radiometric interferences. We present a method that evaluates the potential use of commercially available sediment, Basalt Columbia River-2 (BCR-2), as a reference material using neutron activation analysis (NAA) and mass spectrometry. Tungsten concentrations using both methods are in statistical agreement at the 95% confidence interval (92 ± 4 ng/g for NAA and 100 ±7 ng/g for mass spectrometry) with recoveries greater than 95%. These results indicate that BCR-2 may be suitable as a reference material for future studies.

  16. Hydrogen content in doped and undoped BaPrO3 and BaCeO3 by cold neutron prompt-gamma activation analysis

    OpenAIRE

    Jones, Camille Y.; WU, Jian; Li, Liping; Haile, Sossina M.

    2005-01-01

    Proton uptake in undoped and Y-doped BaPrO3 has been measured by cold neutron prompt-gamma activation analysis, and compared to the proton uptake in Gd-doped BaCeO3, as determined by the same technique. The conventional proton incorporation model of perovskites in which oxygen ion vacancies, generated by the introduction of the trivalent dopant onto the tetravalent perovskite site, are filled with hydroxyl groups upon exposure of the sample to H2O containing atmospheres, predicts that the pro...

  17. Application of neutron activation analysis for the determination of essential elements in egg samples; Aplicacao da analise por ativacao com neutrons para a determinacao de elementos essenciais em amostras de ovos

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Bruna G.; Maihara, Vera A.; Avegliano, Roseane P., E-mail: brunagabrielegomes@gmail.com, E-mail: vmaihara@ipen.br, E-mail: pagliaro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The eggs are among the twenty foods consumed by the population of the five major regions of Brazil. Among the types of eggs, there are differences in nutritional value, which can vary according to the food of the bird. This study evaluating the elements Cl, K, Mg, Mn and Na considered essential micronutrients in food, because they are fundamental in several metabolic processes necessary for the maintenance and training of the human body. We analyzed three types of eggs: egg whites, of the quail, and the colonial in cooked and raw form, using the Instrumental Neutron Activation Analysis method (INAA). The egg samples were lyophilized and pulverized before analysis. To validate the methodology, reference materials NIST RM 8415 Whole Egg Powder and NIST SRM 1567 Wheat Flour were analyzed. The samples, reference materials and standards of the elements were irradiated for 20 seconds under a thermal neutron flux of 6,6x10{sup 12} cm -2 s -1 in the nuclear research reactor IEA-R1 of IPEN-CNEN / SP. The results were consistent with the values of the Brazilian Table of Food Composition (TACO)

  18. Passive neutron dosemeter with activation detector

    Energy Technology Data Exchange (ETDEWEB)

    Valero L, C.; Banuelos F, A.; Guzman G, K. A.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    A passive neutron dosemeter with {sup 197}Au activation detector has been developed. The area dosemeter was made as a 20.5 {phi} x 20.5 cm{sup 2} polyethylene moderator, with a polyethylene pug where a {sup 197}Au foil can be located either parallel or perpendicular to moderator axis. Using Monte Carlo methods, with the MCNP5 code. With the fluence response and the fluence-to-equivalent dose conversion coefficients from ICRP-74, responses to H*(10) were also calculated, these were compared against responses of commercially available neutron area monitors and dosemeters. (Author)

  19. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    Science.gov (United States)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  20. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    Science.gov (United States)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this

  1. Coal analysis using the pulsed neutron generator

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; CHI Yan-Tao; ZHAO Xin-Hui; LIU Lin-Mao; GU De-Shan; QIAO Shuang; SANG Hai-Feng; ZHANG Yong-Xiang; ZHANG Zhong-Hua; CAO Xi-Zheng; TIAN Yu-Bing

    2003-01-01

    A prototype of elemental analyzer for coal has been developed by using a PFTNA (pulse fast thermalneutron analysis) system. The PFTNA technology is based on the reactions such as (n, γ), (n, n'γ), (n, Pγ), etc. byexamining the characteristic gamma rays emitted. In our prototype a pulsed neutron generator provides 14 MeV pulseneutrons, which contribute to the separation of spectrum Ⅱ (the sum of capture and activation spectrum) fiom spec-trum Ⅰ (the sum of inelastic, capture and activation spectrum), and thus to the measurement of C and O contents incoal. Data management is completed by computer program using the least-square regression method. The experimentin Changshan Power Plant for 3 months showed that the precision of calorific value, whole water, volatile content andash content is 0.5 k J/kg, 1.0 wt%, 2.0 wt% and 1.5 wt%, respectively.

  2. Analysis of sewage sludge using an experimental prompt gamma neutron activation analysis (pgnaa) set-up with an am-be source

    Science.gov (United States)

    Idiri, Z.; Redjem, F.; Beloudah, N.

    2016-09-01

    An experimental PGNAA set-up using a 1 Ci Am-Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.

  3. A preliminary study on the behavior of trace elements in sediment cores from Ilha Grande (Rio de Janeiro State) by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Julio Cesar [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Geoquimica; Figueiredo, Ana Maria G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Figueira, Andre Luiz [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Dept. de Oceanografia; Kelecom, Alphonse [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Biologia Geral

    2002-07-01

    The present work aims to identify atmospheric and marine inputs of 9 metals (Ba, Co, Cr, Cs, Fe, Hf, Rb, Sc, Zn), 8 rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb e Lu), 2 actinides (U, Th) and 3 non-metals (As, Sb, Se) in sediment cores from a remote area, the Biological Reserve of Praia do Sul, Ilha Grande, Rio de Janeiro, Brazil. The sediment cores were sampled in a peat bog (out of the tidal reach) and in a mangrove, downstream of the peat bog. The analytical technique employed was Instrumental Neutron Activation Analysis. The samples were irradiated for 16 hours at a thermal neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} at the IEA-R1 reactor of IPEN. The measurements of the induced gamma-ray activity were carried out by high resolution gamma spectrometry, with an hyperpure Ge detector. A preliminary sediment dating with Po-210 was also carried out by applying radiochemical procedures and measurements were done in an Alfa spectrometer The results indicate that the peat bog core present a slight surface enrichment that can be attributed to atmospheric inputs. Increasing concentrations of metals with age is probably due to history of soil occupation. In the mangrove core, no significant increase in concentration could be detected in the surface sediments (except for Zn) confirming the suitability of the peat bog core as a tracer for atmospheric inputs. (author)

  4. Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method.

    Science.gov (United States)

    Latif, Sk A; Oura, Y; Ebihara, M; Nakahara, H

    2013-11-01

    Prompt gamma-ray neutron activation analysis (PGNAA) using the internal mono-standard method was tested for its applicability to analyzing large solid samples including irregularly shaped meteorite samples. For evaluating the accuracy and precision of the method, large quantities of the Geological Survey of Japan standardized rock powders (JB-1a, JG-1a, and JP-1) were analyzed and 12 elements (B, Na, Mg, Al, Cl, K, Ca, Ti, Mn, Fe, Sm, and Gd) were determined by using Si as an internal standard element. Analytical results were mostly in agreement with literature values within 10 %. The precision of the method was also shown to be within 10 % (1σ) for most of these elements. The analytical procedure was then applied to four stony meteorites (Allende, Kimble County, Leedey, Lake Labyrinth) and four iron meteorites (Canyon Diablo, Toluca (Mexico), Toluca (Xiquipilco), Squaw Creek) consisting of large chunks or single slabs. For stony meteorites, major elements (Mg, Al, Si, S, Ca, and Ni), minor elements (Na and Mn) and trace element (B, Cl, K, Ti, Co, and Sm) were determined with adequate accuracy. For iron meteorites, results for the Co and Ni mass fractions determined are all consistent with corresponding literature values. After the analysis, it was confirmed that the residual radioactivity remaining in the sample after PGNAA was very low and decreased down to the background level. This study shows that PGNAA with the internal mono-standard method is highly practical for determining the elemental composition of large, irregularly shaped solid samples including meteorites.

  5. Development of the Method of Bacterial Leaching of Metals out of Low-Grade Ores, Rocks, and Industrial Wastes Using Neutron Activation Analysis

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2001-01-01

    The results of preliminary investigations aimed at the development of an economical and easy to apply technique of bacterial leaching of rare and valuable metals out of low-grade ores, complex composition ores, rocks, and industrial wastes in Georgia are discussed. The main groups of microbiological community of the peat suspension used in the experiments of bacterial leaching are investigated and the activity of particular microorganisms in the leaching of probes with different mineral compositions is assessed. The element composition of the primary and processed samples was investigated by the epithermal neutron activation analysis method and the enrichment/subtraction level is estimated for various elements. The efficiency of the developed technique to purify wastes, extract some scrace metals, and enrich ores or rocks in some elements, e.g. Au, U, Th, Cs, Sr, Rb, Sc, Zr, Hf, Ta, Gd, Er, Lu, Ce, etc., is demonstrated.

  6. Studies on application of neutron activation analysis -Applied research on air pollution monitoring and development of analytical method of environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Chung, Young Ju; Jeong, Eui Sik; Lee, Sang Mi; Kang, Sang Hun; Cho, Seung Yeon; Kwon, Young Sik; Chung, Sang Wuk; Lee, Kyu Sung; Chun, Ki Hong; Kim, Nak Bae; Lee, Kil Yong; Yoon, Yoon Yeol; Chun, Sang Ki

    1997-09-01

    This research report is written for results of applied research on air pollution monitoring using instrumental neutron activation analysis. For identification and standardization of analytical method, 24 environmental samples are analyzed quantitatively, and accuracy and precision of this method are measured. Using airborne particulate matter and biomonitor chosen as environmental indicators, trace elemental concentrations of sample collected at urban and rural site monthly are determined ant then the calculation of statistics and the factor analysis are carried out for investigation of emission source. Facilities for NAA are installed in a new HANARO reactor, functional test is performed for routine operation. In addition, unified software code for NAA is developed to improve accuracy, precision and abilities of analytical processes. (author). 103 refs., 61 tabs., 19 figs.

  7. A new neutron monitor with silver activation

    CERN Document Server

    Luszik-Bhadra, M; Hohmann, E

    2010-01-01

    A moderator-type neutron monitor has been developed, which registers delayed beta rays from neutron-induced silver activation and which is able to measure dose equivalent in pulsed fields with peak dose rates of several thousand Sv h(-1). The monitor uses four silicon diodes in the centre of a polyethylene moderator, 30 cm in diameter. Two of the diodes are covered by natural silver foils and two of them by tin foils. The latter are used to subtract photon-induced pulses. For registering signals, a pulse height threshold is set at 662 key, which minimizes the effect of Cs-137 and lower energy radiation and - in addition - enhances the detection of beta rays from the shorter half-life silver isotope Ag-110 (25 s) as compared to the longer half-life isotope Ag-108 (144 s). The results of measurements in neutron and photon calibration fields, of MCNPX neutron response calculations and of first measurements in a high-intensity pulsed field at the PSI accelerator are shown. (c) 2010 Elsevier Ltd. All rights reserv...

  8. Application of neutron activation analysis method in leaves of Casearia obliqua medicinal plant; Aplicacao do metodo de analise por ativacao com neutrons na analise de folhas da planta medicinal Casearia obliqua

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Celina I.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: celinayamashita@yahoo.com.br; mitiko@ipen.br; Sertie, Jaime A.A. [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas

    2005-07-01

    The pharmacological properties of medicinal plants have been related to the presence of organic compounds, however elements are also known to have an important participation in the active compounds constitution process. In this study, instrumental neutron activation analysis (INAA) was applied to determine elements in leaves of Casearia obliqua medicinal plant collected at two different locations in the Atlantic Forest, Brazil, SP. Soil samples collected from where this plant was grown were also analyzed in order to verify if there is a correlation between the elements present in soils and plant leaves. Br, Ca, Cl, Co, Cr, Cs, Fe, K, La, Mn, Na, Rb, Sb, Sc and Zn were determined in C. obliqua leaves and the elements As, Ca, Ce, Eu, Fe, Hf, La, Lu, Nd, Rb, Sc, Sm, Tb, Th, U and Zn in soils. Soil samples collected from two different locations presented similar concentrations for most elements. Likewise, C. obliqua leaves collected from the two locations presented similar elemental contents. These results suggest that analysis of extracts from these leaf samples and the evaluation of their pharmacological activities should be carried out. Certified reference materials IAEA-Soil-7, USGS W-1, NIST 1573a Tomato Leaves and NIST 1515 Apple Leaves were analyzed and the quality of the obtained results was assured. (author)

  9. Determination of mercury in urine through Neutron activation analysis in dentists, as a measure of occupational exposure; Determinacion de mercurio en orina mediante analisis por activacion neutronica en odontologos, como una medida de exposicion ocupacional

    Energy Technology Data Exchange (ETDEWEB)

    Padilla M, M.A

    2000-07-01

    The mercury level was studied in urine to a dentists group belonging at the Universidad Autonoma del Estado de Mexico to determine the grade of contamination to the exposure of this element during their occupational activity. It was used the Neutron activation analysis which is an analytical method based in the irradiation with neutrons toward a stable nuclide. This can suffer a nuclear transformation to produce a radioactive nuclide and so it will be able to realize a quantitative analysis of itself. The TRIGA Mark III Reactor at the Nuclear Center in Mexico was used to realize this type of analysis due to the neutron fluxes which can be obtained as well as to the facilities in the irradiation of the sample.The purpose of this work is to determine the concentrations of mercury in the occupational exposed personnel such as dentists and so giving the recommendations of safety required to their production. (Author)

  10. Accurate determination of arsenic in arsenobetaine standard solutions of BCR-626 and NMIJ CRM 7901-a by neutron activation analysis coupled with internal standard method.

    Science.gov (United States)

    Miura, Tsutomu; Chiba, Koichi; Kuroiwa, Takayoshi; Narukawa, Tomohiro; Hioki, Akiharu; Matsue, Hideaki

    2010-09-15

    Neutron activation analysis (NAA) coupled with an internal standard method was applied for the determination of As in the certified reference material (CRM) of arsenobetaine (AB) standard solutions to verify their certified values. Gold was used as an internal standard to compensate for the difference of the neutron exposure in an irradiation capsule and to improve the sample-to-sample repeatability. Application of the internal standard method significantly improved linearity of the calibration curve up to 1 microg of As, too. The analytical reliability of the proposed method was evaluated by k(0)-standardization NAA. The analytical results of As in AB standard solutions of BCR-626 and NMIJ CRM 7901-a were (499+/-55)mgkg(-1) (k=2) and (10.16+/-0.15)mgkg(-1) (k=2), respectively. These values were found to be 15-20% higher than the certified values. The between-bottle variation of BCR-626 was much larger than the expanded uncertainty of the certified value, although that of NMIJ CRM 7901-a was almost negligible.

  11. Analysis of neutron flux distribution using the Monte Carlo method for the feasibility study of the Prompt Gamma Activation Analysis technique at the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Bruno T.; Pereira, Claubia, E-mail: brunoteixeiraguerra@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departmento de Energia Nuclear; Soares, Alexandre L.; Menezes, Maria Angela B.C., E-mail: menezes@cdtn.br, E-mail: asleal@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The IPR-R1 is a reactor type TRIGA, Mark-I model, manufactured by the General Atomic Company and installed at Nuclear Technology Development Centre (CDTN), Brazilian Commission for Nuclear Energy (CNEN), in Belo Horizonte, Brazil. It is a light water moderated and cooled, graphite-reflected, open-pool type research reactor and operates at 100 kW. It presents low power, low pressure, for application in research, training and radioisotopes production. The fuel is an alloy of zirconium hydride and uranium enriched at 20% in {sup 235}U. The implementation of the PGNAA (Prompt Gamma Neutron Activation Analysis) using this research reactor will significantly increase in number of chemical elements analysed and the kind of matrices. A project is underway in order to implement this technique at CDTN. The objective of this study was to contribute in feasibility analysis of implementing this technique. For this purpose, MCNP is being used. Some variance reduction tools in the methodology, that has been already developed, was introduced for calculating of the neutron flux in the neutron extractor inclined. The objective was to reduce the code error and thereby increasing the reliability of the results. With the implementation of the variance reduction tools, the results of the thermal and epithermal neutron fluxes presented a significant improvement in both calculations. (author)

  12. Neutron activation analysis for determining of inorganic trace elements in by-products of soybean, cotton, corn, wheat, sorghum and rice; Aplicacao da analise por ativacao com neutrons para determinacao de elementos inorganicos em subprodutos da soja, algodao, milho, trigo, sorgo e arroz

    Energy Technology Data Exchange (ETDEWEB)

    Teruya, Carla M.; Armelin, Maria Jose [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Silva Filho, Jose Cleto [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Ciencias Animais; Silva, Aliomar G. [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sao Carlos, SP (Brazil). Centro de Pesquisa de Pecuaria do Sudeste

    1999-11-01

    In the present paper the instrumental neutron activation analysis was applied to determine some essential and toxic elements in six agroindustrial by-products utilized to feed animal. The accuracy of the method was evaluated by means of reference material analysis. In general, the precision of the method was lower than 10% and the accuracy near to 5%. (author) 7 refs., 1 tab.

  13. Investigation of distribution of elements in a Korean ginseng by using a neutron activation method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Na; Sun, Gwang Min; Chung, Yong Sam; Kim, Young Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The Distinction of production areas of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). This study was done as a part of those efforts. As is well known, the distribution of elements varies according to the part of plant due to the difference of enrichment effect and influence from a soil where the plants have been grown. So a correlation study between plants and soil is an important issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis.

  14. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes; Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John Paul Hermann

    2010-07-01

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22{sup nd} of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  15. The study of in vivo quantification of aluminum (Al) in human bone with a compact DD generator-based neutron activation analysis (NAA) system.

    Science.gov (United States)

    Byrne, Patrick; Mostafaei, Farshad; Liu, Yingzi; Blake, Scott P; Koltick, David; Nie, Linda H

    2016-05-01

    The feasibility and methodology of using a compact DD generator-based neutron activation analysis system to measure aluminum in hand bone has been investigated. Monte Carlo simulations were used to simulate the moderator, reflector, and shielding assembly and to estimate the radiation dose. A high purity germanium (HPGe) detector was used to detect the Al gamma ray signals. The minimum detectable limit (MDL) was found to be 11.13 μg g(-1) dry bone (ppm). An additional HPGe detector would improve the MDL by a factor of 1.4, to 7.9 ppm. The equivalent dose delivered to the irradiated hand was calculated by Monte Carlo to be 11.9 mSv. In vivo bone aluminum measurement with the DD generator was found to be feasible among general population with an acceptable dose to the subject.

  16. Seasonal Investigations into the Level of Toxic Elements in Marine Organisms (Fish and Mollusk along the Coast of Ghana Using Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    L.A. Sarsah

    2011-04-01

    Full Text Available Seasonal investigation was conducted into the occurrence and extent of potentially toxic heavy metals along the coast of Ghana using marine organisms as bioindicators of pollution. The marine organisms sampled were analysed using Instrumental Neutron Activation Analysis coupled with conventional counting system. All the four samples (Dentex macrophthalmus, Sardinella maderensis, Engraulis encrasicolus and Cymbium cymbium recorded detectable levels of potentially toxic elements which fluctuates between <0.07mg/kg Cd and 699 mg/kg Al. Cymbium cymbium recorded the highest level of (As, Co, Cu, Zn whiles Engraulis encrasicolus accumulated appreciable amount of V. Al was the most abundant of all the elements. The coast of Ghana was found to be mildly polluted with respect to the elements Al, As, Cd, Co, Cu, Cr, Ni, Hg, V and Zn.

  17. Determination of concentrations of Fe, Mg, and Zn in some ferrite samples using neutron activation analysis and X-ray fluorescence techniques.

    Science.gov (United States)

    Ali, I A; Mohamed, Gehan Y; Azzam, A; Sattar, A A

    2017-01-14

    Mg-Zn ferrite is considered as one of the important materials with potential uses in many applications. In this work, samples of ferrite Mg(1-x)ZnxFe2O4 (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were synthesized by the sol-gel method for use in some hyperthermia applications. The composition and purity of the prepared samples hardly affected their properties. Therefore, the elemental concentration of these samples was measured by the X-ray fluorescence technique and thermal neutron activation analysis to check the quality of the prepared samples. The results of both methods were compared with each other and with the molecular ratios of the as-prepared samples. In addition, no existing elemental impurity, with considerable concentration, was measured.

  18. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  19. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Baccolo, Giovanni, E-mail: giovanni.baccolo@mib.infn.it [Graduate School in Polar Sciences, University of Siena, Via Laterina 8, 53100, Siena (Italy); Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Clemenza, Massimiliano [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Delmonte, Barbara [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); Maffezzoli, Niccolò [Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej, 30, 2100, Copenhagen (Denmark); Nastasi, Massimiliano; Previtali, Ezio [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Prata, Michele; Salvini, Andrea [LENA, University of Pavia, Pavia (Italy); Maggi, Valter [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy)

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10{sup −13}–10{sup −6} g, improving previous results of 1–3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. - Highlights: • A new method based on neutron activation for the multi-elemental characterization of atmospheric dust entrapped in polar ice cores is proposed. • 37 elements were quantified in μg size dust samples with detection limits ranging from 10{sup −13} to 10{sup −6} g. • A low background approach and a clean analytical protocol improved INAA performances to unprecedented levels for multi-elemental analyses.

  20. Materials characterization of radioactive waste forms using a multi-element detection method based on the instrumental neutron activation analysis. MEDINA; Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse. MEDINA

    Energy Technology Data Exchange (ETDEWEB)

    Havenith, Andreas Wilhelm

    2015-07-01

    Radioactive waste has to meet the specifications and acceptance criteria defined by national regulatory and management authorities for its intermediate and final storage. In Germany the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz - BfS) has established waste acceptance requirements for the Konrad repository. Konrad is the disposal for radioactive waste with negligible heat generation and is located near the city of Salzgitter and is currently under construction. It will start operation not before the year 2021. The waste-acceptance-requirements are derived from a site-specific safety assessment. They include specific requirements on waste forms, packaging as well as limitations to activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. The amount of chemically toxic elements in the waste is limited in order to avoid pollution of underground water reserves. To comply with these requirements every waste package has to be characterised in its radiological and chemical composition. This characterisation can be performed on the basis of existing documentation or, if the documentation is insufficient, on further analytical analysis. Segmented or integral gamma-scanning as well as active or passive neutron counting are used worldwide as the standard measurement methods for the radiological characterisation and quality checking of radioactive waste. These techniques determine the isotope specific activity of waste packages, but they do not allow the detection of non-radioactive hazardous substances inside the waste packages. Against this background the Institute of Nuclear Engineering and Technology Transfer (NET) at RWTH Aachen University and the Institute of Safety Research and Reactor Technology at Forschungszentrum Juelich jointly develop an innovative non-destructive analytical technique called MEDINA - ''Multi-Element Detection based on Instrumental Neutron Activation'' for

  1. Neutron Flux Density Measured by Analysis of Annealing Heat

    Institute of Scientific and Technical Information of China (English)

    WANG; Fan; SHI; Yong-qian; ZHU; Qing-fu; LU; Jin; LI; Lai-dong

    2015-01-01

    Neutron flux density measurement by thermal analysis is a new method different from the previous.This method is first put the sample to the neutron field.Second,measure the annealingheat of the sample.Find out the suitable mixture of crystal boron and apatite to measure the neutron flux density.Then put the sample to the neutron field in

  2. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    Science.gov (United States)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  3. Sample dependent response of a LaCl{sub 3}:Ce detector in prompt gamma neutron activation analysis of bulk hydrocarbon samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-08-11

    The response of a LaCl{sub 3}:Ce detector has been found to depend upon the hydrogen content of bulk samples in prompt gamma analysis using 14 MeV neutron inelastic scattering. The moderation of 14 MeV neutrons from hydrogen in the bulk sample produces thermal neutrons around the sample which ultimately excite chlorine capture gamma rays in the LaCl{sub 3}:Ce detector material. Interference of 6.11 MeV chlorine gamma rays from the detector itself with 6.13 MeV oxygen gamma rays from the bulk samples makes the intensity of the 6.13 MeV oxygen gamma ray peak relatively insensitive to variations in oxygen concentration. The strong dependence of the 1.95 MeV doublet chlorine gamma ray yield on hydrogen content of the bulk samples confirms fast neutron moderation from hydrogen in the bulk samples as a major source of production of thermal neutrons and chlorine gamma rays in the LaCl{sub 3}:Ce detector material. Despite their poor oxygen detection capabilities, these detectors have nonetheless excellent detection capabilities for hydrogen and carbon in benzene, butyl alcohol, propanol, propanic acid, and formic acid bulk samples using 14 MeV neutron inelastic scattering.

  4. Instrumental neutron activation analysis potentialities in archaeological ceramics studies; Potencialidades da analise por ativacao com neutrons instrumental em estudos de ceramicas arqueologicas

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Rosemeire P.; Munita, Casimirio S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Alves, Marcia A. [Sao Paulo Univ., SP (Brazil). Museu de Arqueologia e Etnologia

    1999-11-01

    In this work, precision and sensitivity of the determination of As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn in ceramic samples by INAA were evaluated. Two clay samples Brick Clay (NIST-SRM-697 reference material)and Ohio Red Clay (a well known clay sample) were analyzed for this purpose. Archaeological ceramic fragments from Agua Limpa Site, in Monte Alto city, SP were also analyzed. The archaeological ceramics were produced in the quotidian activities of non writing preterite societies, in sedentarization process. The ceramic chemical information are used to identify raw material sources and to study production and distribution models, which allow the reconstruction of the socio-cultural development and integration of extinguished societies. (author) 12 refs., 2 tabs.

  5. Characterization of elements in trace amounts in imperial topaz through neutron activation analysis; Caracterizacao de elementos em teores de traco em topazio imperial atraves da analise por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ester Figueiredo de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Sabioni, Antonio C. S. [Ouro Preto Univ., MG (Brazil). Dept de Fisica; Ferreira, Cesar M. [Ouro Preto Univ., MG (Brazil). Dept de Geologia

    2000-07-01

    This work deals with the mineral characterization of the elements in trace amounts of imperial topaz, original form Mina Capao da Lama, Ouro Preto, MG, Brazil, through the neutron activation analysis. Recent results have permitted to quantify Cr, Cs, Mn, Na, Ga, Sb and Au. The main goal of this study is the contribution to the mineral and gemological research of the imperial topaz.

  6. Evaluation of the parametric neutron activation applied in the soil and sediments analysis using the IPR-R1 reactor; Avaliacao da ativacao neutronica parametrica na analise de solos e sedimentos, utilizando o reator IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Milton B.; Vilhena Schayer Sabino, Claudia de; Kastner, Geraldo F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Rossi, Eduardo H.M. [Instituto Peruano de Energia Nuclear, Lima (Peru)

    1997-10-01

    This work describes a mono standard method for multielement instrumental neutron activation analysis using sodium as comparator, and gamma spectrometry with a ultrapure Ge detector. The method was checked by analysing 16 elements presents in soils and sediments reference materials from IAEA and United States Geological Survey. (author). 2 refs., 2 tabs.

  7. Determination of rare-earths and other trace elements in neo proterozoic-neo paleozoic dykes from Ceara state, Brazil, by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rafael Martins dos; Figueiredo, Ana M.G., E-mail: rafael.anjos@usp.b, E-mail: anamaria@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator Nuclear de Pesquisas. Lab. de Analise por Ativacao com Neutrons; Cardoso, Gustavo Luan; Marques, Leila S., E-mail: leila@iag.usp.b [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Trace elements such as rare earths, U, Th, Ta, Ba and Hf can be very useful in petrogenetic studies of igneous and metamorphic rocks, giving information about the origin and evolution of magmas. Instrumental Neutron Activation Analysis (INAA) is an accurate and precise for trace element analysis in geological samples, and provides the information required for this kind of studies. In this study, rare earths and incompatible trace elements were determined by INAA in the geological reference materials GS-N and BE-N, to quality control, and for the investigation of acid dykes of neo proterozoic-neo paleozoic ages, which outcrop in the Medio Coreau and Ceara Central domains from the Borborema Province (Ceara State). The powdered samples (particle sizes less than 100 mesh), crushed by using a mechanical agate mortar grinder, were irradiated at the IEA-R1 nuclear reactor at IPEN-CNEN/SP, and the induced activity was measured by high resolution gamma-ray spectrometry. The accuracy and precision of the method were evaluated and preliminary results of dyke samples are presented. (author)

  8. The obsidian of the Maltrata valley, Veracruz, origin analysis of the raw material with neutron activation analysis;La obsidiana del valle de Maltrata, Veracruz, analisis de procedencia de la materia prima con analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Molina V, R. O.; Jimenez R, M.; Tenorio, D. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lira L, Y. [Universidad Veracruzana, Instituto de Antropologia, Av. Xalapa No. 310, Xalapa, Veracruz (Mexico); Manzanilla, L. [UNAM, Instituto de Investigaciones Antropologicas, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)

    2009-07-01

    51 archaeological pieces of obsidian coming from the Maltrata valley were analyzed by means of the analysis technique by neutron activation, with the purpose of determining the interchange routes of that region. In accordance with the statistical study of the results, the obsidians of this investigation come from 5 deposits located in: Sierra de las Navajas, Pico de Orizaba, Zaragoza-Oyameles, Otumba and Paredon. The analyzed obsidian fragments were selected in accordance with their raw material type, size, weight, morphology, excavation context and surface. The irradiation of the samples was carried out in the research reactor TRIGA Mark III of the Nuclear Center of Mexico, with a neutrons flow of 1centre dot10{sup 13} ncentre dotcm{sup -2}centre dots{sup -1}. (Author)

  9. Application of Neutron Activation Analysis for Determination of As, Cr, Hg, and Se in Mosses in the Metropolitan Area of the Valley of Toluca, Mexico

    Directory of Open Access Journals (Sweden)

    R. Mejía-Cuero

    2015-01-01

    Full Text Available This research presents a study of environmental monitoring at different sampling sites from the Metropolitan Area of the Valley of Toluca (MAVT, Mexico, using mosses (Leskea angustata (Tayl. and Fabronia ciliaris (Brid. and soil samples. The epiphytic mosses and soils were sampled in two campaigns within two periods of the year, a rainy and dry-cold season. The selected sampling sites included urban regions (UR, transitional regions (TR, and protected natural areas (PA. The samples were analyzed by the Instrumental Neutron Activation Analysis (INAA to determine As, Cr, Hg, and Se principally. However, due to the versatility of the analytic technique used, other elements including Cs, Co, Sc, Sb, Rb, Ce, La, Eu, and Yb were also detected. Statistical analysis (As, Cr, Hg, and Se was carried out with principal components and cluster analysis methods; this revealed that a good correlation exists between metal content in mosses and the degree of pollution in the areas sampled. The obtained results in mosses showed that the concentrations of As, Cr, Co, Cs, Rb, Ce, La, and Yb increased with respect to the concentrations obtained during the first sampling, whereas Se, Sc, Sb and Eu, concentrations were decreased. For As and Hg, the concentrations were similar in both sampling periods. The soil samples present the most significant concentration.

  10. Neutron activation analysis application for determining iron concentration in forage grasses used in intensive cattle production system; Aplicacao da analise por ativacao com neutrons para determinacao de ferro em forrageiras usadas no sistema intensivo de producao de bovinos de leite

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Primavesi, Odo [Empresa Brasileira de Pesquisa Agropecuaria, Sao Carlos, SP (Brazil). Centro de Pesquisa de Pecuaria do Sudeste

    2002-07-01

    Iron is an essential element to the life. It is an important hemoglobin component and it is involved in the transport of oxygen to cells. A deficiency of iron results in an unsuitable synthesis of hemoglobin and a delay in the growth. Iron contents above the tolerable level in animal feed can cause serious damages to the health and the death in extreme cases. The forages are the main source of feed to cattle in grazing. It is known from the literature, that the growth and the nutritious value of the forage are influenced by specie and physiologic age of the plant, soil fertility and environmental conditions. Therefore, an agronomical evaluations of the forages are necessary before to introduce in an intensive cattle production systems to program adequate grazing management. Neutron activation analysis was applied to evaluate the Fe concentration in the main tropical forage grasses used in intensive dairy cattle production systems in Sao Carlos, SP, Brazil. Iron concentrations were smaller in the rain season than in the dry one. Comparison of results obtained in the analyses of forages with daily requirements of iron in dry matter, showed that the Fe concentration in forages was adequate. (author)

  11. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry; Determinacao dos elementos essenciais e toxicos em alimentos comerciais infantis por analise por ativacao com neutrons e espectrometria de absorcao atomica

    Energy Technology Data Exchange (ETDEWEB)

    Vallinoto, Priscila

    2013-08-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  12. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    CERN Document Server

    Akyuez, T; Guezel, T; Akyuz, S

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 mu g/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium.

  13. Compact DD generator-based neutron activation analysis (NAA) system to determine fluorine in human bone in vivo: a feasibility study.

    Science.gov (United States)

    Mostafaei, Farshad; Blake, Scott P; Liu, Yingzi; Sowers, Daniel A; Nie, Linda H

    2015-10-01

    The subject of whether fluorine (F) is detrimental to human health has been controversial for many years. Much of the discussion focuses on the known benefits and detriments to dental care and problems that F causes in bone structure at high doses. It is therefore advantageous to have the means to monitor F concentrations in the human body as a method to directly assess exposure. F accumulates in the skeleton making bone a useful biomarker to assess long term cumulative exposure to F. This study presents work in the development of a non-invasive method for the monitoring of F in human bone. The work was based on the technique of in vivo neutron activation analysis (IVNAA). A compact deuterium-deuterium (DD) generator was used to produce neutrons. A moderator/reflector/shielding assembly was designed and built for human hand irradiation. The gamma rays emitted through the (19)F(n,γ)(20)F reaction were measured using a HPGe detector. This study was undertaken to (i) find the feasibility of using DD system to determine F in human bone, (ii) estimate the F minimum detection limit (MDL), and (iii) optimize the system using the Monte Carlo N-Particle eXtended (MCNPX) code in order to improve the MDL of the system. The F MDL was found to be 0.54 g experimentally with a neutron flux of 7   ×   10(8) n s(-1) and an optimized irradiation, decay, and measurement time scheme. The numbers of F counts from the experiment were found to be close to the (MCNPX) simulation results with the same irradiation and detection parameters. The equivalent dose to the irradiated hand and the effective dose to the whole body were found to be 0.9 mSv and 0.33 μSv, respectively. Based on these results, it is feasible to develop a compact DD generator based IVNAA system to measure bone F in a population with moderate to high F exposure.

  14. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  15. Neutron activation analysis in the central nervous system tissues and bones of rats maintained on minerally unbalanced diets

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    It is presumed that by the shortage of Mg, Zn and Ca, functional or organic diseases may occur. When Al deposits to central nervous tissues and bones, various diseases are induced. As the degeneracy of central nervous system, in which minerals are presumed to take part, amyotrophic lateral sclerosis, Parkinsonism dementia, Alzheimer disease and Parkinson`s disease are enumerated. Four groups of Winstar rats were bred for 90 days with standard diet, low Ca diet, low Ca and Mg diet and low Ca and Mg, high Al diet, and the contents of Mg, Ca and Zn in the tissues of various parts were analyzed by plasma luminescence analysis, and the content of Al was analyzed by activation analysis. The results for blood serum, bones, soft tissues and the correlation of respective minerals in thighbones and lumbars are reported. It was presumed that the adjustment of the mineralization of bones was disturbed by low Ca and Mg diet, and consequently, also the adjustment of Al, Mn, Zn and other elements caused failure in living bodies. It is considered that as the adjustment of the mineralization of bones was disturbed, the deposit of Al in living bodies was increased. The possibility of preventing Al deposit can be expected by the rational adjustment of mineral metabolism. (K.I.).

  16. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores.

    Science.gov (United States)

    Baccolo, Giovanni; Clemenza, Massimiliano; Delmonte, Barbara; Maffezzoli, Niccolò; Nastasi, Massimiliano; Previtali, Ezio; Prata, Michele; Salvini, Andrea; Maggi, Valter

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10(-13)-10(-6) g, improving previous results of 1-3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%.

  17. Chemical characterization of diets consumed in the COSEAS restaurant, by neutron activation analysis; Caracterizacao quimica de dietas consumidas no restaurante do COSEAS/USP-SP, por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Favaro, Deborah I.T. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica]. E-mail: defavaro@ipen.br; Chioccola, Gabriella S.; Bortoli, Maritsa C.; Cozzolino, Silvia M.F. [Sao Paulo Univ., SP (Brazil). Faculdade de Ciencias Farmaceuticas. Lab. de Alimentos e Nutricao Experimental]. E-mail: gabich@usp.br

    2005-07-01

    This study presents the results of chemical characterization of meals (lunch) offered by COSEAS/USP-SP restaurant, during 5 non consecutive days. These meals were collected in triplicate, in the same way they are offered to the users, being freeze-dried and prepared for chemical analysis. In the total, 15 samples were collected. The proximate composition was determined by using the standard methodologies according to AOAC (1995). The contents of some micronutrients (Ca, Fe, K, Na, Se and Zn) were determined by instrumental neutron activation analysis. The methodology validation was performed by certified reference materials analyses: Oyster Tissue (NIST SRM 1566{sup b}), Orchard Leaves (NIST SRM 1541) and Peach Leaves (NIST SRM 1547). >From concentration results the daily intake of each micronutrient was calculated considering this meal as 40% of the total daily intake and the values were compared to the new dietary recommendations of micronutrients (Dietary Reference Intakes-DRIs, Institute of Medicine, USA), for the women in the life stage from 19 to 30 years. Comparing the average values found with the recommended values, it was verified that macronutrients and Fe, Se and Zn micronutrients reached the values set by new DRIs. For Ca and K the daily intake was inadequate and Na, exceeded the recommended value. (author)

  18. PRELIMINARY RESULTS OF ATMOSPHERIC DEPOSITION OF MAJOR AND TRACE ELEMENTS IN THE GREATER AND LESSER CAUCASUS MOUNTAINS STUDIED BY THE MOSS TECHNIQUE AND NEUTRON ACTIVATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    S. Shetekauri

    2015-05-01

    Full Text Available The method of moss biomonitoring of atmospheric deposition of trace elements was applied for the first time in the western Caucasus Mountains to assess the environmental situation in this region. The sixteen moss samples have been collected in 2014 summer growth period along altitudinal gradients in the range of altitudes from 600 m to 2665 m. Concentrations of Na, Mg, Al, Cl, K, Ca, Ti, V, Mn, Fe, Zn, As, Br, Rb, Mo, Cd, I, Sb, Ba, La, Sm, W, Au, and U determined by neutron activation analysis in the moss samples are reported. A comparison with the data for moss collected in Norway (pristine area was carried out.  Multivariate statistical analysis of the results was used for assessment pollution sources in the studied part of the Caucasus. The increase in concentrations of most of elements with rising altitude due to gradually disappearing vegetation cover and wind erosion of soil was observed. A comparison with the available data for moss collected in the Alps at the same altitude (~ 2500 m was performed.

  19. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Akyuz, Sevim, E-mail: s.akyuz@iku.edu.tr [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Akyuz, Tanil [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba [Institute of Nuclear Physics, Uzbek Academy of Sciences, 702132, Ulugbek, Tashkent (Uzbekistan); Basaran, Sait; Cakan, Banu [Department of Restoration and Conservation of Artefacts, Letters Faculty, Istanbul University, Vezneciler, Istanbul (Turkey)

    2012-05-15

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry. - Highlights: Black-Right-Pointing-Pointer INAA was performed to determine elemental compositions of ancient glass fragments. Black-Right-Pointing-Pointer Basic, coloring/discoloring elements and impurities have been determined. Black-Right-Pointing-Pointer PCA discriminated the glasses depending on their chronological order. Black-Right-Pointing-Pointer The thermal history of the glass samples was determined by FTIR spectrometry.

  20. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    Science.gov (United States)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  1. PGNAA 方法学的发展与现状%Development and Status of Prompt Gamma Neutron Activation Analysis Technique Methodology

    Institute of Scientific and Technical Information of China (English)

    王兴华; 孙洪超; 姚永刚; 肖才锦; 张贵英; 金象春; 华龙; 周四春

    2014-01-01

    瞬发伽马中子活化分析(PGNAA)为非破坏性、在线测量的核分析方法。目前国际上有30多座研究堆建立了PGNAA实验室。本文介绍了三种定量瞬发伽马活化分析方法:相对法、校准曲线法、k0因子法,阐述了基本原理及其应用领域,以及针对短寿命核素高精度测量的束流斩波器技术,针对大样品测量带来的中子自吸收和伽马自屏蔽效应的内标法。此外还简介了基于CARR堆的热中子瞬发伽马活化分析装置进展情况,对国内的PGNAA问题进行了探讨。%Prompt Gamma Neutron Activation Analysis (PGNAA) is one of the nonde‐structive and On‐line measurement of nuclear analytical methods ,There are more than 30 PGNAA laboratories which are established based on the research reactor currently . The basic principle and the application field of three kinds of analytical method of PGNAA were introduced ,such as the relative comparison method、calibration method、k0‐factor method .T he short life nuclides is proposed using the beam chopper technique in order to improve the measurement accuracy . T he internal standard method w as proposed for that large sample neutron measurement that brings self absorption and gamma‐ray self shielding effect .The PGNAA system was introduced at CARR .It pro‐vides methodology reference to establish the prompt gamma activation analysis on the base of CARR for our country .

  2. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sjöstrand, Henrik; Conroy, Sean [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-07-11

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  3. Fundamental Neutron Physics: Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir [South Carolina Research Foundation, Columbia, SC (United States)

    2016-10-31

    The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity and time reversal invariance violating processes in neutron induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity and time reversal violating effects in the consistent way. A major emphasis of our research during the funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.

  4. Activity report on neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M.; Tawata, N.; Fujii, Y. [eds.] [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1998-12-31

    The experiments performed on the thirteen university-owned spectrometers installed at JRR-3M of JAERI in the fiscal year of 1997 were described in this report. The latest ``Neutron News`` (vol. 9, issue 3, 1998) has featured highlights of the activities based on the JRR-3M and its cover displays a graph showing an endless increase of the number of proposals to the users program in the fiscal 1997. The university-owned spectrometers are available for general users all over Japan. The users` requirement for a higher flux beam reactor became larger and larger with time. Thus, JAERI has refurbished JRR-3 to satisfy these demands. In 1997, a joint project between Chiba University and Institute for Solid State Physics (ISSP) started to build a new 4-cycle diffractometer for crystal physics/chemistry at T{sub 2-2} beam port on a thermal guide. (M.N.)

  5. Determination of essential elements in edible seaweed by neutron activation analysis; Determinacao de elementos essenciais em algas marinhas comestiveis por analise por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Cassio Bessa Lima; Maihara, Vera Akiko, E-mail: cassio_man@hotmail.com, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Comestible marine algae are gaining wider global trade, not only because of the taste but also the nutritional quality they present. They are rich in protein, fiber, vitamins and are excellent sources of essential elements due to their ability to absorb substances storing them in their bodies. its chemical composition varies according to the species, habitat, maturity and environmental conditions which are submitted. The method of Neutron Activation Analysis was used to determine the essential elements Cl, K, Mg, Mn and Na present in marine algae from different countries, which are sold in the city of Sao Paulo. A total of 6 samples of marine algae were analyzed, 4 species of Nori (Porphyra umbilicates) from China, Korea, Japan and USA; 1 of Hijiki (Hijikia fusiforme) species from Japan; and 1 species of Kombu (Laminaria sp.) of South Korea. To validate the methodology used was the reference material NIST SRM 1577b Bovine Liver. The concentrations range from 5265-1175 μg/g to CL; from 14413-90261 μg/g to K; from 3007-7091 μg/g to Mg; from 2,3-33,8 μg/g to Mn and from 5161-24973 μg/g to Na.

  6. Neutron activation analysis of alternative phosphate rocks used in animal nutrition; Analise por ativacao neutronica por fontes alternativas de fosforo para a nutricao animal

    Energy Technology Data Exchange (ETDEWEB)

    Canella, Artur A.; Ferreira, Walter M. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Veterinaria]. E-mail: avelara@ufmg.br; Menezes, Maria Angela de B.C. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: menezes@cdtn.br

    2005-07-01

    Since 1980's, Bovine Sponghiform Encephalophaty has insidiously created a fierce battleground between farmers, scientists, environmentalists and consumers. The use of meat and bone meals is currently prohibited in ruminant feeds throughout the world. Some inorganic sources offer the combination of high phosphorus content and acceptable animal digestibility make them options as supplemental phosphorus, for instance phosphate rocks, general term applied to minerals valued chiefly for their phosphorus content. However, phosphate rocks are long been known containing hazardous elements, make them sometimes unsuitable for animal nutrition. Neutron Activation Analysis has been supportive to the mineral evaluation of alternative phosphate rocks. This evaluation is subject of on-going doctoral thesis which has been carried-out by the main author. The NAA method has been very efficient due to its highly sensitive and multi-elemental nature. In this paper results of Vanadium content from three different phosphate rocks are presented. Their values have been pointed out that Brazilian phosphate rocks present hazardous elements at the same levels of phosphate rocks from some countries of Africa, North America and Middle East, data from our study (Brazilian data) and FAO - Food and Agriculture Organization (others countries). (author)

  7. [Biliary, renal and fecal elimination and distribution of gold after a single oral administration of auranofin, quantified by the instrumental neutron activation analysis method].

    Science.gov (United States)

    Benn, H P; Schnier, C; Bauer, E; Seiler, K U; Elhöft, H; Löffler, H

    1991-01-01

    Three days after cholecystectomy, seven patients received a single dose of auranofin (5 tablets Ridaura = 4.35 mg gold). At defined time points thereafter the gold content in samples of blood, plasma, urine, bile, and feces was determined by instrumental neutron activation analysis (INAA). Maxima of the mean gold concentrations in blood (140 +/- 42 ng/ml) and plasma (173 +/- 54 ng/ml) are found 2 h after oral administration of the antirheumatic agent, after 16 h in urine (43 +/- 28 ng/ml) and bile (65 +/- 50 ng/ml), and after 24 h in erythrocytes (greater than 200 ng/ml). The mean terminal half-lives are 7.6 days (blood), 15 days (plasma), 5 days (erythrocytes), and 6.5 days (bile). The cumulative biliary gold excretion within 8 days after the administration of auranofin was 1.6%, compared with 4% and 40% for renal and fecal elimination, respectively. The gold concentration in plasma is always higher than that in bile. There is a close correlation between the areas under the concentration curves (AUC) in bile and plasma (r = 0.864).

  8. Determination of the Elemental Composition of the Pulp, Seed and Fruit Coat of Black Velvet Tamarind (Dialium guineense using Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    D.O. Ofosu

    2013-10-01

    Full Text Available This study sought to provide data on the mineral composition of the fruit pulp, outer coat and seed of Dialiu guineense in an attempt to widen the sources of minerals for the rural population of sub-Saharan Africa. The elemental composition of the pulp, seed and fruit coat of black velvet tamarind (Dialiu guineense was determined using Neutron Activation Analysis. The fruit pulp contained manganese (23.40±1.57µg/g, chlorine (205.40±37.59 &mu g/g, calcium (5671.00±2132.30 &mug/g, sodium (332.95±8.76 &mud/gand potassium (6190.00±711.85 &mug/g. The seed and fruit coat contained all these minerals except potassium and sodium respectively. The fruit pulp can serve as a good source of macrominerals for humans while the fruit coat and seed could be ground and incorporated in various meal formulations of livestock as mineral supplements.

  9. Instrumental neutron activation analysis of different products from the sugarcane industry in Pakistan--part 1: essential elements for nutritional adequacy.

    Science.gov (United States)

    Waheed, Shahida; Ahmad, Shujaat

    2008-01-01

    Jaggery, brown sugar, white sugar, and molasses collected from the local sugarcane industry of Pakistan have been analyzed for essential elements in order to estimate their nutritional adequacy. Instrumental neutron activation analysis was used to determine Ca, CI, Co, Cr, Fe, K, Mg, Mn, Na, and Zn through sequential, short, medium, and long irradiation times. Maximum concentrations for most of these elements were determined in molasses, with lower concentrations determined in jaggery and brown sugar; white sugar contained trace amounts of all essential elements. Contributions to the weekly Recommended Dietary Allowance (RDA) values for the elements were estimated only for jaggery, brown sugar, and white sugar because molasses in Pakistan is not consumed as a dietary item. Jaggery contributes the highest percentages of Cr, Mg, Mn, and Zn, whereas the highest percentages of Cl, Fe, K, and Na can be acquired from brown sugar. The contribution of white sugar to the weekly RDAs for these elements is negligible, indicating that white sugar is a poor source of the essential elements. However, the introduction of molasses to the diet can contribute to an adequate intake of these elements.

  10. Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry. A comparative study with radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Kazunori; Ebihara, Mitsuru [Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Tokyo (Japan)

    1997-02-20

    An inductively coupled plasma mass spectrometry (ICP-MS) procedure for determining trace amounts of rare earth elements (REEs), Th and U in chondritic meteorites (chondrites) is presented. As chondrites have low contents of these elements (10{sup -2} to 10{sup -4}xcrustal rock averages), the procedure was designed to be performed in as small a scale as possible in order to reduce the procedural blank. Serious matrix effects (ion suppression) may be caused by high Fe contents (20-35 wt.), which could be eliminated by applying appropriate internal standards (Rh for Y, In and Tl for lanthanides, and Bi for Th and U) and dilution factors (10{sup 4} for Y and 10{sup 3} for the rest of elements). Radiochemical neutron activation analysis (RNAA) was also applied for determining 10 REEs (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) in chondrites. It is found that both ICP-MS and RNAA have comparable detection limits for REEs. ICP-MS, however, has the great advantage that all REEs (including Y), Th and U can be determined with similar precision. Three Antarctic chondrites for which some anomalous REE abundances had been reported by RNAA, were also analyzed by ICP-MS but no anomalies were found, which implies the limitation of RNAA data in discussing the REE abundances in detail.

  11. Cs-137 geochronology, epithermal neutron activation analysis, and principal component analysis of heavy metals pollution of the Black Sea anoxic continental shelf sediments

    Science.gov (United States)

    Duliu, O. G.; Cristache, C.; Oaie, G.; Culicov, O. A.; Frontasyeva, M. V.

    2009-04-01

    Anthropogenic Cs-137 Gamma-ray Spectroscopy assay (GrSA) performed at the National Institute of Research and Development for Physics and Nuclear Engineering - Bucharest (Romania) in correlation with Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researches - Dubna (Russia) were used to investigate a 50 cm core containing unconsolidated sediments collected at a depth of 600 m off Romanian town of Constantza, located in the anoxic zone of the Black Sea Continental Shelf. A digital radiography showed the presence of about 265 distinct laminae, 1 to 3 mm thick, a fact attesting a stationary sedimentary process, completely free of bioturbation. After being radiographed, the core was sliced into 45 segments whose thickness gradually increased from 0.5 to 5 cm, such that the minimum thickness corresponded to the upper part of the core. From each segment two aliquots of about 0.5 g and 50 g were extracted for subsequent ENAA and Cs-137 GrSA. The Cs-137 vertical profile evidenced two maxima, one of them was very sharp and localized at a depth of 1 cm and the other very broad, almost undistinguished at about 8 cm depth, the first one being attributed to 1986 Chernobyl accident. Based on these date, we have estimated a sedimentation ratio of about 0.5 mm/year, value taken as reference for further assessment of recent pollution history. By means of ENAA we have determined the vertical content of five presumed pollutants, e.i. Zn, As, Br, Sn and Sb and of Sc, as natural, nonpolluting element. In the first case, all five elements presented a more or less similar vertical profile consisting of an almost exponential decrease for the first 10 cm below sediment surface followed by a plateau until the core base, i.e. 50 cm below surface, dependency better described by the equation: c(z) = c0 [1+k exp (-z/Z)] (1) where: where c(z) represents the concentration vertical profile; z represents depth (in absolute value); c0 represents the plateau

  12. Neutron activation study of gold-decorated singlewall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rafael G.F.; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Ladeira, Luiz O.; Lacerda, Rodrigo G.; Oliveira, Sergio de; Pinheiro, Mauricio V.B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Ferreira, Andrea V. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2007-07-01

    Single-wall carbon nanotubes (SWNT) were synthesized by arc discharge technique of doped graphite electrodes and purified by burning the amorphous carbon and removing the metals with hydrochloric acid (HCl). The nanotubes were also functionalized with carboxyl groups (-COOH) by ultrasonification with nitric (HNO{sub 3}) and sulfuric (H{sub 2}SO{sub 4}) acids. The nanotubes were then decorated with gold by reducing chloroauric acid (HAuCl{sub 4}) with UV and hydrazine (N{sub 2}H{sub 4}). Atomic Force Microscope (AFM) images confirmed the decoration with the hydrazine route. The gold concentration in the samples was analyzed by neutron activation analysis. (author)

  13. Characterization of obsidian devices come from San Miguel Ixtapan, Estado de Mexico by Neutron Activation Analysis; Caracterizacion de artefactos de obsidiana provenientes de San Miguel Ixtapan, Estado de Mexico con Analisis por Activacion Neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Almazan T, M.G.; Jimenez R, M.; Monroy G, F.; Tenorio C, D. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The Neutron Activation Analysis (NAA) is an efficient multielemental technique for determination of elements in low concentration (ppm), what has been result useful in the study of origin of archaeological material. In this work that technique was used for characterizing obsidian devices coming from the San Miguel Ixtapan site, Estado de Mexico and it was found that these come from three important beds which are: Sierra de Pachuca, Hidalgo, Zinapecuaro and Zinaparo-Varal in the Michoacan state. (Author)

  14. Characterization of archaeological ceramics from the north western lowland Maya Area, using the technique of neutron activation analysis; Caracterizacion de ceramicas arqueologicas de las tierras bajas noroccidentales del Area Maya, empleando la tecnica de activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, M. C.; Tenorio, D.; Jimenez R, M. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Terreros, E. [Museo del Templo Mayor, INAH, Seminario No. 8, Col. Centro, Mexico 06060, D. F. (Mexico); Ochoa, L. [UNAM, Instituto de Investigaciones Antropologicas, Circuito Exterior s/n, Ciudad Universitaria, Mexico 04510, D. F. (Mexico)

    2008-07-01

    It is a study on 50 samples of ceramics from various archaeological sites of the north western lowland Maya Area. This study was performed by neutron activation analysis of 19 chemical elements and the treatments relevant statistical data. Significant differences were found among the pieces that led to group them into five major groups, the difference is the site of their manufacture and therefore in the raw materials used for this. (Author)

  15. Minerals and trace elements determination in diets by neutron activation analysis; Determinacao de elementos minerais e tracos em dietas pela tecnica de ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Eiras, Maria Izabel O.; Favaro, Debora I.T. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica; Ribeiro, Marisilda; Cozzolino, Silvia M.F. [Sao Paulo Univ., SP (Brazil). Dept. de Alimentos e Nutricao Experimental. Lab. de Minerais

    2002-07-01

    In the present study 12 diets, each one consisting of a pool of seven day diets, composed by four meals: breakfast, lunch, dinner and snack, adequate in energy and macro nutrients according to the RDA (Recommended Daily Allowance) recommendations, were elaborated and offered to a group of 12 men (19-42 years). The diets were collected by duplicate portion technique and dried by two different processes: freeze drying and 60 deg C ventilated oven drying. In the total, 24 diets were analyzed. The content of some minerals and trace elements (Ca, Fe, Mg, Mn, Na, Se and Zn) were determined by Instrumental Neutron Activation Analysis. The validation of methodology was made by analysis of the reference materials Typical Diet (NIST SRM 1548{sup a}), Orchard Leaves (NIST SRM 1541) and Peach Leaves (NIST SRM 1547). The results observed by two different drying processes used were statistically compared by test T of Student. It was possible to conclude that the concentration means can be considered as statistically equal, within a significance level of 0.05. The daily intake values calculated from the concentration results were: 712 ({+-} 59) mg Ca/day; 10.7 ({+-} 0.8) mg Fe/ day; 3387 ({+-} 16) mg K/ day; 275 ({+-} 6) mg Mg/ day; 3.0 ({+-} 0.5) mg Mn/ day; 3656 ({+-} 699) mg Na/ day; 42 ({+-} 6) {mu}g Se/ day e 11.6 ({+-} 2.4) mg Zn/ day. The calculated intake was compared to the new daily recommended values set by RDA (National Research Council-USA) for the range age of individuals studied. It was possible to conclude that the diets were adequate in Fe and Zn and inadequate for the other elements. Concerning the minerals Na and K we verified high daily intake levels and this was already observed in other Brazilian regional diets. (author)

  16. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    Science.gov (United States)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  17. Design considerations for neutron activation and neutron source strength monitors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W. [Los Alamos National Lab., NM (United States); Jassby, D.L.; LeMunyan, G.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Walker, C. [ITER Joint Central Team, Garching (Germany)

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  18. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    Science.gov (United States)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  19. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    Science.gov (United States)

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  20. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  1. Air Pollution Studies in Central Russia (Tver and Yaroslavl Regions) Using the Moss Biomonitoring Technique and Neutron Activation Analysis

    CERN Document Server

    Ermakova, E V; Pavlov, S S; Povtoreiko, E A; Steinnes, E; Cheremisina, Ye N

    2003-01-01

    Data of 34 elements, including heavy metals, halogens, rare-earth elements, U, and Th in 140 moss samples, collected in central Russia (Tver and Yaroslavl regions and the northern part of Moscow Region) in 2000-2002, are presented. Factor analysis with VARIMAX rotation was applied to identify possible sources of the elements determined in the mosses. The seven resulting factors represent crust, vegetation and anthropogenic components in the moss. Some of the factors were interpreted as being associated with ferrous smelters (Fe, Zn, Sb, Ta); combination of non-ferrous smelters and other industries (Mn, Co, Mo, Cr, Ni, W); an oil-refining plant, and oil combustion at the thermal power plant (V, Ni). The geographical distribution patterns of the factor scores are also presented. The dependency equations of elemental content in mosses versus distance from the source are derived.

  2. Use of neutron activation analysis for the control of air pollution of Algiers; Utilisation de l'analyse par activation neutronique pour le controle de la pollution de l'air d'Alger

    Energy Technology Data Exchange (ETDEWEB)

    Belamri, M.; Benrachedi, K. [Universite M' hamed Bouguarra, Lab. de Technologie Alimentaire, Boumerdes (Algeria)

    2010-07-15

    The urban zone needs clean air to assure public health. To achieve this goal several filter samples were collected in different sites in Algiers city. Toxic elements such as: Na, Mg, Cl, Sc, Cr, Ti, V, Fe, Co, Cu, Zn, Se, Br, Ag, Sb, Ce, La, Hf, Ta and Hg have been measured in the filters using neutron activation analysis technique. Irradiation of filter samples and standards were carried out in Es-Salem reactor. The experimental procedure and the results are discussed. We noted during this work that the upper limit values for suspended dusts and the high concentrations for some toxic elements found are due to the weather conditions and intense road traffic around collecting sites. (authors)

  3. Measurements of DT and DD neutron yields by neutron activation on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W.; Larson, A.R. [Los Alamos National Lab., NM (United States); LeMunyan, G. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Loughlin, M.J. [JET Joint Undertaking, Abingdon (United Kingdom)

    1995-03-01

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants, and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {+-}9% (one-sigma) accuracy of the measurements; also agreeing are yields from silicon foils using the ACTL library cross-section, while the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n.n{prime}) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  4. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  5. 活化法测量中子活化在线分析系统样品处的中子能谱%Neutron Spectrum Measurement with Activation Method in Sample Place of On-line Neutron Activation Analysis System

    Institute of Scientific and Technical Information of China (English)

    王松林; 孔祥忠; 邓勇军; 拓飞; 王琦; 位金锋; 李永明

    2009-01-01

    用多箔活化法测定了由Am-Be中子源慢化屏蔽系统构成的中子活化在线分析系统样品处的中子能谱.根据待测场点的中子注量率水平,选用了5种非裂变核材料箔,其中4种是中能区和热区的,1种是快区的,给出了各箔片的特性参数.通过在待测场点对箔片进行辐照,并测量其生成放射性核的γ放射性,计算出了各箔片的活化率.运用SAND-II和MSIT迭代方法,解出了待测场点的中子能谱.详细分析了数据处理过程中群截面的加工处理以及由于自屏蔽效应引起的群截面修正问题;研究了影响解谱精度的主要因素;对解谱结果作了一定的分析讨论;并用蒙特卡罗(MC)方法对最后的中子能谱做了不确定度分析.%The neutron spectrum in sample place of on-line neutron activation analysis system was measured with multiple foil activation technique. According to the neutron fluence level of measuring request, 5 kinds of non-fission nuclear material foils were selected, of which 4 were sensitive to thermal energy region and intermediate energy region, and 1 was sensitive to fast energy region. By measuring the foil activity, the neutron spectrum that was needed to measured was unfolded with the iterative methods SAND-II and MSIT. Meanwhile, the process of producing and modifying group cross section were analysed amply. The main factors which have influence on the accuracy of the solution were studied. The discussion for solution was done simply, and the uncertainty of solution was analysed by using the Monte Carlo method.

  6. Analysis by neutron activation in moss samples for the determination of Cr, Se, As and Hg; Analisis por activacion neutronica en muestras de musgos para la determinacion de Cr, Se, As y Hg

    Energy Technology Data Exchange (ETDEWEB)

    Mejia C, R.; Garcia R, G. [Instituto Tecnologico de Toluca, Departamento de Posgrado, Av. Tecnologico s/n, Fraccionamiento La Virgen, 52149 Metepec, Estado de Mexico (Mexico); Lopez R, C.; Avila P, P.; Longoria G, L. C., E-mail: rosario.mejia@inin.gob.mx [ININ, Departamento del Reactor, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This research work, presents a study of environmental monitoring in the Metropolitan Area of Toluca Valley using as bio-monitors to the mosses (bryophytes) native of different sites, analyzing the concentrations of As, Cr, Hg and Se, present in its structure. The analysis technique used to identify and to quantify to these elements was the Analysis by Neutron Activation, a nuclear analytic technique that allowed determining the concentrations at track level for its great versatility. Likewise the morphological study of the bryophyte Leskea angustata is presented by scanning electron microscopy. (Author)

  7. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  8. The path of obsidian at the Tajin region. Origin analysis through Neutron Activation Analysis; Los caminos de la obsidiana en la region de El Tajin. Analisis de procedencia mediante Analisis por activacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Cruz J, R.L

    2000-07-01

    The task of contemporary archaeology is extended every day; new techniques and new instruments have been incorporating to those tools which the archaeologist has in order to achieve a better approach to his study object. The archaeology had been exploring in the physical chemical sciences with the purpose to obtain information beyond the traditional methodologies and so obtaining more and best data. The sudden advance in the knowledge of the basic particles which make up the matter can be applied to these archaeological studies too. Archaeology takes part of the new possibilities which nuclear physics offers in the study of materials such as ceramics, clays, metal alloys, native metals and practically some lithological source. In Latin America the neutron activation analysis was used first for the characterization and determination of the ceramics origin. Some regions have been better studied from the point of view of obsidian exploitation and consumption, such is the case of El Tajin and Oaxaca region in Mexico. (Author)

  9. Neutron activation determination of gold in technogenic raw materials with different mineral composition

    Directory of Open Access Journals (Sweden)

    Yudakov Aleksandr A.

    2015-01-01

    Full Text Available The methods used to determine the gold content in the technogenic objects of gold mining were analyzed regarding their non-homogeneity and complexity of chemical and mineral compositions. A possible application of the neutron activation analysis with the use of the californium source of neutrons for determining the content of fine-grained and extra-fine-grained gold in the technogenic objects, including the bottom-ash waste of energy providers, is considered. It was demonstrated that the chemical composition of the sample affects the neuron flux distribution in the sample, which can essentially distort the results of the neutron activation analysis. In order to eliminate possible systematic errors investigations of the effect of the sample mineral composition on the results of the gold determination using the neutron activation analysis were carried out. Namely, a large mass of rock (3-5 kg was loaded into an activation zone using four matrix types such as silicate, carbon-containing, iron-containing, and titanium magnetite. It was shown that there wereno significant difference between the dispersal of the fluxes of thermal and resonance neutrons emitted from 252Cf during activation of the gold-containing technogenic samples with different mineral compositions.

  10. Progress of neutron induced prompt gamma analysis technique in 1988~2003

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; LIU Yu-Ren; CHI Yan-Tao; TIAN Yu-Bing; CAO Xi-Zheng; ZHAO Xin-Hui; REN Wan-Bin; LIU Lin-Mao

    2004-01-01

    This paper describes new development of the neutron induced prompt gamma-ray analysis (NIPGA) technology in 1988~2003. The pulse fast-thermal neutron activation analysis method, which utilized the inelastic re action and capture reaction jointly, was employed to measure the elemental contents more efficiently. Lifetime of the neutron generator was more than 10000h and the performance of detector and MCA reached a high level. At the same time, Monte Carlo library least-square method was used to solve the nonlinearity problem in the NIPGA.

  11. Background by neutron activation in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Meierhofer, Georg; Dietrich, Dennis; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Knapp, Markus; Ritter, Florian [Kepler Center for Astro and Particle Physics, Universitaet Tuebingen (Germany); Canella, Lea [Institut fuer Radiochemie, Technische Universitaet Muenchen (Germany); Jolie, Jan [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Kudejova, Petra [FRM II, Technische Universitaet Muenchen (Germany)

    2010-07-01

    The observation of the neutrinoless double beta decay is a proof of the Majorana nature of the neutrino. The long half-life of this decay requires experiments of very low background rates in the region of interest at Q{sub {beta}}{sub {beta}}. Prompt {gamma}-rays after neutron capture on germanium and the {beta}-decay of {sup 77}Ge contribute to the background in experiments using {sup 76}Ge for the search of the neutrinoless double beta decay. The poorly known prompt {gamma}-ray spectra and the neutron capture cross sections for the (n,{gamma}) reactions of {sup 74}Ge and {sup 76}Ge were measured at the research reactor FRM II (Munich). The obtained data are needed in MC simulations for qualitative and quantitative background prediction in the Gerda experiment. The data and their implication on the background in Gerda are presented.

  12. Development of Prompt Gamma Neutron Activation Analysis Techniques%瞬发伽马中子活化分析技术发展现状

    Institute of Scientific and Technical Information of China (English)

    卢毅; 宋朝晖

    2013-01-01

    It made a brief summarization of the current development of the Prompt Gamma Neutron Activation A -nalysis.The PGNAA theory, method, facility and international works on the application of PGNAA were intro-duced .In the end , there was a discussion about some problems in the development of PGNAA .%对瞬发伽马中子活化分析( PGNAA)技术发展现状进行了概述。介绍了PGNAA的基本原理、方法、设备以及当前国内外在PGNAA应用方面所做的一些研究工作。最后对PGNAA在技术发展方面存在的一些问题进行了探讨。

  13. QCD analysis of forward neutron production in DIS

    Energy Technology Data Exchange (ETDEWEB)

    Ceccopieri, Federico Alberto [IFPA, Universite de Liege, Liege (Belgium)

    2014-08-15

    We consider forward neutron production in DIS within fracture functions formalism. By performing a QCD analysis of available data we extract proton-to-neutron fracture functions exploiting a method which is in close relation with the factorisation theorem for this class of processes. (orig.)

  14. [Evaluation of calcium content in the human spine by in vivo neutron activation].

    Science.gov (United States)

    Zaĭchik, V E; Dubrovin, A P; Korelo, A M; Morukov, B V

    1993-01-01

    A technique of in vivo neutron activation analysis (NAA) of calcium levels in lumbar, thoracic and cervical segments of the spinal column separately and as a whole has been developed. Special device provides selective irradiation by neutrons of a vertebral segment under study while a highly-sensitive spectrometric unit registers radionuclides induced in bone tissue during radiation exposure. For radiation exposure 5 or 10 238Pu-Be neutron sources with 5.10(7) neutrons s-1 output of each source are used. The spectrometric unit consists of 4 scintillation detectors with NaI (Tl) crystals of 150 mm in diameter and 100 mm- thickness arranged in a line tightly one after another. The time of exposure depends on the number and mutual arrangement of the neutron sources and is selected given the dose equivalent at depth of positioning of the spinal cord does not exceed 1 cZv (REM), the quality factor for fast neutrons equals 10. The recording duration is 20 min, the intervals between radiation exposure and recording do not exceed 3 min. The magnitude of the total error of an individual measurement estimated by reproducibility of the data obtained in 2 series of in vivo NAA of the spinal calcium levels in 6 volunteers with the use of 5 neutron sources amounts to an average of 4.8%. When used 10 sources, this error can be reduced to 2.0-3.2%.

  15. Preliminary Analysis of the Multisphere Neutron Spectrometer

    Science.gov (United States)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  16. Neutron-activation revisited: the depletion and depletion-activation models.

    Science.gov (United States)

    Abdel-Rahman, Wamied; Podgorsak, Ervin B

    2005-02-01

    The growth of a radioactive daughter in neutron activation is commonly described with the saturation model that ignores the consumption of parent nuclei during the radio-activation process. This approach is not valid when radioactive sources with high specific activities are produced or when the particle fluence rates used are very high. Assuming a constant neutron fluence rate throughout the activation target, a neutron-activation model that accounts for the depletion in parent nuclei is introduced. This depletion model is governed by relationships similar to those describing the parent-daughter-granddaughter decay series, and, in contrast to the saturation model, correctly predicts the practical limit of the daughter specific activity, irrespective of the particle fluence rate. Also introduced is a neutron-activation model that in addition to parent depletion accounts for the neutron activation of daughter nuclei in situations where the cross section for this effect is high. The model is referred to as the depletion-activation model and it provides the most realistic description for the daughter specific activity in neutron activation. Three specific neutron activation examples of interest to medical physics are presented: activation of molybdenum-98 into molybdenum-99 described by the saturation model; activation of cobalt-59 into cobalt-60 described by the depletion model; and activation of iridium-191 into iridium-192 described by the depletion-activation model.

  17. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  18. Triton burnup measurements in KSTAR using a neutron activation system

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  19. Intercomparison of Neutron Beam Guides for Cold Neutron Activation Station at HANARO using McStas/VITESS/RESTRAX Codes

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The HANARO (KAERI) research reactor has been developed a neutron guide system for cold neutron (CN) research facilities since July, 2003. The neutron guide system plays an important role in transporting cold neutrons from the CN source to the neutron facilities as CN-NDP, CN-PGAA, SANS, etc. The CN activation station is being installed in the HANARO cold-neutron research project. The CN-NDP and CN-PGAA were selected as two facilities using at this station. At the end position of CG1 and CG2B beam guides, the CN-NDP and CN-PGAA will be installed in the CN guide hall. In order to predict the neutron flux and intensity values at the CG1 and CG2B beam guides, the simulation results of neutron flux at the CG1 and CG2B beam guides are presented by using several Monte Carlo (MC) neutron ray-tracing simulation codes. The intercomparison of neutron flux values between McStas, VITESS and RESTRAX are performed for getting fairly correct results at two neutron beam guides

  20. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  1. Cyclic neutron activation for non-destructive characterization of radioactive waste; Zyklische Neutronen-Aktivierung zur Zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Havenith, Andreas; Kettler, John [RWTH Aachen (Germany). Inst. fuer Nuklearen Brennstoffkreislauf; Mauerhofer, Eric [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung

    2011-07-01

    In Germany about 100.000 casks with low-level radioactive waste are actually stored in federal collection sites or at the nuclear power plants. Due to the incomplete documentation these casks have to be characterized with respect to their composition. In order to avoid the opening of the casks a new non-destructive characterization method was developed by the authors based on the prompt and delayed gamma-neutron-activation analyses using 14 MeV neutrons. the main challenge was to determine the self-shielding of neutrons and photons dependent on the sample composition. Computerized MNCP calculations and experiments were performed. The multi-element analysis is based on the gamma spectroscopy during neutron activation. A new measuring system (MEDINA - multi-element detection based on instrumental neutron activation) was built esp. for the characterization of 200-l casks used in the repository KONRAD.

  2. Stochastic modeling and survival analysis of marginally trapped neutrons for a magnetic trapping neutron lifetime experiment

    CERN Document Server

    Coakley, K J; M.,; Huber, G; P.,; Huffman, R; C.,; Huffer, R; Marley, D E; Mumm, H P; O'Shaughnessy, M; K.,; Schelhammer, W; Thompson, A K; Yue, A T

    2015-01-01

    In a variety of neutron lifetime experiments, in addition to $\\beta-$decay, neutrons can be lost by other mechanisms including wall losses. Failure to account for these other loss mechanisms produces systematic measurement error and associated systematic uncertainties in neutron lifetime measurements. In this work, we develop a physical model for neutron wall losses and construct a competing risks survival analysis model to account for losses due to the joint effect of $\\beta-$decay losses, wall losses of marginally trapped neutrons, and an additional absorption mechanism. We determine the survival probability function associated with the wall loss mechanism by a Monte Carlo method. Based on a fit of the competing risks model to a subset of the NIST experimental data, we determine the mean lifetime of trapped neutrons to be approximately 700 s -- considerably less than the current best estimate of (880.1 $\\pm$ 1.1) s promulgated by the Particle Data Group [1]. Currently, experimental studies are underway to d...

  3. Application of MNSR Epithermal Neutron Activation Analysis in Determination of Geological Sample%微堆超热中子活化分析在地学样品测定中的应用

    Institute of Scientific and Technical Information of China (English)

    姜怀坤; 徐卫东; 赵伟; 成学海; 姜云; 夏传波

    2015-01-01

    The miniature neutron source reactor (MNSR) is based on highly enriched uranium (235 U ) as fuel and light water as moderator .Because of a larger share of epithermal neutron and fast neutron in irradiation channel ,the reactor is suitable for epithermal neutron activation analysis (ENAA ) .In general neutron activation analysis the main component elements in complex geological samples such as aluminum ,sodium , iron and so on affect the determination accuracy of some target elements .In order to reduce the interference of the background of main component elements and improve the precision and detection limit of the target element ,the ENAA can be used in the test of geological samples .By using epithermal neutron irradiation channel made of cadmium , the Cd ratios of about 130 nuclides of 67 elements in the periodic table were measured . T he advantage factors of some elements and the interferences of uranium fission and (n , p) reaction in ENAA were discussed .The practical application of MNSR ENAA method in testing of geological sample was verified .The results show that more than 20 kinds of elements can be ascertained in the sample measuring by this method . The detection limit ,precision and accuracy are more significantly improved .The MNSR ENAA is a necessary and beneficial supplement of the conventional activation analysis method .%微型中子源反应堆(简称微堆)是以高浓铀(235 U )作燃料的轻水欠慢化型反应堆,辐照孔道内存在有较大份额的超热中子和快中子,适合进行超热中子活化分析(ENAA)的实验研究。地质样品成分复杂,在用普通的中子活化分析时,基体元素影响了部分元素的准确测定。为降低基体成分的本底干扰、改善目标元素的测量精密度和检出限,可采用超热中子活化分析的方法。本文利用微堆上安装的屏蔽材料为镉的超热中子辐照孔道,测定了元素周期表中67种元素的约130个核素的镉

  4. Progress in small angle neutron scattering activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Aziz Bin Mohamed; Azali Bin Muhamad; Shukri Bin Mohd [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1999-10-01

    The current status of SANS (Small Angle Neutron Scattering facility) activities in Malaysia has been presented. Many works need to be done for system improvement before the system can be confidently used as one of effective quality control tools in materials production and engineering sectors. (author)

  5. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Meg, E-mail: mmorris@mta.ca; Hornidge, David [Mount Allison University, Sackville, New Brunswick (Canada); Annand, John; Strandberg, Bruno [University of Glasgow, Scotland (United Kingdom)

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  6. Status report of CPHS and neutron activities at Tsinghua University

    Science.gov (United States)

    Wang, X.; Xing, Q.; Zheng, S.; Yang, Y.; Gong, H.; Xiao, Y.; Wu, H.; Guan, X.; Du, T.

    2016-11-01

    The Compact Pulsed Hadron Source (CPHS) project that was launched in September 2009 at Tsinghua University has reached a first commissioning stage in conjunction with ongoing activities to fulfill the eventual design goal of a ˜ 1013 n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications. Here, we report the latest progress on the commissioning and applications of 3MeV proton and neutron beam lines in the last one and half years, and the design, fabrication, engineering of the 13MeV/16kW proton accelerator system.

  7. Neutron Field Measurements in Phantom with Foil Activation Methods.

    Science.gov (United States)

    1986-11-29

    jI25 Ii III uumu ullli~ S....- - Lb - w * .qJ’ AD-A 192 122 ulJ. IL (pj DNA-TR-87- 10 N EUTRON FIELD MEASUREMENTS IN PHANTOM WITH FOIL ACTIVATION...SAND II Measurements in Phantom 6 4 The 5-Foil Neutron Dosimetry Method 29 5 Comparison of SAND II and Simple 5-Foil Dosimetry Method 34 6 Thermal ...quite reasonable. The monkey phantom spectrum differs from the NBS U-235 fission spectrum in that the former has a I/E tail plus thermal -neutron peak

  8. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  9. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  10. Prototyping an Active Neutron Veto for SuperCDMS

    CERN Document Server

    Calkins, Robert

    2015-01-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  11. Prototyping an Active Neutron Veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Southern Methodist U.; Loer, Ben [Fermilab

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  12. Prototyping an active neutron veto for SuperCDMS

    Science.gov (United States)

    Calkins, Robert; Loer, Ben

    2015-08-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  13. Analysis of Gaulish coins by proton induced X-ray emission, synchrotron radiation X-ray fluorescence and neutron activation analysis

    Science.gov (United States)

    Brissaud, I.; Chevallier, P.; Dardenne, C.; Deschamps, N.; Frontier, J. P.; Gruel, K.; Taccoen, A.; Tarrats, A.; Wang, J. X.

    1990-04-01

    Recent diggings in Brittany provide us with new Gaulish coins for a further study about their value and dating. The elemental analysis gives a good idea of the great variety in the monetary alloys used in Gallia in the second part of the first century B.C. Each coin was analyzed by surface and volume techniques. For some samples the discrepancy between the two types of analysis is large for Ag-rich alloys: a surface enrichment in silver is observed.

  14. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  15. Atmospheric Deposition of Heavy Metals around the Lead and Copper-Zinc Smelters in Baia Mare, Romania, Studied by the Moss Biomonitoring Technique, Neutron Activation Analysis and Flame Atomic Absorption Spectrometry

    CERN Document Server

    Culicov, O A; Steinnes, E; Okina, O S; Santa, Z; Todoran, R

    2002-01-01

    The mosses Pleurozium schreberi, Pseudoscleropodium purum and Rhytidiadelphus squarrosus were used as biomonitors to study the atmospheric deposition of heavy metals around the lead and copper-zinc smelters in Baia Mare. Samples representing the last three years' growth of moss or its green part, collected on the ground at 28 sites located 2-17 km from the source area, were analyzed by instrumental neutron activation analysis using epithermal neutrons and by flame atomic absorption spectrometry. A total of 31 elements were determined, including most of the heavy metals characteristic of emissions from this kind industry. The observed data for Pb, As, Cu, and Cd are all high compared with those observed in other regions of Europe with similar industries, but the concentrations in moss approach regional background levels at a distance of about 8 km from the main source area. Factor analysis of the data distinguishes two industrial components, one characterized by Pb, Cu, As, and Sb, and another one by Zn and Cd...

  16. A device for simultaneous spin analysis of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Ban, G.; Lefort, T.; Lemiere, Y.; Naviliat-Cuncic, O.; Quemener, G. [Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Bison, G.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Bodek, K.; Rawlik, M.; Rozpedzik, D.; Zejma, J. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland); Fertl, M.; Franke, B.; Kirch, K.; Komposch, S. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Paul Scherrer Institute, Villigen-PSI (Switzerland); Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Grujic, Z.D.; Kasprzak, M.; Weis, A. [University of Fribourg, Physics Department, Fribourg (Switzerland); Hayen, L.; Severijns, N.; Wursten, E. [Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Helaine, V. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Universite de Caen, CNRS/IN2P3, LPC Caen ENSICAEN, Caen (France); Kermaidic, Y.; Pignol, G.; Rebreyend, D. [Universite Grenoble Alpes, CNRS/IN2P3, LPSC, Grenoble (France); Kozela, A. [Henryk Niedwodniczanski Institute for Nuclear Physics, Cracow (Poland); Krempel, J.; Piegsa, F.M. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Prashanth, P.N. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Ries, D. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Jena University Hospital, Hans Berger Department of Neurology, Jena (Germany); Roccia, S. [Universite Paris Sud, CNRS/IN2P3, CSNSM, Orsay campus (France); Wyszynski, G. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland)

    2015-11-15

    We report on the design and first tests of a device allowing for measurement of ultracold neutrons polarisation by means of the simultaneous analysis of the two spin components. The device was developed in the framework of the neutron electric dipole moment experiment at the Paul Scherrer Institute. Individual parts and the entire newly built system have been characterised with ultracold neutrons. The gain in statistical sensitivity obtained with the simultaneous spin analyser is (18.2 ± 6.1) % relative to the former sequential analyser under nominal running conditions. (orig.)

  17. Neutronic analysis for bolometers in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, A., E-mail: alejandro.suarez@iter.org [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Reichle, R.; Loughlin, M.; Polunovskiy, E.; Walsh, M. [ITER Organization, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France)

    2013-10-15

    Highlights: ► Radiation damage calculations for the bolometers in ITER. ► Redesign of the bolometric diagnostic in EPP01. ► New bolometer radiation damage values in EPP01 in the safe zone. -- Abstract: Neutronic considerations in ITER have such importance that they drive the design of many diagnostics and components of the machine, and bolometers are not an exception. Bolometer cameras will be installed on the vacuum vessel, viewing the plasma through the gaps between blanket modules, divertor, equatorial and upper port plugs. The ITER reference bolometer sensors are of a resistive type. For this study it is assumed that they are composed of a thin silicon nitride carrier film and platinum resistors disposed in a Wheatstone bridge configuration. Their assumed radiation hardness is 0.1 dpa. Neutronic calculations were performed with the Monte Carlo program MCNP5, the FENDL 2.1 nuclear data library and the latest B-lite ITER neutronic model with the appropriate modifications using the CAD to MCNP converter MCAM. A complete characterization of the neutron fluxes in all the bolometer locations and the calculation of neutron damage were performed. Values above the failure threshold damage were obtained for some of the bolometers, leading to a complete redesign of some parts of the bolometric system in order to extend its lifetime.

  18. Determination of several elements in sediment samples from Nizao River basin, Dominican Republic by instrumental neutron activation analysis; Determinacao de diversos elementos em amostras de sedimento da bacia do Rio Nizao da Republica Dominicana por ativacao neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, Geraldo Frederico; Vilhena Schayer Sabino, Claudia de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    1995-12-31

    The Neutron Activation Laboratory at CDTN (Nuclear Technology Development Institute, Brazilian) (CNEN) has been acquiring through the years experience to determine several elements answering to analytical requests, including regional, national and international projects. Through neutron activation instrumental, gamma spectrometry and fission delayed neutron technique were analysed 50 samples of sediment from basin of Nizao River, Dominican Republic: Al, Fe, Mn, Na, Cr, Co, La, Sc, U and V with the objective to determine the concentration in both different parts: argil and sand. It was necessary to improve the irradiation conditions, delay time, counting, geometry and others proceedings due parameters like neutron flux, half life time of the radionuclide, gamma energies, all interfering in the procedures. The irradiations were carried about at IPR R1 TRIGA MARK I reactor. (author). 5 refs., 3 figs., 5 tabs.

  19. Application of neutron activation in hydrometallurgical process of lead chloride extraction from boulangerit

    OpenAIRE

    Zovko Emira; Islamović Safija

    2010-01-01

    In this work, a neutron activation analysis for the identification of radiochemical elements in the ore concentrate of zone Vareš, Bosnia and Hercegovina, has been applied. The possibility of dissolving ore concentrate from iron(III) chloride was examined. To follow the dissolving lead (II) sulphide yield from the ore concentrates, in addition to radioisotope labeling process, it is necessary to use a gravimetric analysis of the extracted lead(II) chloride. Based on kinetic measurements of di...

  20. Origin identification for Cantona, Puebla, obsidians by the analysis method of neutron activation (NAA); Identificacion de procedencia para obsidianas de Cantona, Puebla, por el metodo de analisis por activacion neutronica (AAN)

    Energy Technology Data Exchange (ETDEWEB)

    Tellez N, A. L.

    2013-07-01

    There are tests that most of the obsidian worked in the workshops of Cantona, Puebla, is coming from the mineral deposits of Oyameles-Zaragoza, but also has been detected obsidian that macroscopically belongs to other mineral deposits. The present work has as purpose to determine the provenance of an obsidian sample obtained in the Cantona Site to know if there was the presence of obsidian of other mineral deposits. For the study the neutron activation analysis was used to identify the presence of other deposits. An explanation on the treatment to the selected pieces is included, the preparation of the same ones for its irradiation in the nuclear reactor, the counting and statistical study of the results. Finally the results of the selected samples are presented, indicating their origin places, that time comes and the interpretation of the results is given. (Author)

  1. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  2. Application of neutron activation tracer sediment technique on environmental science

    Institute of Scientific and Technical Information of China (English)

    YinYi; ZhongWei-Ni; 等

    1997-01-01

    Field and laboratory inverstigations were carried out to study the transport and dispersion law of polluted sediments near wastewater outlet using neutron activation tracer technique.The direction of transport and dispersion of polluted sediments,dispersion amount in different directions,sedimentary region of polluted sediment and evaluation of polluted risk are given.This provided a new test method for the study of environmental science and added a new forecasted content for the evaluation of environmental influence.

  3. Neutronic and nuclear post-test analysis of MEGAPIE

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, L.; Aebersold, H. U.; Berg, K.; Eikenberg, J.; Filges, U.; Groeschel, F.; Luethy, M.; Ruethi, M.; Scazzi, S.; Tobler, L.; Wagner, W.; Wernli, B. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Panebianco, S.; David, J.-C.; Dore, D.; Lemaire, S.; Leray, S.; Letourneau, A.; Michel-Sendis, F.; Prevost, A.; Ridikas, D.; Stankunas, G. [CEA, Centre de Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Toussaint, J.-C. [CEA, Centre de Saclay, IRFU/Service d' Ingenierie des Systemes, Gif-sur-Yvette (France); Eid, M. [CEA, Centre de Saclay, DEN/DM2S/SERMA, Gif-sur-Yvette (France); Latge, C. [CEA, Centre de Cadarache, DEN/DTN/DIR, Saint Paul Lez, Durance (France); Konobeyev, A. Yu.; Fischer, U. [Institut fuer Reaktorsichereit, Forschungszentrum Karlsruhe Gmbh, Karlsruhe (Germany); Thiolliere, N.; Guertin, A. [SUBATECH Laboratory, CNRS/IN2P3-EMN-University, Nantes (France); Buchillier, T.; Bailat, C. [Institut universitaire de radiophysique appliquee (IRA), Lausanne (Switzerland)

    2008-12-15

    changes the spectrum, from a fast one to a prevalently thermal one, in most of the measurement points (with the exception of measurements performed near the centre of the target). The neutronic performance of a liquid target is compared to the standard solid targets used in SINQ. In the MEGAPIE experiment the neutron flux is measured in the close proximity of the spallation zone by means of innovative micro fission chambers which give a current proportional to the neutron yield. Coupled with very detailed Monte Carlo simulations, these integral measurements provide accurate data on the neutron generation. Spallation residues accumulation or temperature influence the neutron balance and the neutron energy spectrum. Overall, the results obtained with the 3 codes FLUKA 2006.3b, MCNPX 2.5.0 and SNT are consistent. The comparison was performed for the LBE, where the results compare well, and for the structure of the target for which the discrepancies are larger. The reason is related to the different origin of the activation: residual nuclei in LBE are mainly due to spallation reactions, while target structure activation is mainly due to low-energy neutron capture. The latter is sensitive to the simulated thermalization process and to the capture cross sections data used. By comparing measurements and calculations of the neutron flux, differences of 20% were found for thermal fluxes. For epithermal flux the 'background' of neutrons with E < 1 MeV is larger with the liquid metal target than for the solid ones. For fast neutron (E > 1 MeV) a disagreement of a factor 2-3 (depending on the chamber position) was found. It seems that the calculation of the fission rates is not correct due to the inherent difficulty of reproducing the mixed neutron spectrum, with strong thermal, epithermal and fast components at the detector locations. MEGAPIE has a neutronic performance higher than the solid targets of SINQ. The performance change between the two different solid targets

  4. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  5. Radioactive waste caracterisation by neutron activation

    OpenAIRE

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point o...

  6. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    CERN Document Server

    Das, Mala; Saha, S; Bhattacharya, S; Bhattacharjee, P

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252Cf fission neutron source and 137Cs gamma source separately. The analysis of pulse height of the signals in the neutron and gamma-ray sensitive temperature provides strong information on the identification of neutron and gamma-ray induced events.

  7. Determination of the archaeological origin of ceramic fragments characterized by neutron activation analysis, by means of the application of multivariable statistical analysis techniques;Determinacion del origen de fragmentos de ceramica arqueologica caracterizados con analisis por activacion neutronica, mediante la aplicacion de tecnicas de analisis estadistico multivariable

    Energy Technology Data Exchange (ETDEWEB)

    Almazan T, M. G.; Jimenez R, M.; Monroy G, F.; Tenorio, D. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rodriguez G, N. L. [Instituto Mexiquense de Cultura, Subdireccion de Restauracion y Conservacion, Hidalgo poniente No. 1013, 50080 Toluca, Estado de Mexico (Mexico)

    2009-07-01

    The elementary composition of archaeological ceramic fragments obtained during the explorations in San Miguel Ixtapan, Mexico State, was determined by the neutron activation analysis technique. The samples irradiation was realized in the research reactor TRIGA Mark III with a neutrons flow of 1centre dot10{sup 13}ncentre dotcm{sup -2}centre dots{sup -1}. The irradiation time was of 2 hours. Previous to the acquisition of the gamma rays spectrum the samples were allowed to decay from 12 to 14 days. The analyzed elements were: Nd, Ce, Lu, Eu, Yb, Pa(Th), Tb, La, Cr, Hf, Sc, Co, Fe, Cs, Rb. The statistical treatment of the data, consistent in the group analysis and the main components analysis allowed to identify three different origins of the archaeological ceramic, designated as: local, foreign and regional. (Author)

  8. Measurements of neutrons at JET by means of the activation methods

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R., E-mail: prokopowicz@ifpilm.waw.p [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Bienkowska, B.; Drozdowicz, K.; Jednorog, S.; Kowalska-Strzeciwilk, E. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Murari, A. [EURATOM-ENEA Fusion Association, Consorzio RFX, Padova I-35127 (Italy); Popovichev, S. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Pytel, K.; Scholz, M.; Szydlowski, A. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Syme, B. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tracz, G. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland)

    2011-05-01

    The neutron diagnostics in tokamaks like Joint European Torus (JET) are essential in estimating fusion power. The neutron activation method, supported by neutron transport calculations, is particularly useful for the evaluation of the total neutron yield from a single plasma discharge. This paper presents the results of activation experiments and calculations carried out for JET plasmas, from the selection of the activation materials to their irradiations in the neutron field of JET discharges. Neutron transport calculations were performed, leading to activation coefficients for new materials. The results of the calculations were used to design new composite samples to obtain information on both the yield and the neutron spectrum. The neutron measurements using these new activation materials were performed during the last JET experimental campaigns. The results are compared with neutron transport calculations. Additionally, application of the cadmium difference method allows revelation of the part of thermal neutrons near the tokamak first wall. The advantages of new activation materials and benchmarking the activation method against neutron transport calculations are also discussed.

  9. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  10. Neutron activation analysis of lichens for atmospheric pollution study in Sao Paulo city; Analise de liquens por ativacao neutronica para estudo da poluicao atmosferica da cidade de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Fuga, Alessandra; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: alessandrafuga@yahoo.com.br; Marcelli, Marcelo P. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Micologia e Liquenologia]. E-mail: mpmarcelli@superig.com.br

    2005-07-01

    In the present study instrumental neutron activation analysis has been applied to determine the elements accumulated in samples of Canoparmelia texana, a specie of lichen, collected in regions with different levels of pollution: Intervales State Park, an area considered non polluted that belongs to Atlantic Forest ecosystem and distinct sites in the metropolitan region of Sao Paulo city. The results obtained in the analysis showed that samples collected in the clean area indicated lower concentrations of elements than those obtained for samples from metropolitan region. The concentrations of the elements Ba, Ca, Cl, Fe, K, Mn, Na, Rb and Zn were obtained at {mu}g g{sup -1} levels and the elements As, Br, Co, Cr, Cs, La, Sb, Sc, Se and U at ng g{sup -1} levels. Cluster analysis was applied to classify into distinct groups the sites using the element concentrations in these samples. The accuracy and precision of the results were evaluated by IAEA 336 Lichen reference material analysis and the data given for this material were in agreement with certified values with relative standard deviations lower than 11,4%. (author)

  11. Neutron energy analysis by silicon prisms

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, J., E-mail: jennifer.schulz@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Ott, F. [Laboratoire Leon Brillouin, Bât 563 CEA Saclay, 91191 Gif sur Yvette Cedex (France); Hülsen, Ch.; Krist, Th. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2013-11-21

    Neutron energy analysing by refraction with prisms allows to measure different wavelengths at the same time thus avoiding losses due to monochromatization. We built and tested a refractive energy analysing device made from small prisms, where losses only occur due to the attenuation in the material. We measured the refraction and the transmission of MgF{sub 2} and Si prisms at the V14 reflectometer in Berlin at 4.9 Å to check their applicability. The experimentally determined linear attenuation coefficients are 0.055 cm{sup −1} for the MgF{sub 2} and 0.03 cm{sup −1} for the Si prisms. An energy analyser consisting of silicon prism layers was measured at the EROS reflectometer at the LLB in a white neutron beam. The useful wavelength band was 2.4–7.6 Å. At 6.7 Å a wavelength resolution of 5% and a transmission of 53% were achieved. The surface roughness of the prisms could be determined to be (0.011±0.006)deg.

  12. Magnetar activity mediated by plastic deformations of neutron star crust

    CERN Document Server

    Lyutikov, Maxim

    2014-01-01

    We advance a "Solar flare" model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron MHD (EMHD) flows, twists the external magnetic flux tubes, producing persistent emission, bursts and flares. At the same time the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain $ \\epsilon_t $ to values well below the critical strain $ \\epsilon_{crit}$ of a brittle fracture, $ \\epsilon_t \\sim 10^{-2}\\epsilon_{crit} $. Magnetar-like behavior, occurring near the magnetic equator, takes place in all neutron stars, but to a different extent. The persistent luminosity is proportional to cubic power of the magnetic field (at a given age), and hence is hardly observable in most rotationally powered neutron stars. Giant flares can occur only if the magnetic field exceeds some threshold value, while smaller bursts and flares may take place in relatively small magnetic fields. Bursts and flares are magnetospheric reconnection events t...

  13. A militarily fielded thermal neutron activation sensor for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, E.T.H. [Bubble Technology Industries, Chalk River (Canada); McFee, J.E. [Defence R and D Canada-Suffield, Medicine Hat (Canada)], E-mail: john.mcfee@drdc-rddc.gc.ca; Ing, H.; Andrews, H.R.; Tennant, D.; Harper, E. [Bubble Technology Industries, Chalk River (Canada); Faust, A.A. [Defence R and D Canada-Suffield, Medicine Hat (Canada)

    2007-08-21

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on {sup 14}N. The TNA uses a 100{mu}g{sup 252}Cf neutron source surrounded by four 7.62cmx7.62cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  14. Neutronic and nuclear post-test analysis of MEGAPIE

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, L.; Aebersold, H. U.; Berg, K.; Eikenberg, J.; Filges, U.; Groeschel, F.; Luethy, M.; Ruethi, M.; Scazzi, S.; Tobler, L.; Wagner, W.; Wernli, B. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Panebianco, S.; David, J.-C.; Dore, D.; Lemaire, S.; Leray, S.; Letourneau, A.; Michel-Sendis, F.; Prevost, A.; Ridikas, D.; Stankunas, G. [CEA, Centre de Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Toussaint, J.-C. [CEA, Centre de Saclay, IRFU/Service d' Ingenierie des Systemes, Gif-sur-Yvette (France); Eid, M. [CEA, Centre de Saclay, DEN/DM2S/SERMA, Gif-sur-Yvette (France); Latge, C. [CEA, Centre de Cadarache, DEN/DTN/DIR, Saint Paul Lez, Durance (France); Konobeyev, A. Yu.; Fischer, U. [Institut fuer Reaktorsichereit, Forschungszentrum Karlsruhe Gmbh, Karlsruhe (Germany); Thiolliere, N.; Guertin, A. [SUBATECH Laboratory, CNRS/IN2P3-EMN-University, Nantes (France); Buchillier, T.; Bailat, C. [Institut universitaire de radiophysique appliquee (IRA), Lausanne (Switzerland)

    2008-12-15

    changes the spectrum, from a fast one to a prevalently thermal one, in most of the measurement points (with the exception of measurements performed near the centre of the target). The neutronic performance of a liquid target is compared to the standard solid targets used in SINQ. In the MEGAPIE experiment the neutron flux is measured in the close proximity of the spallation zone by means of innovative micro fission chambers which give a current proportional to the neutron yield. Coupled with very detailed Monte Carlo simulations, these integral measurements provide accurate data on the neutron generation. Spallation residues accumulation or temperature influence the neutron balance and the neutron energy spectrum. Overall, the results obtained with the 3 codes FLUKA 2006.3b, MCNPX 2.5.0 and SNT are consistent. The comparison was performed for the LBE, where the results compare well, and for the structure of the target for which the discrepancies are larger. The reason is related to the different origin of the activation: residual nuclei in LBE are mainly due to spallation reactions, while target structure activation is mainly due to low-energy neutron capture. The latter is sensitive to the simulated thermalization process and to the capture cross sections data used. By comparing measurements and calculations of the neutron flux, differences of 20% were found for thermal fluxes. For epithermal flux the 'background' of neutrons with E < 1 MeV is larger with the liquid metal target than for the solid ones. For fast neutron (E > 1 MeV) a disagreement of a factor 2-3 (depending on the chamber position) was found. It seems that the calculation of the fission rates is not correct due to the inherent difficulty of reproducing the mixed neutron spectrum, with strong thermal, epithermal and fast components at the detector locations. MEGAPIE has a neutronic performance higher than the solid targets of SINQ. The performance change between the two different solid targets

  15. Stress analysis by neutron diffraction. Spannungsanalyse mit Neutronenbeugung

    Energy Technology Data Exchange (ETDEWEB)

    Pintschovius, L. (Kernforschungszentrum Karlsruhe, INFP (Germany))

    1992-01-01

    Investigating mechanical stresses, the point of interest actually is not the interplanar crystal spacing itself in the polycrystalline material, but the relative change of it. Neutrons are particularly suited for application to stress analysis, due to their deep penetration range in the materials of up to 10 mm. The article explains the basic principles of operation of a neutron diffractometer and its application to analysing residual stresses in specimens made of aluminium alloys or ceramics, in steel-ceramic soldered joints, or in steel rivets. (DG).

  16. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    Science.gov (United States)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  17. Analysis of an attempt at detection of neutrons produced in a plasma discharge electrolytic cell

    CERN Document Server

    Widom, A; Srivastava, Y N

    2013-01-01

    R. Faccini et al. \\cite{Faccini:2013} have attempted a replication of an earlier experiment by D. Cirillo et al. \\cite{Cirillo:2012} in which neutrons [as well as nuclear transmutations] were observed in a modified Mizuno cell. No neutron production is observed in the recent experiment \\cite{Faccini:2013} and no evidence for microwave radiation or nuclear transmutations are reported. A careful analysis shows major technical differences in the two experiments and we explore the underlying reasons for the lack of any nuclear activity in the newer experiment.

  18. Elaboration of an effective neutron generator for short-lived isotope analysis

    Science.gov (United States)

    Kozlovsky, K. I.; Tsybin, A. S.; Ischeinov, O. V.

    Preliminary results of the use of a laboratory pulsed laser neutron generator for effective material activation analysis of short-lived isotopes (10 ms-30 s) are delivered. The generator function is based on the acceleration of laser-produced plasma containing deuterium by an external magnetic field that leads to a plasma-bundle velocity up to 3×108cm/s. A fast-neutron yield of about 107-108 (d-d reaction) with a pulse duration not more than 100ns is expected. The main peculiarity of such a neutron source is connected with the substantially smaller X-ray background that accompanies a neutron-irradiation process in traditional types of generators. It gives a possibility to improve the detection conditions as well as to increase the sensitivity of the analysis. The neutron generator may be more effective for the content determination of isotopes such as carbon-12, fluorine-19, oxygen-16, sulfur-34, gold-197, and some others.

  19. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  20. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  1. Conference on Instrumental Activation Analysis: IAA 89

    Science.gov (United States)

    Vobecky, M.; Obrusnik, I.

    1989-05-01

    The proceedings contain 40 abstracts of papers all of which have been incorporated in INIS. The papers were centred on the applications of radioanalytical methods, especially on neutron activation analysis, x ray fluorescence analysis, PIXE analysis and tracer techniques in biology, medicine and metallurgy, measuring instruments including microcomputers, and data processing methods.

  2. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  3. Method of demonstrating calcium in human foot by neutron activation of (. cap alpha. , N)-sources

    Energy Technology Data Exchange (ETDEWEB)

    Zaychik, V.E.; Kondrashov, A.E.; Morukov, B.V.

    Bone demineralization during long-term exposure to weightlessness and hypokinesia is presently a universally recognized fact. A method is described which employs neutron activation analysis for a direct quantitative in vivo assay of calcium in the human foot. When the foot is exposed to neutrons, the stable nuclide Ca/sup 46/ is converted into the radionuclide Ca/sup 49/. The gamma radiation emitted by Ca/sup 49/ is then measured spectrometrically. A special device, developed for the delivery of neutrons to the foot, consists of a stainless steel tank filled with water, surrounded on the side by lithium-containing screens. A cassette with neutron sources is at the bottom of the tank and can be delivered to the desired position in channel-driver carriers. A special footrest provides support during irradiation. The spectrometry unit, consisting of 4 scintillation counters, also is equipped with a specially designed footrest. The maximum relative error of a single measurement did not exceed 4.82%. The mean equivalent dose in the foot was about 1 rem, a dose low enough to permit examinations three times a year, if necessary.

  4. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  5. Neutronic analysis for in situ calibration of ITER in-vessel neutron flux monitor with microfission chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Kondoh, Takashi; Kusama, Yoshinori [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Ibaraki 311-0193 (Japan); Bertalot, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC). ► The source transfer system deigned in this study does not affect MFC detection efficiency. ► The rotation method is appropriate for full calibration because the calibration time is shorter. ► But, point-by-point method should be performed to check the accuracy of the MCNP model. ► Combination of two methods are important to perform in situ calibration efficiently. -- Abstract: Neutronic analysis is performed for in situ calibration of the microfission chamber (MFC), which is the in-vessel neutron-flux monitor at the International Thermonuclear Experimental Reactor (ITER). We present the design of the transfer system for a neutron generator, which consists of two toroidal rings and a neutron-generator holder, and estimate the effect of the system on MFC detection efficiency through neutronic analysis with the Monte Carlo N-particle (MCNP) code. The result indicates that the designed transfer system does not affect MFC detection efficiency. In situ calibrations by the point-by-point method and by the rotation method are also simulated and compared by neutronic analysis. The results indicate that the rotation method is appropriate for full calibration because the calibration time is shorter (all neutron-flux monitors can be calibrated simultaneously). However, the rotation method makes it difficult to compare the results with neutronic analysis, so the point-by-point method should be performed prior to full calibration to check the accuracy of the MCNP model.

  6. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  7. The calibration of DD neutron indium activation diagnostic for Shenguang-III facility

    CERN Document Server

    Song, Zi-Feng; Liu, Zhong-Jie; Zhan, Xia-Yu; Tang, Qi

    2014-01-01

    The indium activation diagnostic was calibrated on an accelerator neutron source in order to diagnose deuterium-deuterium (DD) neutron yields of implosion experiments on Shenguang-III facility. The scattered neutron background of the accelerator room was measured by placing a polypropylene shield in front of indium sample, in order to correct the calibrated factor of this activation diagnostic. The proper size of this shield was given by Monte Carlo simulation software. The affect from some other activated nuclei on the calibration was verified by judging whether the measured curve obeys exponential decay and contrasting the half life of the activated sample. The calibration results showed that the linear range reached up to 100 cps net count rate in the full energy peak of interest, the scattered neutron background of accelerator room was about 9% of the total neutrons and the possible interferences mixed scarcely in the sample. Subtracting the portion induced by neutron background, the calibrated factor of ...

  8. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    Science.gov (United States)

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  9. Neutron Spectrometric Analysis: Characterization of {sup 3}He Detector Response and Chemometric Data Analysis of Pulse-Height Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Yun; Choi, Yong Suk; Park, Yong Joon; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Among many nucleonic gauges using a variety of sources such as alpha, beta, gamma, neutron or X-ray radiation, neutron-based techniques have been successfully used in landmine detection, cargo inspection and soil analysis as well as in the industrial process monitoring such as cement, glass, coal industries, etc. In general, there are three categories of neutron-based methods: fast neutron analysis (FNA), thermal neutron analysis (TNA) and neutron moderation. FNA and TNA utilize the slow or fast neutrons for the generation of characteristic prompt gamma-ray to identify the element of interest in many applications. The neutron moderation is attractive for the process monitoring of the moisture content in the bulk samples. In spite of its many advantages, the false-alarm rate of the neutron method is of great interest in the field operations.

  10. Active detection of shielded SNM with 60-keV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  11. Measurement and theoretical estimation of induced activity in natIn by high energy neutrons

    Indian Academy of Sciences (India)

    Maitreyee Nandy; P K Sarkar; N Nakao; T Shibata

    2009-10-01

    Induced radioactivity in natural indium (natIn) foils by high energy neutrons was measured at the KENS Facility, KEK, Japan, where a 16.7 cm thick W target was bombarded by protons of 500 MeV. High energy neutrons consequently produced irradiated the In targets placed at different depths inside a 4 m thick concrete shield placed at the beam exit. The measured activities were compared with the results calculated using the nuclear reaction model codes ALICE-91 and EMPIRE-2.18. To estimate the induced activity, excitation functions of the various radionuclides were calculated using the two codes and folded with the appropriate neutron energy distribution at different depths of the concrete shield. The calculated excitation functions of a given nuclide were found to vary widely from one another in some cases. The performances of the codes for different input parameters like level densities and inverse cross-sections are reported in this paper. Our analysis shows that neither of the two codes reproduced all the measured activities satisfactorily, requiring further improvements in the models adopted.

  12. A kinematically beamed, low energy pulsed neutron source for active interrogation

    Science.gov (United States)

    Dietrich, Dan; Hagmann, Chris; Kerr, Phil; Nakae, Les; Rowland, Mark; Snyderman, Neal; Stoeffl, Wolfgang; Hamm, Robert

    2005-12-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of special nuclear materials (SNM) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals: (1) energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) neutrons with an energy of approximately 60-100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100 keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n, 2n) or (n, n‧) processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  13. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    Science.gov (United States)

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code.

  14. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis; Estudio de la evolucion del mercurio en un sistema acuatico de laboratorio multiespecifico utilizando analisis por activacion neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche. Lab. de Analisis por Activacion Nautronica; Pechen de d`Angelo, Ana; Ferrari, Ana; Venturino, Andres [Universidad Nacional del Comahue, Neuquen (Argentina). Facultad de Ingenieria

    1999-11-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 {mu}m sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress ({gamma}-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author) 23 refs., 4 tabs.

  15. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  16. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    Science.gov (United States)

    Wang, C. L.; Riedel, R. A.

    2016-01-01

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a1, b0) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.

  17. Improved neutron-gamma discrimination for a {sup 6}Li-glass neutron detector using digital signal analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. L., E-mail: wangc@ornl.gov; Riedel, R. A. [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2016-01-15

    A {sup 6}Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10{sup 4}. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a{sub 1}, b{sub 0}) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.

  18. Application of principal component analysis for the diagnosis of neutron overpower system oscillations in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, Elnara; Gabbar, Hossam A., E-mail: Hossam.gabbar@uoit.ca

    2014-04-01

    Highlights: • Diagnosis of neutron overpower protection (NOP) in CANDU reactors. • Accurate reactor detector modeling. • NOP detectors response analysis. • Statistical methods for quantitative analysis of NOP detector behavior. - Abstract: An accurate fault modeling and troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities of current and future generation of CANDU{sup ®} designs. This paper attempts to develop an explanation for the unanticipated detector response and overall behavior phenomena using statistical methods to compliment traditional engineering analysis techniques. Principal component analysis (PCA) methodology is used for pattern recognition using a case study of Bruce B zone-control level oscillations.

  19. Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method

    OpenAIRE

    Negoita, Cezar Ciprian

    2004-01-01

    The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the "tokamak" concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displaceme...

  20. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  1. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    Science.gov (United States)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  2. A study on antimony determination in environmental samples by neutron activation analysis: validation of the methodology and determination of the uncertainty of the measurement; Estudo sobre a determinacao de antimonio em amostras ambientais pelo metodo de analise por ativacao com neutrons: validacao da metodologia e determinacao da incerteza da medicao

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Tassiane Cristina Martins

    2011-07-01

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest due to the knowledge of its toxicity and increasing application in industry. The determination of antimony has been a challenge for researchers since this element is found in low concentrations which make its analysis a difficult task. Therefore, although neutron activation analysis (NAA) is an appropriate method for the determination of various elements in different types of matrix, in the case of Sb its analysis presents some difficulties, mainly due to spectral interferences. The objective of this research was to validate the NAA method for Sb determination in environmental samples. To establish appropriate conditions for Sb determinations, preliminary assays were carried out for further analysis of certified reference materials (CRM). The experimental procedure was to irradiate samples with a synthetic Sb standard for a period of 8 or 16 hours in the IEA-R1 nuclear research reactor, followed by gamma ray spectrometry. The quantification of Sb was performed by measuring the radioactive isotopes of {sup 122}Sb and '1{sup 24}Sb. The results of preliminary assays indicated the presence of Sb in Whatman no 40 filter paper used in the preparation of the synthetic standard, but at very low concentrations, which could be considered negligible. In the case of the plastic material used in bags for the sample irradiation, it should be chosen carefully, because depending on the thickness, they may contain Sb. The analyses of the stability of the diluted Sb standard solution showed no change in the Sb concentration within eight months after its preparation. Results obtained in the analysis of certified reference materials indicated the interference of {sup 76}As and also of {sup 134}Cs and {sup 152}Eu in the Sb determinations by measuring '1{sup 22}Sb, due to the proximity of the gamma ray energies. The high activity of '2{sup 4}Na

  3. Tables for simplifying calculations of activities produced by thermal neutrons

    Science.gov (United States)

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  4. Evaluation of essential trace elements in preterm and full term milk and childhood formulas by neutron activation analysis; Avaliacao dos teores de elementos essenciais no leite materno de maes de recem-nascidos prematuros e a termo e em formulas infantis por meio da analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paola de Souza

    2009-07-01

    Many studies have emphasized the need of trace elements during infancy and their adequate availability in human milk. Deficiency of minor and trace elements can lead to various disorders in infants. During early childhood trace element requirements, are more critical due to faster growth rates. In this study, Ca, Cl, Fe, K, Mg, Mn, Na, Se and Zn were determined in human colostrum samples from mothers of preterm and full-term newborns. Samples were collected by manual expression from the first to the fifth day after birth. After collection, human colostrum samples were frozen and freeze-dried for analyses. Few of the most commonly commercialized were also analyzed. The essential element concentrations were determined in 30 colostrum samples and 17 milk formula brands by Instrumental Neutron Activation Analysis. Multivariate analyses were applied and the results were separated in two clusters. However the separation was not related to the corresponding gestational age. Results of this study showed that the concentration levels of the essential element Ca, K and Na in the milk formula samples analyzed were in agreement with the printed information on the labels. All concentration levels were also within ANVISA and Codex Allimentarius recommended values and thus adequate for infant nutritional needs. (author)

  5. Thermal, intermediate and fast neutron flux measurements using activation detectors; Mesure des flux de neutrons thermiques, intermediaires et rapides au moyen de detecteurs par activation

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Lott, M.; Manent, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The problem of neutron flux measurements using activation detectors is studied in the particular case of protection research. It is shown how it possible, it is possible, using a known thermal flux, to organise a coherent calibration system for all the detectors. The rapid neutron detectors are calibrated with respect to a reference detector (phosphorus) in a natural uranium converter; the intermediate neutron detectors with respect to gold in the axial channel of ZOE. This method makes it possible to minimise the errors due to the activation cross-sections. A brief description is given of the counting room of the Pile Safety Study Service, as well of the practical utilisation characteristics of the counters employed. (authors) [French] Le probleme de la mesure des flux de neutrons au moyen de detecteurs par activation est etudie dans le cas particulier des etudes de protections. On montre comment, a partir d'un flux thermique connu, on peut organiser un systeme coherent d'etalonnage de tous les detecteurs. Les detecteurs de neutrons rapides sont etalonnes par rapport a un detecteur de reference (phosphore) dans un convertisseur en uranium naturel; les detecteurs de neutrons intermediaires, par rapport a l'or dans le canal axial de ZOE, Cette methode permet de minimiser les erreurs dues aux sections efficaces d'activation. On decrit sommairement la salle de comptage du Service d'Etudes de Protections de Piles et on indique les caracteristiques d'emploi pratique des detecteurs utilises. (auteurs)

  6. Real-Time Active Cosmic Neutron Background Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  7. Tillandsia usneoides L, a biomonitor in the determination of Ce, La and Sm by neutron activation analysis in an industrial corridor in Central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Isaac-Olive, K. [Facultad de Medicina. Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, 50120 Estado de Mexico (Mexico); Solis, C., E-mail: corina@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico DF (Mexico); Martinez-Carrillo, M.A; Andrade, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510 Mexico DF (Mexico); Lopez, C.; Longoria, L.C. [Instituto Nacional de Investigaciones Nucleares (ININ), Salazar, 50045 Estado de Mexico (Mexico); Lucho-Constantino, C.A. [Universidad Politecnica de Pachuca, Carretera Pachuca-Cd. Sahagun, Km. 20., Hidalgo, Mexico (Mexico); Beltran-Hernandez, R.I. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo. Carretera Pachuca-Tulancingo km. 4.5, 42184, Pachuca, Hidalgo (Mexico)

    2012-04-15

    The atmosphere of the Tula Industrial Corridor in Central Mexico is contaminated due to several industries including oil refining while station monitoring in this area are limited. Lanthanides are considered fingerprint of oil refinery activities, and La, Ce and Sm have been previously detected in this area using filters. The suitability of T. usneoides as a biomonitor assessing the La, Ce and Sm concentrations in Particulate Matter is evaluated by NAA. Results of both biomonitor and filters are highly correlated.

  8. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Mark E [ORNL; Mihalczo, John T [ORNL

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  9. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    Science.gov (United States)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  10. Contribution to the determination of Sb-Ag-Cu-Ga-Mo-Zn using 14 MeV neutron activation; Contribution au dosage de Sb-Ag-Cu-Ga-Mo-Zn par activation aux neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crambes, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-04-01

    By using, 14 MeV, neutron irradiation it is possible to extend the field of application of neutron radio-activation analysis, in particular to the case of light elements. For, many other elements it can replace in-pile irradiation thereby making it possible, thanks to portable 14 MeV neutron generators, to carry out radio-activation analyses away from nuclear-research c e n t r e s. With a view to applying this analytical technique to routine work, we have developed some rapid chemical separation methods in order to make possible the determination of several elements which after exposure to fast neutrons, produce {beta} emitting nuclides which cannot be differentiated by a simple instrumental study, the emitted radiation being of the same type and of similar half-life the two cases. (author) [French] L'irradiation au moyen de neutrons de 14 MeV permet d'etendre le domaine d'application de l'analyse par radioactivation neutronique, en particulier aux elements legers. Cependant pour de nombreux autres elements elle peut remplacer l'irradiation en reacteur nucleaire permettant ainsi grace aux ensembles portables producteurs de neutrons de 14 MeV, l'extension de l'analyse par radioactivation a l'exterieur des centres d'etudes nucleaires. Dans le but d'appliquer cette methode d'analyse a des travaux de routine, nous avons mis au point des separations chimiques rapides, afin de permettre le dosage de quelques elements qui par irradiation aux neutrons rapides, engendrent des nucleides emetteurs {beta} qu'une simple etude instrumentale ne peut differencier en raison de l'identite de leur rayonnement et de leurs periodes radioactives trop proches. (auteur)

  11. Measurement of neutron-induced activation cross-sections using spallation source at JINR and neutronic validation of the Dubna code

    Indian Academy of Sciences (India)

    Manish Sharma; V Kumar; H Kumawat; J Adam; V S Barashenkov; S Ganesan; S Golovatiouk; S K Gupta; S Kailas; M I Krivopustov; H S Palsania; V Pronskikh; V M Tsoupko-Sitnikov; N Vladimirova; H Westmeier; W Westmeier

    2007-02-01

    A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by moderated beam of neutrons passing through 6 cm paraffin moderator. The gamma spectra of irradiated samples were analyzed using gamma spectrometry and DEIMOS software to measure the neutron cross-section. For this purpose neutron fluence at the positions of samples is also estimated using PREPRO software. The results of cross-sections for reactions 232Th(, ), 232Th(, 2), 197Au(, ), 197Au(, ), 197Au(, ), 59Co(, ), 59Co(, ), 181Ta(, ) and 181Ta(, ) are given in this paper. Neutronics validation of the Dubna Cascade Code is also done using cross-section data by other experiments.

  12. FY16 Status Report on NEAMS Neutronics Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jung, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-09-30

    The goal of the NEAMS neutronics effort is to develop a neutronics toolkit for use on sodium-cooled fast reactors (SFRs) which can be extended to other reactor types. The neutronics toolkit includes the high-fidelity deterministic neutron transport code PROTEUS and many supporting tools such as a cross section generation code MC2-3, a cross section library generation code, alternative cross section generation tools, mesh generation and conversion utilities, and an automated regression test tool. The FY16 effort for NEAMS neutronics focused on supporting the release of the SHARP toolkit and existing and new users, continuing to develop PROTEUS functions necessary for performance improvement as well as the SHARP release, verifying PROTEUS against available existing benchmark problems, and developing new benchmark problems as needed. The FY16 research effort was focused on further updates of PROTEUS-SN and PROTEUS-MOCEX and cross section generation capabilities as needed.

  13. Numerical Analysis on Neutron Shielding Structure of ITER Vacuum Vessel

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; WU Songtao; YU Jie; SHENG Daolin

    2008-01-01

    The neutron shielding component of ITER (International Thermonuclear Experi-mental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest defor-mation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the defor-mation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.

  14. Feasibility of culvert IED detection using thermal neutron activation

    Science.gov (United States)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  15. McCARD for Neutronics Design and Analysis of Research Reactor Cores

    Science.gov (United States)

    Shim, Hyung Jin; Park, Ho Jin; Kwon, Soonwoo; Seo, Geon Ho; Hyo Kim, Chang

    2014-06-01

    McCARD is a Monte Carlo (MC) neutron-photon transport simulation code developed exclusively for the neutronics design and analysis of nuclear reactor cores. McCARD is equipped with the hierarchical modeling and scripting functions, the CAD-based geometry processing module, the adjoint-weighted kinetics parameter and source multiplication factor estimation modules as well as the burnup analysis capability for the neutronics design and analysis of both research and power reactor cores. This paper highlights applicability of McCARD for the research reactor core neutronics analysis, as demonstrated for Kyoto University Critical Assembly, HANARO, and YALINA.

  16. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Y. K.; Kim, H. R

    2007-05-15

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future.

  17. Development of active environmental and personal neutron dosemeters.

    Science.gov (United States)

    Nakamura, T; Nunomiya, T; Sasaki, M

    2004-01-01

    For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.

  18. Study of the accumulation of air pollution by the biological indicators, using 14 MeV neutron activation

    Science.gov (United States)

    Senhou, A.; Khoukhi, T. El; Chouak, A.; Cherkaoui, R. El Moursili; Yahiaoui, A. El; Lferde, M.

    2001-06-01

    14 MeV neutron activation analysis was used to determine air polluting elements in samples of mosses, lichens and tree barks, collected from different regions in Morocco. The analysis of spectra shows clearly that the elements Mg, Al, Si, Cl, J, Ca, Ti and Fe can easily be determined by 14 NAA with good precision, while results for Zn, Rb, Sr, Ba and La are less precise. Curves showing correlation between Al and Mg concentrations are given for different sites.

  19. PGNAA neutron source moderation setup optimization

    CERN Document Server

    Zhang, Jinzhao

    2013-01-01

    Monte Carlo simulations were carried out to design a prompt {\\gamma}-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compared with the conventional neutron source design, the thermal neutron flux and rate were increased by 3.02 times and 3.27 times. Results indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly.

  20. Samanid ceramics and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Azarpay, G.; Frierman, J.D.; Asaro, F.

    1977-08-29

    Glazed pottery known as ''Afrasiyab'' and ''Nishapur'' wares (early Islamic ceramics) are generally attributed to the Samanid dynasty (819-1005). The clay composition of Samanid wares and discarded kiln items found in situ were analyzed by NAA and the elemental composition compared with that of other sherds. 7 figures, 1 table. (DLC)

  1. Instrumental neutron activation analysis (INAA) in gemmology

    Energy Technology Data Exchange (ETDEWEB)

    Moauro, A. [ENEA, Casaccia (Italy); Burelli, F. [Control and Research Laboratory, Bastia (France)

    1995-01-01

    INAA is a multielementary analytical technique that allows the determination of about 30 elements (in many cases with very high sensitivity), without dissolving the sample and avoiding contamination by reagents and glassware. (authors). 6 refs., 1 fig., 2 tabs.

  2. Neutron activation analysis of thin orange pottery

    Energy Technology Data Exchange (ETDEWEB)

    Harbottle, G; Sayre, E V; Abascal, R

    1976-01-01

    The evidence thus far obtained supports the idea of ''Thin Orange'' ware, typical of classic Teotihuacan culture, easily identifiable petrographically or chemically, not necessarily made at Teotihuacan itself but widely traded, and ''thin, orange'' pottery, fabricated in many other places, and perhaps at other times as well.

  3. Present and Future Activities on Neutron Imaging in Argentina

    Science.gov (United States)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  4. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Heng-Xiao; Chen, Wei-Lin [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Liu, Yuan-Hao [Neuboron Medtech Ltd., Nanjing, Jiangsu Province 21112 (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China)

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  5. Praseodymium activation detector for measuring bursts of 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Tim, E-mail: meehanbt@nv.doe.go [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Hagen, E.C. [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Ruiz, C.L.; Cooper, G.W. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2010-08-21

    A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation <10 MeV and to lower-energy (e.g., fission and thermal) neutrons. It is based upon the use of {sup 141}Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fluences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of {approx}18%.

  6. Measurement and Analysis on Neutron Position Sensitive Detector at CARR

    Institute of Scientific and Technical Information of China (English)

    GAO; Jian-bo; HAO; Li-jie; LIU; Xin-zhi; MA; Xiao-bai; LI; Yu-qing

    2013-01-01

    Neutron position sensitive detector is one of the key components for neutron scattering spectrometer.As the eyes of the spectrometer,the detector is mainly used for recording the position and intensity of the neutrons.The 16 linear position sensitive detectors from GE Reuter-Stokes Company have been measured

  7. Dosimetric optimization of postproduction neutron-activated Erbium-170-oxide-enriched pancreatin

    Energy Technology Data Exchange (ETDEWEB)

    Borm, J.J.J.; Bruno, M.J.; Goeij, J.J.M. de [Academic Medical Center, Amsterdam (Netherlands)]|[Delft Univ. of Technology, Mekelweg (Netherlands)]|[Nordmark Arzneimittel GmbH, Uetersen (Germany)] [and others

    1995-05-01

    The feasibility of postproduction neutron activation of an enteric-coated pancreatic enzyme preparation for in vivo gastric emptying studies has been investigated. During production of this multicomponent preparation, small amounts of {sup 170}Er-enriched erbium oxide, suitable for neutron activation, were added. Postproduction neutron irradiation of the labeled preparation resulted in short-lived (7.5 hr) gamma-emitting {sup 171}Er. Various radiocontaminants, however, are produced also. Because of variations in activation yields, half-lives, decay schemes and radiotoxicities, both major and trace consitituents were considered for optimization of both dosimetry and the diagnostic measurement. Conditions were optimized for the best ratio of the committed dose equivalent due to {sup 171}Er to the total committed dose equivalent. The results show that postproduction neutron activation of a {sup 170}Er-enriched multicomponent preparation can be performed safely within the guidelines set by the WHO for experiments in humans involving radioactive materials. 9 refs., 3 tabs.

  8. Neutrons formed by heavy ions and activation induced in different materials; Neutrons crees par ions lourds et activation induite dans divers materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Clapier, F.; Pauwels, N.; Proust, J.

    1995-12-31

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs.

  9. Preliminary engineering assessment of the HCLL and HCPB Neutron Activation System

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, Pattrick; Leichtle, Dieter [Fusion for Energy, Barcelona, (Spain); Angelone, Maurizio [ENEA, Unita Tecnica Fusione, Frascati, (Italy); Klix, Axel [KIT, Eggenstein-Leopoldshafen, (Germany)

    2015-07-01

    The Neutron Activation System (NAS) is one of the four types of neutronics sensors considered for the testing of the HCLL and HCPB Test Blanket Module (TBM) in ITER. It measures the absolute neutron flux intensity with information on the neutron spectrum in selected positions of the TBM. The working principle of the NAS is as follows: the system moves small activation probes (capsules) into selected positions in the TBM (irradiation ends) by means of pneumatic transport with pressurized helium gas; the capsules are irradiated for a selected period, depending on their materials composition (several tens of seconds up to the full plasma pulse length); immediately after the irradiation they are extracted and transported to a gamma spectrometer by means of the same pneumatic transport system; the gamma spectrometer determines the induced gamma activity; the neutron flux and neutron fluence is calculated from the measured gamma activity and the known activation cross section of the materials in the activation probe; after the measurement the capsule is sent either to a disposal or storage (for later measurement). This paper summarizes the results of the feasibility assessment of the TBM NAS in the conceptual design phase, including design justification, identification of requirements based on the expected operating conditions in ITER and preliminary engineering assessment of the activation materials, irradiation ends integration in the modules design and the counting station. (authors)

  10. Neutron induced background gamma activity in low-level Ge-spectroscopy systems

    Science.gov (United States)

    Jovančević, N.; Krmar, M.; Mrda, D.; Slivka, J.; Bikit, I.

    2010-01-01

    Two high purity germanium (HPGe) detectors were located in two different passive shields: one in pre-WW II iron and the second in commercial low background lead. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. Several materials having different neutron slowing-down properties were packed in Marinelli geometry, positioned on the lead shielded detector and measured for around 10 6 s. The main goal was to estimate a possible influence of the sample on the intensity of the neutron induced Ge gamma lines. On the iron-shielded detector a massive (3 in. thick) NaI Compton suppression system showed a measurable activity from neutron capture and inelastic scattering on sodium and iodine nuclei.

  11. Contributions to the neutronic analysis of a gas-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, Cecilia, E-mail: cecilia.martin.del.campo@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reyes-Ramirez, Ricardo, E-mail: ricarera@yahoo.com.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Francois, Juan-Luis, E-mail: juan.luis.francois@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico); Reinking-Cejudo, Arturo G., E-mail: reinking@servidor.unam.mx [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532. Jiutepec, Morelos (Mexico)

    2011-06-15

    Highlights: > Differences on reactivity with MCNPX and TRIPOLI-4 are negligible. > Fuel lattice and core criticality calculations were done. > A higher Doppler coefficient than coolant density coefficient. > Zirconium carbide is a better reflector than silicon carbide. > Adequate active height, radial size and reflector thickness were obtained. - Abstract: In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the obtained

  12. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  13. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  14. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    Science.gov (United States)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  15. Polymeric microspheres for radionuclide synovectomy containing neutron-activated holmium-166.

    Science.gov (United States)

    Mumper, R J; Mills, B J; Ryo, U Y; Jay, M

    1992-03-01

    Poly-L-lactic acid (PLA) microspheres containing neutron-activated 166Ho were investigated as potential agents for radionuclide synovectomy. Stable 165Ho, complexed to acetylacetone (AcAc), was incorporated into PLA spheres by the solvent evaporation technique. Spheres prepared with the optimal mean particle size of 7.2 microns (range 2-13 microns) containing 25.4% 165Ho-AcAc (9.1% 165Ho) were irradiated in a high neutron flux to produce 31.1-36.0 mCi 166Ho. In vitro human plasma studies showed that the irradiated spheres retained 99.0 +/- 0.01% of the 166Ho at 314 hr. In-vivo retention studies were conducted by administering irradiated PLA spheres with 257-591 microCi 166Ho into the joint space of normal rabbits (n = 6). Biodistribution analysis and gamma camera analysis showed 166Ho retention in the joint space after 120 hr of 97.7% +/- 0.8% and 98.2% +/- 2.4%, respectively, with no uptake by the lymph nodes. The ease with which the PLA spheres can be made in the optimal size range for later irradiation and their ability to retain the 166Ho make them attractive agents for radionuclide synovectomy.

  16. Evaluation of the neutron activation of JET in-vessel components following DT irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vuolo, M.; Bonifetto, R.; Dulla, S. [Dipartimento Energia, Politecnico di Torino, I-10129 Torino (Italy); Heinola, K. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Association EURATOM-TEKES, University of Helsinki, PO Box 64, 00560 Helsinki (Finland); Lengar, I. [Association EURATOM-MESCS, Reactor Physics Division, Jožef Stefan Institute, Ljubljana (Slovenia); Ravetto, P., E-mail: piero.ravetto@polito.it [Dipartimento Energia, Politecnico di Torino, I-10129 Torino (Italy); Richard, L.Savoldi [Dipartimento Energia, Politecnico di Torino, I-10129 Torino (Italy); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Widdowson, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Zanino, R. [Dipartimento Energia, Politecnico di Torino, I-10129 Torino (Italy)

    2014-10-15

    Highlights: The temporal evolution of the radioactive species in the in-vessel components after the end of the JET-DT campaign is calculated; Different levels of neutron irradiation are assumed; The neutron flux in the selected components is calculated by the MCNP5 code; The neutron spectra are input to the FISPACT code that computes the evolution of the radioactive species; For each irradiation scenario, the time behavior of the contact dose rate is determined. Abstract: The forthcoming deuterium–tritium (DT) campaign at the Joint European Torus (JET) will induce a significant activation of the system components. In the present work we evaluate the temporal evolution of the radioactive species in the main in-vessel components after the end of the future DT campaign, assuming different levels of neutron irradiation. The neutron flux in the selected components is calculated by the MCNP5 code using the emission source by a typical DT plasma. The resulting neutron spectra are then input to the FISPACT code that computes the evolution of the radioactive species generated by the neutron activation process. For each irradiation scenario, the time behavior of the contact dose rate is determined.

  17. Application of neutron activation in hydrometallurgical process of lead chloride extraction from boulangerit

    Directory of Open Access Journals (Sweden)

    Zovko Emira

    2010-01-01

    Full Text Available In this work, a neutron activation analysis for the identification of radiochemical elements in the ore concentrate of zone Vareš, Bosnia and Hercegovina, has been applied. The possibility of dissolving ore concentrate from iron(III chloride was examined. To follow the dissolving lead (II sulphide yield from the ore concentrates, in addition to radioisotope labeling process, it is necessary to use a gravimetric analysis of the extracted lead(II chloride. Based on kinetic measurements of dissolving concentrate efficiency it was observed that the optimum dissolving time was about 2 to 3 h, and that the one-time procedure can dissolve about 72±5% of marked components.

  18. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    Science.gov (United States)

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  19. A precise method to determine the activity of a weak neutron source using a germanium detector

    CERN Document Server

    Duke, M J M; Krauss, C B; Mekarski, P; Sibley, L

    2015-01-01

    A standard high purity germanium detector (HPGe) was used to determine the neutron activity of a weak americium-beryllium (AmBe) neutron source. Gamma rays were created through 27Al(n,n'), 27Al(n,gamma) and 1H(n,gamma) reactions induced by the neutrons on aluminum and acrylic disks. A Monte Carlo simulation was developed to model the efficiency of the detector system. The activity of our neutron source was determined to be 305.6 +/- 4.9 n/s. The result is consistent for the different gamma rays and was verified using additional simulations and measurements of the 4483 keV gamma ray produced directly from the AmBe source.

  20. Development of a photonuclear activation file and measurement of delayed neutron spectra; Creation d'une bibliotheque d'activation photonucleaire et mesures de spectres d'emission de neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Giacri-Mauborgne, M.L

    2005-11-15

    This thesis work consists in two parts. The first part is the description of the creation of a photonuclear activation file which will be used to calculated photonuclear activation. To build this file we have used different data sources: evaluations but also calculations done using several cross sections codes (HMS-ALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at the ELSA accelerator facility. To that purpose, we have developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. Finally, we have measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. The experiment has allowed us to improve the value of {nu}{sub p}-bar with an absolute uncertainty below 7%, we propose {nu}{sub p}-bar = (3.03 {+-} 0.02) n/100 fissions, and to correct the Nikotin's parameters for the six group representation. Particularly, we have improved the data concerning the sixth group by taking into account results from different irradiation times.

  1. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    CERN Document Server

    Arnold, O; Borreguero, J M; Buts, A; Campbell, S I; Chapon, L; Doucet, M; Draper, N; Leal, R Ferraz; Gigg, M A; Lynch, V E; Markvardsen, A; Mikkelson, D J; Mikkelson, R L; Miller, R; Palmen, K; Parker, P; Passos, G; Perring, T G; Peterson, P F; Ren, S; Reuter, M A; Savici, A T; Taylor, J W; Taylor, R J; Tolchenov, R; Zhou, W; Zikovsky, J

    2014-01-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.

  2. Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, O. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Bilheux, J.C.; Borreguero, J.M. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Buts, A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Campbell, S.I. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chapon, L. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Institut Laue-Langevin, Grenoble (France); Doucet, M. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Draper, N. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Ferraz Leal, R. [Institut Laue-Langevin, Grenoble (France); Gigg, M.A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Lynch, V.E. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Markvardsen, A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Mikkelson, D.J.; Mikkelson, R.L. [University of Wisconsin-Stout, Menomonie, WI (United States); Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Miller, R. [Computing and Computational Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Palmen, K.; Parker, P.; Passos, G.; Perring, T.G. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Peterson, P.F. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-11-11

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.

  3. A Preliminary Assessment of Radiation and Air Activation for the Neutron Science Facility in RAON

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. C.; Lee, C. W.; Lee, E. J.; Lee, Y. O. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. C. [Institute for Basic Science, Daejeon (Korea, Republic of)

    2015-05-15

    The works will stay in the DAQ room during an operation for about 1 month. In order to test the characteristics of the detector, the workers are also possible to access the TOF hall after a shutdown. Therefore, the shielding analysis of the NSF is required to meet the above purpose. In view of this, we performed the calculation of the shielding concrete thickness required for a target room by using MCNPX code with a neutron source obtained from Institute for Basic Science (IBS). In addition, the dose distribution and air activation for the entire space in NSF were evaluated using MCNPX and SP-FISPACT 2010 codes. We have performed the shielding calculation with the neutron source produced from the C(d,n) reactions. The concrete thickness was evaluated for all directions of the target room, and it was confirmed by performing the calculation of dose distribution to the entire space. However, the dose rate for the beam line was high. The radioactivity of radionuclides at TOF hall do not exceeded the air concentration and release limits.

  4. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design%Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    张斌; 陈义学; 王伟金; 杨寿海; 吴军; 殷雯; 梁天骄; 贾学军

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan, Guangdong, China. Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled

  5. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  6. Neutron-Activated Gamma-Emission: Technology Review

    Science.gov (United States)

    2012-01-01

    defined in MCNPX to simulate the -spectra collected by NaI detectors (cell 6) from target (cell 3...numerical simulation. Safety issues are of great interest to users and are calculated in section 6. Ideas to increase target distance and reduce...neutron emission, target scatter, and gamma collection processes were simulated using MCNPX . MCNPX is a legacy code from Los Alamos National

  7. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    chemical analysis to evaluate the PorosityN(ox thermal neutron porosity linked to neutron capture (Schlumberger's Nuclear Parameter Code, SNUPAR. A calibration curve (Fig. 1 between the (Sigmamac macroscopic capture cross-section and the PorosityN neutron porosity enabled us to determine the PorosityN(ox neutron capture porosity for all samples. The macroscopic capture cross-section of the Beauvoir granite, compared to other rocks (Table 2, is very high, about 86 cu. For the Beauvoir granite, the neutron capture porosity was estimated at about 2. 7% (Table 4. The lithium, with Li2O contents varying from 0. 3 to 1. 7%, is the one element which accounts for 85% of this effect (Table 3. Although the response of a neutron tool is not linear for low porosities (especially lower than 5% and although in some cases the neutron effect of the matrix highly depends on the hydrogen index (close imbrication of neutron slowing and capture phenomena, we restored the PorosityNR total neutron porosity of the Beauvoir granite by stacking n, PorosityN(OH- and PorosityN(ox linearly. This porosity is 9% on the average. For this granite, the PorosityNma neutron matrix effect (PorosityNma = PorosityN(OH- + PorosityN(ox is significant and accounts for 75% of the PorosityNR total neutron porosity corresponding to about 7%. This porosity thus cannot be neglected if the objective is to obtain representative water content values of the granite from neutron porosity log. This is why the second part of our project took up the problem of calibrating neutron tool for analyzing a granitic formation. For the Beauvoir granite, the neutron porosity data were obtained from standard calibration in limestone blocks. As the neutron effect of the granite matrix was not negligible, we performed our own calibration using seven granite samples with a perfectly well-known total neutron porosity (free water content and neutron matrix effect. We determined a PorosityNg granitecalibration neutron porosity. For this, the

  8. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    Science.gov (United States)

    Herreras, Y.; Lafuente, A.; Sordo, F.; Cabellos, O.; Perlado, J. M.

    2008-05-01

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  9. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    Energy Technology Data Exchange (ETDEWEB)

    Herreras, Y; Cabellos, O; Perlado, J M [Instituto de Fusion Nuclear (DENIM)/ETSII/Universidad Politecnica, Madrid (Spain); Lafuente, A; Sordo, F [Universidad Politecnica de Madrid (UPM), Madrid (Spain)], E-mail: yuri@denim.upm.es

    2008-05-15

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  10. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    Science.gov (United States)

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface.

  11. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    Science.gov (United States)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  12. Stability Analysis of Magnetised Neutron Stars - A Semi-analytic Approach

    CERN Document Server

    Herbrik, Marlene

    2015-01-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a New...

  13. 中子活化法表征酸奶与苹果中有机卤化物%Study of organohalogens in yogurt and apple by neutron activation analysis and related techniques

    Institute of Scientific and Technical Information of China (English)

    张鸿; 柴之芳; 孙慧斌

    2008-01-01

    利用仪器中子活化分析、气相色谱和化学分离相结合的方法,研究随机采自北京、深圳超市的酸奶(20个品牌)和苹果(9种)中总卤素、可萃取有机卤素、可萃取持久性有机卤素和可鉴别持久性有机氯.结果显示,Cl、Br和I的INAA探测极限分别为50 ng、8 ng和3.5 ng.酸奶中可萃取有机氯占总氯含量的0.005%~0.043%,其中约24%为耐浓硫酸的可萃取持久性有机氯,可鉴别有机氯占总EPOCl的0.7%~13.1%;苹果中相应比例分别为1.6%~5.1%、34%和0.5%~6.2%,表明酸奶与苹果中的氯化物主要为极性水溶性化合物,EOCl主要为酸溶或酸不稳定氯化物,大部分EPOCl为现代气相色谱技术尚不能鉴别的未知化合物,仍留待人们去认识.%Twenty brands of Chinese commercial yogurt specimens and nine different kinds of apple samples collected randomly from supermarkets in Beijing and Shenzhen,China,were analyzed by instrumental neutron activation analysis (INAA) combined with gas chromatography (GC) and chemical separation methods for total halogens,extractable organohalogens (EOX),extractable persistent organohalogens (EPOX) and identified organochlorines. The INAA detection limits are 50 ng,8 ng and 3.5 ng for Cl,Br and I,respectively. The extractable organochlorines (EOCl) accounted for 0.005% to 0.043% of the total chlorine in yogurt and 1.6% to 5.1% in apple.About 24% of EOCl kept undecomposed as the extractable persistent organochlorines (EPOCl) after treatment with concentrated sulfuric acid in yogurt,and 34% in apple.These results indicated that chlorine in the two selected foodstuffs mainly existed as inorganic species and non-extractable organochlorines,and most EOCl in yogurt and apple were acid-liable or acid-soluble fractions. The Ratios of identified organochlorines to total EPOCl were 0.7% to 13.1% and 0.5% to 6.2% in yogurt and apple samples,respectively,which implying that a major portion of EPOCl measured in yogurt and apple

  14. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    Science.gov (United States)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  15. High Sensitive Neutron-Detection by Using a Self-Activation of Iodine-Containing Scintillators for the Photo-Neutron Monitoring around X-ray Radiotherapy Machines

    Science.gov (United States)

    Nohtomi, Akihiro; Wakabayashi, Genichiro; Kinoshita, Hiroyuki; Honda, Soichiro; Kurihara, Ryosuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji; Nakamura, Katsumasa

    A novel method for evaluating the neutron dose-equivalent as well as neutron fluence around high-energy X-ray radiotherapy machines has been proposed and examined by using the self-activation of a CsI scintillator. Several filtering conditions were used to extract energy information of the neutron field. The shapes of neutron energy spectra were assumed to be practically unchanged at each three energy regions (thermal, epi-thermal and fast regions) for different irradiations around an X-ray linac whose acceleration potential was fixed to be a certain value. In order to know the actual neutron energy spectrum, an unfolding process was carried out for saturated activities of 128I generated inside the CsI scintillator under different filtering conditions; the response function matrix for each filtering condition was calculated by a Monte Carlo simulation. As the result, neutron dose-equivalent was estimated to be 0.14 (mSv/Gy) at 30 cm from the isocenter of linac. It has been revealed that fast neutron component dominated the total dose-equivalent.

  16. Analysis and optimization of energy resolution of neutron-TPC

    Institute of Scientific and Technical Information of China (English)

    黄孟; 李玉兰; 牛莉博; 李金; 李元景

    2015-01-01

    Neutron-TPC (nTPC) is a fast neutron spectrometer based on GEM-TPC (Gas Electron Multiplier-Time Pro-jection Chamber) and expected to be used in nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. By measuring the recoiled proton energy and slopes of the proton tracks, the incident neutron energy can be deduced. It has higher n/γseparation ability and higher detection efficiency than conventional neutron spectrometers. In this paper, neutron energy resolution of nTPC is studied using the analytical method. It is found that the neutron energy resolution is determined by 1) the proton energy resolu-tion (σEp/Ep), and 2) standard deviation of slopes of the proton tracks caused by multiple Coulomb scattering (σk(scat ering)) and by the track fitting accuracy (σk(fit)). Suggestions are made for optimizing energy resolution of nTPC. Proper choices of the cut parameters of reconstructed proton scattering angles (θcut), the number of fitting track points (N ), and the working gas help to improve the neutron energy resolution.

  17. Neutron cross-sections database for amino acids and proteins analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin, E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br, E-mail: Chaffin@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Helio F. da, E-mail: hrocha@gbl.com.br [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria

    2015-07-01

    Biological materials may be studied using neutrons as an unconventional tool of analysis. Dynamics and structures data can be obtained for amino acids, protein and others cellular components by neutron cross sections determinations especially for applications in nuclear purity and conformation analysis. The instrument used for this is the crystal spectrometer of the Instituto de Engenharia Nuclear (IEN-CNEN-RJ), the only one in Latin America that uses neutrons for this type of analyzes and it is installed in one of the reactor Argonauta irradiation channels. The experimentally values obtained are compared with calculated values using literature data with a rigorous analysis of the chemical composition, conformation and molecular structure analysis of the materials. A neutron cross-section database was constructed to assist in determining molecular dynamic, structure and formulae of biological materials. The database contains neutron cross-sections values of all amino acids, chemical elements, molecular groups, auxiliary radicals, as well as values of constants and parameters necessary for the analysis. An unprecedented analytical procedure was developed using the neutron cross section parceling and grouping method for data manipulation. This database is a result of measurements obtained from twenty amino acids that were provided by different manufactories and are used in oral administration in hospital individuals for nutritional applications. It was also constructed a small data file of compounds with different molecular groups including carbon, nitrogen, sulfur and oxygen, all linked to hydrogen atoms. A review of global and national scene in the acquisition of neutron cross sections data, the formation of libraries and the application of neutrons for analyzing biological materials is presented. This database has further application in protein analysis and the neutron cross-section from the insulin was estimated. (author)

  18. Characterization of the Energy Spectrum at the Indiana University Neutron Source

    Science.gov (United States)

    2011-03-01

    60 PGNAA Prompt Gamma Neutron Activation Analysis . . . . . . . . . . . . . . . . . 60 DGNAA...broken into a number of sub-categories. Prompt Gamma Neutron Activation Analysis (PGNAA) 60 Table 6. Materials selected for use in the main experimental...Delay Gamma Neutron Activation Analysis . . . . . . . . . . . . . . . . . . . 61 TSCA Timing Single-Channel Analyzer

  19. Distributed data processing and analysis environment for neutron scattering experiments at CSNS

    Science.gov (United States)

    Tian, H. L.; Zhang, J. R.; Yan, L. L.; Tang, M.; Hu, L.; Zhao, D. X.; Qiu, Y. X.; Zhang, H. Y.; Zhuang, J.; Du, R.

    2016-10-01

    China Spallation Neutron Source (CSNS) is the first high-performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands domestically and overseas. A new distributed data processing and analysis environment has been developed, which has generic functionalities for neutron scattering experiments. The environment consists of three parts, an object-oriented data processing framework adopting a data centered architecture, a communication and data caching system based on the C/S paradigm, and data analysis and visualization software providing the 2D/3D experimental data display. This environment will be widely applied in CSNS for live data processing.

  20. Overview of Neutron Beta Correlation Parameter Analysis from the UCNA Experiment

    Science.gov (United States)

    Sun, Xuan; UCNA Collaboration

    2017-01-01

    The UCNA experiment, operated at the Ultracold Neutron Facility at the Los Alamos Neutron Science Center, uses ultracold neutrons (UCN) to measure the free-neutron β-decay correlation parameter, A, between the neutron spin direction and β momentum direction. Measurements of A presently provide the most precise value of gA /gV , the ratio of the axial-vector and vector coupling constants of the nucleon weak interaction. The UCNA experiment has previously analyzed and reported on a measurement of A from a 2010 dataset. Additional datasets were also taken in 2011-2012 and 2012-2013. Improvements in energy calibrations, polarimetry, and statistics are expected to provide a more precise measurement of A from the later datasets. We provide a review of the experimental apparatus and give an updated overview on the state of the 2011-2012 and 2012-2013 dataset analysis with respect to the A measurement.

  1. Verification analysis of thermoluminescent albedo neutron dosimetry at MOX fuel facilities.

    Science.gov (United States)

    Nakagawa, Takahiro; Takada, Chie; Tsujimura, Norio

    2011-07-01

    Radiation workers engaging in the fabrication of MOX fuels at the Japan Atomic Energy Agency-Nuclear Fuel Cycle Engineering Laboratories are exposed to neutrons. Accordingly, thermoluminescent albedo dosemeters (TLADs) are used for individual neutron dosimetry. Because dose estimation using TLADs is susceptible to variation of the neutron energy spectrum, the authors have provided TLADs incorporating solid-state nuclear tracks detectors (SSNTDs) to selected workers who are routinely exposed to neutrons and have continued analysis of the relationship between the SSNTD and the TLAD (T/R(f)) over the past 6 y from 2004 to 2009. Consequently, the T/R(f) value in each year was less than the data during 1991-1993, although the neutron spectra had not changed since then. This decrease of the T/R(f) implies that the ratio of operation time nearby gloveboxes and the total work time has decreased.

  2. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  3. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%.......A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  4. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  5. First principle active neutron coincidence counting measurements of uranium oxide

    Science.gov (United States)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  6. Nuclear charge and neutron radii and nuclear matter: trend analysis

    CERN Document Server

    Reinhard, P -G

    2016-01-01

    Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. In this work, by studying the dependence of charge and neutron radii, and neutron skin, on nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of different optimization protocols targeting specific nuclear properties. By performing the Monte-Carlo sampling of reasonable functionals around the optimal parametrization, we study correlations between nuclear matter paramaters and observables characterizing charge and neutron distributions. We demonstrate the existence of the strong converse relation between the nuclear charge radii and the saturation density of symmetric nuclear matter and also between the n...

  7. Measurement of the Ratio of High Energy Neutron in the Pulse Nuclear Reactor

    Institute of Scientific and Technical Information of China (English)

    MAO; Guo-shu; DING; You-qian; YANG; Lei; MA; Peng; YU; Zhen-hua

    2012-01-01

    <正>In the production of radioisotopes and neutron activation analysis, the fast neutron densities are very important to estimate the yields of the radioisotopes. In order to determine the fast neutron flux ratio, different foils are used to measure the thermal neutron flux and the fast neutron flux. In this paper 238U was used as only a monitor to measure the ratio of high energy neutron (>6 MeV). By measuring the

  8. Modern Techniques for Inelastic Thermal Neutron Scattering Analysis

    Science.gov (United States)

    Hawari, A. I.

    2014-04-01

    A predictive approach based on ab initio quantum mechanics and/or classical molecular dynamics simulations has been formulated to calculate the scattering law, S(κ⇀,ω), and the thermal neutron scattering cross sections of materials. In principle, these atomistic methods make it possible to generate the inelastic thermal neutron scattering cross sections of any material and to accurately reflect the physical conditions of the medium (i.e, temperature, pressure, etc.). In addition, the generated cross sections are free from assumptions such as the incoherent approximation of scattering theory and, in the case of solids, crystalline perfection. As a result, new and improved thermal neutron scattering data libraries have been generated for a variety of materials. Among these are materials used for reactor moderators and reflectors such as reactor-grade graphite and beryllium (including the coherent inelastic scattering component), silicon carbide, cold neutron media such as solid methane, and neutron beam filters such as sapphire and bismuth. Consequently, it is anticipated that the above approach will play a major role in providing the nuclear science and engineering community with its needs of thermal neutron scattering data especially when considering new materials where experimental information may be scarce or nonexistent.

  9. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  10. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    Science.gov (United States)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  11. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Bleuel D.L.

    2013-11-01

    Full Text Available Neutron yields at the National Ignition Facility (NIF are measured with a suite of diagnostics, including activation of ∼20–200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM, 25–50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n′ reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  12. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.

    Science.gov (United States)

    Kinashi, Y; Sakurai, Y; Masunaga, S; Suzuki, M; Takagaki, M; Akaboshi, M; Ono, K

    2000-09-01

    Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.

  13. Improved neutron kinetics for coupled three-dimensional boiling water reactor analysis

    Science.gov (United States)

    Akdeniz, Bedirhan

    The need for a more accurate method of modelling cross section variations for off-nominal core conditions is becoming an important issue with the increased use of coupled three-dimensional (3-D) thermal-hydraulics/neutronics simulations. In traditional reactor core analysis, thermal reactor core calculations are customarily performed with 3-D two-group nodal diffusion methods. Steady-state multi-group transport theory calculations on heterogen