Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
Analysis of general power counting rules in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)
2016-09-15
We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)
Beyond generalized Proca theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the maximally symmetric space-time, we perform the Hessian and Hamiltonian analysis and show the presence of a second-class constraint that removes the would-be ghost associated with the temporal component of the vector field. Furthermore, we study the behavior of linear perturbations on top of the homogeneous and isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories. Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar per...
Generalization Rough Set Theory
Institute of Scientific and Technical Information of China (English)
XIAO Di; ZHANG Jun-feng; HU Shou-song
2008-01-01
In order to avoid the discretization in the classical rough set theory, a generlization rough set theory is proposed.At first, the degree of general importance of an attribute and attribute subsets are presented.Then, depending on the degree of general importance of attribute, the space distance can be measured with weighted method.At last, a generalization rough set theory based on the general near neighborhood relation is proposed.The proposed theory partitions the universe into the tolerant modules, and forms lower approximation and upper approximation of the set under general near neighborhood relationship, which avoids the discretization in Pawlak's rough set theory.
Generalized Higher Gauge Theory
Ritter, Patricia; Schmidt, Lennart
2015-01-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Formal Kinematic Analysis of a General 6R Manipulator Using the Screw Theory
Directory of Open Access Journals (Sweden)
Aixuan Wu
2015-01-01
Full Text Available Kinematic analysis is a significant method when planning the trajectory of robotic manipulators. The main idea behind kinematic analysis is to study the motion of the robot based on the geometrical relationship of the robotic links and their joints, such as the Denavit-Hartenberg parameters. Given the continuous nature of kinematic analysis and the shortcoming of the traditional verification methods, we propose to use high-order-logic theorem proving for conducting formal kinematic analysis. Based on the screw theory in HOL4, which is newly developed by our research institute, we utilize the geometrical theory of HOL4 to develop formal reasoning support for the kinematic analysis of a robotic manipulator. To illustrate the usefulness of our fundamental formalization, we present the formal kinematic analysis of a general 6R manipulator.
Generalized etale cohomology theories
Jardine, John F
1997-01-01
A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Beyond generalized Proca theories
Directory of Open Access Journals (Sweden)
Lavinia Heisenberg
2016-09-01
Full Text Available We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar–tensor Horndeski theories to Gleyzes–Langlois–Piazza–Vernizzi (GLPV theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes. Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Beyond generalized Proca theories
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
BOUNDED RATIONALITY: AN ANALYSIS OF TEACHING MANUALS OF MANAGEMENT GENERAL THEORY
Directory of Open Access Journals (Sweden)
Daniela Teixeira Dias
2016-08-01
Full Text Available The objective of this article was to analyze how the concept of bounded rationality has been treated in the educational manuals of General Theory of Management, with the objective to analyze its quality, in terms of quality and complexity. Therefore, three educational manuals provided by the Central Library of the Alfa Federal University were used: “General Theory of Administration” authored by Motta and Vasconcelos (Manual A; “Introduction to Management” by Chiavenato (Manual B, and “Management: Theory and Processes” by Caravantes, Caravantes, and Kloeckener (Manual C. These were observed from the content analysis in four dimensions defined a priori: delimitation of the approach and quality of the references; historical-concrete dimension; relationship dimension; and theoretical dimension. The results showed that all manuals presented considerations about the bounded rationality assumption and made reference to Simon and Barnard, although they have not discussed their work and their contribution more widely. Manual A was the most complete in the axes analysis herein. Manual B turned to a summarized and synthetic theoretical discussion. Whereas C Manual defined and conceptualized bounded rationality and was the only one to describe the types of rationality presented by Simon.
A Modified Model of Failure Mode and Effects Analysis Based on Generalized Evidence Theory
Directory of Open Access Journals (Sweden)
Deyun Zhou
2016-01-01
Full Text Available Due to the incomplete knowledge, how to handle the uncertain risk factors in failure mode and effects analysis (FMEA is still an open issue. This paper proposes a new generalized evidential FMEA (GEFMEA model to handle the uncertain risk factor, which may not be included in the conventional FMEA model. In GEFMEA, not only the conventional risk factors, the occurrence, severity, and detectability of the failure mode, but also the other incomplete risk factors are taken into consideration. In addition, the relative importance among all these risk factors is well addressed in the proposed method. GEFMEA is based on the generalized evidence theory, which is efficient in handling incomplete information in the open world. The efficiency and some merit of the proposed method are verified by the numerical example and a real case study on aircraft turbine rotor blades.
General Theories of Regulation
Hertog, J.A. den
1999-01-01
This chapter makes a distinction between three types of theories of regulation: public interest theories, the Chicago theory of regulation and the public choice theories. The Chicago theory is mainly directed at the explanation of economic regulation; public interest theories and public choice theor
Energy Technology Data Exchange (ETDEWEB)
Chung, Moses; Qin, Hong; Gilson, Erik; Davidson, Ronald C.
2013-01-01
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels.
Zemanian, AH
2010-01-01
This well-known text provides a relatively elementary introduction to distribution theory and describes generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. Suitable for a graduate course for engineering and science students or for an advanced undergraduate course for mathematics majors. 1965 edition.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas
2011-07-01
Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Heinson, Graham
2016-12-01
A method using modified attenuation factor function is suggested to determine the parameters of the generalized Zener model approximating the attenuation factor function. This method is applied to constitute the poroviscoelastic model based on the effective Biot theory which considers the attenuative solid frame of reservoir. In the poroviscoelastic model, frequency-dependent bulk modulus and shear modulus of solid frame are represented by generalized Zener models. As an application, the borehole logging dispersion equations from Biot theory are extended to include effects from the intrinsic body attenuation in formation media in full-frequency range. The velocity dispersions of borehole guided waves are calculated to investigate the influence from attenuative bore fluid, attenuative solid frame of the formation and impermeable bore wall.
Generalized Heisenberg theory of turbulence
Uberoi, M. S.; Narain, J. P.
1974-01-01
Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.
Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis
Hurford, Amy; Ellison, Amy R.
2017-01-01
Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists—infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish–macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289257
Institute of Scientific and Technical Information of China (English)
Huang Xiujie; Zhang Jixun; Yang Ling; Yang Shikou; Wang Xingli
2016-01-01
The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range, the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.
Generalized quasi-dilaton theory
De Felice, Antonio; Mukohyama, Shinji
2013-01-01
Recently the first example of a unitary theory of Lorentz-invariant massive gravity allowing for stable self-accelerating de Sitter solutions was found, extending the quasidilaton theory. In this paper we further generalize this new action for the quasidilaton field by introducing general Lagrangian terms which are consistent with the quasidilaton symmetry while leading to second order equations of motion. We find that the structure of the theory, compared to the simplest stable example, does not change on introducing these new terms.
A general methodology for mobility analysis of mechanisms based on constraint screw theory
Institute of Scientific and Technical Information of China (English)
HUANG Zhen; LIU JingFang; ZENG DaXing
2009-01-01
It is well known that the traditional Grubler-Kutzbach formula fails to calculate the mobility of some classical mechanisms or many modern parallel robots, and this situation seriously hampers mechani-cal innovation. To seek an efficient and universal method for mobility calculation has been a heated topic in the sphere of mechanism. The modified Grubler-Kutzbach criterion proposed by us achieved success in calculating the mobility of a lot of highly complicated mechanisms, especially the mobility of all recent parallel mechanisms listed by Gogu, and the Bennett mechanism known for its particular difficulty. With wide applications of the criterion, a systematic methodology has recently formed. This paper systematically presents the methodology based on the screw theory for the first time and ana-lyzes six representative puzzling mechanisms. In addition, the methodology is convenient for judgment of the instantaneous or full-cycle mobility, and has become an effective and general method of great scientific value and practical significance. In the first half, this paper introduces the basic screw theory,then it presents the effective methodology formed within this decade. The second half of this paperpresents how to apply the methodology by analyzing the mobility of several puzzling mechanisms.Finally, this paper contrasts and analyzes some different methods and interprets the essential reason for validity of our methodology.
A general methodology for mobility analysis of mechanisms based on constraint screw theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
It is well known that the traditional Grübler-Kutzbach formula fails to calculate the mobility of some classical mechanisms or many modern parallel robots,and this situation seriously hampers mechani-cal innovation.To seek an efficient and universal method for mobility calculation has been a heated topic in the sphere of mechanism.The modified Grübler-Kutzbach criterion proposed by us achieved success in calculating the mobility of a lot of highly complicated mechanisms,especially the mobility of all recent parallel mechanisms listed by Gogu,and the Bennett mechanism known for its particular difficulty.With wide applications of the criterion,a systematic methodology has recently formed.This paper systematically presents the methodology based on the screw theory for the first time and ana-lyzes six representative puzzling mechanisms.In addition,the methodology is convenient for judgment of the instantaneous or full-cycle mobility,and has become an effective and general method of great scientific value and practical significance.In the first half,this paper introduces the basic screw theory,then it presents the effective methodology formed within this decade.The second half of this paper presents how to apply the methodology by analyzing the mobility of several puzzling mechanisms.Finally,this paper contrasts and analyzes some different methods and interprets the essential reason for validity of our methodology.
Generalized Lorenz-Mie Theories
Gouesbet, Gérard
2011-01-01
The Lorenz-Mie theory, describing the interaction between a homogeneous sphere and an electromagnetic plane wave, is likely to be one of the most famous theories in light scattering. But, with the advent of lasers and their increasing development in various fields, it has become too old-fashioned to meet most of the modern requisites. The book deals with generalized Lorenz-Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam, relying on the method of separation of variables. A particular emphasis is stressed on the case of the homogeneous sphere but other regular particles are considered too. An extensive discussion of the methods available to the evaluation of beam shape coefficients describing the illuminating beam is provided, and several methods are discussed. Applications concern many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances, or mechanical effects of light for optical trapping, optical twe...
Generalized SU(2) Proca Theory
Allys, Erwan; Rodriguez, Yeinzon
2016-01-01
Following previous works on generalized Abelian Proca theory, also called vector galileon, we investigate the massive extension of a SU(2) gauge theory, i.e. the generalized SU(2) Proca model, which could be dubbed non-Abelian vector galileon. This particular symmetry group permits fruitful applications in cosmology such as inflation driven by gauge fields. Our approach consists in building in a exhaustive way all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after identifying by group theoretical considerations all the independent Lagrangians which can be written at these orders, we consider the only linear combinations propagating three degrees of freedom and having healthy dynamics for their longitudinal mode, i.e. whose pure St\\"uckelberg contribution turns into the SU(2) multi-galileon dynamics. Finally, and after having considered the curved space-time expansion of these Lagrangians, we discuss the form of the theory at all subsequent orders.
Solitons in generalized Galileon theories
Carrillo González, Mariana; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2016-12-01
We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti-)de Sitter Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Solitons in generalized galileon theories
Carrillo-Gonzalez, Mariana; Solomon, Adam R; Trodden, Mark
2016-01-01
We consider the existence and stability of solitons in generalized galileons, scalar field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations, or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (A)dS galileons. For the case of DBI and conformal galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
General Systems Theory and Counterplan Competition.
Madsen, Arnie
1989-01-01
Discusses the trend in academic debate on policy questions toward a wide acceptance of counterplans, encouraging combinations of proposals which appear at face value able to coexist but upon deeper analysis are incompatible. Argues in opposition to this trend by applying concepts from general systems theory to competition. (KEH)
Schumpeter's general theory of social evolution
DEFF Research Database (Denmark)
Andersen, Esben Sloth
The recent neo-Schumpeterian and evolutionary economics appears to cover a much smaller range of topics than Joseph Schumpeter confronted. Thus, it has hardly been recognised that Schumpeter wanted to develop a general theory that served the analysis of evolution in any sector of social life as w...
Simple Recursion Relations for General Field Theories
Cheung, Clifford; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-...
A Contextualised General Systems Theory
Directory of Open Access Journals (Sweden)
Kirsty Kitto
2014-10-01
Full Text Available A system is something that can be separated from its surrounds, but this definition leaves much scope for refinement. Starting with the notion of measurement, we explore increasingly contextual system behaviour and identify three major forms of contextuality that might be exhibited by a system: (1 between components; (2 between system and experimental method; and (3 between a system and its environment. Quantum theory is shown to provide a highly useful formalism from which all three forms of contextuality can be analysed, offering numerous tests for contextual behaviour, as well as modelling possibilities for systems that do indeed display it. I conclude with the introduction of a contextualised general systems theory based on an extension of this formalism
Gestalt Therapy and General System Theory.
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
General Theory of Algebraic Equations
Bezout, Etienne
2008-01-01
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stat
Generalized Lorenz-Mie theories
Gouesbet, Gérard
2017-01-01
This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content.
General framework for transfer path analysis: History, theory and classification of techniques
Van der Seijs, M.V.; De Klerk, D.; Rixen, D.J.
2015-01-01
Transfer Path Analysis (TPA) designates the family of test-based methodologies to study the transmission of mechanical vibrations. Since the first adaptation of electric network analogies in the field of mechanical engineering a century ago, a multitude of TPA methods have emerged and found their wa
Cosmology in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Cosmology in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable ...
Stability and Space Phase Analysis in f(R) theory with Generalized Exponential model
Boko, R D; Tossa, J
2016-01-01
We have studied in this paper, the stability of dynamical system in $f(R)$ gravity. We have considered the $f(R)$ $\\gamma$-gravity and explored its dynamical analysis. We found six critical points among which only one describes an universe fulled of both matter and dominated dark energy. It's shown that these critical points presents specific phase spaces described by the corresponding fluids. Furthermore, we've investigated the stability conditions of these critical points and find that theses conditions are dependent of the model parameters. We also study the stability of a new power-law $f_\\ast(R)$ model with de Sitter and power law solutions.
REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY
Directory of Open Access Journals (Sweden)
Anda Laura Lungu Petruescu
2013-06-01
Full Text Available Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal interpretation; the interpretation of the correlations and dependencies among indicators- normative interpretation; the interpretation of social and communicational processes in economic organizations- social and communicational interpretation; the interpretation of the community status of companies- transsocial interpretation; the interpretation of the purposes of human activities and their coherency – teleological interpretation; the interpretation of equilibrium/ disequilibrium from inside the economic systems- optimality interpretation. In order to respond to such demands, rigor, pragmatism, praxiology and contextual connectors are required. In order to progress, the economic science must improve its language, both its syntax and its semantics. The clarity of exposure requires a language clarity and the scientific theory progress asks for the need of hypotheses in the building of the theories. The switch from the common language to the symbolic one means the switch from ambiguity to rigor and rationality, that is order in thinking. But order implies structure, which implies formalization. Our paper should be a plea for these requirements, requirements which should be fulfilled by a modern interpretation theory.
Toward a Holographic Theory for General Spacetimes
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2016-01-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct sum and "spacetime equals entanglement" structure. The former preserves a naive relationship b...
Generalized Liquid Film Atomization Theory
Institute of Scientific and Technical Information of China (English)
HeraldoS.Couto; DemetrioBastos－Netto
2000-01-01
The increase of the fuel burning area required by most practical combustion processes in order to guarantee the minimum energy density rate release for their start up and operation is normally achieved by the proper choice among several existing types of atomizers.For instance.impinging and multi-impinging jets atomizers are used in rocket combustion chambers.while splash-plate atomizers find their use when wall film cooling is required.Pressure swirl atomizers,either of simplex or duplex kind,along with Y-jet or SPider Jet atomizers are used in industrial applications and in turbine combustion chambers.Notice.however,that all the types of atomizing devices listed above have one point in common:they are of pre-filming kind.i.e.,befor the droplet spray is generated,a liquid film is formed.This liquid film is broken into unstable ligaments which contract under the action of surface tension forming the droplets.Once the film thickness is estimated.the droplets'SMD(Sauter Mean Diameter)can be calculated.yielding a crucial prameter for the combustion chamber design.However,although this mechanism of droplet fromation has been under study for several decades.most of the available results.are based upon experimental data.valid for a special type of atomizer under the given sepcific conditions only.This work offers a generalized theory for theoretically estimating the SMD of sprays generated by liquid pre-filming atomizers in gereral.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
General Systems Theory and Instructional Design.
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Kaluza's theory in generalized coordinates
García-Perciante, A L; García-Colin, L S; Garcia-Perciante, Ana Laura; Sandoval-Villalbazo, Alfredo
2001-01-01
Maxwell's equations can be obtained in generalized coordinates by considering the electromagnetic field as an external agent. The work here presented shows how to obtain the electrodynamics for a charged particle in generalized coordinates eliminating the concept of external force. Based on Kaluza's formalism, the one here presented extends the 5x5 metric into a 6x6 space-time giving enough room to include magnetic monopoles in a very natural way.
A Contextualised General Systems Theory
Kirsty Kitto
2014-01-01
A system is something that can be separated from its surrounds, but this definition leaves much scope for refinement. Starting with the notion of measurement, we explore increasingly contextual system behaviour and identify three major forms of contextuality that might be exhibited by a system: (1) between components; (2) between system and experimental method; and (3) between a system and its environment. Quantum theory is shown to provide a highly useful formalism from which all three forms...
A general theory of rotorcraft trim
Directory of Open Access Journals (Sweden)
David A. Peters
1996-01-01
Full Text Available In this paper we offer a general theory of rotorcraft trim. The theory is set in the context of control theory. It allows for completely arbitrary trim controls and trim settings for multi-rotor aircraft with tests to ensure that a system is trimmable. In addition, the theory allows for “optimal trim” in which some variable is minimized or maximized rather than set to a specified value. The theory shows that sequential trim cannot work for free flight. The theory is not tied to any particular trim algorithm; but, in this paper, it is exercised with periodic shooting to show how free-flying rotorcraft can be trimmed in a variety of ways (zero yaw, zero pitch, zero roll, minimum power, etc. by use of the general theory. The paper also discusses applications to harmonic balance and auto-pilot trim techniques.
Generalizing Boolean Satisfiability II: Theory
Dixon, H E; Luks, E M; Parkes, A J; 10.1613/jair.1555
2011-01-01
This is the second of three planned papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal is to define a representation in which this structure is apparent and can easily be exploited to improve computational performance. This paper presents the theoretical basis for the ideas underlying ZAP, arguing that existing ideas in this area exploit a single, recurring structure in that multiple database axioms can be obtained by operating on a single axiom using a subgroup of the group of permutations on the literals in the problem. We argue that the group structure precisely captures the general structure at which earlier approaches hinted, and give numerous examples of its use. We go on to extend the Davis-Putnam-Logemann-...
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Teaching Evolutionary Theory as General Education.
Todd, Paul
1984-01-01
Provides a rationale for including evolution as part of a college general education curriculum, discussing the content of evolutionary theory, instructional principles, Darwin's contributions, evolution and religion, and the relationship of evolution with current events. (DMM)
General degeneracy in density functional perturbation theory
Palenik, Mark C
2016-01-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. We develop the fully general degenerate perturbation theory for DFT without assuming that the degeneracy is required by symmetry. The resulting methodology is applied to the iron atom ground state in order to demonstrate the effects of degeneracy that appears both due to symmetry requirements and accidentally, between different representations of the symmetry group.
Superfield quantization of general gauge theories
Lavrov, P M
1995-01-01
A superfield version on superspace (x^\\mu,\\theta^a) is proposed for the Sp(2)-- covariant Lagrangian quantization of general gauge theories. The BRST- and antiBRST- transformations are realized on superfields as supertranslations in the \\theta^a-- directions. A new (geometric) interpretation of the Ward identities in the quantum gauge theory is given.
BRST symmetry in the general gauge theories
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
Institute of Scientific and Technical Information of China (English)
ZHANG; Junfeng; QI; Tao; LI; Zhengguo
2005-01-01
Based on 2D Janbu's generalized procedure of slices (GPS), a new three-dimensional slope stability analysis method has been developed, in which all forces acting on the discretized blocks in static equilibrium are taken into account in all three directions. In this method, the potential sliding mass is divided into rigid blocks and each block is analyzed separately by using both geometric relations and static equilibrium formulations. By introducing force boundary conditions, the stability problem is determined statically. The proposed method can be applied to analyze the stability of slopes with various types of potential sliding surfaces, complicated geological boundaries and stratifications, water pressure, and earthquake loading. This method can also be helpful in determining individual factor of safety and local potential sliding direction for each block. As an extension of 2D Janbu's method, the present method has both the advantages and disadvantages of Janbu's generalized procedure of slices.
A nonlinear theory of generalized functions
1990-01-01
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.
2013-01-01
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecu...... and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points....... in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime...... and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...
Sturmians and generalized sturmians in quantum theory
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb Stur...
Toward A Practical General Systems Methodological Theory
Nagib Callaos; Belkis Sánchez de Callaos
2003-01-01
Our main purpose in this paper is to describe the way in which we have been relating General System Theory (GST) to practice and to the design of a General Systems Methodology (GSM). Our first step was to apply GST to design a methodology for software development. Then, in a second step, by means of the experience/knowledge learned from applying the methodology to developing specific information systems, a continuous designing and re-designing process started, which simultaneously generalized...
A historical approach to the general theory of systems
Directory of Open Access Journals (Sweden)
Esther María Pino Guzmán
2015-01-01
Full Text Available The paper is intended to examine the epistemological development of the theory or systems, focus the change of its scientific paradigm and points out its main implications for the development of research methodology and design. The theoretical methods being used makes possible to go deeper into the analysis of regularities and essential qualities in the construction and development of the scientific theory. The system approach is one of the most frequently used method and the one of further reaching effect in Pedagogy. The system approach or systemic thinking is a requirement for the general direction of pedagogy problem studies. This paper explores the ways of interconnecting the theory of systems to the theory of complexity in the field of pedagogy. The findings include a historical approach to the theory of systems up to the spring up of the theory of complexity. Key words: general theory of systems, interdisciplinary relations, complexity.
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny;
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...
A general theory of linear cosmological perturbations: bimetric theories
Lagos, Macarena
2016-01-01
We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.
A theory of generalized Bloch oscillations.
Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten
2016-04-20
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
The general theory of relativity a mathematical exposition
Das, Anadijiban
2012-01-01
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: • tensor analysis • the special theory of relativity • the general theory of relativity and Einstein’s field equations • spherically symmetric solutions and experimental confirmations • static and stationary space-time domains • black holes • cosmological models • algebraic classifications and the Newman-Penrose equations • the coupled Einstein-Maxwell-Klein-Gordon equations • appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Irelan...
JIT supply chain; an investigation through general system theory
Directory of Open Access Journals (Sweden)
O P Mishra
2013-03-01
Full Text Available This paper explains theoretical approach of the four theories of General system Theory (GST developed by Yourdon (1989 [Yourdon, E. (1989. Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007 [Caddy I.N., & Helou, M.M. (2007. Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–327.] in field of supply chain and management. JIT philosophy in core activities of supply chain i.e. procurement, production processes, and logistics are discussed through general system theory. The growing structure of the supply chain poses the implication restrictions and requires a heavy support system, many times a compromise is done while implementing JIT. The study would be useful to understand the general trends generated naturally regarding the adoption of the JIT philosophy in the supply chain.
General Systems Theory and Instructional Systems Design.
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
Educational Interpretations of General Systems Theory.
Hug, William E.; King, James E.
This chapter discusses General Systems Theory as it applies to education, classrooms, innovations, and instructional design. The principles of equifinality, open and closed systems, the individual as the key system, hierarchical structures, optimization, stability, cooperation, and competition are discussed, and their relationship to instructional…
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse...
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
2006-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. At zero temperature and zero frequency...
General Relativity As an Aether Theory
Dupre, Maurice J
2010-01-01
Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shall use a combination of Lorentz's and Kelvin's conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvin's aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
Bitopological spaces theory, relations with generalized algebraic structures and applications
Dvalishvili, Badri
2005-01-01
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Relativity the special and the general theory
Einstein, Albert
2015-01-01
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...
Eleven theses of general systems theory (GST)
Energy Technology Data Exchange (ETDEWEB)
Waelchli, F. [Defense Systems Management College, Fort Belvoir, VA (United States)
1992-12-31
This paper chronicles an effort to distill and order (for purposes of discussion and elaboration) frequently mentioned and significant ideas encountered in the literature of General Systems theory (GST). The product is a set of eleven theses, representing the author`s selection and collation of seminal and recurrent GST themes. The author argues that attention to theory could aid the effort to develop practical applications of systems thinking. (Remember that a thesis is a statement or assertion, offered originally without proof, as the basis for an argument, discussion, or empirical test). 10 refs.
The general principles of quantum theory
Temple, George
2014-01-01
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theor
Epistasis analysis using information theory.
Moore, Jason H; Hu, Ting
2015-01-01
Here we introduce entropy-based measures derived from information theory for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the methods and highlight some of the modifications that have greatly improved its power for genetic analysis. We end with a few published studies of complex human diseases that have used these measures.
Anisotropic generalized Procrustes analysis
Bennani Dosse, Mohammed; Kiers, Henk A.L.; Ten Berge, Jos M.F.
2011-01-01
Generalized Procrustes analysis is a popular method for matching several configurations by translations, rotations/reflections and scaling constants. It aims at producing a group average from these Euclidean similarity transformations followed by bi-linear approximation of this group average for gra
General Conceptual View on Resource Advantage Theory
Directory of Open Access Journals (Sweden)
Bilal Yalcin
2010-04-01
Full Text Available In order to continue for an organization to exist it needs to finance itself for its own resource on the other hand service with considering consumers need and expectations by present them lowest price and highest quality also. Under these conditions these kind of organizations need to analyze the behaviour (nature of the rival organizations and position themselves accordingly in order to get advantage on the rival organizations. In this study, a general conceptual view on resource advantage theory is developed. Theory explains having the lowest cost resources than rival organisations geting advantage with organisation resources, market position, financial performance and evironmental factors. Theory is able to achieve efficiency and effectiveness in the organisations and use to have strategic marketing decisions.
Dual symmetry in a generalized Maxwell theory
Brandt, F T; McKeon, D G C
2016-01-01
We examine Podolsky's electrodynamics, which is noninvariant under the usual duality transformation. We deduce a generalization of Hodge's star duality, which leads to a dual gauge field and restores to a certain extent the dual symmetry. The model becomes fully dual symmetric asymptotically when it reduces to the Maxwell theory. We argue that this strict dual symmetry directly implies the existence of the basic invariants of the electromagnetic fields.
Non-signalling Theories and Generalized Probability
Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek
2016-09-01
We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.
Possibilistic systems within a general information theory
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
Module theory, extending modules and generalizations
Tercan, Adnan
2016-01-01
The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...
General principles of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bogolubov, N.N.; Logunov, A.A. (AN SSSR, Moscow (USSR) Moskovskij Gosudarstvennyj Univ., Moscow (USSR)); Oksak, A.I. (Institute for High Energy Physics, Moscow (USSR)); Todorov, I.T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria) Bulgarian Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria))
1990-01-01
This major volume provides a account of general quantum field theory, with an emphasis on model-independent methods. The important aspects of the development of the subject are described in detail and are shown to have promising links with many branches of modern mathematics and theoretical physics, such as random fields (probability), statistical physics, and elemantary particles. The material is presented in a thorough, systematic way and the mathematical methods of quantum field theory are also given. The text is self-contained and contains numerous exercises. Topics of independent interest are given in appendices. The book also contains a large bibliography. (author). 1181 refs. Includes index of notation and subject index; includes 1181 refs.
Generalized conservation laws in non-local field theories
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Almost Hadamard matrices: general theory and examples
Banica, Teodor; Zyczkowski, Karol
2012-01-01
We develop a general theory of "almost Hadamard matrices". These are by definition the matrices $H\\in M_N(\\mathbb R)$ having the property that $U=H/\\sqrt{N}$ is orthogonal, and is a local maximum of the 1-norm on O(N). Our study includes a detailed discussion of the circulant case ($H_{ij}=\\gamma_{j-i}$) and of the two-entry case ($H_{ij}\\in\\{x,y\\}$), with the construction of several families of examples, and some 1-norm computations.
Screening fifth forces in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji; Zhang, Ying-li; Zhao, Gong-Bo
2016-01-01
For a massive vector field with derivative self-interactions, the breaking of the gauge invariance allows the propagation of a longitudinal mode in addition to the two transverse modes. We consider generalized Proca theories with second-order equations of motion in a curved space-time and study how the longitudinal scalar mode of the vector field gravitates on a spherically symmetric background. We show explicitly that cubic-order self-interactions lead to the suppression of the longitudinal mode through the Vainshtein mechanism. Provided that the dimensionless coupling of the interaction is not negligible, this screening mechanism is sufficiently efficient to give rise to tiny corrections to gravitational potentials consistent with solar-system tests of gravity. We also study the quartic interactions with the presence of non-minimal derivative coupling with the Ricci scalar and find the existence of solutions where the longitudinal mode completely vanishes. Finally, we discuss the case in which the effect of...
General Theory of the Plasmoid Instability
Comisso, L; Huang, Y -M; Bhattacharjee, A
2016-01-01
A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $\\left({\\hat w}_0\\right)$, the characteristic rate of current sheet evolution $\\left(1/\\tau\\right)$, and the Lundquist number $\\left(S\\right)$. They are not simple power laws, and are proportional to $S^{\\alpha} \\tau^{\\beta} \\left[\\ln f(S,\\tau,{\\hat w}_0)\\right]^\\sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
Screening fifth forces in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji; Zhang, Ying-li; Zhao, Gong-Bo
2016-05-01
For a massive vector field with derivative self-interactions, the breaking of the gauge invariance allows the propagation of a longitudinal mode in addition to the two transverse modes. We consider generalized Proca theories with second-order equations of motion in a curved space-time and study how the longitudinal scalar mode of the vector field gravitates on a spherically symmetric background. We show explicitly that cubic-order self-interactions lead to the suppression of the longitudinal mode through the Vainshtein mechanism. Provided that the dimensionless coupling of the interaction is not negligible, this screening mechanism is sufficiently efficient to give rise to tiny corrections to gravitational potentials consistent with solar-system tests of gravity. We also study the quartic interactions with the presence of nonminimal derivative coupling with the Ricci scalar and find the existence of solutions where the longitudinal mode completely vanishes. Finally, we discuss the case in which the effect of the quartic interactions dominates over the cubic one and show that local gravity constraints can be satisfied under a mild bound on the parameters of the theory.
A generalized Theory of Diffusion based on Kinetic Theory
Schaefer, Thomas
2016-01-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high temperature limit [Sommer et al., Nature 472, 201 (2011)] is consistent with the diffusion constant predicted by kinetic theory.
Generalized interferometry - I: theory for interstation correlations
Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian
2017-02-01
We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANGDian-Fu; SONGHe-Shan
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shah
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Incorporation of generalized uncertainty principle into Lifshitz field theories
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, 382424 (India)
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Generalized principal component analysis
Vidal, René; Sastry, S S
2016-01-01
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts ...
A proof theory for general unification
Snyder, Wayne
1991-01-01
In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a...
A generalization of the theory of Coleman power series
Ota, Kazuto
2014-01-01
Shinichi Kobayashi found a generalization of the Coleman power series theory to formal groups of elliptic curves and applied it to a study of $p$-adic height pairings. In this paper, we generalize his theory of Coleman power series to general formal groups.
A general theory of comic entertainment
DEFF Research Database (Denmark)
Grodal, Torben Kragh
2014-01-01
the input as 'not real but playful', 5. this leads to a change in hedonic tone, and arousal is combined with the release of endorphins (a morphine-based neurotransmitter) that makes the arousal pleasant. The theory of comic entertainment accords with the PECMA flow theory proposed in Grodal: Embodied...
Optimality theory as a general cognitive architecture
Biró, T.; Gervain, J.
2011-01-01
It was exactly 25 years ago that Paul Smolensky introduced Harmony Theory (Smolensky, 1986), a framework that would pursue an exciting, but certainly not straight path through linguistics (namely, Optimality Theory) and other cognitive domains. The goal of this workshop is not so much to look back t
Optimality theory as a general cognitive architecture
Biró, T.; Gervain, J.
2011-01-01
It was exactly 25 years ago that Paul Smolensky introduced Harmony Theory (Smolensky, 1986), a framework that would pursue an exciting, but certainly not straight path through linguistics (namely, Optimality Theory) and other cognitive domains. The goal of this workshop is not so much to look back to this path, but rather to discuss its potential continuation(s).
Generalizing Prototype Theory: A Formal Quantum Framework
Directory of Open Access Journals (Sweden)
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Absence of conical singularities in beyond-generalized Proca theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a conical singularity in the case where the parameter $\\alpha_{\\rm H}$ characterizing the deviation from Horndeski theories approaches a non-vanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field $A^{\\mu}$ can be consistently extended to beyond-generalized Proca theories, which recover the shift-symmetric GLPV theories in the scalar limit $A^{\\mu} \\to \
A General Review of Register Theory
Institute of Scientific and Technical Information of China (English)
王航
2014-01-01
<正>Register theory is important in the study of linguistic.It is developed by Halliday who defined it as a variety of language according to use.According to Halliday,language is strained by three variables:field,tenor and mode,which are the three variables of register.Nowadays,more and more researchers are focusing on the application of register theory on specific English
General Relativity Revisited: Generalized Nordstr\\"om Theory
Bengtsson, Johan
2016-01-01
In 1945 Einstein concluded that [1]: 'The present theory of relativity is based on a division of physical reality into a metric field (gravitation) on the one hand, and into an electromagnetic field and matter on the other hand. In reality space will probably be of a uniform character and the present theory be valid only as a limiting case. For large densities of field and of matter, the field equations and even the field variables which enter into them will have no real significance.'. The dichotomy can be resolved by introducing a scalar field/potential algebraically related to the Ricci tensor for which the corresponding metric is free of additional singularities. Hence, although a fundamentally nonlinear theory, the scalar field/potential provides an analytic framework for interacting particles; described by linear superposition. The stress tensor for the scalar field includes both the sources of and the energy-momentum for the gravitational field, and has zero covariant and ordinary divergence. Hence, th...
The Fixed Point Theory for Some Generalized Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
Enrique Llorens Fuster
2011-01-01
Full Text Available We study some aspects of the fixed point theory for a class of generalized nonexpansive mappings, which among others contain the class of generalized nonexpansive mappings recently defined by Suzuki in 2008.
Molecular vibrational generalized inverse theory and its software
Institute of Scientific and Technical Information of China (English)
郑重德
1995-01-01
The general concept of flexibility and activity are presented,the generalized inverse theory of molecular vibrations is set up,and the computation software of molecular flexibilities and normal coordinates(MFNC)is elaborately programed.
The Main General Didactical Principles of Glotoeducological Theory and Practice
Directory of Open Access Journals (Sweden)
Regina Juškienė
2011-04-01
Full Text Available As a pedagogical discipline glotoeducology is related to didactics, i. e. teaching theory. Three concepts of didactics are being distinguished: teaching, teaching principles and types of teaching activity. The authors limited themselves in their paper on one of them, namely: teaching principles that determine the usage of teaching regularities in the course of implementation of the objectives of teaching and education. The article also provides analysis of interaction of linguodidactical principles with general didactical principles, the impact thereof to teaching of foreign languages.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
GENERAL RELATIVITY AND THEORY OF ELECTROMAGNETIC DRIVE
Directory of Open Access Journals (Sweden)
Trunev A. P.
2015-12-01
Full Text Available The article presents the theory of the electromagnetic type of rocket motor. The apparatus consists of a magnetron and a conical cavity in which electromagnetic oscillations are excited. We explain the mechanism of trust in such a device based on Maxwell's theory and the Abraham force. We built a dynamic model of the motor and calculated the optimal parameters. It is shown, that the laws of conservation of momentum and energy for the rocket motor of electromagnetic type are true, taking into account the gravitational field. In simulation, the movement used the theory of relativity. The source of the motion in an electromagnetic drive is the mass conversion in various kinds of radiation. The optimization of the operating parameters of the device is done, namely by the excitation frequency, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of heat transfer and forced from the temperature dependence of the resistance of the material of the cavity walls. It was found that the effective conversion of electromagnetic energy in the trust force necessary to minimize the deviation of the excitation frequency of the primary resonance frequency of the cavity. The mechanism of formation of trust under change the metrics of space-time, taking into account the contribution of the Yang-Mills theory and electromagnetic field tensor of energymomentum has been proposed
General autocatalytic theory and simple model of financial markets
Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.
Generalized Homotopy theory in Categories with a Natural Cone
Díaz, Francisco J
2012-01-01
In proper homotopy theory, the original concept of point used in the classical homotopy theory of topological spaces is generalized in order to obtain homotopy groups that study the infinite of the spaces. This idea: "Using any arbitrary object as base point" and even "any morphism as zero morphism" can be developed in most of the algebraic homotopy theories. In particular, categories with a natural cone have a generalized homotopy theory obtained through the relative homotopy relation. Generalized homotopy groups and exact sequences of them are built so that respective classical pointed ones are a particular case of these.
Program Theory Evaluation: Logic Analysis
Brousselle, Astrid; Champagne, Francois
2011-01-01
Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…
Dynamical Systems On Weighted Lattices: General Theory
Maragos, Petros
2016-01-01
In this work a theory is developed for unifying large classes of nonlinear discrete-time dy- namical systems obeying a superposition of a weighted maximum or minimum type. The state vectors and input-output signals evolve on nonlinear spaces which we call complete weighted lat- tices and include as special cases the nonlinear vector spaces of minimax algebra. Their algebraic structure has a polygonal geometry. Some of the special cases unified include max-plus, max- product, and probabilistic...
A general theory of mechanical instabilities in soft solids
Hohlfeld, Evan; Mahadevan, L.
2011-03-01
Some instabilities in soft solids, e.g. buckling and wrinkling, can be detected in linearized analysis. Surprisingly, linearly stable configurations can still have nonlinear instabilities with strictly zero energy barrier. Two examples are cavitation (formation of voids) and sulcification (formation of sharply creased free surface folds), wherein singularities nucleate and grow when a critical strain is achieved. Here we present the first general theory of stability in nonlinearly elastic materials. The theory predicts when singularities spontaneously form, irrespective of linearized analysis, and how these can be controlled with geometry. Such ``hidden'' instabilities arise from the scale-free geometric and constitutive nonlinearities common in soft materials, and can be understood as scale symmetry breaking processes in simple cases. More deeply, even buckling and wrinkling can be traced back to scale-free linear instabilities (loss of ellipticity at an interface) as was first explained by M. A. Biot. We illustrate the theory with simulations and experiments on sulcification. Time allowing we will also discuss fracture and delamination.
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy.
Molder, te H.F.M.
2009-01-01
Available in both print and electronic formats, the Encyclopedia of Communication Theory provides students and researchers with a comprehensive two-volume overview of contemporary communication theory. Reference librarians report that students frequently approach them seeking a source that will prov
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Flexible and generalized uncertainty optimization theory and methods
Lodwick, Weldon A
2017-01-01
This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. .
The linear model and hypothesis a general unifying theory
Seber, George
2015-01-01
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
Abelian Chern-Simons theory, Stokes' Theorem, and generalized connections
Sahlmannn, Hanno
2010-01-01
Generalized connections and their calculus have been developed in the context of quantum gravity. Here we apply them to abelian Chern-Simons theory. We derive the expectation values of holonomies in U(1) Chern-Simons theory using Stokes' Theorem, flux operators and generalized connections. A framing of the holonomy loops arises in our construction, and we show how, by choosing natural framings, the resulting expectation values nevertheless define a functional over gauge invariant cylindrical functions. The abelian theory considered in the present article is test case for our method. It can also be applied to the non-abelian theory. Results for that case will be reported elsewhere.
Generalized Courant-Snyder theory for charged-particle dynamics in general focusing lattices.
Qin, Hong; Davidson, Ronald C; Chung, Moses; Burby, Joshua W
2013-09-06
The Courant-Snyder (CS) theory for one degree of freedom is generalized to the case of coupled transverse dynamics in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D sympletic rotation. The envelope equation, the transfer matrix, and the CS invariant of the original CS theory all have their counterparts, with remarkably similar expressions, in the generalized theory.
Institute of Scientific and Technical Information of China (English)
李永; 宋健; 张志民
2002-01-01
FGM structure is defined as a kind of generalized equivalent structure according to the structure and properties of materials. This paper uses the mature plate theory and the composite material laminate theory in the analysis of FGM structure and thus puts forward a kind of new concept and a new idea. A brand-new theory, the generalized equivalent antisymmetry bending theory, which can be used to analyze the structure and properties of FGM, is formed. In addition, the correctness, reliability and foresightedness of the theory are testified through concrete analysis and calculation of the applicable FGM structure by utilizing the generalized double Fourier series solution on one hand; on the other hand, it is compared with the existing theories and experiments.
Lederman, Linda Costigan; Rogers, Don
The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…
A generalized theory of chromatography and multistep liquid extraction
Chizhkov, V. P.; Boitsov, V. N.
2017-03-01
A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.
Gravitational duality in General Relativity and Supergravity theories
Energy Technology Data Exchange (ETDEWEB)
Dehouck, F. [Service de physique mathematique et interactions fondamentales. Universite Libre de Bruxelles, Campus Plaine CP-231, 1050 Bruxelles (Belgium)
2011-07-15
We quickly review the current status of gravitational duality in General Relativity. We summarize and comment some recent work on constructing dual (topological) charges and understanding how this duality acts in supergravity theories.
Towards a general theory of driver behaviour.
Fuller, Ray
2005-05-01
Taylor [Taylor, D.H., 1964. Drivers' galvanic skin response and the risk of accident. Ergonomics 7, 439-451] argued that drivers attempt to maintain a constant level of anxiety when driving which Wilde [Wilde, G.J.S., 1982. The theory of risk homeostasis: implications for safety and health. Risk Anal. 2, 209-225] interpreted to be coupled to subjective estimates of the probability of collision. This theoretical paper argues that what drivers attempt to maintain is a level of task difficulty. Naatanen and Summala [Naatanen, R., Summala, H., 1976. Road User Behaviour and Traffic Accidents. North Holland/Elsevier, Amsterdam, New York] similarly rejected the concept of statistical risk as a determinant of driver behaviour, but in so doing fell back on the learning process to generate a largely automatised selection of appropriate safety margins. However it is argued here that driver behaviour cannot be acquired and executed principally in such S-R terms. The concept of task difficulty is elaborated within the framework of the task-capability interface (TCI) model, which describes the dynamic interaction between the determinants of task demand and driver capability. It is this interaction which produces different levels of task difficulty. Implications of the model are discussed regarding variation in performance, resource allocation, hierarchical decision-making and the interdependence of demand and capability. Task difficulty homeostasis is proposed as a key sub-goal in driving and speed choice is argued to be the primary solution to the problem of keeping task difficulty within selected boundaries. The relationship between task difficulty and mental workload and calibration is clarified. Evidence is cited in support of the TCI model, which clearly distinguishes task difficulty from estimates of statistical risk. However, contrary to expectation, ratings of perceived risk depart from ratings of statistical risk but track difficulty ratings almost perfectly. It now
General systems theory and scientific interpretation of social reality
Kaluzhsky, Mikhail
2001-01-01
An article about the use of the methodology of general systems theory and the theory of self-organization as a methodological basis of scientific interpretation of social reality. The author analyzes the role of ideology and propaganda in the different concepts of interpretation of social reality (social Darwinism, Marxism, etc.). The main conclusion of the paper is the need deideologization scientific knowledge.
General Systems Theory Approaches to Organizations: Some Problems in Application
Peery, Newman S., Jr.
1975-01-01
Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…
Get with the System: General Systems Theory for Business Officials.
Graczyk, Sandra L.
1993-01-01
An introduction to general systems theory and an overview of vocabulary and concepts are presented to introduce school business officials to systems thinking and to foster its use as an analytical tool. The theory is then used to analyze a sample problem: planning changes to a district's administrative computer system. (eight references) (MLF)
General Strain Theory, Peer Rejection, and Delinquency/Crime
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
A generalized theory of preferential linking
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
Behavior, Organization, Substance: Three Gestalts of General Systems Theory
De Florio, Vincenzo
2014-01-01
The term gestalt, when used in the context of general systems theory, assumes the value of "systemic touchstone", namely a figure of reference used to categorize the properties or qualities of a set of systems. Typical gestalts used in biology are those based on anatomical or physiological characteristics, which correspond respectively to architectural and organizational design choices in natural and artificial systems. In this paper we discuss three gestalts of general systems theory: behavi...
A QCD Model Using Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shan; KOU Li-Na
2007-01-01
Generalized Yang-Mills theory has a covariant derivative,which contains both vector and scalar gauge bosons.Based on this theory,we construct a strong interaction model by using the group U(4).By using this U(4)generalized Yang-Mills model,we also obtain a gauge potential solution,which can be used to explain the asymptotic behavior and color confinement.
A New Theory of Capitalism: Key Moments and General Logic
Zheleznyak, Anatoliy
2015-01-01
A new theory of capitalism is suggested. Its key moments and general logic are presented. This theory is based on the distinction between two market types – the simple commodity market and the capitalist one. Disequilibrium and "imperfect competition" are admitted to be a functional norm of capitalism. Respectively, an equilibrium and "perfect competition" are admitted to be a functional anomaly; crises are considered as the result of such an anomaly. General principles and concrete measures ...
Black holes from generalized gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, E-33007 Oviedo, Asturias (Spain)
2011-02-01
We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r {yields} {infinity} (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.
Analytical solution for multilayer plates using general layerwise plate theory
Directory of Open Access Journals (Sweden)
Vuksanović Đorđe M.
2005-01-01
Full Text Available This paper deals with closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory (GLPT. The mathematical model assumes piece-wise linear variation of in-plane displacement components and a constant transverse displacement through the thickness. It also include discrete transverse shear effect into the assumed displacement field, thus providing accurate prediction of transverse shear stresses. Namely, transverse stresses satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. With assumed displacement field, linear strain-displacement relation, and constitutive equations of the lamina, equilibrium equations are derived using principle of virtual displacements. Navier-type closed form solution of GLPT, is derived for simply supported plate, made of orthotropic laminae, loaded by harmonic and uniform distribution of transverse pressure. Results are compared with 3D elasticity solutions and excellent agreement is found.
Do People Use Their Implicit Theories of Creativity as General Theories?
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
Theory of generalized tautology in revised Kleene system
Institute of Scientific and Technical Information of China (English)
WU; Hongbo
2001-01-01
Karman, Th., Zur theorie der spanungszustnde in plastischen und sandartigen medion, Nachr. Gesellsch. Wissensch., Gttingen, 1909.［17］Szczepinski, W., Introduction to the Mechanics of Plastic Forming of Metals, Netherlands: Sijthoff and Noordhoff, 1979.［18］Chen, W. F., Limit Analysis and Soil Plasticity, New York: Elsevier, 1975.［19］Yu, M. H., He, L. N., A new model and theory on yield and failure of materials under complex stress state, Mechanical Behaviors of Materials～6, Oxford: Pergamon Press, 1991, 3: 841—846.［20］Yu, M. H., New System of Strength Theory (in Chinese), Xi'an: Xi'an Jiaotong Universitry Press, 1992.［21］Yu, M. H., He, L. N., Song, L. Y., Twin shear stress theory and its generalization, Scientia Sinica (Science in China), Series A, 1985, 28(11): 1174—1183.［22］Yu, M. H., Yang, S. Y. et al., Unified elasto-plastic associated and non-associated constitutive model and its engineering applications, Computers and Structures, 1999, 71: 627—636.［23］Ma, G. W., Shoji, I., Plastic limit analysis of circular plates with respect to unified yield criterion, Int. J. Mech. Sci., 1998, 40(10): 963.［24］Ma, G. W., Hao, H., Unified plastic limit analyses of circular plates under arbitrary load, Journal of Applied Mechanics, ASME, 1999, 66(2): 568.［25］Qiang, H. F., Lu, N., Liu, B. J., Unified solutions of crack tip plastic zone under small scale yielding, Chinese Journal of Mechanical Engineering, (in Chinese with English abstract), 1999, 35(1): 34—38.［26］Yang, S. Y., Yu, M. H., Constitutive descriptions of multiphase poropus media, Acta Mechanica Sinica (in Chinese with English abstract), 2000, 32(1):11—24.［27］Yang, S. Y., Yu, M. H., An elasto-plastic damage model for saturated and unsaturated geomaterials, Acta Mechanica Sinica (in Chinese with English abstract), 2000, 32(2): 198—206.［28］Cheng, H. X., Li, J. J., Zhang, G. S. et al., Finite element analysis program system HAJIF(X), Chinese Journal of
Principles of General Systems Theory: Some Implications for Higher Education Administration
Gilliland, Martha W.; Gilliland, J. Richard
1978-01-01
Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)
Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory.
Kobayashi, Masato; Szabados, Ágnes; Nakai, Hiromi; Surján, Péter R
2010-07-13
Two perturbation (PT) theories are developed starting from a multiconfiguration (MC) zero-order function. To span the configuration space, the theories employ biorthogonal vector sets introduced in the MCPT framework. At odds with previous formulations, the present construction operates with the full Fockian corresponding to a principal determinant, giving rise to a nondiagonal matrix of the zero-order resolvent. The theories provide a simple, generalized Møller-Plesset (MP) second-order correction to improve any reference function, corresponding either to a complete or incomplete model space. Computational demand of the procedure is determined by the iterative inversion of the Fockian, similarly to the single reference MP theory calculated in a localized basis. Relation of the theory to existing multireference (MR) PT formalisms is discussed. The performance of the present theories is assessed by adopting the antisymmetric product of strongly orthogonal geminal (APSG) wave functions as the reference function.
Gauge Theory of the Generalized Symmetry on the Torus Membrane
Institute of Scientific and Technical Information of China (English)
ZHAO WeiZhong; WANG Hong; ZHANG Jun
2001-01-01
The SDIFF(T2)local-generalized Kac-Moody G(T2) symmetry is an infinite-dimensional group on the torus membrane, whose Lie algebra is the semi-direct sum of the SDIFF(T2)local algebra and the generalized KacMoody algebra g(T2). In this paper, we construct the linearly realized gauge theory of the SDIFF(T2)loc1al-generalized Kac-Moody G(T2) symmetry.``
Extensive Generalization of Statistical Mechanics Based on Incomplete Information Theory
Directory of Open Access Journals (Sweden)
Qiuping A. Wang
2003-06-01
Full Text Available Statistical mechanics is generalized on the basis of an additive information theory for incomplete probability distributions. The incomplete normalization is used to obtain generalized entropy . The concomitant incomplete statistical mechanics is applied to some physical systems in order to show the effect of the incompleteness of information. It is shown that this extensive generalized statistics can be useful for the correlated electron systems in weak coupling regime.
General systems theory: implications for theory and action in occupational therapy.
Kielhofner, G
1978-11-01
This paper presents a description of the transformation of science under General Systems Theory, and the relationship of this transformation to the field of occupational therapy. Changes in scientific methods of proof and in scientific laws that underlie theory are discussed. The paper presents a scale for recognizing complexity in phenomena and for analyzing the appropriateness of theories designed to explain the phenomena. It also presents the theory of open systems as an alternative to mechanistic explanations of human behavior.
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
No-Go Theorems for Generalized Chameleon Field Theories
Wang, Junpu; Khoury, Justin
2012-01-01
The chameleon, or generalizations thereof, is a light scalar that couple to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: i) the Compton wavelength of such a scalar can be at most Mpc at present cosmic density, which restricts its impact to non-linear scales; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleon-like scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleon-like scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broa...
General theory of light propagation and imaging through the atmosphere
McKechnie, T Stewart
2016-01-01
This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...
General exact theory of autoresonance in nonautonomous systems
Chacon, Ricardo
2003-01-01
A general exact theory of autoresonance (self-sustained resonance) in both dissipative and Hamiltonian nonautonomous systems is presented. The equations that together govern the autoresonance solutions and excitations are derived with the aid of a variational principle concerning the power functional. The theory is applied to Duffing oscillators to obtain exact analytical expressions for autoresonance excitations and solutions which explain all the phenomenological and approximate results ari...
An extended Coleman-Noll procedure for generalized continuum theories
Hütter, Geralf
2016-11-01
Within rational continuum mechanics, the Coleman-Noll procedure is established to derive requirements to constitutive equations. Aiming in particular at generalized continuum theories, the present contribution demonstrates how this procedure can be extended to yield additionally the underlying balance equations of stress-type quantities. This is demonstrated for micromorphic and strain gradient media as well as for the microforce theory. The relation between the extended Coleman-Noll procedure and the method of virtual powers is pointed out.
A General Theory for Gauge-Free Lifting
Morrison, P. J.
2010-11-01
Given a Hamiltonian set of orbit equations, defined on a phase space of arbitrary dimension, with `forces' that depend explicitly on given electric and magentic fields and possibly all of their derivatives, how does one lift to a Hamiltonian kinetic theory coupled to Maxwell's equations? A general theory that answers this question will be presented. The theory produces magnetization and polarization effects in Maxwell's equations via a noncanonical Poisson bracket that generalizes that for the Vlasov-Maxwell systemootnotetextP.J. Morrison, Phys. Lett. 80A, 383 (1980); AIP Conference Proceedings 88, 13 (1982); J. Marsden and A. Weinstein, Physica 4D, 394 (1982).. Several examples will be treated, including the generalized guiding-center kinetic theory of Pfirsch and the authorootnotetextD. Pfirsch and P. J. Morrison, Phys. Rev. 32A, 1714 (1985); Phys. Fluids 3B, 271 (1991)., which relies on the introduction of redundant variables via Dirac constraint theory. Theories without the redundant variables are also being investigatedootnotetextA. Brizard et al., adjacent poster; P.J. Morrison and M. Vittot, research in progress..
Ward identities and gauge independence in general chiral gauge theories
Anselmi, Damiano
2015-01-01
Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on...
The global formulation of generalized Einstein-Scalar-Maxwell theories
Lazaroiu, C
2016-01-01
We summarize the global geometric formulation of Einstein-Scalar-Maxwell theories twisted by flat symplectic vector bundle which encodes the duality structure of the theory. We describe the scalar-electromagnetic symmetry group of such models, which consists of flat unbased symplectic automorphisms of the flat symplectic vector bundle lifting those isometries of the scalar manifold which preserve the scalar potential. The Dirac quantization condition for such models involves a local system of integral symplectic spaces, giving rise to a bundle of polarized Abelian varieties equipped with a symplectic flat connection, which is defined over the scalar manifold of the theory. Generalized Einstein-Scalar-Maxwell models arise as the bosonic sector of the effective theory of string/M-theory compactifications to four-dimensions, and they are characterized by having non-trivial solutions of "U-fold" type.
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
Theories of Comparative Analysis
1988-05-01
model of a projectile fired from a cannon in a uniform gravitational field serves to demonstrate the problems due to qualitative arithmetic. Nei...recently demonstrated the qualitative Gauss rule, a type of algebraic manip- ulation that is solution preserving. While it cannot eliminate all...projectile fired from a cannon illustrates this point. Given an increase in muzzle velocity, Vft, as a perturbation, DQ " analysis predicts that apogee
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
1998-01-01
We systematically study the exclusion statistics for quasi-particles for Conformal Field Theory spectra by employing a method based on recursion relations for truncated spectra. Our examples include generalized fermions in c
Elements of the Theory of Generalized Inverses for Matrices.
Cline, Randall E.
This document is designed to provide a concise introduction to the theory of generalized inverses of matrices that is accessible to undergraduate mathematics majors. The approach used is to: (1) develop the material in terms of full-rank factorizations and to relegate all discussions using eigenvalues and eigenvectors to exercises, and (2) include…
Confluence of general Schlesinger systems and Twistor theory
Kimura, Hironobu; Tseveennamjil, Damiran
2016-01-01
We give a description of confluence for the general Schlesinger systems (GSS) from the view point of twistor theory. GSS is a system of nonlinear di¤erential equations on the Grassmannian manifold $G_{2,N}(\\mathbf{C}$ which is obtained, for any partition $\\lambda$ of $N$, as the integrability condition of a connection $\
[General systems theory, analog models and essential arterial hypertension].
Indovina, I; Bonelli, M
1991-02-15
The application of the General System Theory to the fields of biology and particularly of medicine is fraught with many difficulties deriving from the mathematical complexities of application. The authors suggest that these difficulties can be overcome by applying analogical models, thus opening new prospects for the resolution of the manifold problems involved in connection with the study of arterial hypertension.
What Should Instructional Designers Know about General Systems Theory?
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
Towards a General Theory of Bilingual Legal Lexicography
DEFF Research Database (Denmark)
Nielsen, Sandro
2003-01-01
As the need for intercultural communication in the field of law has increased, the foundation of a general theory of bilingual legal lexicography must be given priority. This paper introduces, describes and explains the elements necessary for compiling the optimal bilingual law dictionary...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty
2003-10-01
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.
Eu, Byung Chan
2016-01-01
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...
Generalized information theory: aims, results, and open problems
Energy Technology Data Exchange (ETDEWEB)
Klir, George J
2004-09-01
The principal purpose of this paper is to present a comprehensive overview of generalized information theory (GIT): a research program whose objective is to develop a broad treatment of uncertainty-based information, not restricted to classical notions of uncertainty. After a brief overview of classical information theories, a broad framework for formalizing uncertainty and the associated uncertainty-based information of a great spectrum of conceivable types is sketched. The various theories of imprecise probabilities that have already been developed within this framework are then surveyed, focusing primarily on some important unifying principles applying to all these theories. This is followed by introducing two higher levels of the theories of imprecise probabilities: (i) the level of measuring the amount of relevant uncertainty (predictive, retrodictive, prescriptive, diagnostic, etc.) in any situation formalizable in each given theory, and (ii) the level of some methodological principles of uncertainty, which are contingent upon the capability to measure uncertainty and the associated uncertainty-based information. Various issues regarding both the measurement of uncertainty and the uncertainty principles are discussed. Again, the focus is on unifying principles applicable to all the theories. Finally, the current status of GIT is assessed and future research in the area is discussed.
Mathematical theory of sedimentation analysis
Fujita, Hiroshi; Van Rysselberghe, P
1962-01-01
Mathematical Theory of Sedimentation Analysis presents the flow equations for the ultracentrifuge. This book is organized into two parts encompassing six chapters that evaluate the systems of reacting components, the differential equations for the ultracentrifuge, and the case of negligible diffusion. The first chapters consider the Archibald method for molecular weight determination; pressure-dependent sedimentation; expressions for the refractive index and its gradient; relation between refractive index and concentration; and the analysis of Gaussian distribution. Other chapters deal with th
Theory of generalized tautology in revised Kleene system
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper is a complement and extension of the theory of generalized tautology which was first proposed by Wang Guojun in revised Kleene system, Some interesting results are obtained: (i) accessible α+-tautology and generalized contradiction which are dual theory to generalized tautology have been introduced; (ii) congruence partition about has been given in logic system , W, Wk; (iii) in logic system Wk, tautologies can be obtained by employing the upgrade algorithm at most (k+1)/(2) times to an arbitrary formula; (iv) in logic system (W), tautologies cannot be obtained by employing upgrade algorithm to non-tautologies within finitely many times; (v) the deduction rule (1)/(2)+-MP holds in logic system (W).
Dynamical Gravitational Coupling as a Modified Theory of General Relativity
Finster, Felix
2016-01-01
A modified theory of general relativity is proposed, where the gravitational constant is replaced by a dynamical variable in space-time. The dynamics of the gravitational coupling is described by a family of parametrized null geodesics, implying that the gravitational coupling at a space-time point is determined by solving transport equations along all null geodesics through this point. General relativity with dynamical gravitational coupling (DGC) is introduced. We motivate DGC from general considerations and explain how it arises in the context of causal fermion systems. The underlying physical idea is that the gravitational coupling is determined by microscopic structures on the Planck scale which propagate with the speed of light. In order to clarify the mathematical structure, we analyze the conformal behavior and prove local existence and uniqueness of the time evolution. The differences to Einstein's theory are worked out in the examples of the Friedmann-Robertson-Walker model and the spherically symme...
A historical approach to the general theory of systems
Esther María Pino Guzmán
2015-01-01
The paper is intended to examine the epistemological development of the theory or systems, focus the change of its scientific paradigm and points out its main implications for the development of research methodology and design. The theoretical methods being used makes possible to go deeper into the analysis of regularities and essential qualities in the construction and development of the scientific theory. The system approach is one of the most frequently used method and the one of further r...
On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.
On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.
Gravitation experiments at Stanford. [using general relativity theory
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Field Analysis and Potential Theory
1985-06-01
T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431
GENERALIZED LANDSCAPE THEORY: AGENT-BASED APPROACH TO ALLIANCE FORMATIONS IN CIVIL AVIATION INDUSTRY
Institute of Scientific and Technical Information of China (English)
Kyoichi Kijima
2001-01-01
The purpose of this paper is to generalize Landscape theory proposed by R.Axelrod and, then, to apply it to the civil aviation industry for simulating alliance formations in it. Landscape theory provides a well-known agent-based simulation model for analyzing alliance (or coalition) formation process. When a set N of agents or autonomous decision makers is given, the theory assumes that each agent tries to make a coalition in such a way that the resulting alliance minimizes its frustration. The theory is essentially based on two premises. One is that a propensity is symmetric,i.e., the propensity of agent i toward j is exactly the same as that of j toward i for anyagents i and j in N. The other is that the number of alliances is restricted to two, i.e., at any moment N is partitioned into two parties. Though the two basic premises underpin the theory and make the model simple and operational, they do not always reflect alliance formation processes in a realistic way. A generalized Landscape theory that this paper proposes removes them and allows asymmetric propensity and existence of alliances of any number. Since the premises are essential for the model, the generalization requires a drastic reconstruction of the whole idea of the theory. Finally, we analyze a real alliance formation process in the civil aviation industry.This analysis provides interesting insights about the industry as well as some validation of our generalized Landscape theory.
Entropy and information causality in general probabilistic theories
Energy Technology Data Exchange (ETDEWEB)
Barnum, Howard; Leifer, Matthew; Spekkens, Robert [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5 (Canada); Barrett, Jonathan [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Clark, Lisa Orloff; Stepanik, Nicholas; Wilce, Alex [Department of Mathematical Sciences, Susquehanna University, Selinsgrove, PA 17870 (United States); Wilke, Robin [Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405 (United States)], E-mail: hbarnum@perimeterinstitute.ca
2010-03-15
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
General System theory, Like-Quantum Semantics and Fuzzy Sets
Licata, Ignazio
2006-01-01
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
Energy Technology Data Exchange (ETDEWEB)
Cramer, J.G.
1980-07-15
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of ''verifier'' in quantum-mechanical ''transactions,'' providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
Cramer, John G.
1980-07-01
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of "verifier" in quantum-mechanical "transactions," providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
Decoherence in Field Theory General Couplings and Slow Quenches
Lombardo, F C; Rivers, R J
2003-01-01
We study the onset of a classical order parameter after a second-order phase transition in quantum field theory. We consider a quantum scalar field theory in which the system-field (long-wavelength modes), interacts with its environment, represented both by a set of scalar fields and by its own short-wavelength modes. We compute the decoherence times for the system-field modes and compare them with the other time scales of the model. We analyze different couplings between the system and the environment for both instantaneous and slow quenches. Within our approximations decoherence is in general a short time event.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
Salisbury, Donald; Sundermeyer, Kurt
2017-01-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
General Relativity as AN ÆTHER Theory
Dupré, Maurice J.; Tipler, Frank J.
Most early twentieth century relativists — Lorentz, Einstein, Eddington, for examples — claimed that general relativity was merely a theory of the æther. We shall confirm this claim by deriving the Einstein equations using æther theory. We shall use a combination of Lorentz's and Kelvin's conception of the æther. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the æther, a tensor based on Kelvin's æther theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann. In essence, we shall show that the Einstein equations are a special case of Newtonian gravity coupled to a particular type of luminiferous æther. Our derivation of general relativity is simple, and it emphasizes how inevitable general relativity is, given the truth of Newtonian gravity and the Maxwell equations.
Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry)
Lemos, José P S
2010-01-01
An analysis of the work of Mira Fernandes on unitary theories is presented. First it is briefly mentioned the Portuguese scientific context of the 1920s. A short analysis of the extension of Riemann geometries to new generalized geometries with new affine connections, such as those of Weyl and Cartan, is given. Based on these new geometries, the unitary theories of the gravitational and electromagnetic fields, proposed by Weyl, Eddington, Einstein, and others are then explained. Finally, the book and one paper on connections and two papers on unitary theories, all written by Mira Fernandes, are analyzed and put in context.
Solvation of polymers as mutual association. I. General theory
Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.
2013-04-01
A Flory-Huggins (FH) type lattice theory of self-assembly is generalized to describe the equilibrium solvation of long polymer chains B by small solvent molecules A. Solvation is modeled as a thermally reversible mutual association between the polymer and a relatively low molar mass solvent. The FH Helmholtz free energy F is derived for a mixture composed of the A and B species and the various possible mutual association complexes AiB, and F is then used to generate expressions for basic thermodynamic properties of solvated polymer solutions, including the size distribution of the solvated clusters, the fraction of solvent molecules contained in solvated states (an order parameter for solvation), the specific heat (which exhibits a maximum at the solvation transition), the second and the third osmotic virial coefficients, and the boundaries for phase stability of the mixture. Special attention is devoted to the analysis of the "entropic" contribution χs to the FH interaction parameter χ of polymer solutions, both with and without associative interactions. The entropic χs parameter arises from correlations associated with polymer chain connectivity and disparities in molecular structure between the components of the mixture. Our analysis provides the first explanation of the longstanding enigma of why χs for polymer solutions significantly exceeds χs for binary polymer blends. Our calculations also reveal that χs becomes temperature dependent when interactions are strong, in sharp contrast to models currently being used for fitting thermodynamic data of associating polymer-solvent mixtures, where χs is simply assumed to be an adjustable constant based on experience with solutions of homopolymers in nonassociating solvents.
General Mission Analysis Tool (GMAT)
Hughes, Steven P. (Compiler)
2016-01-01
This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.
General Analysis Tool Box for Controlled Perturbation
Osbild, Ralf
2012-01-01
The implementation of reliable and efficient geometric algorithms is a challenging task. The reason is the following conflict: On the one hand, computing with rounded arithmetic may question the reliability of programs while, on the other hand, computing with exact arithmetic may be too expensive and hence inefficient. One solution is the implementation of controlled perturbation algorithms which combine the speed of floating-point arithmetic with a protection mechanism that guarantees reliability, nonetheless. This paper is concerned with the performance analysis of controlled perturbation algorithms in theory. We answer this question with the presentation of a general analysis tool box. This tool box is separated into independent components which are presented individually with their interfaces. This way, the tool box supports alternative approaches for the derivation of the most crucial bounds. We present three approaches for this task. Furthermore, we have thoroughly reworked the concept of controlled per...
Generalized analysis of molecular variance.
Directory of Open Access Journals (Sweden)
Caroline M Nievergelt
2007-04-01
Full Text Available Many studies in the fields of genetic epidemiology and applied population genetics are predicated on, or require, an assessment of the genetic background diversity of the individuals chosen for study. A number of strategies have been developed for assessing genetic background diversity. These strategies typically focus on genotype data collected on the individuals in the study, based on a panel of DNA markers. However, many of these strategies are either rooted in cluster analysis techniques, and hence suffer from problems inherent to the assignment of the biological and statistical meaning to resulting clusters, or have formulations that do not permit easy and intuitive extensions. We describe a very general approach to the problem of assessing genetic background diversity that extends the analysis of molecular variance (AMOVA strategy introduced by Excoffier and colleagues some time ago. As in the original AMOVA strategy, the proposed approach, termed generalized AMOVA (GAMOVA, requires a genetic similarity matrix constructed from the allelic profiles of individuals under study and/or allele frequency summaries of the populations from which the individuals have been sampled. The proposed strategy can be used to either estimate the fraction of genetic variation explained by grouping factors such as country of origin, race, or ethnicity, or to quantify the strength of the relationship of the observed genetic background variation to quantitative measures collected on the subjects, such as blood pressure levels or anthropometric measures. Since the formulation of our test statistic is rooted in multivariate linear models, sets of variables can be related to genetic background in multiple regression-like contexts. GAMOVA can also be used to complement graphical representations of genetic diversity such as tree diagrams (dendrograms or heatmaps. We examine features, advantages, and power of the proposed procedure and showcase its flexibility by
Theory and interpretation in qualitative studies from general practice
DEFF Research Database (Denmark)
Malterud, Kirsti
2016-01-01
Objective: In this article, I want to promote theoretical awareness and commitment among qualitative researchers in general practice and suggest adequate and feasible theoretical approaches. Approach: I discuss different theoretical aspects of qualitative research and present the basic foundations...... of the interpretative paradigm. Associations between paradigms, philosophies, methodologies and methods are examined and different strategies for theoretical commitment presented. Finally, I discuss the impact of theory for interpretation and the development of general practice knowledge. Main points: A scientific...... theory is a consistent and soundly based set of assumptions about a specific aspect of the world, predicting or explaining a phenomenon. Qualitative research is situated in an interpretative paradigm where notions about particular human experiences in context are recognized from different subject...
[General systems theory, a mental frame for geriatric psychiatry].
Lit, A C
1984-12-01
Though psychogeriatrics is becoming a word of common usage, it is not a word of common meaning. This is a consequence of the lack of a generally accepted theoretical model regarding the complex and multiple pathology of the psychiatric disturbances of older people. On epistemological grounds the author stresses the necessity of a common theoretical concept and as such introduces the General System Theory. The systems approach then shows that the word 'psychogeriatrics' is rooted in a reductionistic concept of man. In order to avoid this the author prefers 'psychiatry of old age' to cover the broad field of the psychiatric disturbances of the elderly.
A Generalized Sampling Theory without Band-Limiting Constraints
Unser, M.; Zerubia, J.
1998-01-01
We consider the problem of the reconstruction of a continuous-time function f(x) ∈ H from the samples of the responses of m linear shift-invariant systems sampled at 1 ⁄ m the reconstruction rate. We extend Papoulis' generalized sampling theory in two important respects. First, our class of admissible input signals (typ. H = $ L _{ 2 } $ ) is considerably larger than the subspace of bandlimited functions. Second, we use a more general specification of the reconstruction subspace V(φ), so that...
A Possible Modification of Einstein's Theory of General Relativity
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu
2004-01-01
This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed.For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of GM/r, it obtains the same results about the four experimental tests of general relativity.
Unification of General Relativity with Quantum Field Theory
Institute of Scientific and Technical Information of China (English)
NI Jun
2011-01-01
In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation.%In the frame of quantum field theory,instead of using the action principle,we deduce the Einstein equation trom purely the general covariant principle and the homogeneity of spacetime.The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation.Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum.In the action of quantum field theory,only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation.An unified physical theory of all interactions is a long pursued goal for physicists.The unification of electricity and magnetism by Maxwell was a great step in this direction.It is believed that in nature,there are four types of fundamental interactions:the electromagnetic interaction,weak interaction,strong interaction and gravity.Now the electromagnetic,weak and strong interactions are unified using the so-called standard model,[1] based on the Yang-Mills gauge field theory.[2] However,researchers are still not be able to unify gravitation with the other three interactions.
CONCEPTS OF GENERAL SYSTEMS THEORY APPLIED ON GOODS
Bogdan Onete
2007-01-01
The General Systems Theory is one of the most important points of view nowadays. Now, its concepts could be applied in a various number of sciences including Consumer Sciences. The complexity of the product, the different way in which it can be seen and also the exponentially diversifying assortment requires another approach to the product, through models. This approach must take into account certain particularities which do not appear in a regular modelling
The concept of hierarchy in general systems theory.
Gasparski, W
1994-01-01
The paper reviews main ideas related to the concept of hierarchy as they are discussed in contemporary general systems theory. After presenting a dictionary definition of the concept, the author examines the intuitive idea of hierarchy quoting Mario Bunge's notion of level structure. Then relationship between two other concepts: a system and a hierarchy is characterised on the bases of Bowler's, Bunge's again, Klir's, and the author's studies. Finally, the paper is concluded that hierarchy is not an otological concept but epistemological one.
Generalized Poisson processes in quantum mechanics and field theory
Energy Technology Data Exchange (ETDEWEB)
Combe, P.; Rodriguez, R. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Faculte des Sciences de Luminy); Hoegh-Krohn, R.; Sirugue, M.; Sirugue-Collin, M.
1981-11-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models.
Renormalization in general theories with inter-generation mixing
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Sirlin, Alberto [New York Univ., NY (United States). Dept. of Physics
2011-11-15
We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)
Gallo, Emanuel
2016-01-01
We present a general approach for the formulation of equations of motion for compact objects in general relativistic theories. The particle is assumed to be moving in a geometric background which in turn is asymptotically flat. By construction, the model incorporates the back reaction due to gravitational radiation generated by the motion of the particle. Our approach differs from other constructions tackling the same kind of problem.
Theory of Nonlocal Point Transformations in General Relativity
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2016-01-01
Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.
Directory of Open Access Journals (Sweden)
Lutsenko Y. V.
2014-01-01
Full Text Available This article briefly reviews the classical concept of functional dependence in mathematics, determines the limitations of this concept for adequate modeling of reality and formulates the problem, consisting in search of such generalization of the concept of func-tions, which is more suitable for the adequate reflec-tion of causal relationships in the real domain. Also, it discusses theoretical and practical solving the prob-lem, consisting in: (a we suggest the universal method of calculating the amount of information in the value of argument about the meaning of the function, i.e. cognitive functions which is independent from the subject area; b we offer software tools: Eidos intelli-gent system, allowing in practice to carry out these calculations, i.e. to build cognitive functions based on a fragmented noisy empirical data of high dimension. We also offer the concepts of nonreducing, partially and completely reduced direct and inverse, positive and negative cognitive functions and the method of formation of reduced cognitive function, which is a generalization of known weighted least-squares meth-od on the basis of observation the amount of infor-mation in the values of the argument about the values of the functions accounting
Stringy horizons and generalized FZZ duality in perturbation theory
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Stringy horizons and generalized FZZ duality in perturbation theory
Giribet, Gaston
2016-01-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n-2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model ...
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
LeGare, M
1987-04-01
The general designations of neural systems and their levels of organization as presently applied in the neurosciences are described as being at variance with rigorous systems thinking. It is proposed that the rule-driven use of systems terminology and hierarchies would facilitate investigations of neural functioning in the natural case. General systems theory with its major propositions for hierarchical organization, open systems, and equifinality, is presented as providing the guidelines for developing systems-type theories for neuroscience investigations. General systems theory as metatheory is also used to evaluate hierarchies and systems designations in the neurosciences as these concepts are now applied in theories, models, and research. The metatheory is comprised of three sets of rules: the criteria for hierarchies; the properties of the open biological system; the criteria for the final conditions of open biological systems. The notion of the discovery of neural systems is contrasted with the apparent design of systems as frequently practiced by neuroscientists. The metatheory is summarized as directions for developing theories and as questions directed toward any neuroscience theory proposing levels of organization and systems.
A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories
Lagos, Macarena; Ferreira, Pedro G; Noller, Johannes
2016-01-01
We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and "Beyond Horndeski" theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbations that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (\\`a la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic act...
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
Hwang, J
2002-01-01
We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon. The model includes the general background spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we found two new gauge conditions (the uniform-expansion gauge and the uniform-curvature gauge) which show better behavior than the previously employed gauge conditions in the literature. In particular, we ...
Institute of Scientific and Technical Information of China (English)
PENG Huan-Wu
2005-01-01
Taking Dirac's large number hypothesis as true, we have shown [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703] the inconsistency of applying Einstein's theory of general relativity with fixed gravitation constant G to cosmology, and a modified theory for varying G is found, which reduces to Einstein's theory outside the gravitating body for phenomena of short duration in small distances, thereby agrees with all the crucial tests formerly supporting Einstein's theory. The modified theory, when applied to the usual homogeneous cosmological model, gives rise to a variable cosmological tensor term determined by the derivatives of G, in place of the cosmological constant term usually introduced ad hoc. Without any free parameter the theoretical Hubble's relation obtained from the modified theory seems not in contradiction to observations, as Dr. Wang's preliminary analysis of the recent data indicates [Commun.Theor. Phys. (Beijing, China) 42 (2004) 703]. As a complement to Commun. Theor. Phys. (Beijing, China) 42 (2004)703 we shall study in this paper the modification of electromagnetism due to Dirac's large number hypothesis in more detail to show that the approximation of geometric optics still leads to null geodesics for the path of light, and that the general relation between the luminosity distance and the proper geometric distance is still valid in our theory as in Einstein's theory, and give the equations for homogeneous cosmological model involving matter plus electromagnetic radiation. Finally we consider the impact of the modification to quantum mechanics and statistical mechanics, and arrive at a systematic theory of evolving natural constants including Planck's h as well as Boltzmann's kB by finding out their cosmologically combined counterparts with factors of appropriate powers of G that may remain truly constant to cosmologically long time.
Directory of Open Access Journals (Sweden)
Florentina Xhelili Krasniqi
2016-12-01
Full Text Available Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by John R. Hicks (1939, Kenneth J.Arrow (1951 and Gerard Debreu (1954 and second frames of general equilibrium belongs to Paul A. Samuelson (1958. To highlight the contributions of these Nobel laureates in the development of the theory of general equilibrium have been selected and are presented in the paper some views, estimates and assumptions that have contributed not only in solving concrete problems, but also to the development of economic science in general. Their works represent a synthesis of theoretical and practical aspects of treatment of general equilibrium which are the starting point for further research in this field.
Energy Technology Data Exchange (ETDEWEB)
Kober, Martin
2010-07-01
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
Generalized cable theory for neurons in complex and heterogeneous media.
Bédard, Claude; Destexhe, Alain
2013-08-01
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
Generalized non-linear strength theory and transformed stress space
Institute of Scientific and Technical Information of China (English)
YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo
2004-01-01
Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.
Subsonic potential aerodynamics for complex configurations - A general theory
Morino, L.; Kuo, C.-C.
1974-01-01
A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Generalized probabilistic theories and conic extensions of polytopes
Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj
2015-01-01
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.
Fracton topological order, generalized lattice gauge theory, and duality
Vijay, Sagar; Haah, Jeongwan; Fu, Liang
2016-12-01
We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin systems with symmetries along extensive, lower-dimensional subsystems, which may be used to systematically search for and characterize fracton topological phases. Commutative algebra and elementary algebraic geometry provide an effective mathematical tool set for our results. Our work paves the way for identifying possible material realizations of fracton topological phases.
General Theory of Spontaneous Emission Near Exceptional Points
Pick, Adi; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljacic, Marin; Johnson, Steven G
2016-01-01
Exceptional points (EPs)---non-Hermitian degeneracies where both the eigenvalues and the eigenvectors coalesce---have recently been realized in various optical systems. Here we present a general theory of spontaneous emission near such degeneracies, where standard mode-expansion methods lead to erroneous divergent results. We show that significant (and finite) enhancements for light-matter interaction can occur in systems with gain, whereas in passive systems the enhancement is at most four-fold. Under special conditions, the emission spectral lineshape near the EP becomes a squared Lorentzian, and the enhancement scales quadratically with the resonance lifetime.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2016-01-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasma come mainly from the use of very CPU-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize t...
The arrow of electromagnetic time and the generalized absorber theory
Cramer, John G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity at T=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
Arrow of electromagnetic time and the generalized absorber theory
Energy Technology Data Exchange (ETDEWEB)
Cramer, J.G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler--Feynman absorber theory in an open expanding universe with a singularity at T = 0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
Branes from Moyal Deformation Quantization of Generalized Yang Mills Theories
Castro, C
1999-01-01
It is shown that a Moyal deformation quantization of the SO(4k) Generalized Yang-Mills (GYM) theory action in D=4k dimensions, for spacetime independent field configurations, in the $\\hbar \\to 0$ limit, yields the Dolan-Tchrakian p-brane action after fixing the conformal and world volume reparametrization invariance, associated with the p-brane world volume dimension p+1=4k, embedded in a D=4k target spacetime background. The gauge fields/target spacetime coordinates correspondence is required but no large N limit is necessary.
Noncommutative Field Theory With General Translation Invariant Star Products
Rivera, Manolo
2015-01-01
We compute the two-point and four-point Green's function of the noncommutative $\\phi^{4}$ field theory; first with the s-ordered star products and then with a general translation invariant star product. We derive the differential expression for any translation invariant star product, and with the help of this expression we show that any of these products can be written in terms of a twist. Finally, using the notion of the twisted action of the infinitesimal Poincar\\'e transformations, we show that the commutator between the coordinate functions is invariant under Poincar\\'e transformations at a deformed level.
Institute of Scientific and Technical Information of China (English)
王泽洋; 赵自强; 夏永明; 庞志峰; 张春林
2011-01-01
Based on screw theory and spatial structure analysis, the structural formulae of all order mechanisms were deduced and the classification of spatial bar groups was made. The number of general constrain was introduced to determine the order of the bar group and the number of the components was used to determine the grade of the bar group. All the forms of spatial bar group with less than three components and no general constraint were synthesized. By the classification, the grade of spatial bar group could be decided. It gives a new theoretical foundation for space mechanism creative design.%应用螺旋理论从杆组的角度进行空间机构的结构分析,推导出各阶机构的结构公式.根据空间杆组的公共约束数确定空间杆组的阶数,空间杆组所包含的构件数确定空间杆组的级数.利用空间杆组的结构公式,按照阶数与级数对其分类,综合出零阶Ⅲ级以下的所有空间杆组.通过杆组结构分析,为空间机构的创新设计提供了理论依据.
Generalized local frame transformation theory for Rydberg atoms in external fields
Giannakeas, P; Robicheaux, F
2016-01-01
A rigorous theoretical framework is developed for a generalized local frame transformation theory (GLFT). A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local frame transformation theory developed initially by Fano and Harmin. This revised GLFT theory yields non-trivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semi-analytical GLFT Stark spectra with {\\it ab initio} numerical simulations yields errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Olmo, Gonzalo J
2015-01-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Tensor perturbations in a general class of Palatini theories
Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.
2015-06-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Application of Neutrosophic Set Theory in Generalized Assignment Problem
Directory of Open Access Journals (Sweden)
Supriya Kar
2015-09-01
Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.
The trouble with psychopathy as a general theory of crime.
Walters, Glenn D
2004-04-01
The concept of psychopathy, as defined by Robert Hare, is reviewed with respect to its status as a general theory of crime. A hybrid of the medical pathology model and personality trait approach, the psychopathy concept proposes that a significant portion of serious crime is committed by psychopathic individuals. Hare's version of psychopathy, besides demonstrating weak applicability and a propensity for tautology, is subject to labeling effects, oversimplicity, reductionism, the fundamental attributional error, inattention to context, and disregard for the dynamic nature of human behavior. It is concluded that the psychopathy concept is substantially limited with respect to its ability to describe and clarify general criminal behavior but that it may still have value as a partial explanation for certain types of non-criminal predatory behavior.
General Theory of Relativity: Will It Survive the Next Decade?
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
General theory of spherically symmetric boundary-value problems of the linear transport theory.
Kanal, M.
1972-01-01
A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.
Barbosa-Cendejas, Nandinii; Kanakoglou, Konstantinos; Paschalis, Joannis E
2011-01-01
In this paper we recall a simple formulation of the stationary electrovacuum theory in terms of the famous complex Ernst potentials, a pair of functions which allows one to generate new exact solutions from known ones by means of the so-called nonlinear hidden symmetries of Lie-Backlund type. This formalism turned out to be very useful to perform a complete classification of all 4D solutions which present two spacetime symmetries or possess two Killing vectors. Curiously enough, the Ernst formalism can be extended and applied to stationary General Relativity as well as the effective heterotic string theory reduced down to three spatial dimensions by means of a (real) matrix generalization of the Ernst potentials. Thus, in this theory one can also make use of nonlinear matrix hidden symmetries in order to generate new exact solutions from seed ones. Due to the explicit independence of the matrix Ernst potential formalism of the original theory (prior to dimensional reduction) on the dimension D, in the case wh...
Functional integration and gauge ambiguities in generalized abelian gauge theories
Kelnhofer, Gerald
2007-01-01
We consider the covariant quantization of generalized abelian gauge theories on a closed and compact n-dimensional manifold whose space of gauge invariant fields is the abelian group of Cheeger-Simons differential characters. The space of gauge fields is shown to be a non-trivial bundle over the orbits of the subgroup of smooth Cheeger-Simons differential characters. Furthermore each orbit itself has the structure of a bundle over a multi-dimensional torus. As a consequence there is a topological obstruction to the existence of a global gauge fixing condition. A functional integral measure is proposed on the space of gauge fields which takes this problem into account and provides a regularization of the gauge degrees of freedom. For the generalized p-form Maxwell theory closed expressions for all physical observables are obtained. The Greens functions are shown to be affected by the non-trivial bundle structure. Finally the vacuum expectation values of circle-valued homomorphisms, including the Wilson operato...
A generalized preimage theorem in global analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The concept of locally fine point and generalized regular valueof a C1 map between Banach spaces were carried over C1 map between Banach manifolds. Hence the preimage theorem, a principle constructing Banach manifolds in global analysis, is generalized.
Dimensional Analysis and General Relativity
Lovatt, Ian
2009-01-01
Newton's law of gravitation is a central topic in the first-year physics curriculum. A lecturer can go beyond the physical details and use the history of gravitation to discuss the development of scientific ideas; unfortunately, the most recent chapter in this history, general relativity, is not covered in first-year courses. This paper discusses…
Qin, Hong; Burby, J W; Chung, Moses
2015-01-01
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parameterized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or an U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetr...
Multivariate Generalized Multiscale Entropy Analysis
Directory of Open Access Journals (Sweden)
Anne Humeau-Heurtier
2016-11-01
Full Text Available Multiscale entropy (MSE was introduced in the 2000s to quantify systems’ complexity. MSE relies on (i a coarse-graining procedure to derive a set of time series representing the system dynamics on different time scales; (ii the computation of the sample entropy for each coarse-grained time series. A refined composite MSE (rcMSE—based on the same steps as MSE—also exists. Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE and rcMSE (MrcMSE have also been introduced. In the coarse-graining step used in MSE, rcMSE, MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different resolutions. A generalization of MSE was recently published, using the computation of different moments in the coarse-graining procedure. However, so far, this generalization only exists for univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and MGrcMSE, respectively are first analyzed through the processing of synthetic signals. We reveal that MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG available in the public domain. We report that MGrcMSE may show better performance than MrcMSE in distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement MMSE or MrcMSE in the processing of multivariate datasets.
General Systems Theory: Application To The Design Of Speech Communication Courses
Tucker, Raymond K.
1971-01-01
General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...
A General Systems Theory for Rain Formation in Warm Clouds
Selvam, A M
2012-01-01
A cumulus cloud model which can explain the observed characteristics of warm rain formation in monsoon clouds is presented. The model is based on classical statistical physical concepts and satisfies the principle of maximum entropy production. Atmospheric flows exhibit selfsimilar fractal fluctuations that are ubiquitous to all dynamical systems in nature, such as physical, chemical, social, etc and are characterized by inverse power law form for power (eddy energy) spectrum signifying long-range space-time correlations. A general systems theory model for atmospheric flows developed by the author is based on the concept that the large eddy energy is the integrated mean of enclosed turbulent (small scale) eddies. This model gives scale-free universal governing equations for cloud growth processes. The model predicted cloud parameters are in agreement with reported observations, in particular, the cloud dropsize distribution. Rain formation can occur in warm clouds within 30minutes lifetime under favourable co...
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
On truncated generalized Gibbs ensembles in the Ising field theory
Essler, F. H. L.; Mussardo, G.; Panfil, M.
2017-01-01
We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regularized versions of its ultra-local charges. We test the efficiency of the two different ensembles by comparing their predictions for the stationary state values of the single-particle Green’s function G(x)= of the complex fermion field \\psi (x) . We find that both truncated GGEs are able to recover G(x), but for a given number of charges the semi-local version performs better.
Generalized theory of mixed pole machines with a general rotor configuration
Directory of Open Access Journals (Sweden)
Ayman S. Abdel-khalik
2013-03-01
Full Text Available This paper introduces a generalized theory for the operation of mixed pole machines (MPMs. The MPM has two stator windings, namely the main winding with pole pairs P1 and the control winding with pole pairs P2. The MPM has shown promise in the field of adjustable speed drives for large machines and in the field of wind energy electrical generation. The operation of MPM relies on the interaction between the two fields produced by the two stator windings through the intermediate action of a specially designed rotor (nested-cage or reluctance rotor. The machine theory is described from a physical aspect rather than mathematical derivations. A simple representation is also presented, from which the machine d–q model can be readily deduced. The effect of mechanical loading on the relative positions of the machine fields is also presented.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2016-01-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasma come mainly from the use of very CPU-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g., the INMDF [O. Izacard, Phys. Plasmas 23, 082504 (2016)]). One of the main dif...
General Mission Analysis Tool (GMAT) Mathematical Specifications
Hughes, Steve
2007-01-01
The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
Huang, C; Zhou, B H
2016-01-01
This paper gives general intrinsic theory of general large $N_{c}$ QCD, SU(3) QCD, SU(2) hadron-dynamics and U(1) QED gauge field theories in general field theory and progress towards solving the nucleon spin crisis, i.e., presents general large $N_{c}$ QCD's inner structures, gauge invariant angular momenta and new corresponding Coulomb theorem in quark-gluon field interaction systems based on general field theory, and naturally deduces the gauge invariant spin and orbital angular momentum operators of quark and gauge fields with $SU(N_{c})$ gauge symmetry by Noether theorem in general field theory. In the general large $N_{c}$ QCD, we discover not only the general covariant transverse and parallel conditions ( namely, non-Abelian divergence and curl ), but also that this general system has good intrinsic symmetry characteristics. Specially, this paper's generally decomposing gauge potential theory presents a new technique, it should play a votal role in future physics research. Therefore, this paper breakth...
Generalized canonical correlation analysis with missing values
M. van de Velden (Michel); Y. Takane
2009-01-01
textabstractTwo new methods for dealing with missing values in generalized canonical correlation analysis are introduced. The first approach, which does not require iterations, is a generalization of the Test Equating method available for principal component analysis. In the second approach, missing
Design’s Mechanism -- General Morphological Analysis
2012-05-04
and Melvin Webber, “Dilemmas in a General Theory of Planning,” Policy Sciences no. 4 (1973): 155-160. 13 Orson Scott Card, Ender’s Game (New York...34 Bibliography Barrera, Guillermo, interview by John Miller. ADM (RET) (2012). Card, Orson Scott . Ender’s Game. New York: Tor Books
A generalization of random matrix theory and its application to statistical physics.
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
Directory of Open Access Journals (Sweden)
Andrea Nobili
2015-01-01
Full Text Available Three generalizations of the Timoshenko beam model according to the linear theory of micropolar elasticity or its special cases, that is, the couple stress theory or the modified couple stress theory, recently developed in the literature, are investigated and compared. The analysis is carried out in a variational setting, making use of Hamilton’s principle. It is shown that both the Timoshenko and the (possibly modified couple stress models are based on a microstructural kinematics which is governed by kinosthenic (ignorable terms in the Lagrangian. Despite their difference, all models bring in a beam-plane theory only one microstructural material parameter. Besides, the micropolar model formally reduces to the couple stress model upon introducing the proper constraint on the microstructure kinematics, although the material parameter is generally different. Line loading on the microstructure results in a nonconservative force potential. Finally, the Hamiltonian form of the micropolar beam model is derived and the canonical equations are presented along with their general solution. The latter exhibits a general oscillatory pattern for the microstructure rotation and stress, whose behavior matches the numerical findings.
Improved theory of generalized meteo-ballistic weighting factor functions and their use
Directory of Open Access Journals (Sweden)
Vladimir Cech
2016-06-01
Full Text Available It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model. Trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions (WFFs which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements µB (ballistic wind wB, density ρB, virtual temperature τB, pressure pB as well. We have found that the existing theory of WFF calculation has several significant shortcomings. The aim of the article is to present a new, improved theory of generalized WFFs that eliminates the deficiencies found. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.
Kinetic derivation of generalized phase space Chern-Simons theory
Hayata, Tomoya
2016-01-01
We study a kinetic theory in $2d$ phase space when all abelian Berry curvatures are nonzero. We derive the complete form of the Poisson brackets, and calculate transports induced by Berry curvatures. Then we construct the low-energy effective theory to reproduce the transports. Such an effective theory is given by the Chern-Simons theory in $1+2d$ dimensions. Some implications of the Chern-Simons theory are also discussed.
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
The History of Macroeconomics from Keynes’s General Theory to the Present
De Vroey, Michel; Malgrange, Pierre
2011-01-01
This paper is a contribution to the forthcoming Edward Elgar Handbook of the History of Economic Analysis volume edited by Gilbert Faccarello and Heinz Kurz. Its aim is to introduce the reader to the main episodes that have marked the course of modern macroeconomics: its emergence after the publication of Keynes’s General Theory, the heydays of Keynesian macroeconomics based on the IS-LM model, disequilibrium and non-Walrasian equilibrium modelling, the invention of the natural rate of unempl...
The History of Macroeconomics from Keynes’s General Theory to thePresent
De Vroey, Michel; Malgrange, Pierre
2011-01-01
This paper is a contribution to the forthcoming Edward Elgar Handbook of the History of Economic Analysis volume edited by Gilbert Faccarello and Heinz Kurz. Its aim is to introduce the reader to the main episodes that have marked the course of modern macroeconomics: its emergence after the publication of Keynes’s General Theory, the heydays of Keynesian macroeconomics based on the IS-LM model, disequilibrium and non-Walrasian equilibrium modelling, the invention of the natural rate of unempl...
A general quantitative theory of forest structure and dynamics.
West, Geoffrey B; Enquist, Brian J; Brown, James H
2009-04-28
We present the first part of a quantitative theory for the structure and dynamics of forests at demographic and resource steady state. The theory uses allometric scaling relations, based on metabolism and biomechanics, to quantify how trees use resources, fill space, and grow. These individual-level traits and properties scale up to predict emergent properties of forest stands, including size-frequency distributions, spacing relations, resource flux rates, and canopy configurations. Two insights emerge from this analysis: (i) The size structure and spatial arrangement of trees in the entire forest are emergent manifestations of the way that functionally invariant xylem elements are bundled together to conduct water and nutrients up from the trunks, through the branches, to the leaves of individual trees. (ii) Geometric and dynamic properties of trees in a forest and branches in trees scale identically, so that the entire forest can be described mathematically and behaves structurally and functionally like a scaled version of the branching networks in the largest tree. This quantitative framework uses a small number of parameters to predict numerous structural and dynamical properties of idealized forests.
Generalized Potts-Models and their Relevance for Gauge Theories
Directory of Open Access Journals (Sweden)
Andreas Wipf
2007-01-01
Full Text Available We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.
Directory of Open Access Journals (Sweden)
Nureev Rustem, M.
2016-03-01
Full Text Available The paper was prepared for the 80-th anniversary of publishing of John Maynard Keynes’ “General Theory of Employment, Interest and Money”. It discusses the stages of the economist’s life, the main books written prior to "The General Theory ...". Particular attention is devoted to the development issues of the monetary policy in the works of "Indian Currency and Finance", ”A Tract on Monetary Reform” and "A Treatise on Money". A special section is dedicated to the analysis of Keynes’ methodology, its logic and structure, influenced by John. E. Moore. The paper reveals the unity and the difference in approaches of A. Marshall and John M. Keynes, and explores new categories of behavioral economics and marginal analysis, which established the success of "General Theory of Employment, Interest and Money", shows the value of Keynes's theory for the further development of macroeconomics. Particular attention is paid to the popularization of Keynes's ideas from the initial interpretations of "The General Theory ..." to the neoclassical synthesis and further to neo-Keynesianism and post-Keynesianism. The paper studies the unity and the distinction between Hicks’ and American Keynesianism. Hicksian assumptions of a savings-investment function have determined the features of the IS-LM model. The contributions to the development of Keynesianism A. Hansen and P. A. Samuelson are also shown, as well as the history of the "Keynesian Cross". A comparative analysis of the neoclassical and Keynesian models of general economic equilibrium is given and analyzes the institutional reasons explaining differences between neoclassical and Keynesian paradigms. A special section is devoted to the Keynesian theory of growth, showing unity and difference of R. Harrod and E. Domar models, along with their impact on the creation of Development Economics. Simplified understanding of Keynes's legacy has caused the emergence of unorthodox Keynesianism. The paper
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
On the general theory of the origins of retroviruses
Directory of Open Access Journals (Sweden)
Wayengera Misaki
2010-02-01
Full Text Available Abstract Background The order retroviridae comprises viruses based on ribonucleic acids (RNA. Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm and host adaptability (Ha; along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv from a non-primate species Xy to Homo sapiens (Hs, initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO, sfv shedding is (1 enhanced by two transmitting tensors (Tt, (i virus-specific immunity (VSI and (ii evolutionary defenses such as APOBEC, RNA interference pathways, and (when present expedited therapeutics (denoted e2D; and (2 opposed by the five accepting scalars (At: (a genomic integration hot spots, gIHS, (b nuclear envelope transit (NMt vectors, (c virus-specific cellular biochemistry, VSCB, (d virus-specific cellular receptor repertoire, VSCR, and (e pH-mediated cell membrane transit, (↓pH CMat. Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt. Overall, If sfv encounters no unforeseen effects on
[The issue of feasibility of a general theory of aging I. Generalized Gompertz-Makeham Law].
Golubev, A G
2009-01-01
Aging and longevity are interrelated so intimately that they should be treated with a unified theory. The longevity of every single cohort of living beings is determined by the rate of their dying-out. In most cases, mortality rates increase in accelerated fashions to reach values making the bulk of each finite cohort completely exhausted within a relatively narrow time interval shifted to the end of its resulting lifespan. Among simple functions with biologically interpretable parameters, the best fit to this pattern is demonstrated by the Gompertz-Makeham Law (GML): mu = C + lambda x e(gamma x t). A generalized form of GML mu = C(t) + lambda x e(-E(t)) is suggested and interpreted as a law of the dependency of mortality upon vitality rather than on age. It is reduced to the conventional GML when E depends linearly on t, that the age is an observable correlate of unobservable vitality. C(t) captures the inherently irresistible causes of death. The generalized GML can accommodate any mode of age-dependent functional decline, which should be placed into the exponent index to be translated into changes in mortality rate, and is compatible with any sort of cohort heterogeneity, which may be captured by substituting of GML parameters with relevant distributions or by combining of several generalized GML models. The generalized GML is suggested to result from the origin of life from the chemical world, which was associated with the transition of the role of the main variable in the Arrhenius equation k = A x exp[-Ea/(R x T)] for the dependency of chemical disintegration on temperature from T to Ea upon the transition from molecular to multimolecular prebiotic entities. Thus, the generalized GML is not a result of biological evolution but is a sort of chemical legacy of biology, which makes an important condition for life to evolve.
General systems theory, brain organization, and early experiences.
Denenberg, V H
1980-01-01
Three hypothetical brain processes--interhemispheric coupling, hemispheric activation, and interhemispheric inhibition--are derived from an equation characterizing general systems theory. To investigate these processes, experimental rats were reared under differing early experience conditions. When adult, they had their right or left neocortex lesioned, had a sham operation, or were left undisturbed. Interhemispheric coupling was measured by means of a correlation coefficient between the right and left hemispheres. The presence of a significant positive correlation is taken as evidence of a negative feedback loop between the hemispheres. In one experimental population, in which rats did not receive any extra stimulation in infancy, the correlation was not significantly different from zero, thus implying that the two hemispheres were operating independently. In another population, in which rats had received handling stimulation in infancy, the correlation coefficient was significant (0.543), indicating that the hemispheres were coupled in a systems arrangement. The processes of hemispheric activation and interhemispheric inhibition were assessed by comparing the mean performance of the two unilateral lesion groups and the group with intact brain. The two rat populations had different forms of brain organizations as measured by these processes. These analyses show that the behavior of the isolated hemisphere cannot be directly extrapolated to the behavior of the connected hemisphere. If there is hemispheric coupling via a negative feedback loop or if there is interhemispheric inhibition, then the disconnected hemisphere may show behaviors that are not evident in the normal connected condition.
Simple Space-Time Symmetries: Generalizing Conformal Field Theory
Mack, G; Mack, Gerhard; Riese, Mathias de
2004-01-01
We study simple space-time symmetry groups G which act on a space-time manifold M=G/H which admits a G-invariant global causal structure. We classify pairs (G,M) which share the following additional properties of conformal field theory: 1) The stability subgroup H of a point in M is the identity component of a parabolic subgroup of G, implying factorization H=MAN, where M generalizes Lorentz transformations, A dilatations, and N special conformal transformations. 2) special conformal transformations in N act trivially on tangent vectors to the space-time manifold M. The allowed simple Lie groups G are the universal coverings of SU(m,m), SO(2,D), Sp(l,R), SO*(4n) and E_7(-25) and H are particular maximal parabolic subgroups. All these groups G admit positive energy representations. It will also be shown that the classical conformal groups SO(2,D) are the only allowed groups which possess a time reflection automorphism; in all other cases space-time has an intrinsic chiral structure.
A Specific Case of Generalized Einstein-aether Theories
Institute of Scientific and Technical Information of China (English)
孟新河; 杜小龙
2012-01-01
With the dark energy phenomena explored over a decade, in this present work we discuss a specific case of the generalized Einstein-aether theories, in which the modified Friedmann equation is similar to that in the Dvali- Gabadadze-Porrati （DGP） brahe world model. We compute the joint statistic constraints on model parameters in this specific case by using the recent type Ia supernovae （SNe Ia） data, the cosmic microwave background （CMB） shift parameter data, and the baryonic acoustic oscillations （BAOs） data traced by the S1oan Digital Sky Survey （SDSS）. Furthermore, we analyze other constrains from the observational Hubble parameter data （OHD）. The comparison with the standard cosmological model （cosmological constant A cold dark matter （ACDM） model） is dearly shown; also we comment on the interesting relation between the coupling constant M in this model and the special accelerate scale in the modified Newtonian dynamies （MOND） model initially given by Milgrom with the hope for interpreting the galaxy rotation curves without introducing mysterious dark matter.
Generalized Pauli constraints in reduced density matrix functional theory
Energy Technology Data Exchange (ETDEWEB)
Theophilou, Iris; Helbig, Nicole [Peter-Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lathiotakis, Nektarios N. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens (Greece); Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale) (Germany); Marques, Miguel A. L. [Institut für Physik Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale) (Germany)
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
General theory of regular biorthogonal pairs and its physical operators
Inoue, H.
2016-08-01
In this paper, we introduce a general theory of regular biorthogonal sequences and its physical operators. Biorthogonal sequences {ϕn} and {ψn} in a Hilbert space H are said to be regular if Span {ϕn} and Span {ψn} are dense in H . The first purpose is to show that there exists a non-singular positive self-adjoint operator Tf in H defined by an orthonormal basis (ONB) f ≡ {fn} in H such that ϕn = Tffn and ψ n = Tf - 1 f n , n = 0, 1, …, and such an ONB f is unique. The second purpose is to define and study the lowering operators Af and Bf † , the raising operators Bf and Af † , and the number operators Nf and Nf † determined by the non-singular positive self-adjoint operator Tf. These operators connect with quasi-Hermitian quantum mechanics and its relatives. This paper clarifies and simplifies the mathematical structure of this framework and minimizes the required assumptions.
Index analysis approach theory at work
Lowen, R
2015-01-01
A featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is the...
Antenna theory analysis and design
Balanis, Constantine A
2005-01-01
The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e
Institute of Scientific and Technical Information of China (English)
张齐东
2012-01-01
The general will is important concept of Rousseau Social Contract Thoughts. As one of the important content, the general will theory has strong universality, compulsion and justice. The paper thinks that it is of important practical significance to discuss the reality of public will and how to represent the general will and the issue that the public will may lead to the centralization of state power or the tyranny of the majority and other aspects. It is of significance to study Rousseaug general will theory for modem China.%公意是卢梭社会契约思想的重要概念。公意理论作为卢梭社会政治理论的重要内容,具有强烈的普遍性、强迫性和公正性。对公意存在的现实性、公意如何体现、谁的意志代表公意和公意可能导致集权或多数人的暴政等方面的反思具有重要现实意义。在当代,对卢梭的公意思想进行深入探讨也意义深远。
Set Matrix Theory as a Physically Motivated Generalization of Zermelo-Fraenkel Set Theory
Cabbolet, Marcoen J T F
2012-01-01
Recently, the Elementary Process Theory (EPT) has been developed as a set of fundamental principles that might underlie a gravitational repulsion of matter and antimatter. This paper presents set matrix theory (SMT) as the foundation of the mathematical-logical framework in which the EPT has been formalized: Zermelo-Fraenkel set theory (ZF), namely, cannot be used as such. SMT is a generalization of ZF: whereas ZF uses only sets as primitive objects, in the framework of SMT finite matrices with set-valued entries are objects sui generis, with a 1\\times1 set matrix [x] being identical to the set x. It is proved that every set that can be constructed in ZF can also be constructed in SMT: as a mathematical foundation, SMT is thus not weaker than ZF. In addition, it is shown that SMT is more suitable han ZF for the intended application to physics. The conclusion is that SMT, contrary to ZF, is acceptable as the mathematical-logical foundation of the framework for physics that is determined by the EPT.
Indian Academy of Sciences (India)
M D Sharma
2007-08-01
Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two different approaches. One is the dynamic approach of Biot’s theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion. The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic waves in the medium. The other defines a matrix to relate the relative displacement of fluid particles to the displacement of solid particles. The modified Christoffel equations are solved further to get a quartic equation whose roots represent complex velocities of the four attenuating quasi-waves in the medium. These complex velocities define the phase velocities of propagation and quality factors for attenuation of all the quasi-waves propagating along a given phase direction in three-dimensional space. The derivations in the mathematical models from different theories are compared in order to work out the equivalence between them. The variations of phase velocities and attenuation factors with the direction of phase propagation are computed, for a realistic numerical model. Differences between the velocities and attenuations of quasi-waves from the two approaches are exhibited numerically.
An aeroelastic analysis with a generalized dynamic wake
He, Cheng J.; Peters, David A.
1991-01-01
An aeroelastic model with generalized dynamic wake is developed for application in the integration of aerodynamic, dynamic, and structural optimization of a rotor blade. The investigation is carried out with special attention to efficiency and accuracy of aeroelastic modeling. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections. The nonuniform blade is discretized into finite beam elements, each of which consists of twelve degrees of freedom. Such important blade design variables as pretwist, and chordwise offsets of the blade center of gravity and of the aerodynamic center from the elastic axis have been included in the analysis. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is modeled using a generalized dynamic wake theory. The noncirculatory loads based on unsteady thin airfoil theory are also included.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology.
Messner, Steven F
2015-06-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives-Situational Action Theory and Institutional Anomie Theory-that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally.
Fundamentals of the fuzzy logic-based generalized theory of decisions
Aliev, Rafik Aziz
2013-01-01
Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than comput...
Toward a General Research Process for Using Dubin's Theory Building Model
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
Item Response Theory Using Hierarchical Generalized Linear Models
Directory of Open Access Journals (Sweden)
Hamdollah Ravand
2015-03-01
Full Text Available Multilevel models (MLMs are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation studies with a methodological focus. Although the methodological direction was necessary as a first step to show how MLMs can be utilized and extended to model item response data, the emphasis needs to be shifted towards providing evidence on how applications of MLMs in educational testing can provide the benefits that have been promised. The present study uses foreign language reading comprehension data to illustrate application of hierarchical generalized models to estimate person and item parameters, differential item functioning (DIF, and local person dependence in a three-level model.
Generalized BRST symmetry for arbitrary spin conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2015-05-11
We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.
Number Theory, Analysis and Geometry
Goldfeld, Dorian; Jones, Peter
2012-01-01
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th
Numerical solutions of a generalized theory for macroscopic capillarity
Doster, F.; Zegeling, P.A.; Hilfer, R.
2010-01-01
A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Credibility analysis of risk classes by generalized linear model
Erdemir, Ovgucan Karadag; Sucu, Meral
2016-06-01
In this paper generalized linear model (GLM) and credibility theory which are frequently used in nonlife insurance pricing are combined for reliability analysis. Using full credibility standard, GLM is associated with limited fluctuation credibility approach. Comparison criteria such as asymptotic variance and credibility probability are used to analyze the credibility of risk classes. An application is performed by using one-year claim frequency data of a Turkish insurance company and results of credible risk classes are interpreted.
The KKW Generalized Analysis for a Magnetic Stringy Black Hole
Radinschi, I.
2004-01-01
We apply the Keski-Vakkuri, Kraus and Wilczek (KKW) generalized analysis to a magnetic stringy black hole solution to compute its temperature and entropy. The solution that we choose in the Einstein-dilaton-Maxwell theory is the dual solution known as the magnetic black hole solution. Our results show that the expressions of the temperature and entropy of this non-Schwarzschild-type black hole are not the Hawking temperature and the Bekenstein-Hawking entropy, respectively. In addition, the e...
Group theory analysis of braided geometry structures
Institute of Scientific and Technical Information of China (English)
FENG Wei; MA Wensuo
2005-01-01
The braided geometry structures are analyzed with point groups and space groups for which the continuous yarn of the braided preforms is segmented and expressed in some special symbols. All structures of braided material are described and classified with group theory, and new braiding methods are found. The group theory analysis lays the theoretical foundation for optimizing material performance.
Modularity: An Application of General Systems Theory to Military Force Development
2005-01-01
of General Systems Theory to Military Force Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Prescribed by ANSI Std Z39-18 MODULARITY: AN APPLICATION OF GENERAL SYSTEMS THEORY TO MILITARY FORCE DEVELOPMENT 279 R SEARCH MODULARITY: AN APPLICATION OF... GENERAL SYSTEMS THEORY TO MILITARY FORCE DEVELOPMENT Dr. Melissa A. Schilling and COL Christopher Paparone, USA Although researchers in the fields
Conformal generally covariant quantum field theory. The scalar field and its Wick products
Energy Technology Data Exchange (ETDEWEB)
Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-06-15
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale {mu} appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Min; WANG Qing
2001-01-01
Bosonic part of SU(2)L U(1)Y effective chiral Lagrangian for electroweak symmetry breaking is derived from an underlying technicolor theory with no approximation. The underlying theory is assumed to be the most general gauge theory without fundamental scalars. A condensate is required to exist in the theory which breaks SU(2)L U(1)Y dynamically to U(1)em and the anomaly of the theory caused by gauge interaction must be cancelled. The formulation offers general definitions in terms of underlying theory for the low energy constants in effective chiral Lagrangian.``
Fixed point theory, variational analysis, and optimization
Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan
2015-01-01
""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China
Generalized local-frame-transformation theory for excited species in external fields
Giannakeas, P.; Greene, Chris H.; Robicheaux, F.
2016-07-01
A rigorous theoretical framework is developed for a generalized local-frame-transformation theory (GLFT). The GLFT is applicable to the following systems: Rydberg atoms or molecules in an electric field and negative ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local-frame-transformation theory developed initially by U. Fano [Phys. Rev. A 24, 619 (1981), 10.1103/PhysRevA.24.619] and D. A. Harmin [Phys. Rev. A 26, 2656 (1982), 10.1103/PhysRevA.26.2656]. This revised GLFT theory yields nontrivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semianalytical GLFT Stark spectra with ab initio numerical simulations yield errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory, whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.
Generalized local frame transformation theory for Rydberg atoms in external fields
Giannakeas, Panagiotis; Robicheaux, Francis; Greene, Chris H.
2016-05-01
In this work a rigorous theoretical framework is developed generalizing the local frame transformation theory (GLFT) and it is applied to the photoionization spectra of Rydberg atoms in an external electric field. The resulting development is compared with previous theoretical treatments, including the first version of local frame transformation theory, developed initially by Fano and Harmin. Our revised version of the theory yields non-trivial corrections because we now take into account the full Hilbert space on the energy shell without adopting truncations utilized by the original Fano-Harmin theory. The semi-analytical calculations from GLFT approach are compared with ab initio numerical simulations yielding errors of few tens of MHz whereas the errors in the original Fano-Harmin theory are one or two orders of magnitude larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet modern experimental standards. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award numbers DE-SC0010545 (for PG and CHG) and DE-SC0012193 (for FR).
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
Dynamical Cobordisms in General Relativity and String Theory
Hellerman, Simeon
2010-01-01
We describe a class of time-dependent solutions in string- or M-theory that are exact with respect to alpha-prime and curvature corrections and interpolate in physical space between regions in which the low energy physics is well-approximated by different string theories and string compactifications. The regions are connected by expanding "domain walls" but are not separated by causal horizons, and physical excitations can propagate between them. As specific examples we construct solutions that interpolate between oriented and unoriented string theories, and also between type II and heterotic theories. Our solutions can be weakly curved and under perturbative control everywhere and can asymptote to supersymmetric at late times.
String theory, scale relativity and the generalized uncertainty principle
Castro, C
1995-01-01
An extension/ modification of the Stringy Heisenberg Uncertainty principle is derived within the framework of the theory of Special Scale-Relativity proposed by Nottale. Based on the fractal structure of two dimensional Quantum Gravity which has attracted considerable interest recently we conjecture that the underlying fundamental principle behind String theory should be based on an extension of Scale Relativity where both dynamics as well as scales are incorporated in the same footing.
Analytic Multi-Regge Theory and the Pomeron in QCD; 2, Gauge Theory Analysis
White, Alan R
1993-01-01
The high-energy Regge behavior of gauge theories is studied via the formalism of Analytic Multi-Regge Theory. Perturbative results for spontaneously-broken theories are first organised into reggeon diagrams. Unbroken gauge theories are studied via a reggeon diagram infra-red analysis of symmetry restoration. Massless fermions play a crucial role and the case of QCD involves the Super-Critical Pomeron as an essential intermediate stage. An introductory review of the build up of transverse momentum diagrams and reggeon diagrams from leading log calculations in gauge theories is presented first. It is then shown that the results closely reproduce the general structure for multi-regge amplitudes derived in Part I of the article, allowing the construction of general reggeon diagrams for spontaneously-broken theories. Next it is argued that, with a transverse-momentum cut-off, unbroken gauge theories can be reached through an infra-red limiting process which successively decouples fundamental representation Higgs f...
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Inflationary Phase in a Generalized Brans-Dicke Theory
Berman, Marcelo S.; Trevisan, Luis A.
2009-07-01
We find a solution for exponential inflation in a Brans-Dicke generalized model, where the coupling “constant” is variable. While in General Relativity the equation of state is p=- ρ, here we find p= α ρ, where α<-2/3. The negativity of cosmic pressure implies acceleration of the expansion, even with Λ<0.
Noether's theory of generalized linear nonholonomic mechanical systems
Institute of Scientific and Technical Information of China (English)
Dong Wen-Shan; Huang Bao-Xin; Fang Jian-Hui
2011-01-01
By introducing the quasi-symmetry of the infinitesimal transformation of the transformation group Gr, the Noether's theorem and the Noether's inverse theorem for generalized linear nonholonomic mechanical systems are obtained in a generalized compound derivative space. An example is given to illustrate the application of the result.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology
Messner, Steven F.
2016-01-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally. PMID:27087864
Generalized Structured Component Analysis with Latent Interactions
Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan
2010-01-01
Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…
Bf and Anti-Bf Theories in the Generalized Connection Formalism
Aidaoui, A.; Doebner, H.-D.; Tahiri, M.
We present a generalized connection formalism to explicitly determine an off-shell BRST-anti-BRST algebra for BF theories. This results in the construction of anti-BF theories based on an anti-BRST exact quantum action. These are not fundamentally different from BF theories, since they are in complete duality with respect to a mirror symmetry of the ghost numbers.
Where has entropy gone theory of general system, 2
Zhen, W
1996-01-01
A pair of symmetric expressions for the second law of thermodynamics is put forward. The conservation and transfer of entropy is discussed and applied to problems like biology, culture and life itself. A new explanation is given to the cosmic expansion with the concept of diversity in this theory. The problem of contingency and necessity is also discussed.
On the construction of a psychologically based, general theory of observation: an introduction
Nyman, Göte
2013-01-01
The perception-related origins of physical measures and standards are considered within the framework of the general observer theory. The impact of observer characteristics on the development of observer-centric physics, physical concepts and metrics are analyzed. A preliminary theoretical approach is suggested for the construction of a general observer theory and formulation of its relationship to observer-centered physical concepts and theories. The approach makes it possible to construct a theory of the observer, intrinsic in any theory of physics.
Nami, Mohammad Rahim; Janghorban, Maziar
2013-12-30
In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.
The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.
Miller, James G.
General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…
Osp(1,2)-covariant Lagrangian quantization of general gauge theories
Energy Technology Data Exchange (ETDEWEB)
Geyer, B.; Lavrov, P.M. [Universitat Leipzig, Naturwissenschaftlich-Theoretisches Zentrum, Leipzig (Germany); Muelsch, D. [Wissenschaftszentrum Leipzig e.V., Leipzig (Germany)
1998-10-01
An osp(1, 2)-covariant Lagrangian quantization of general gauge theories is introduced which also applies to massive fields. It generalizes the Batalin-Vilkovisky and the Sp(2)-covariant field-antifield approach and guarantees symplectic invariance of the quantized action. Massive gauge theories with closed algebra are considered as an example. (author)
Institute of Scientific and Technical Information of China (English)
王惠敏
2012-01-01
Taking the appraisal theory of J·R·Martin as the main research methodology,this paper analyzes the lecture Hugo Rafael Chá vez Frí as made in the UN General Assembly from attitude,engagement and graduation,to reveal the attitude,point of view and position behind the lecture.%以马丁的评价理论为主要研究方法,从态度、介入以及极差三个方面对查韦斯在联合国大会上谴责美国行径的演讲进行分析,从而揭示演讲背后所体现的态度、观点和立场。
A New Look at Generalized Rewriting in Type Theory
Directory of Open Access Journals (Sweden)
Matthieu Sozeau
2009-01-01
Full Text Available Rewriting is an essential tool for computer-based reasoning, both automated and assisted. This is because rewriting is a general notion that permits modeling a wide range of problems and provides a means to effectively solve them. In a proof assistant, rewriting can be used to replace terms in arbitrary contexts, generalizing the usual equational reasoning to reasoning modulo arbitrary relations. This can be done provided the necessary proofs that functions appearing in goals are congruent with respect to specific relations. We present a new implementation of generalized rewriting in the Coq proof assistant, making essential use of the expressive power of dependent types and the recently implemented type class mechanism. The new rewrite tactic improves on and generalizes previous versions by natively supporting higher-order functions, polymorphism and subrelations. The type class system inspired by Haskell provides a perfect interface between the user and the tactic, making it easily extensible.
Generalized topological spaces in evolutionary theory and combinatorial chemistry.
Stadler, Bärbel M R; Stadler, Peter F
2002-01-01
The search spaces in combinatorial chemistry as well as the sequence spaces underlying (molecular) evolution are conventionally thought of as graphs. Recombination, however, implies a nongraphical structure of the combinatorial search spaces. These structures, and their implications for search process itself, are heretofore not well understood in general. In this contribution we review a very general formalism from point set topology and discuss its application to combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistries.
Towards a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Bujorianu, M. C.
2008-01-01
In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very general class of stochastic hybrid processes can be embedded in the framework of Markov strings. This class,...
Generalized Supersymmetries and Composite Structure in M-Theory
Lukierski, J
2002-01-01
We describe generalized D=11 Poincar\\'{e} and conformal supersymmetries. The corresponding generalization of twistor and supertwistor framework is outlined with $OSp(1|64)$ superspinors describing BPS preons. The $\\frac{k}{32}$ BPS states as composed out of $n=32 - k$ preons are introduced, and basic ideas concerning BPS preon dynamics is presented. The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo and the author$^1$.
Generalized Supersymmetries and Composite Structure in M-Theory
Iajkierski, Jerzy
2002-11-01
We describe generalized D = 11 Poincaré and conformal supersymmetries. The corresponding generalization of twistor and supertwistor framework is outlined with OSp(l|64) superspinors describing BPS preons. The (k)/(32) BPS states as composed out of n = 32 - k preons are introduced, and basic ideas concerning BPS preon dynamics is presented. The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo and the author.
Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory
Energy Technology Data Exchange (ETDEWEB)
J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts
2006-05-01
This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and
Quantitative test of general theories of the intrinsic laser linewidth
Cerjan, Alexander; Chong, Yidong; Johnson, Steven G; Stone, A Douglas
2015-01-01
We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch lasing equations, augmented with Langevin force terms, and thus includes the effects of dispersion, losses due to the open boundary of the laser cavity, and non-linear coupling between the amplitude and phase fluctuations ($\\alpha$ factor). We find quantitative agreement between the numerical results and the predictions of the noisy steady-state ab initio laser theory (N-SALT), both in the variation of the linewidth with output power, as well as the emergence of side-peaks due to relaxation oscillations.
Geometrical hyperbolic systems for general relativity and gauge theories
Abrahams, A M; Choquet-Bruhat, Y; York, J W
1996-01-01
The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector \\beta^{i}(t,x^{j}) and the spatial scalar potential \\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1) taking a furth...
Generally covariant vs. gauge structure for conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Campigotto, M., E-mail: martacostanza.campigotto@to.infn.it [Dipartimento di Fisica, University of Torino, Via P. Giuria 1, 10125, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy); Fatibene, L. [Dipartimento di Matematica, University of Torino, Via C. Alberto 10, 10123, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy)
2015-11-15
We introduce the natural lift of spacetime diffeomorphisms for conformal gravity and discuss the physical equivalence between the natural and gauge natural structure of the theory. Accordingly, we argue that conformal transformations must be introduced as gauge transformations (affecting fields but not spacetime point) and then discuss special structures implied by the splitting of the conformal group. -- Highlights: •Both a natural and a gauge natural structure for conformal gravity are defined. •Global properties and natural lift of spacetime transformations are described. •The possible definitions of physical state are considered and discussed. •The gauge natural theory has less physical states than the corresponding natural one. •The dynamics forces to prefer the gauge natural structure over the natural one.
Trigonometric sums in number theory and analysis
Karatsuba, Anatoly A; Chubarikov, Vladimir N; Shishkova, Maria
2004-01-01
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. Vinogradov´s estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.
Austrian Economics as a Basis for a General Marketing Theory
Broeckelmann, Philipp
2004-01-01
Im Marketing konkurrieren eine Reihe von Theorien um Aufmerksamkeit, Unterstützung durch akademische Forschung und theoretische Glaubwürdigkeit. Es gibt z.B. Ansätze aus so unterschiedlichen Bereichen wie der Volkswirtschaftslehre, Psychologie und Soziologie. Alles in allem ist die Marketing-Forschung stark zersplittert. Die vorliegende Arbeit behandelt die Möglichkeiten und Grenzen der Marktprozesstheorie (Österreichische Schule der Nationalökonomie) - eine Theorie, die die Rolle der Informa...
General aviation air traffic pattern safety analysis
Parker, L. C.
1973-01-01
A concept is described for evaluating the general aviation mid-air collision hazard in uncontrolled terminal airspace. Three-dimensional traffic pattern measurements were conducted at uncontrolled and controlled airports. Computer programs for data reduction, storage retrieval and statistical analysis have been developed. Initial general aviation air traffic pattern characteristics are presented. These preliminary results indicate that patterns are highly divergent from the expected standard pattern, and that pattern procedures observed can affect the ability of pilots to see and avoid each other.
Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media
André Ambrosio, Leonardo
2016-09-01
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.
Nyachwaya, James M.; Gillaspie, Merry
2016-01-01
The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…
Generalizations of the Nash Equilibrium Theorem in the KKM Theory
Directory of Open Access Journals (Sweden)
Park Sehie
2010-01-01
Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for -convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.
Generalizations of the Nash Equilibrium Theorem in the KKM Theory
Directory of Open Access Journals (Sweden)
Sehie Park
2010-01-01
Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.
Instability of Static Semi-Closed Worlds in Generalized Galileon Theories
Evseev, O A
2016-01-01
We consider generalized Galileon theories within general relativity in four-dimensional space-time. We provide the argument showing that the generalized Galileons described by a wide class of Lagrangians do not admit stable, static, spherically symmetric semi-closed worlds. We also show that in a class of theories with $p_{\\perp} = - \\rho$ (where $p_{\\perp}$ is transverse pressure and $\\rho$ is energy density), semi-closed worlds, if exist, would be observed as objects of negative mass.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
The General Theory of Homogenization A Personalized Introduction
Tartar, Luc
2010-01-01
Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,
Contest dynamics general biomechanical theory of contest sports
Sacripanti, Attilio
2008-01-01
In this report it is approched the Contest dynamics as mathematical theory, therefore applicable to all contest sports. Starting with the physical definition of Athlete and Couple of Athlete systems and after singling out the interaction basic parameter, there are analyzed the classes of possible potentials describing the interaction. At the end there are specified the physical bases of mutual interaction between athletes and the trajectories of flight motion. All the matter will be connected to measurable quantities or parameters useful for researchers and trainers.
The Impact of Labov's Contribution to general Linguistic Theory
DEFF Research Database (Denmark)
Gregersen, Frans; Cornips, Leonie
2016-01-01
century which is Chomskyan theoretical linguistics, i.e. as either a supplement or an alternative. Variation at the level of closely related languages, at the level of the language community, and at the level of the individual, have all been treated by Chomskyans under various headings, thus giving...... evidence that empirical results stemming from variationist sociolinguistics cannot be ignored. However, the treatment has not led to an integration of variation into Chomskyan theory, nor could it. In the final section we outline what a Labovian materialist alternative to Chomskyan idealism could be. We...
General proof of entropy principle in Einstein-Maxwell theory
Fang, Xiongjun
2015-01-01
We consider a static self-gravitating charged perfect fluid system in the Einstein-Maxwell theory. Assume Maxwell's equation and the Einstein constraint equation are satisfied, and the temperature of the fluid obeys Tolman's law. Then we prove that the total entropy of the fluid achieves an extremum implies other components of Einstein's equation for any variations of metric and electrical potential with fixed boundary values. Conversely, if Einstein's equation and Maxwell's equations hold, the total entropy achieves an extremum. Our work suggests that the maximum entropy principle is consistent with Einstein's equation when electric field is taken into account.
Generalizations of Karp's theorem to elastic scattering theory
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Generalized semi-infinite programming: Theory and methods
Still, G.
1999-01-01
Generalized semi-infinite optimization problems (GSIP) are considered. The difference between GSIP and standard semi-infinite problems (SIP) is illustrated by examples. By applying the `Reduction Ansatz', optimality conditions for GSIP are derived. Numerical methods for solving GSIP are considered i
Towards a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.
2008-01-01
In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Mark
Toward a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.
2006-01-01
In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Ma
Geometric measure theory and real analysis
2014-01-01
In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
Harmonic analysis and the theory of probability
Bochner, Salomon
2005-01-01
Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic pro
Einstein-aether theory with a Maxwell field: General formalism
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation); Lemos, José P.S., E-mail: joselemos@ist.utl.pt [Centro Multidisciplinar de Astrofísica-CENTRA, Departamento de Física, Instituto Superior Técnico-IST, Universidade de Lisboa-UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Institute of Scientific and Technical Information of China (English)
黄兴国
2011-01-01
普通高校高职思想政治理论课是对大学生进行系统思想政治教育的主阵地,但目前基于各种原因还存在一些问题。我们应充分认识高职思想政治理论课的意义和特点,分析其中存在的问题,提出增强其实效的路径,这样才有利于思想政治教育目标实现。%Higher vocational ideological and political theory course in genegal colleges is the main front for ideological and political education,but for various reasons,there still exist some problems.A fully understanding of the meaning and characteristics of higher vocational ideological and political theory course and the analysis of the problems existing are of great help to propose the path to enhance its effectiveness and achieve the goal of ideological and political education.
A generalized theory on the penetrating boundary conditions
Institute of Scientific and Technical Information of China (English)
邵振海; 洪伟; 周健义
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur’s ABC, and Liao’s ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
A generalized theory on the penetrating boundary conditions
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A generalized formula for penetrating boundary conditions is derived based on the Z-transform. The well-known absorbing boundary conditions (ABCs), such as the Mur's ABC, and Liao's ABC, can be deduced from the formula. Furthermore, some new ABCs can also be deduced from it. The stability of these ABCs are demonstrated via Von Neumann method and their validity is verified by numerical examples.
A general theory of phase noise in electrical oscillators
Hajimiri, Ali; Lee, Thomas H.
1998-01-01
A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it expl...
Institute of Scientific and Technical Information of China (English)
冉鹏; 王亚瑟
2013-01-01
Based on the analysis of the structure feature of PWR nuclear power plants, graph theory are introduced in the thermal economy analysis fields. According to the abstraction rule of the thermal system in PWR nuclear power plants, the boundary delimitation of a power plant thermal system is determined, and the thermal system of PWR nuclear power plants is expressed as the form of graph theory. A new unified rules for analyzing the thermal system are established. Combined with the first thermodynamics law and mass conservation law, weighted diagraph adjacency matrix is deducted. An example is given to illustrate the validity of the method.%在深入研究压水堆(PWR)核电机组热力系统结构特点的基础上,将图论思想引入热力系统节能分析,规定核电机组热力系统的划分原则及其基于图的表达方法,确定核电机组热力系统的有向图带权邻接矩阵填写规则.根据回热加热器系统的能量守恒定律、质量守恒定律,确定核电机组主、辅系统的有向图带权邻接矩阵表达规则以及矩阵的运算规则,推导出通用PWR核电机组热力系统的有向图带权邻接矩阵方程,并用实例验证本方法的正确性.
General Neveu-Schwarz Correlators in Super Liouville Theory
Abdalla, Elcio; Dalmazi, D; Harada, K; Harada, Koji
1991-01-01
In this paper we compute the N-point correlation functions of the tachyon operator from the Neveu Schwarz sector of super Liouville theory coupled to matter fields (with $\\hat c\\le 1$) in the super Coulomb gas formulation, on world sheets with spherical topology. We first integrate over the zero mode assuming that the $s$ parameter takes an integer value, subsequently we continue the parameter to an arbitrary real number. We included an arbitrary number of screening charges (s.c.) and as a result, after renormalizing the s.c., the external legs and the cosmological constant, the form of the final amplitudes do not modify. Remarkably, the result is completely parallel to the bosonic case. We also completed a discussion on the calculation of bosonic correlators including arbitrary screening charges.
Convex analysis and monotone operator theory in Hilbert spaces
Bauschke, Heinz H
2017-01-01
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...
Relationship of gauge gravitation theory in Riemann-Cartan spacetime and general relativity theory
Minkevich, A V
2016-01-01
The simplest variant of gauge gravitation theory in Riemann-Cartan spacetime leading to the solution of the problem of cosmological singularity and dark energy problem is investigated. It is shown that this theory by certain restrictions on indefinite parameters of gravitational Lagrangian in the case of usual gravitating systems leads to Einstein gravitational equations with effective cosmological constant.
Univariate and multivariate general linear models theory and applications with SAS
Kim, Kevin
2006-01-01
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences.With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regr
Symmetry analysis for anisotropic field theories
Energy Technology Data Exchange (ETDEWEB)
Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
The theory of matrices in numerical analysis
Householder, Alston S
2006-01-01
This text explores aspects of matrix theory that are most useful in developing and appraising computational methods for solving systems of linear equations and for finding characteristic roots. Suitable for advanced undergraduates and graduate students, it assumes an understanding of the general principles of matrix algebra, including the Cayley-Hamilton theorem, characteristic roots and vectors, and linear dependence.An introductory chapter covers the Lanczos algorithm, orthogonal polynomials, and determinantal identities. Succeeding chapters examine norms, bounds, and convergence; localizati
A superconducting gyroscope to test Einstein's general theory of relativity
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
Density Functional Theory for General Hard-Core Lattice Gases
Lafuente, Luis; Cuesta, José A.
2004-09-01
We put forward a general procedure to obtain an approximate free-energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.
Some open questions in the theory of generalized permutable subgroups
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A subgroup H of a group G is said to be weakly s-supplemented in G if H has a supplement T in G such that H ∩ T HsG, where HsG is the largest s-permutable subgroup of G contained in H. This paper constructs an example to show that the open questions 6.3 and 6.4 in J Algebra, 315: 192–209 (2007) have negative solutions, and shows that in many cases Question 6.4 is positive. A series of known results are unified and generalized.
Absence of solid angle deficit singularities in beyond-generalized proca theories
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-12-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a solid angle deficit singularity in the case where the parameter αH characterizing the deviation from Horndeski theories approaches a nonvanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field Aμ can be consistently extended to beyond-generalized Proca theories, which recover shift-symmetric GLPV theories in the scalar limit Aμ→∇μχ . In beyond-generalized Proca theories up to quartic-order Lagrangians, we show that solid angle deficit singularities are generally absent due to the existence of a temporal vector component. We also derive the vector-field profiles around a compact object and show that the success of the Vainshtein mechanism operated by vector Galileons is not prevented by new interactions in beyond generalized Proca theories.
Transforming Teacher Education, An Activity Theory Analysis
McNicholl, Jane; Blake, Allan
2013-01-01
This paper explores the work of teacher education in England and Scotland. It seeks to locate this work within conflicting sociocultural views of professional practice and academic work. Drawing on an activity theory framework that integrates the analysis of these seemingly contradictory discourses with a study of teacher educators' practical…
Toward a general theory of conical intersections in systems of identical nuclei
Keating, Sean P.; Mead, C. Alden
1987-02-01
It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.
Theory and Analysis of Classic Heavy Metal Harmony
Lilja, Esa
2009-01-01
This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Wester...
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
Correspondence analysis theory, practice and new strategies
Beh, Eric J
2014-01-01
A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use. Particular attention is given to the history and mathematical links of the developments made. These links include not just those majo
Temperature of critical clusters in nucleation theory: generalized Gibbs' approach.
Schmelzer, Jürn W P; Boltachev, Grey Sh; Abyzov, Alexander S
2013-07-21
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003); and ibid. 124, 194503 (2006)] predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
Suicidality among Students: An Experiment of Agnew\\\\\\'s General Strain Theory
Directory of Open Access Journals (Sweden)
Akbar Aliverdinia
2014-05-01
This study examined the impacts of several variables from Agnew’s general strain theory on suicidality. The results suggest that general strain theory is to some extent effective in explaining students' suicidality and can provide a theoretical model for studying suicide. The results of the study show that there is direct and significant relationship between removal of positive stimuli and suicidality, in the sense that by increasing in the likelihood of this variable, the rate of suicidality also increases. So when a person tries to deal with removal of positive stimuli, he or she is more likely to engage in deviant behaviors such as suicide. The results also suggest that students with status strain are more likely to experience suicidality. Likewise, students with relational strain are more likely to experience suicidality. A person who is exposed to more negative relationships with others, will be more likely to committee suicide. Thus, the findings suggest that a positive relationship with family and peers is an important protective factor against suicidality. Multiple regression analysis also shows that independent variables of this study are strong predictors of suicidality, they include removal of positive stimulus (beta coefficient=0/147, status strain (beta coefficient=0/140, relational strain (beta coefficient=0/127.
Numerical verification of similar Cam-clay model based on generalized potential theory
Institute of Scientific and Technical Information of China (English)
钟志辉; 杨光华; 傅旭东; 温勇; 张玉成
2014-01-01
From the mathematical principles, the generalized potential theory can be employed to create constitutive model of geomaterial directly. The similar Cam-clay model, which is created based on the generalized potential theory, has less assumptions, clearer mathematical basis, and better computational accuracy. Theoretically, it is more scientific than the traditional Cam-clay models. The particle flow code PFC3D was used to make numerical tests to verify the rationality and practicality of the similar Cam-clay model. The verification process was as follows: 1) creating the soil sample for numerical test in PFC3D, and then simulating the conventional triaxial compression test, isotropic compression test, and isotropic unloading test by PFC3D; 2) determining the parameters of the similar Cam-clay model from the results of above tests; 3) predicting the sample’s behavior in triaxial tests under different stress paths by the similar Cam-clay model, and comparing the predicting results with predictions by the Cam-clay model and the modified Cam-clay model. The analysis results show that the similar Cam-clay model has relatively high prediction accuracy, as well as good practical value.
On the algebraic structure of isotropic generalized elasticity theories
Auffray, Nicolas
2013-01-01
In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order strain and stress tensors. Therefore, and in certain way, nth-order isotropic elasticity have the same kind of algebraic structure as anisotropic classical elasticity. This structure is investigated in the case of 2nd-order isotropic elasticity, and moduli characterizing the behavior are provided.
Are Singularities Integral to General Theory of Relativity?
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
A generalized plane strain theory for transversely isotropic piezoelectric plates
Institute of Scientific and Technical Information of China (English)
XU Si-peng; WANG Wei
2005-01-01
Study of generalized plane strain has so far been limited to elasticity. The present is aimed at parallel development of transversely isotropic piezoelasticity. By assuming that the along depth distribution of electric potential is linear, and that commonly used Kane-Mindlin kinematical assumption is valid, two dimensional solution systems were deduced, for which, explicit solutions of the out-of-plane constraint factor, as well as the stress resultant concentration factor around a circular hole in a transversely isotropic piezoelectric plate subjected to remote biaxial tension are obtained. Comparisons of these formulas with their counterparts for elastic case yielded suggestions that whether the piezoelectric effect exacerbates or mitigates the stress resultant concentration greatly depends on material properties, particularly, the piezoelectric coefficients;the effect of plate thickness was extensively investigated.
Second-order hyperbolic Fuchsian systems. I. General theory
Beyer, Florian
2010-01-01
We introduce a class of singular partial differential equations, the second-order hyperbolic Fuchsian systems, and we investigate the associated initial value problem when data are imposed on the singularity. First of all, we analyze a class of equations in which hyperbolicity is not assumed and we construct asymptotic solutions of arbitrary order. Second, for the proposed class of second-order hyperbolic Fuchsian systems, we establish the existence of solutions with prescribed asymptotic behavior on the singularity. Our proof is based on a new scheme which is also suitable to design numerical approximations. Furthermore, as shown in a follow-up paper, the second-order Fuchsian framework is appropriate to handle Einstein's field equations for Gowdy symmetric spacetimes and allows us to recover (and slightly generalize) earlier results by Rendall and collaborators, while providing a direct approach leading to accurate numerical solutions. The proposed framework is also robust enough to encompass matter models ...
Temperature of critical clusters in nucleation theory: Generalized Gibbs' approach
Schmelzer, Jürn W. P.; Boltachev, Grey Sh.; Abyzov, Alexander S.
2013-07-01
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003), 10.1063/1.1602066; J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 124, 194503 (2006)], 10.1063/1.2196412 predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], 10.1063/1.2752154, can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
Energy Technology Data Exchange (ETDEWEB)
Oren, T.I.
1982-01-01
Simulation is viewed within the model management paradigm. Major components of simulation systems as well as elements of model management are outlined. Possible synergies of simulation model management, software engineering, artificial intelligence, and general system theories are systematized. 21 references.
Interior point algorithms theory and analysis
Ye, Yinyu
2011-01-01
The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject.
A generalized preimage theorem in global analysis
Institute of Scientific and Technical Information of China (English)
MA; Jipu
2001-01-01
［1］Ma Jipu, (1.2) inverses of operators between Banach spaces and conjugacy theorem, Chinese Annals of Math., B, 1999, 20(1): 57.［2］Ma Jipu, Rank theorem of operators between Banach spaces, Science in China, Ser. A, 2000, 43(1): 1.［3］Ma Jipu, Local conjugacy theorem, rank theorems in advenced calculus and a generalized principle constructing Banach manifolds, Science in China, Ser. A, 2000, 43(12): 1233.［4］Zeidler, A. E., Nonlinear Function Analysis and Its Applications, IV: Applications to Mathematical Physics, New York: Springer-Verlag, 1988.
THEORY AND APPLICATION OF WAVELET ANALYSIS INSTRUMENT LIBRARY
Institute of Scientific and Technical Information of China (English)
BO Lin; QIN Shuren; LIU Xiaofeng
2006-01-01
Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT),wavelet denosing and mother wavelet selection, etc. Using the component-based hierarchy mode, the platform for virtual instrument (Ⅵ) is constructed, and the functions such as data sampling, data analysis and data present, etc are provided. Subsequently, the wavelet analysis library is designed and developed. The library consists of expert system, experienced database, development platform and abundant wavelet analysis functional module, which together implement general and special wavelet analysis in the field of mechanical engineering, energy source, transportation and biomedicine, etc.Finally, the wavelet analysis virtual instrument library is applied to detect fault called engine knock.Experimental result indicates that the wavelet analysis virtual instrument library can efficiently solve the engineering problem such as detecting engine knock.
Noncommutative analysis, operator theory and applications
Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc
2016-01-01
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-01-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics - so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the sep...
A U(4) QCD Model Using Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; ZHONG Hai-Yang
2008-01-01
Generalized Yang-Mills theory has a covariant derivative which contains both vector and pseudoscalar gauge bosons.Based on this theory,we construct a U(4) strong interaction model By using this U(4) generalized Yang-Mills model,we obtain that mesons can be realized as the colorless pseudoscalar gauge bosons.We also obtain a gauge potential solution which can be used to explain the asymptotic behavior and color confinement.
A generalized non-local optical response theory for plasmonic nanostructures
DEFF Research Database (Denmark)
Mortensen, N. Asger; Raza, Søren; Wubs, Martijn;
2014-01-01
for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory......Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches...
Martland, Jarrad; Chamberlain, Diane; Hutton, Alison; Smigielski, Michael
2015-11-30
Objective Patients commonly show signs and symptoms of deterioration for hours or days before cardiorespiratory arrest. Rapid response teams (RRT) were created to improve recognition and response to patient deterioration in these situations. Activation criteria include vital signs or 'general concern' by a clinician or family member. The general concern criterion for RRT activation accounts for nearly one-third of all RRT activity, and although it is well established that communication deficits between staff can contribute to poorer outcomes for patients, there is little evidence pertaining to communication and its effects on the general concern RRT activation. Thus, the aim of the present study was to develop a substantive grounded theory related to the communication process between clinicians that preceded the activation of an RRT when general concern criterion was used.Methods Qualitative grounded theory involved collection of three types of data details namely personal notes from participants in focus groups with white board notes from discussions and audio recordings of the focus groups sessions. Focus groups were conducted with participants exploring issues associated with clinician communication and how it related to the activation of an RRT using the general concern criterion.Results The three main phases of coding (i.e. open, axial and selective coding) analysis identified 322 separate open codes. The strongest theme contributed to a theory of ineffective communication and decreased psychological safety, namely that 'In the absence of effective communication there is a subsequent increase in anxiety, fear or concern that can be directly attributed to the activation of an RRT using the 'general concern' criterion'. The RRT filled cultural and process deficiencies in the compliance with an escalation protocol. Issues such as 'not for resuscitation documentation' and 'inability to establish communication with and between medical or nursing personnel' rated
Khoury, Justin; Tolley, Andrew J
2014-01-01
Traditional derivations of general relativity from the graviton degrees of freedom assume space-time Lorentz covariance as an axiom. In this essay, we survey recent evidence that general relativity is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of space-time. This result has revolutionary implications for fundamental physics.
Arun, K G
2013-01-01
Gravitational Wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test General Relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories like Scalar-Tensor theories, Dynamical Chern-Simons theory and Massive graviton theories. Model independent tests are attempts to write down a parametrised gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA config...
General Stationary, Spherically-Symmetric Solutions in the Gauge Theory of Gravity
Francis, M R; Francis, Matthew R.; Kosowsky, Arthur
2003-01-01
This paper provides a concise overview of the gauge theory of gravity, as recently formulated by Lasenby, Doran, and Gull. Instead of representing gravitation via spacetime curvature, the effects of gravity are given by gauge fields in flat spacetime; the gauge group is that of Lorentz transformations plus covariance under diffeomorphisms. The resulting theory is formally similar to the Cartan formulation of general relativity, and we make detailed comparisons with conventional representations of general relativity. We provide a constructive method for solving the field equations in gauge theory gravity, and apply this method to the spherically symmetric case. The most general vacuum solution results, which explicitly displays all coordinate freedom in terms of free functions of radius. Through particular choices of these functions, our general solution reduces to all known metric representations of spherically symmetric, stationary vacuum spacetime. We also obtain the corresponding generalization of the Reis...
Hartle's model within the general theory of perturbative matchings: the change in mass
Reina, Borja
2014-01-01
Hartle's model provides the most widely used analytic framework to describe isolated compact bodies rotating slowly in equilibrium up to second order in perturbations in the context of General Relativity. Apart from some explicit assumptions, there are some implicit, like the "continuity" of the functions in the perturbed metric across the surface of the body. In this work we sketch the basics for the analysis of the second order problem using the modern theory of perturbed matchings. In particular, the result we present is that when the energy density of the fluid in the static configuration does not vanish at the boundary, one of the functions of the second order perturbation in the setting of the original work by Hartle is not continuous. This discrepancy affects the calculation of the change in mass of the rotating star with respect to the static configuration needed to keep the central energy density unchanged.
Rhetorical structure theory and text analysis
Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.
1989-11-01
Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.
Stationary Black Holes in a Generalized Three-Dimensional Theory of Gravity
Sá, P M
1998-01-01
We consider a generalized three-dimensional theory of gravity which is specified by two fields, the graviton and the dilaton, and one parameter. This theory contains, as particular cases, three-dimensional General Relativity and three-dimensional String Theory. Stationary black hole solutions are generated from the static ones using a simple coordinate transformation. The stationary black holes solutions thus obtained are locally equivalent to the corresponding static ones, but globally distinct. The mass and angular momentum of the stationary black hole solutions are computed using an extension of the Regge and Teitelboim formalism. The causal structure of the black holes is described.
Improved generalized cell mapping for global analysis of dynamical systems
Institute of Scientific and Technical Information of China (English)
ZOU HaiLin; XU JianXue
2009-01-01
Three main parts of generalized cell mapping are improved for global analysis. A simple method, whichis not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre-spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in-variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen-eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.
Analysis IV integration and spectral theory, harmonic analysis, the garden of modular delights
Godement, Roger
2015-01-01
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern and classical, is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.
Directory of Open Access Journals (Sweden)
LI Zhilin
2016-07-01
Full Text Available Map is a kind of powerful means to help people in understanding the objective world. The key function of map is to transmit spatial information. The measurement of spatial information of maps dates back to 1960s, when the information theory of communication was introduced to the field of cartography. The introduction led to a new branch of cartography, i.e. cartographic information theory. This paper provides a review of the development of cartographic information theory over the past 50 years. Emphasis is on the evolution from the special to the general cartographic information theory.
General aspects of effective field theories and few-body applications
Hammer, H -W
2016-01-01
Effective field theory provides a powerful framework to exploit a separation of scales in physical systems. In these lectures, we discuss some general aspects of effective field theories and their application to few-body physics. In particular, we consider an effective field theory for non-relativistic particles with resonant short-range interactions where certain parts of the interaction need to be treated nonperturbatively. As an application, we discuss the so-called pionless effective field theory for low-energy nuclear physics. The extension to include long-range interactions mediated by photon and pion-exchange is also addressed.
Information theory applications for biological sequence analysis.
Vinga, Susana
2014-05-01
Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Gravitational Wave Spectrums from Pole-like Inflations based on Generalized Gravity Theories
Hwang, J
1998-01-01
We present a general and unified formulation which can handle the classical evolution and quantum generation processes of the cosmological gravitational wave in a broad class of generalized gravity theories. Applications are made in several inflation models based on the scalar-tensor theory, the induced gravity, and the low energy effective action of string theory. The gravitational wave power spectrums based on the vacuum expectation value of the quantized fluctuating metric during the pole-like inflation stages are derived in analytic forms. Assuming that the gravity theory transits to Einstein one while the relevant scales remain in the superhorizon scale, we derive the consequent power spectrums and the directional fluctuations of the relic radiation produced by the gravitational wave. The spectrums seeded by the vacuum fluctuations in the pole-like inflation models based on the generalized gravity show a distinguished common feature which differs from the scale invariant spectrum generated in an exponent...
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
General relativity the most beautiful of theories : applications and trends after 100 years
2015-01-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. On the occasion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as “the most beautiful of the existing physical theories”.
Quantum Information as a Non-Kolmogorovian Generalization of Shannon’s Theory
Directory of Open Access Journals (Sweden)
Federico Holik
2015-10-01
Full Text Available In this article, we discuss the formal structure of a generalized information theory based on the extension of the probability calculus of Kolmogorov to a (possibly non-commutative setting. By studying this framework, we argue that quantum information can be considered as a particular case of a huge family of non-commutative extensions of its classical counterpart. In any conceivable information theory, the possibility of dealing with different kinds of information measures plays a key role. Here, we generalize a notion of state spectrum, allowing us to introduce a majorization relation and a new family of generalized entropic measures.
Using the General Mission Analysis Tool (GMAT)
Hughes, Steven P.; Conway, Darrel J.; Parker, Joel
2017-01-01
This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT). These slides will be used to accompany the demonstration. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. This talk is a combination of existing presentations and material; system user guide and technical documentation; a GMAT basics and overview, and technical presentations from the TESS projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project. Slides for navigation and optimal control are borrowed from system documentation and training material.
Compositional Data Analysis Theory and Applications
Pawlowsky-Glahn, Vera
2011-01-01
This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code
Data flow analysis theory and practice
Khedker, Uday; Sathe, Bageshri
2009-01-01
Data flow analysis is used to discover information for a wide variety of useful applications, ranging from compiler optimizations to software engineering and verification. Modern compilers apply it to produce performance-maximizing code, and software engineers use it to re-engineer or reverse engineer programs and verify the integrity of their programs. Supplementary Online Materials to Strengthen Understanding Unlike most comparable books, many of which are limited to bit vector frameworks and classical constant propagation, Data Flow Analysis: Theory and Practice offers comprehensive covera
Generalized Analysis of a Distribution Separation Method
Directory of Open Access Journals (Sweden)
Peng Zhang
2016-04-01
Full Text Available Separating two probability distributions from a mixture model that is made up of the combinations of the two is essential to a wide range of applications. For example, in information retrieval (IR, there often exists a mixture distribution consisting of a relevance distribution that we need to estimate and an irrelevance distribution that we hope to get rid of. Recently, a distribution separation method (DSM was proposed to approximate the relevance distribution, by separating a seed irrelevance distribution from the mixture distribution. It was successfully applied to an IR task, namely pseudo-relevance feedback (PRF, where the query expansion model is often a mixture term distribution. Although initially developed in the context of IR, DSM is indeed a general mathematical formulation for probability distribution separation. Thus, it is important to further generalize its basic analysis and to explore its connections to other related methods. In this article, we first extend DSM’s theoretical analysis, which was originally based on the Pearson correlation coefficient, to entropy-related measures, including the KL-divergence (Kullback–Leibler divergence, the symmetrized KL-divergence and the JS-divergence (Jensen–Shannon divergence. Second, we investigate the distribution separation idea in a well-known method, namely the mixture model feedback (MMF approach. We prove that MMF also complies with the linear combination assumption, and then, DSM’s linear separation algorithm can largely simplify the EM algorithm in MMF. These theoretical analyses, as well as further empirical evaluation results demonstrate the advantages of our DSM approach.
A Unification of General Theory of Relativity with Dirac's Large Number Hypothesis
Institute of Scientific and Technical Information of China (English)
PENG Huan-Wu
2004-01-01
Taking a hint from Dirac's large number hypothesis, we note the existence of cosmologically combined conservation laws that work cosmologically long time. We thus modify Einstein's theory of general relativity with fixed gravitation constant G to a theory for varying G, with a tensor term arising naturally from the derivatives or G in place of the cosmological constant term usually introduced ad hoc. The modified theory, when applied to cosmology, is consistent with Dirac's large number hypothesis, and gives a theoretical Hubble's relation not contradicting the observational data.For phenomena of duration and distance being short compared with those of the universe, our theory reduces to Einstein's theory with G being constant outside the gravitating matter, and thus also passes the crucial tests of Einstein's theory.
A Unification of General Theory of Relativity with Dirac＇s Large Number Hypothesis
Institute of Scientific and Technical Information of China (English)
PENGHuan-Wu
2004-01-01
Taking a hint from Dirac's large number hypothesis, we note the existence of cosmologically combined conservation laws that work cosmologically long time. We thus modify Einstein's theory of general relativity with fixed gravitation constant G to a theory for varying G, with a tensor term arising naturally from the derivatives of G in place of the cosmological constant term usually introduced ad hoc. The modified theory, when applied to cosmology, is consistent with Dirac's large number hypothesis, and gives a theoretical Hubble's relation not contradicting the observational data.For phenomena of duration and distance being short compared with those of the universe, our theory reduces to Einstein's theory with G being constant outside the gravitating matter, and thus also passes the crucial tests of Einstein's theory.
Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds
Lazaroiu, C I
2016-01-01
We give a global formulation of the coupling of four-dimensional scalar sigma models to Abelian gauge fields for the generalized situation when the "duality structure" of the Abelian gauge theory is described by a flat symplectic vector bundle $(\\mathcal{S},D,\\omega)$ defined over the scalar manifold $\\mathcal{M}$. The construction uses a taming of $(\\mathcal{S}, \\omega)$, which encodes globally the inverse gauge couplings and theta angles of the "twisted" Abelian gauge theory in a manner that makes no use of duality frames. We show that global solutions of the equations of motion of such models give classical locally geometric U-folds. We also describe the groups of duality transformations and scalar-electromagnetic symmetries arising in such models, which involve lifting isometries of $\\mathcal{M}$ to a particular class of flat automorphisms of the bundle $\\mathcal{S}$ and hence differ from expectations based on local analysis. The appropriate version of the Dirac quantization condition involves a discrete ...
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Institute of Scientific and Technical Information of China (English)
刘韵源; 刘嘉; 周家丽; 陈元立
2000-01-01
The concept and statistical methods for weakly correlative factors, influencing the formation and development of chronic dis- eases, are proposed in this paper. By the aid of fuzzy state analysis, the Cross-Product Difference Surn(CPDS)and the Akaike's Infor- mation Criterion(AIC), a general algorithm, clustering fuzzy expo- sure levels and selecting covariates, is designed for solving problems connected with analytical abilities of detecting and recognozing weakly correlative-influencing factors.%论述了“微弱相关影响因素”概念及其在预防医学中 的重要意义，并研究了适宜处理此类资料的统计方法。借助模 糊状态概念、交叉积差和统计量和信息量寻优标准，发展了暴 露水平聚类优化、状态变量选择通用算法，可明显提高检测、识 别微弱相关影响因素的效能与统计分析水准。
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
DEFF Research Database (Denmark)
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels;
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...
Arun, K. G.; Pai, Archana
2013-01-01
Gravitational wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test general relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories such as scalar-tensor theories, dynamical Chern-Simons theory and massive graviton theories. Model independent tests are attempts to write down a parametrized gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA configuration. We also compare the expected bounds on alternative theories of gravity from ground-based and space-based detectors and find that space-based GW detectors can test GR and other theories of gravity with unprecedented accuracies. We then focus on a recent proposal to use singular value decomposition of the Fisher information matrix to improve the accuracies with which post-Newtonian theory can be tested. We extend those results to the case of space-based detector eLISA and discuss its implications.
Recent advances with generalized entropy theory of glass-formation in polymers
Freed, Karl
The generalized entropy theory (GET) of glass-formation in polymers is a combination of the lattice cluster theory (LCT) for the configurational entropy density with the Adam-Gibbs (AG) theory for the structural relaxation time. A greatly simplified form of the GET (whose expression for the free energy is roughly double that of Flory-Huggins theory) accurately reproduces the four characteristic temperatures of glass-formation (the onset, crossover, glass transition, and Kauzmann temperatures) of the full GET to within 4K for a series of models of polymers composed of semi-flexible chains having the structure of poly(n-alpha olefins). The theory is now simple enough to be used in courses in polymer physics. Although the successes of the GET provide a strong validation of the final form of the AG theory provided the configurational entropy is used, the physical basis of the AG theory has remained an enigma. Hence, we have developed a new, more general, statistical mechanical derivation of AG theory that explains the previously perplexing observations that the string-like elementary excitations have the mass and temperature dependence of systems undergoing equilibrium self-assembly. This work is supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE- SC0008631.
The parasite-stress theory may be a general theory of culture and sociality.
Fincher, Corey L; Thornhill, Randy
2012-04-01
In the target article, we presented the hypothesis that parasite-stress variation was a causal factor in the variation of in-group assortative sociality, cross-nationally and across the United States, which we indexed with variables that measured different aspects of the strength of family ties and religiosity. We presented evidence supportive of our hypothesis in the form of analyses that controlled for variation in freedom, wealth resources, and wealth inequality across nations and the states of the USA. Here, we respond to criticisms from commentators and attempt to clarify and expand the parasite-stress theory of sociality used to fuel our research presented in the target article.
Astrophysical data analysis with information field theory
Energy Technology Data Exchange (ETDEWEB)
Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-01-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Improved generalized cell mapping for global analysis of dynamical systems
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.
Towards the understanding of social reality in general theory of institutional facts
Directory of Open Access Journals (Sweden)
John Alexander Giraldo Chavarriaga
2011-07-01
Full Text Available This paper offers a critical interpretation of the general theory of institutional facts, which intents to comprehend, on the basis of a basic regulatory structure with functions assignments, how objective social reality is constructed. We discuss problems, approaches, and theoretical methods employed by Searle, in contrast to sociological constructivism, examining the issues of autoreferentiality of the concept of institutionality, the search for objectivity, the adoption of external realism, the concept of truth, the role of language, and intentionality in the theory. Finally, the author verifies if the theory in question complies with some of the features that a general theory of regulation should have, according to the criteria of René Thom.
Effective Field Theory of Dark Energy: a Dynamical Analysis
Frusciante, Noemi; Silvestri, Alessandra
2013-01-01
The effective field theory (EFT) of dark energy relies on three functions of time to describe the background dynamics. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism an...
Park, J S
1992-01-01
We re-examine the geometry and algebraic structure of BRST's of Topological Yang-Mills theory based on the universal bundle formalism of Atiyah and Singer. This enables us to find a natural generalization of the {\\it Russian formula and descent equations\\/}, which can be used as algebraic method to find the non-Abelian anomalies counterparts in Topological Yang-Mills theory. We suggest that the presence of the non-Abelian anomaly obstructs the proper definition of Donaldson's invariants.
Beyond This Point There Be Dragons: Developing General Theory in Music Therapy
Directory of Open Access Journals (Sweden)
Carolyn B. Kenny
2003-07-01
Full Text Available This article attempts to address the topic of "general theory" in music therapy. If we look at the history of ideas which serve practice, we know that fields do not survive without substantive theories or maps, which represent unique features, characteristics, attributes of the specific practice. Creative ideas are born out of practice. And we come upon these creative ideas in the territory of discourse.
Janardhan, Sujatha
2012-01-01
We present a short review of geometric and algebraic approach to causal cones and describe cone preserving transformations and their relationship with causal structure related to special and general theory of relativity. We describe Lie groups, especially matrix Lie groups, homogeneous and symmetric spaces and causal cones and certain implications of these concepts in special and general theory of relativity related to causal structure and topology of space-time. We compare and contrast the results on causal relations with those in the literature for general space-times and compare these relations with K-causal maps. We also describe causal orientations and their implications for space-time topology and discuss some more topologies on space-time which arise as an application of domain theory.
Kerner, Boris S.
2013-11-01
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Serna, A [Dept. Fisica y Computacion, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [LAEC, CNRS-UMR 8631, Observatoire de Paris-Meudon, F92195-Meudon (France); Navarro, A [Dept. Fisica, Universidad de Murcia, E30071-Murcia (Spain)
2002-03-07
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function {alpha} (in the Einstein frame). We show that, in general, the evolution of the scalar field ({phi}) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, {alpha}{sub 0}, strongly differ from some theories to others. For example, in theories defined by {alpha} {proportional_to} |{phi}| analytical estimates lead to very stringent nucleosynthesis bounds on {alpha}{sub 0}({approx}<10{sup -19}). By contrast, in scalar-tensor theories defined by {alpha} {proportional_to} {phi} much larger limits on {alpha}{sub 0}({approx}<10{sup -7}) are found.
On a possible approach to general field theories with nonpolynomial interactions
Ferrari, Franco
2009-01-01
In this work a class of massive scalar field theories with self-interactions described by a general potential is studied. Under the sole condition that the potential admits the Fourier representation, it is shown that such theories may be mapped into a standard field theory, in which the interaction of the new fields is a polynomial of fourth degree. With some restrictions, this mapping allows the perturbative treatment of models that are otherwise intractable with standard field theoretical methods. A nonperturbative approach to these theories is attempted. The original scalar field is integrated out exactly at the price of introducing auxiliary vector fields. The latter are treated in a mean field theory approximation. The singularities that arise after the elimination of the auxiliary fields are cured using the dimensional regularization. The expression of the counterterms to be subtracted is computed.
Keldysh theory re-examined: Application of the generalized Bessel functions
Bauer, J H
2015-01-01
A derivation of the ionization rate for the hydrogen-like ion in the strong linearly polarized laser field is presented. This derivation utilizes the famous Keldysh probability amplitude in the length gauge (in the dipole approximation) and without Coulomb effects in the final state of the ionized electron. No further approximations are being made, because the amplitude has been expanded in the double Fourier series in a time domain (with the help of the generalized Bessel functions). Thus, our theory has no other limitations characteristic of the original Keldysh theory. We compare our "exact" theory with the original Keldysh one, studying photoionization energy spectra and total ionization rates. We show breakdown of the original Keldysh theory for higher frequencies. In the barrier-suppresion regime the "exact" Keldysh theory gives results closer to well-known numerical or other analytical results.
Constructivism theory analysis and application to curricula.
Brandon, Amy F; All, Anita C
2010-01-01
Today's nursing programs are struggling to accommodate the changing needs of the health care environment and need to make changes in how students are taught. Using constructivism theory, whereby learning is an active process in which learners construct new ideas or concepts based upon their current or past knowledge, leaders in nursing education can make a paradigm shift toward concept-based curricula. This article presents a summary and analysis of constructivism and an innovative application of its active-learning principles to curriculum development, specifically for the education of nursing students.
Model Theory in Algebra, Analysis and Arithmetic
Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J
2014-01-01
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Siegert pseudostate formulation of scattering theory: General three-dimensional case
Krainov, Lev O.; Batishchev, Pavel A.; Tolstikhin, Oleg I.
2016-04-01
This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green's function, scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely discrete basis capable of representing both discrete and continuous spectra in solving various stationary and time-dependent quantum-mechanical problems.
Numerical validation of the generalized Harvey-Shack surface scatter theory
Choi, Narak; Harvey, James E.
2013-11-01
The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.
A General Linear Wave Theory for Water Waves Propagating over Uneven Porous Bottoms
Institute of Scientific and Technical Information of China (English)
锁要红; 黄虎
2004-01-01
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.
General Medical Practitioners Need to Be Aware of the Theories on Which Our Work Depend
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline. PMID:17003147
Generalized Sparling-Thirring form in the Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Baykal, Ahmet [Nigde University, Department of Physics, Faculty of Arts and Sciences, Bor Yolu, Nigde (Turkey); Delice, Oezguer [Marmara University, Department of Physics, Faculty of Arts and Sciences, Istanbul (Turkey)
2015-02-01
The definition of the Sparling-Thirring form is extended to Brans-Dicke theory. By writing the Brans-Dicke field equations in a formally Maxwell-like form, a superpotential and a corresponding pseudo-energy-momentum form are defined. The general energy expression provided by the superpotential in the Jordan frame is discussed in relation to the corresponding expression in the Einstein frame. In order to substantiate its formal definition, the generalized Sparling-Thirring form is used to calculate the energy for the spherically symmetric vacuum solution in Brans-Dicke theory. (orig.)
A Translation Case Analysis Based on Skopos Theory
Institute of Scientific and Technical Information of China (English)
刘冬梅
2015-01-01
With the spread of globalization,the role of translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.
A Translation Case Analysis Based on Skopos Theory
Institute of Scientific and Technical Information of China (English)
刘冬梅
2015-01-01
With the spread of globalization,the roleof translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.
Hamiltonian analysis of the BFCG theory for a generic Lie 2-group
Mikovic, Aleksandar; Vojinovic, Marko
2016-01-01
We perform a complete Hamiltonian analysis of the BFCG action for a general Lie 2-group by using the Dirac procedure. We show that the resulting dynamical constraints eliminate all local degrees of freedom which implies that the BFCG theory is a topological field theory.
The most general second-order field equations of bi-scalar-tensor theory in four dimensions
Ohashi, Seiju; Tanahashi, Norihiro; Kobayashi, Tsutomu; Yamaguchi, Masahide
2015-07-01
The Horndeski theory is known as the most general scalar-tensor theory with second-order field equations. In this paper, we explore the bi-scalar extension of the Horndeski theory. Following Horndeski's approach, we determine all the possible terms appearing in the second-order field equations of the bi-scalar-tensor theory. We compare the field equations with those of the generalized multi-Galileons, and confirm that our theory contains new terms that are not included in the latter theory. We also discuss the construction of the Lagrangian leading to our most general field equations.
The most general second-order field equations of bi-scalar-tensor theory in four dimensions
Ohashi, Seiju; Kobayashi, Tsutomu; Yamaguchi, Masahide
2015-01-01
The Horndeski theory is known as the most general scalar-tensor theory with second-order field equations. In this paper, we explore the bi-scalar extension of the Horndeski theory. Following Horndeski's approach, we determine all the possible terms appearing in the second-order field equations of the bi-scalar-tensor theory. We compare the field equations with those of the generalized multi-Galileons, and confirm that our theory contains new terms that are not included in the latter theory. We also discuss the construction of the Lagrangian leading to our most general field equations.
Lompay, Robert R
2013-01-01
Arbitrary diffeomorphically invariant metric-torsion theories of gravity are considered. It is assumed that Lagrangians of such theories contain derivatives of field variables (tensor densities of arbitrary ranks and weights) up to a second order only. The generalized Klein-Noether methods for constructing manifestly covariant identities and conserved quantities are developed. Manifestly covariant expressions are constructed without including auxiliary structures like a background metric. In the Riemann-Cartan space, the following \\emph{manifestly generally covariant results} are presented: (a) The complete generalized system of differential identities (the Klein-Noether identities) is obtained. (b) The generalized currents of three types depending on an arbitrary vector field displacements are constructed: they are the canonical Noether current, symmetrized Belinfante current and identically conserved Hilbert-Bergmann current. In particular, it is stated that the symmetrized Belinfante current does not depen...
Mass bounds for compact spherically symmetric objects in generalized gravity theories
Burikham, Piyabut; Lake, Matthew J
2016-01-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-{\\' a}-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As an applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respect...
Fundamental Neutron Physics: Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Gudkov, Vladimir [South Carolina Research Foundation, Columbia, SC (United States)
2016-10-31
The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity and time reversal invariance violating processes in neutron induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity and time reversal violating effects in the consistent way. A major emphasis of our research during the funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.
A Comparative Analysis of Three Unique Theories of Organizational Learning
Leavitt, Carol C.
2011-01-01
The purpose of this paper is to present three classical theories on organizational learning and conduct a comparative analysis that highlights their strengths, similarities, and differences. Two of the theories -- experiential learning theory and adaptive -- generative learning theory -- represent the thinking of the cognitive perspective, while…
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.
Perturbative analysis in higher-spin theories
Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.
2016-07-01
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
Nonlinear analysis approximation theory, optimization and applications
2014-01-01
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.
2013-03-01
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.
Generalized Theory of One-Dimensional Steady-State Optical Spatial Solitons
Institute of Scientific and Technical Information of China (English)
WANG Hong-Cheng; WANG Xiao-Sheng; SHE Wei-Long
2004-01-01
@@ We present a generalized soliton theory based on the one-dimensional generalized nonlinear Schrodinger equation,from which one can easily obtain the bright, dark, and grey soliton waveforms, and their existence curves. We show that the forming conditions of spatial solitons are directly dependent on the relationship between the index perturbation and the intensity, no matter whether the index perturbation is positive or negative. Some relevant examples are presented when the solitons are supported by the photoisomerization nonlinearity.
On a Generalization of GKO Coset Construction of Conformal Field Theories
Kumar, Dushyant
2015-01-01
We introduce a generalization of Goddard-Kent-Olive (GKO) coset construction of two dimensional conformal field theories based on a choice of a scaled affine subalgebra $\\hat{\\mathfrak{h}}^s$ of a given affine Lie algebra $\\hat{\\mathfrak{h}}$. We study some aspects of the construction through the example of Ising CFT as a generalized GKO coset of $\\text{su(2)}_1$ with a scaling factor $s=2$.
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso/macroscopic-sca......-equilibrium phenomena in a range of membrane systems, as discussions in the paper of a few limit cases demonstrate. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2005....
Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity
Pal, Sridip
2016-10-01
We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.
A general modular framework for gene set enrichment analysis
Directory of Open Access Journals (Sweden)
Strimmer Korbinian
2009-02-01
Full Text Available Abstract Background Analysis of microarray and other high-throughput data on the basis of gene sets, rather than individual genes, is becoming more important in genomic studies. Correspondingly, a large number of statistical approaches for detecting gene set enrichment have been proposed, but both the interrelations and the relative performance of the various methods are still very much unclear. Results We conduct an extensive survey of statistical approaches for gene set analysis and identify a common modular structure underlying most published methods. Based on this finding we propose a general framework for detecting gene set enrichment. This framework provides a meta-theory of gene set analysis that not only helps to gain a better understanding of the relative merits of each embedded approach but also facilitates a principled comparison and offers insights into the relative interplay of the methods. Conclusion We use this framework to conduct a computer simulation comparing 261 different variants of gene set enrichment procedures and to analyze two experimental data sets. Based on the results we offer recommendations for best practices regarding the choice of effective procedures for gene set enrichment analysis.
Todorov, Todor D
2010-01-01
In these lecture notes we present an introduction to non-standard analysis especially written for the community of mathematicians, physicists and engineers who do research on J. F. Colombeau' theory of new generalized functions and its applications. The main purpose of our non-standard approach to Colombeau' theory is the improvement of the properties of the scalars of the varieties of spaces of generalized functions: in our non-standard approach the sets of scalars of the functional spaces always form algebraically closed non-archimedean Cantor complete fields. In contrast, the scalars of the functional spaces in Colombeau's theory are rings with zero divisors. The improvement of the scalars leads to other improvements and simplifications of Colombeau's theory such as reducing the number of quantifiers and possibilities for an axiomatization of the theory. Some of the algebras we construct in these notes have already counterparts in Colombeau's theory, other seems to be without counterpart. We present applic...
Beyond heat baths: Generalized resource theories for small-scale thermodynamics.
Yunger Halpern, Nicole; Renes, Joseph M
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.
Generalized Analysis Tools for Multi-Spacecraft Missions
Chanteur, G. M.
2011-12-01
Analysis tools for multi-spacecraft missions like CLUSTER or MMS have been designed since the end of the 90's to estimate gradients of fields or to characterize discontinuities crossed by a cluster of spacecraft. Different approaches have been presented and discussed in the book "Analysis Methods for Multi-Spacecraft Data" published as Scientific Report 001 of the International Space Science Institute in Bern, Switzerland (G. Paschmann and P. Daly Eds., 1998). On one hand the approach using methods of least squares has the advantage to apply to any number of spacecraft [1] but is not convenient to perform analytical computation especially when considering the error analysis. On the other hand the barycentric approach is powerful as it provides simple analytical formulas involving the reciprocal vectors of the tetrahedron [2] but appears limited to clusters of four spacecraft. Moreover the barycentric approach allows to derive theoretical formulas for errors affecting the estimators built from the reciprocal vectors [2,3,4]. Following a first generalization of reciprocal vectors proposed by Vogt et al [4] and despite the present lack of projects with more than four spacecraft we present generalized reciprocal vectors for a cluster made of any number of spacecraft : each spacecraft is given a positive or nul weight. The non-coplanarity of at least four spacecraft with strictly positive weights is a necessary and sufficient condition for this analysis to be enabled. Weights given to spacecraft allow to minimize the influence of some spacecraft if its location or the quality of its data are not appropriate, or simply to extract subsets of spacecraft from the cluster. Estimators presented in [2] are generalized within this new frame except for the error analysis which is still under investigation. References [1] Harvey, C. C.: Spatial Gradients and the Volumetric Tensor, in: Analysis Methods for Multi-Spacecraft Data, G. Paschmann and P. Daly (eds.), pp. 307-322, ISSI
Vos, Hans J.
1994-01-01
Describes the construction of a model of computer-assisted instruction using a qualitative block diagram based on general systems theory (GST) as a framework. Subject matter representation is discussed, and appendices include system variables and system equations of the GST model, as well as an example of developing flexible courseware. (Contains…
Gulyaev, Sergei A.; Stonyer, Heather R.
2002-01-01
Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…
A superfield generalization of the classical action-at-a-distance theory
Tugai, V. V.; Zheltukhin, A. A.
1994-07-01
A generalization of the Fokker-Schwarzschild- Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
Superfield generalization of the classical action-at-a-distance theory
Tugai, V. V.; Zheltukhin, A. A.
1995-04-01
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
Superfield generalization of the classical action-at-a-distance theory
Energy Technology Data Exchange (ETDEWEB)
Tugai, V.V. (Scientific Physicotechnological Center, 310145 Kharkov (Ukraine)); Zheltukhin, A.A. (Kharkov Physicotechnical Institute, 310108 Kharkov (Ukraine))
1995-04-15
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
Generalized WDVV equations for F4 pure N=2 super-Yang–Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, R.
2001-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 super-Yang–Mills theory for the Lie algebra F4. Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the prepotentia
Generalized WDVV equations for $F_4$ pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, R.
2000-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 Super-Yang-Mills theory for the Lie algebra $F_4$ . Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the prepote
Quaternion based generalization of Chern-Simons theories in arbitrary dimensions
D'Adda, Alessandro; Shimode, Naoki; Tsukioka, Takuya
2016-01-01
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z(2)-gradings structure, thus clarifying the quaternion role in a previous formulation.
Analytic theory of curvature effects for wave problems with general boundary conditions
DEFF Research Database (Denmark)
Willatzen, Morten; Gravesen, Jens; Voon, L. C. Lew Yan
2010-01-01
A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and helix-shaped structures, where alternative analytic solutions can be found...
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
General theory of three-dimensional radiance measurements with optical microprobes RID A-1977-2009
DEFF Research Database (Denmark)
FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, M.;
1997-01-01
Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic radiance microprobes contain a large variable instrumental error caused by the nonuniform directional sensitivity of the microprobes. A general theory of three-dimensional radiance measurements...
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
Energy Technology Data Exchange (ETDEWEB)
PROJECT STAFF
2004-12-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Large-Sample Theory for Generalized Linear Models with Non-natural Link and Random Variates
Institute of Scientific and Technical Information of China (English)
Jie-li Ding; Xi-ru Chen
2006-01-01
For generalized linear models (GLM), in the case that the regressors are stochastic and have different distributions and the observations of the responses may have different dimensionality, the asymptotic theory of the maximum likelihood estimate (MLE) of the parameters are studied under the assumption of a non-natural link function.
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
PARADIGM IN THE PHILOSOPHY OF THE GENERAL THEORY OF CYCLES (CRISES
Directory of Open Access Journals (Sweden)
Laptev V. N.
2014-06-01
Full Text Available The article considers the special role of paradigms in the study (writing of the General theory of cycles. The authors ' task is systematization of knowledge in this area and obtain an objective assessment by means of retrospective material, which shows the change of one paradigm to another
Error Analysis of English Writing Based on Interlanguage Theory
Institute of Scientific and Technical Information of China (English)
李玲
2014-01-01
Language learning process has been hunted by learner’s errors,which is an unavoidable phenomenon.In the 1950s and 1960s,Contractive Analysis (CA) based on behaviorism and structuralism was generally employed in analyzing learners’ errors. CA soon lost its popularity.Error Analysis (EA),a branch of applied linguistics,has made great contributions to the study of second language learning and throws some light on the process of second language learning.Careful study of the errors reveals the common problems shared by the language learners.Writing is important in language learning process.Under Chinese context,English writing is always a difficult question for Chinese teachers and students,so errors in students’ written works are unavoidable.In this thesis,the author studies on error analysis of English writing with the interlanguage theory as its theoretical guidance.
Stepped-frequency radar sensors theory, analysis and design
Nguyen, Cam
2016-01-01
This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....
Error Analysis of English Writing Based on Interlanguage Theory
Institute of Scientific and Technical Information of China (English)
李玲
2014-01-01
Language learning process has been hunted by learner’s errors,which is an unavoidable phenomenon.In the 1950 s and 1960 s,Contractive Analysis(CA) based on behaviorism and structuralism was generally employed in analyzing learners’ errors.CA soon lost its popularity.Error Analysis(EA),a branch of applied linguistics,has made great contributions to the study of second language learning and throws some light on the process of second language learning.Careful study of the errors reveals the common problems shared by the language learners.Writing is important in language learning process.Under Chinese context,English writing is always a difficult question for Chinese teachers and students,so errors in students’ written works are unavoidable.In this thesis,the author studies on error analysis of English writing with the interlanguage theory as its theoretical guidance.
A New Conformal Theory of Semi-Classical Quantum General Relativity
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.
The perfect theory a century of geniuses and the battle over general relativity
Ferreira, Pedro G
2014-01-01
Physicists have been exploring, debating, and questioning the general theory of relativity ever since Albert Einstein first presented it in 1915. Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdai...
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Hyland, Michael E
2003-12-01
Extended Network Generalized Entanglement Theory (Entanglement Theory for short) combines two earlier theories based on complexity theory and quantum mechanics. The theory's assumptions are: the body is a complex, self-organizing system (the extended network) that self-organizes so as to achieve genetically defined patterns (where patterns include morphologic as well as lifestyle patterns). These pattern-specifying genes require feedback that is provided by generalized quantum entanglement. Additionally, generalized entanglement has evolved as a form of communication between people (and animals) and can be used in healing. Entanglement Theory suggests that several processes are involved in complementary and alternative medicine (CAM). Direct subtle therapy creates network change either through lifestyle management, some manual therapies, and psychologically mediated effects of therapy. Indirect subtle therapy is a process of entanglement with other people or physical entities (e.g., remedies, healing sites). Both types of subtle therapy create two kinds of information within the network--either that the network is more disregulated than it is and the network then compensates for this error, or as a guide for network change leading to healing. Most CAM therapies involve a combination of indirect and direct therapies, making empirical evaluation complex. Empirical predictions from this theory are contrasted with those from two other possible mechanisms of healing: (1) psychologic processes and (2) mechanisms involving electromagnetic influence between people (biofield/energy medicine). Topics for empirical study include a hyperfast communication system, the phenomenology of entanglement, predictors of outcome in naturally occurring clinical settings, and the importance of therapist and patient characteristics to outcome.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
Energy Technology Data Exchange (ETDEWEB)
Freed, Karl F. [James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60615 (United States)
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Da Fonseca, D; Cury, F; Fakra, E; Rufo, M; Poinso, F; Bounoua, L; Huguet, P
2008-04-01
During the past decade, several studies have reported positive effects of cognitive-behavioral therapy (CBT) in the treatment of children and adolescents with mental disorders. One of the most important CBT interventions is to teach children and adolescents to challenge negative thoughts that lead to maladjusted behaviors. Based on the implicit theories of intelligence framework, the main purpose of this study was to test whether an incremental theory manipulation could be used to affect IQ test performance in adolescents with Generalized Anxiety Disorder (GAD). Results showed that patients demonstrated enhanced IQ performance and experienced less state anxiety when they were exposed to an incremental theory of intelligence manipulation. Our findings suggest that incremental theory manipulation provides a useful cognitive strategy for addressing school-related anxiety in adolescents with mental disorders such as GAD.
Extrasolar planetary dynamics with a generalized planar Laplace-Lagrange secular theory
Veras, D; Veras, Dimitri; Armitage, Philip J.
2007-01-01
The dynamical evolution of nearly half of the known extrasolar planets in multiple-planet systems may be dominated by secular perturbations. The commonly high eccentricities of the planetary orbits calls into question the utility of the traditional Laplace-Lagrange (LL) secular theory in analyses of the motion. We analytically generalize this theory to fourth-order in the eccentricities, compare the result with the second-order theory and octupole-level theory, and apply these theories to the likely secularly-dominated HD 12661, HD 168443, HD 38529 and Ups And multi-planet systems. The fourth-order scheme yields a multiply-branched criterion for maintaining apsidal libration, and implies that the apsidal rate of a small body is a function of its initial eccentricity, dependencies which are absent from the traditional theory. Numerical results indicate that the primary difference the second and fourth-order theories reveal is an alteration in secular periodicities, and to a smaller extent amplitudes of the pla...
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Levels of Analysis in Systems Theories of Personality.
Lester, David
1986-01-01
Systems theories of personality often describe subsystems (such as conscious and unconscious) and subsubsystems (such as ego, id, and superego). This paper classifies the major systems theories of personality in terms of the number of levels in their analysis. (Author)
A Stylistic Analysis of Register Theory in Oliver Twist
Institute of Scientific and Technical Information of China (English)
刘鑫
2015-01-01
Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens' masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.
A Stylistic Analysis of Register Theory in Oliver Twist
Institute of Scientific and Technical Information of China (English)
刘鑫
2015-01-01
Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens’ masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.
Using Integrative Propositional Analysis for Evaluating Entrepreneurship Theories
Directory of Open Access Journals (Sweden)
Bernadette Wright
2015-09-01
Full Text Available Previous studies have noted a proliferation of disparate theories of entrepreneurship. This makes it difficult to find the best theory for application in teaching, practice, and research. Choosing the right entrepreneurship theories to teach and encourage is critical to providing entrepreneurs with the knowledge they need to succeed. Scholars have recommended integrating entrepreneurship theories across disciplines and across practice; however, rigorous methods to assess and integrate the best theories are lacking. Integrative propositional analysis is an emerging method to assess and improve theories using the theory structure as data, rather than relying on empirical data and opinion alone. This exploratory study pilot tested this approach with a sample of nine entrepreneurship theories. Several insights emerged that entrepreneurship researchers, educators, and practitioners can use to synthesize and improve theories for their specific needs and to collaboratively integrate the best theories from research and experience to create better theories.
Generalized Full-Information Item Bifactor Analysis
Cai, Li; Yang, Ji Seung; Hansen, Mark
2011-01-01
Full-information item bifactor analysis is an important statistical method in psychological and educational measurement. Current methods are limited to single-group analysis and inflexible in the types of item response models supported. We propose a flexible multiple-group item bifactor analysis framework that supports a variety of…
Chung, Yi-Shih; Wong, Jinn-Tsai
2012-11-01
While many studies examine the mean score differences of psychological determinants between heterogeneous driver groups, this study reveals a structural discrepancy in a causal behavioral framework. Using young motorcyclists (ages 18-28) as subjects, this study investigates the various roles of key influential factors in determining risky driving behavior. Multi-group analysis of structural equation modeling shows that age and gender are two factors that can effectively distinguish heterogeneous driver groups exhibiting different decision-making mechanisms in shaping their risky driving behaviors. When encountering undesirable traffic conditions, road rage can immediately increase male motorcyclists' intentions to engage in risky driving behaviors; on the other hand, young female motorcyclists further calculate their perceived risk to determine whether to engage in risky driving behaviors. This result shows that there is a significant link between risk perception and traffic condition awareness for experienced drivers (ages 25-28), but not for younger drivers (ages 18-24). This finding shows that while well-developed theories such as planned behavior and risk homeostasis provide general frameworks to explain risky driving behavior, heterogeneous driver groups may exhibit structural discrepancies that reflect their various decision-making mechanisms. This suggests that, in addition to mean differences, understanding structural discrepancies among heterogeneous groups could help researchers identify effective intervention strategies.
Theoretical and methodological analysis of personality theories of leadership
Directory of Open Access Journals (Sweden)
Оксана Григорівна Гуменюк
2016-10-01
Full Text Available The psychological analysis of personality theories of leadership, which is the basis for other conceptual approaches to understanding the nature of leadership, is conducted. Conceptual approach of leadership is analyzed taking into account the priority of personality theories, including: heroic, psychoanalytic, «trait» theory, charismatic and five-factor. It is noted that the psychological analysis of personality theories are important in understanding the nature of leadership
Generalized linear models with random effects unified analysis via H-likelihood
Lee, Youngjo; Pawitan, Yudi
2006-01-01
Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...
Post-relativistic gravity a hidden variable theory for general relativity
Schmelzer, I
1996-01-01
Post-relativistic gravity is a hidden variable theory for general relativity. It introduces the pre-relativistic notions absolute space, absolute time, and ether as hidden variables into general relativity. Evolution is defined by the equations of general relativity and the harmonic coordinate condition interpreted as a physical equation. There are minor differences in predictions compared with general relativity (i.e. trivial topology of the universe is predicted). The unobservable absolute time is designed to solve the problem of time in quantization of general relativity. Background space and time define a Newtonian frame for the quantization of the gravitational field. By the way, a lot of other conceptual problems of quantization will be solved (i.e. no constraints, no topological foam, no black hole and bib bang singularities, natural vacuum definition for quantum fields on classical background).
Lucarini, Valerio
2008-05-01
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external
On Multifield Born and Born-Infeld Theories and their non-Abelian Generalizations
Cerchiai, B L
2016-01-01
Starting from a recently proposed linear formulation in terms of auxiliary fields, we study $n$-field generalizations of Born and Born-Infeld theories. In this description the Lagrangian is quadratic in the vector field strengths and the symmetry properties (including the characteristic self-duality) of the corresponding non-linear theory are manifest as on-shell duality symmetries and depend on the choice of the (homogeneous) manifold spanned by the auxiliary scalar fields and the symplectic frame. By suitably choosing these defining properties of the quadratic Lagrangian, we are able to reproduce some known multi-field Born-Infeld theories and to derive new non-linear models, such as the $n$-field Born theory. We also discuss non-Abelian generalizations of these theories obtained by choosing the vector fields in the adjoint representation of an off-shell compact global symmetry group $K$ and replacing them by non-Abelian, $K$-covariant field strengths, thus promoting $K$ to a gauge group.
On multifield Born and Born-Infeld theories and their non-Abelian generalizations
Cerchiai, Bianca L.; Trigiante, Mario
2016-10-01
Starting from a recently proposed linear formulation in terms of auxiliary fields, we study n-field generalizations of Born and Born-Infeld theories. In this description the Lagrangian is quadratic in the vector field strengths and the symmetry properties (including the characteristic self-duality) of the corresponding non-linear theory are manifest as on-shell duality symmetries and depend on the choice of the (homogeneous) manifold spanned by the auxiliary scalar fields and the symplectic frame. By suitably choosing these defining properties of the quadratic Lagrangian, we are able to reproduce some known multi-field Born-Infeld theories and to derive new non-linear models, such as the n-field Born theory. We also discuss non-Abelian generalizations of these theories obtained by choosing the vector fields in the adjoint representation of an off-shell compact global symmetry group K and replacing them by non-Abelian, K-covariant field strengths, thus promoting K to a gauge group.
Generalized N=1 and N=2 structures in M-theory and type II orientifolds
Graña, Mariana
2012-01-01
We consider M-theory and type IIA reductions to four dimensions with N=2 and N=1 supersymmetry and discuss their interconnection. Our work is based on the framework of Exceptional Generalized Geometry (EGG), which extends the tangent bundle to include all symmetries in M-theory and type II string theory, covariantizing the local U-duality group E7. We describe general N=1 and N=2 reductions in terms of SU(7) and SU(6) structures on this bundle and thereby derive the effective four-dimensional N=1 and N=2 couplings, in particular we compute the Kahler and hyper-Kahler potentials as well as the triplet of Killing prepotentials (or the superpotential in the N=1 case). These structures and couplings can be described in terms of forms on an eight-dimensional tangent space where SL(8) contained in E7 acts, which might indicate a description in terms of an eight-dimensional internal space, similar to F-theory. We finally discuss an orbifold action in M-theory and its reduction to O6 orientifolds, and show how the pr...
Analysis of response rates during stimulus generalization.
Migler, B; Millenson, J R
1969-01-01
In the presence of one click frequency, the presses of two hungry rats on one of two levers were reinforced with food on variable-interval schedules; in the presence of a different click frequency, presses on the other lever were reinforced. In stimulus generalization tests, a variety of click frequencies were presented and reinforcement withheld. The test stimuli were found to exert control over which of the two levers the rats pressed, but not over the rate of pressing the selected lever. The results were interpreted as further evidence that intermediate rates in generalization gradients may be the result of the alternation of several distinct behavior patterns.
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.
2008-01-01
Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.
[Theory of V.A. dogiel on polymerization and oligomerization as a general integration concept].
Makmaev, Iu V
2010-01-01
The theory of V.A. Dogiel on the significance of polymerization and ligomerization processes in the evolution of Protozoa and Metazoa is compared with the paper of I.I. Schmalhauisen (1972) on factors and steps of aromorph evolution. Dogiel's theory is considered as a general integration conception. Four steps are distinguished in the evolution of biological systems: (1) formation of morphofunctional system by units of the lower structural level, (2) polymerization of morphofunctional units of a system, (3) oligomerization of morphofunctional units of system by means of their reduction, uniting, or differentiation, (4) integration and stabilization of a system owing to development of morphofunctional connections between its parts.
Generalization of strain-gradient theory to finite elastic deformation for isotropic materials
Beheshti, Alireza
2017-03-01
This paper concerns finite deformation in the strain-gradient continuum. In order to take account of the geometric nonlinearity, the original strain-gradient theory which is based on the infinitesimal strain tensor is rewritten given the Green-Lagrange strain tensor. Following introducing the generalized isotropic Saint Venant-Kirchhoff material model for the strain-gradient elasticity, the boundary value problem is investigated in not only the material configuration but also the spatial configuration building upon the principle of virtual work for a three-dimensional solid. By presenting one example, the convergence of the strain-gradient and classical theories is studied.
Combining general relativity and quantum theory points of conflict and contact
Padmanabhan, T
2001-01-01
The issues related to bringing together the principles of general relativity and quantum theory are discussed. After briefly summarising the points of conflict between the two formalisms I focus on four specific themes in which some contact has been established in the past between GR and quantum field theory: (i) The role of planck length in the microstructure of spacetime (ii) The role of quantum effects in cosmology and origin of the universe (iii) The thermodynamics of spacetimes with horizons and especially the concept of entropy related to spacetime geometry (iv) The problem of the cosmological constant.
Effective action of composite fields for general gauge theories in BLT-covariant formalism
Lavrov, P M; Reshetnyak, A A
1996-01-01
The gauge dependence of the effective action of composite fields for general gauge theories in the framework of the quantization method by Batalin, Lavrov and Tyutin is studied. The corresponding Ward identites are obtained. The variation of composite fields effective action is found in terms of new set of generators depending on composite field. The theorem of the on-shell gauge fixing independence for the effective action of composite fields in such formalism is proven. Brief discussion of gravitational-vector induced interaction for Maxwell theory with composite fields is given.
Energy Technology Data Exchange (ETDEWEB)
Lavrov, P.M.; Odintsov, S.D. [Department of Mathematical Analysis, Tomsk State Pedagogical University, Tomsk 634041 (Russia)]|[Department ECM, Faculte de Fisica, Universidad de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Reshetnyak, A.A. [Quantum Field Theory Department, Tomsk State University, Tomsk 634050 (Russia)
1997-07-01
The gauge dependence of the effective action of composite fields for general gauge theories in the framework of the quantization method by Batalin, Lavrov and Tyutin is studied. The corresponding Ward identities are obtained. The variation of composite fields effective action is found in terms of new set of generators depending on composite field. The theorem of the on-shell gauge fixing independence for the effective action of composite fields in such formalism is proven. A brief discussion of gravitational-vector induced interaction for Maxwell theory with composite fields is given. {copyright} {ital 1997 American Institute of Physics.}
Cosmological application on five-dimensional teleparallel theory equivalent to general relativity
Institute of Scientific and Technical Information of China (English)
Gamal G. L. Nashed
2012-01-01
A theory of (4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional (5D) vector fields (pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor. We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element,i.e.,FRW in five dimensions.The cosmological parameters are calculated and some cosmological problems are discussed.
Robust root clustering for linear uncertain systems using generalized Lyapunov theory
Yedavalli, R. K.
1993-01-01
Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.
NEW STRAIN GRADIENT THEORY AND ANALYSIS
Institute of Scientific and Technical Information of China (English)
Dake Yi; Tzu Chiang Wang; Shaohua Chen
2009-01-01
A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.
Application of portfolio theory in decision tree analysis.
Galligan, D T; Ramberg, C; Curtis, C; Ferguson, J; Fetrow, J
1991-07-01
A general application of portfolio analysis for herd decision tree analysis is described. In the herd environment, this methodology offers a means of employing population-based decision strategies that can help the producer control economic variation in expected return from a given set of decision options. An economic decision tree model regarding the use of prostaglandin in dairy cows with undetected estrus was used to determine the expected return of the decisions to use prostaglandin and breed on a timed basis, use prostaglandin and then breed on sign of estrus, or breed on signs of estrus. The risk attributes of these decision alternatives were calculated from the decision tree, and portfolio theory was used to find the efficient decision combinations (portfolios with the highest return for a given variance). The resulting combinations of decisions could be used to control return variation.
A Translation Case Analysis Based on Skopos Theory
Institute of Scientific and Technical Information of China (English)
盖孟姣
2015-01-01
This paper is a translation case analysis based on Skopos Theory.This paper choose President Xi’s New Year congratulations of 2015 as analysis text and gives the case analysis.This paper focuses on translating the text based on Skopos Theory.
Applications of model theory to functional analysis
Iovino, Jose
2014-01-01
During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the
Immigration and Outsourcing: A General Equilibrium Analysis
Subhayu Bandoyopadhyay; Wall, Howard J.
2006-01-01
This paper analyzes the issues of immigration and outsourcing in a general-equilibrium model of international factor mobility. In our model, legal immigration is controlled through a quota, while outsourcing is determined both by the firms (in response to market conditions) and through policy-imposed barriers. A loosening of the immigration quota reduces outsourcing, enriches capitalists, leads to losses for native workers, and raises national income. If the nation targets an exogenously dete...
Singularity analysis: theory and further developments
Cheng, Qiuming
2015-04-01
Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.
Mass bounds for compact spherically symmetric objects in generalized gravity theories
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2016-09-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.
Krommes, John A.; Hu, Genze
1993-11-01
The theory of Onsager symmetry is reconsidered from the point of view of its application to nonequilibrium, possibly turbulent steady states. A dynamical formalism based on correlation and response functions is used; understanding of its relationship to more conventional approaches based on entropy production enables one to resolve various confusions about the proper use of the theory, even near thermal equilibrium. Previous claims that ``kinematic'' flows must be excluded from considerations of Onsager symmetry are refuted by showing that suitably defined reversible and irreversible parts of the Onsager matrix separately obey the appropriate symmetry; fluctuating hydrodynamics serves as an example. It is shown that Onsager symmetries are preserved under arbitrary covariant changes of variables; the Weinhold metric is used as a fundamental tensor. Covariance is used to render moot the controversy over the proper choice of fluxes and forces in neoclassical plasma transport theory. The fundamental distinction between the fully contravariant Onsager matrix Lij and its mixed representation Lij is emphasized and used to explain why some previous workers have failed to find Onsager symmetry around turbulent steady states. The generalized Onsager theorem of Dufty and Rubí [Phys. Rev. A 36, 222 (1987)] is reviewed. An explicitly soluble Langevin problem is shown to violate Onsager's original symmetry but to obey the generalized theorem. The physical content of the generalized Onsager symmetry is discussed from the point of view of Nosé-Hoover dynamics. A set of extended Graham-Haken potential conditions are derived for Fokker-Planck models and shown to be consistent with the generalized Onsager relations. Finally, for quite general, possibly turbulent steady states it is argued that realizable Markovian statistical closures with underlying Langevin representations must also obey the generalized theorem. In the special case in which all state variables have even parity
Generalized weak-binding relations of compositeness in effective field theory
Kamiya, Yuki
2016-01-01
We study the compositeness of near-threshold states to investigate the internal structure of exotic hadron candidates. Within the framework of effective field theory, Weinberg's weak-binding relation is extended to more general cases by easing several preconditions. First, by evaluating the contribution from the decay channel, we obtain the generalized relation for unstable quasibound states. Next, we generalize the relation to include the nearby CDD (Castillejo-Dalitz-Dyson) pole contribution with the help of the Pade approximant. The validity of the estimation with the generalized weak-binding relations is examined by numerical calculations. Finally, by applying the extended relation to Lambda(1405), f0(980) and a0(980), we discuss their internal structure, in comparison with other approaches.