Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B. M.; Jenkins, E. E.; Manohar, A. V.; Merlo, L.
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\...
Beyond generalized Proca theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the maximally symmetric space-time, we perform the Hessian and Hamiltonian analysis and show the presence of a second-class constraint that removes the would-be ghost associated with the temporal component of the vector field. Furthermore, we study the behavior of linear perturbations on top of the homogeneous and isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories. Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar per...
Uncertainty Analysis of Few Group Cross Sections Based on Generalized Perturbation Theory
International Nuclear Information System (INIS)
In this paper, the methodology of the sensitivity and uncertainty analysis code based on GPT was described and the preliminary verification calculations on the PMR200 pin cell problem were carried out. As a result, they are in a good agreement when compared with the results by TSUNAMI. From this study, it is expected that MUSAD code based on GPT can produce the uncertainty of the homogenized few group microscopic cross sections for a core simulator. For sensitivity and uncertainty analyses for general core responses, a two-step method is available and it utilizes the generalized perturbation theory (GPT) for homogenized few group cross sections in the first step and stochastic sampling method for general core responses in the second step. The uncertainty analysis procedure based on GPT in the first step needs the generalized adjoint solution from a cell or lattice code. For this, the generalized adjoint solver has been integrated into DeCART in our previous work. In this paper, MUSAD (Modues of Uncertainty and Sensitivity Analysis for DeCART) code based on the classical perturbation theory was expanded to the function of the sensitivity and uncertainty analysis for few group cross sections based on GPT. First, the uncertainty analysis method based on GPT was described and, in the next section, the preliminary results of the verification calculation on a VHTR pin cell problem were compared with the results by TSUNAMI of SCALE 6.1
Uncertainty Analysis of Few Group Cross Sections Based on Generalized Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Han, Tae Young; Lee, Hyun Chul; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this paper, the methodology of the sensitivity and uncertainty analysis code based on GPT was described and the preliminary verification calculations on the PMR200 pin cell problem were carried out. As a result, they are in a good agreement when compared with the results by TSUNAMI. From this study, it is expected that MUSAD code based on GPT can produce the uncertainty of the homogenized few group microscopic cross sections for a core simulator. For sensitivity and uncertainty analyses for general core responses, a two-step method is available and it utilizes the generalized perturbation theory (GPT) for homogenized few group cross sections in the first step and stochastic sampling method for general core responses in the second step. The uncertainty analysis procedure based on GPT in the first step needs the generalized adjoint solution from a cell or lattice code. For this, the generalized adjoint solver has been integrated into DeCART in our previous work. In this paper, MUSAD (Modues of Uncertainty and Sensitivity Analysis for DeCART) code based on the classical perturbation theory was expanded to the function of the sensitivity and uncertainty analysis for few group cross sections based on GPT. First, the uncertainty analysis method based on GPT was described and, in the next section, the preliminary results of the verification calculation on a VHTR pin cell problem were compared with the results by TSUNAMI of SCALE 6.1.
Generalized etale cohomology theories
Jardine, John F
1997-01-01
A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...
TERRY BOSWELL; CLIFF BROWN
1999-01-01
A â€œholy warâ€ is being fought within comparative historical sociology between deductivists and inductivists over the scope of general theory. The issues include broad versus narrow scope conditions, explicit versus contingent theorizing, and theory testing versus theory building. The irony of the conflict is that each side makes ample use of the other's product, despite condemning its progenitor. The authors offer a hierarchical approach to qualitative comparative analysis (QCA) as a method...
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Evolution of generalized couple-stress continuum theories: a critical analysis
Hadjesfandiari, Ali R.; Dargush, Gary F.
2014-01-01
In this paper, we examine different generalized couple-stress continuum mechanics theories, including couple stress, strain gradient and micropolar theories. First, we investigate the fundamental requirements in any consistent size-dependent couple stress continuum mechanics, for which satisfying basic rules of mathematics and mechanics are crucial to establish a consistent theory. As a result, we show that continuum couple stress theory must be based on the displacement field and its corresp...
Generalized teleparallel theory
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Thermo-mechanical buckling analysis of FGM plate using generalized plate theory
Sharma, Kanishk; Kumar, Dinesh; Gite, Anil
2016-05-01
This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).
Evolution of generalized couple-stress continuum theories: a critical analysis
Hadjesfandiari, Ali R
2015-01-01
In this paper, we examine different generalized couple-stress continuum mechanics theories, including couple stress, strain gradient and micropolar theories. First, we investigate the fundamental requirements in any consistent size-dependent couple stress continuum mechanics, for which satisfying basic rules of mathematics and mechanics are crucial to establish a consistent theory. As a result, we show that continuum couple stress theory must be based on the displacement field and its corresponding macrorotation field as degrees of freedom, while an extraneous artificial microrotation cannot be a true continuum mechanical concept. Furthermore, the idea of generalized force and independent generalized degrees of freedom show that the normal component of the surface moment traction vector must vanish. Then, with these requirements in mind, various existing couple stress theories are examined critically, and we find that certain deviatoric curvature tensors create indeterminacy in the spherical part of the coupl...
Comment on "Analysis of General Power Counting Rules in Effective Field Theory"
Buchalla, G; Celis, A; Krause, C
2016-01-01
In a recent paper [1] a master formula has been presented for the power counting of a general effective field theory. We first show that this master formula follows immediately from the concept of chiral dimensions (loop counting), together with standard dimensional analysis. Subsequently, [1] has disputed the relevance of chiral counting for chiral Lagrangians, and in particular for the electroweak chiral Lagrangian including a light Higgs boson. As an alternative, a power counting based on `primary dimensions' has been proposed. The difficulties encountered with this scheme led the authors to suggest that even the leading order of the electroweak chiral Lagrangian could not be clearly defined. Here we demonstrate that the concept of primary dimensions is irrelevant for the organization of chiral Lagrangians. We re-emphasize that the correct counting is based on chiral dimensions, or the counting of loop orders, and show how the problems encountered in [1] are resolved.
Energy Technology Data Exchange (ETDEWEB)
Chung, Moses; Qin, Hong; Gilson, Erik; Davidson, Ronald C.
2013-01-01
By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linear focusing channels.
Zemanian, AH
2010-01-01
This well-known text provides a relatively elementary introduction to distribution theory and describes generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. Suitable for a graduate course for engineering and science students or for an advanced undergraduate course for mathematics majors. 1965 edition.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas
2011-07-01
Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)
Analysis of Generalized Non-Active Power Theory for Compensation of Non-Periodic Disturbances
Czech Academy of Sciences Publication Activity Database
Tlustý, J.; Švec, J.; Sedra, J. B.; Valouch, Viktor
Santiago de Compostela: EA4EPQ, 2012, s. 1-6. ISBN 978-84-615-6648-8. [International Conference on Renewable Energies and Power Quality (ICREPQ 12). Santiago de Compostela (ES), 28.03.2012-30.03.2012] Institutional research plan: CEZ:AV0Z20570509 Keywords : generalized non-active power theory * electric power system * parallel compensation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Wu, Ning
1998-01-01
In this paper, we will construct a gauge field model, in which the masses of gauge fields are non-zero and the local gauge symmetry is strictly preserved. A SU(N) gauge field model is discussed in details in this paper. In the limit $\\alpha \\longrightarrow 0$ or $\\alpha \\longrightarrow \\infty$, the gauge field model discussed in this paper will return to Yang-Mills gauge field model. This theory could be regarded as theoretical development of Yang-Mills gauge field theory.
International Nuclear Information System (INIS)
Proceeding from the fundamentals of the Riemann geometry and tensor calculus, the physical laws in the Riemann space are formulated and evaluated. Subsequently, Einstein field equations are derived and all important applications of the theory, including topical problems, are dealt with, especially the Schwarzschild metric, gravitational waves, gravitational collapse, black holes, and cosmological models. Relevant fundamental physical problems are discussed in detail, whereas results based on complex mathematical derivations are merely presented. Connections are made with observations and latest numerical data obtained therefrom. In some more demanding chapters on special vector fields, motion groups, and the Petrov classification, methods particularly fruitful in modern research are considered
International Nuclear Information System (INIS)
Perturbation Methods represent a powerful tool to do sensitivity analysis, and they found many aplications in nuclear engineering.As an introduction to this kind of analysis, we develope a program that apply the Generalized Perturbation Theory or GPT Method to bidimensional system of rectangular geometry.We first consider an homogeneous system of non-multiplying material and then an heterogeneous system with region of multiplying material, with the intention of make concret aplications of perturbation method to nuclear engineering problems.The program, that we called Pert, determines neutron fluxes and importance functions applying the Multigroup Diffusion Theory; and also solves the integrals required to calculate sensitivity coefficients.Using this perturbation methods we could verify the low computational cost required to make this kind of analysis and the simplicity of the equations systems involved, allowing us to make elaborates sensitivity analysis for the responses of our interest
A general methodology for mobility analysis of mechanisms based on constraint screw theory
Institute of Scientific and Technical Information of China (English)
HUANG Zhen; LIU JingFang; ZENG DaXing
2009-01-01
It is well known that the traditional Grubler-Kutzbach formula fails to calculate the mobility of some classical mechanisms or many modern parallel robots, and this situation seriously hampers mechani-cal innovation. To seek an efficient and universal method for mobility calculation has been a heated topic in the sphere of mechanism. The modified Grubler-Kutzbach criterion proposed by us achieved success in calculating the mobility of a lot of highly complicated mechanisms, especially the mobility of all recent parallel mechanisms listed by Gogu, and the Bennett mechanism known for its particular difficulty. With wide applications of the criterion, a systematic methodology has recently formed. This paper systematically presents the methodology based on the screw theory for the first time and ana-lyzes six representative puzzling mechanisms. In addition, the methodology is convenient for judgment of the instantaneous or full-cycle mobility, and has become an effective and general method of great scientific value and practical significance. In the first half, this paper introduces the basic screw theory,then it presents the effective methodology formed within this decade. The second half of this paperpresents how to apply the methodology by analyzing the mobility of several puzzling mechanisms.Finally, this paper contrasts and analyzes some different methods and interprets the essential reason for validity of our methodology.
A general methodology for mobility analysis of mechanisms based on constraint screw theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
It is well known that the traditional Grübler-Kutzbach formula fails to calculate the mobility of some classical mechanisms or many modern parallel robots,and this situation seriously hampers mechani-cal innovation.To seek an efficient and universal method for mobility calculation has been a heated topic in the sphere of mechanism.The modified Grübler-Kutzbach criterion proposed by us achieved success in calculating the mobility of a lot of highly complicated mechanisms,especially the mobility of all recent parallel mechanisms listed by Gogu,and the Bennett mechanism known for its particular difficulty.With wide applications of the criterion,a systematic methodology has recently formed.This paper systematically presents the methodology based on the screw theory for the first time and ana-lyzes six representative puzzling mechanisms.In addition,the methodology is convenient for judgment of the instantaneous or full-cycle mobility,and has become an effective and general method of great scientific value and practical significance.In the first half,this paper introduces the basic screw theory,then it presents the effective methodology formed within this decade.The second half of this paper presents how to apply the methodology by analyzing the mobility of several puzzling mechanisms.Finally,this paper contrasts and analyzes some different methods and interprets the essential reason for validity of our methodology.
Energy Technology Data Exchange (ETDEWEB)
Nukala, Madhuri [Department of Natural Sciences, Engineering and Mathematics, Mid Sweden University, SE 851 70, Sundsvall (Sweden); Mendrok, Jana [Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Box 812, SE-98128 Kiruna (Sweden)
2014-12-10
Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering.
International Nuclear Information System (INIS)
Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering
REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY
Anda Laura Lungu Petruescu
2013-01-01
Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal i...
General covariance and quantum theory
International Nuclear Information System (INIS)
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Generalization of exergy analysis
International Nuclear Information System (INIS)
Highlights: • The area of validity of standard exergy analysis is discussed carefully. • A generalization of exergy analysis is developed within classical irreversible thermodynamics. • The generalization is demonstrated on fuel cells, osmotic power plants and heat engines. • A rigorous method indicating where exactly in a device useful work is being lost is developed. • A general algorithm of thermodynamic optimization is formulated. - Abstract: Exergy analysis, which provides means of calculating efficiency losses in industrial devices, is reviewed, and the area of its validity is carefully discussed. Consequently, a generalization is proposed, which holds also beyond the area of applicability of exergy analysis. The generalization is formulated within the framework of classical irreversible thermodynamics, and interestingly it leads to minimization of a functional different from entropy production. Fuel cells, osmotic power plants and heat engines are analyzed within the theory. In particular, the theory is demonstrated on a toy model of solid oxide fuel cells quantitatively. Eventually, a new general algorithm of thermodynamic optimization is proposed
Solitons in generalized galileon theories
Carrillo-Gonzalez, Mariana; Solomon, Adam R; Trodden, Mark
2016-01-01
We consider the existence and stability of solitons in generalized galileons, scalar field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations, or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (A)dS galileons. For the case of DBI and conformal galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Matrix String Theory As A Generalized Quantum Theory
Minic, Djordje
1997-01-01
Matrix String Theory of Banks, Fischler, Shenker and Susskind can be understood as a generalized quantum theory (provisionally named "quansical" theory) which differs from Adler's generalized trace quantum dynamics. The effective Matrix String Theory Hamiltonian is constructed in a particular fermionic realization of Matrix String Theory treated as an example of "quansical" theory.
Consistent generalized energy condensation theory
International Nuclear Information System (INIS)
Highlights: ► A new method is presented which explicitly accounts for the energy–angle coupling in multigroup theory. ► Coarse-group solution with full energy–angle coupling correction exactly preserves fine-group physics. ► The new theory is validated via two sets of benchmark problems typical of stylized BWR and HTR core configurations. - Abstract: Recently, a method was developed to generalize the multigroup theory to estimate the fine-group angular flux within a coarse-group transport calculation. In the development of that method, the angular dependence of the coarse-group total cross section was neglected. As is well known, this approximation introduces errors in the transport solution making its accuracy dependent on the number of coarse groups and the choice of group structure. This paper extends the generalized energy condensation theory to explicitly account for the angular dependence of the coarse-group total cross section. This is accomplished in a natural way by modifying the treatment of the total cross section to include orthogonal expansions in both energy and angle. As a result, the fine-group flux can be consistently reproduced during the coarse-group calculation. This method paves the way for recondensation of the cross sections on-the-fly thereby eliminating the errors introduced by using simplified problems (e.g. lattice-cells) to estimate the coarse-group cross sections. In this paper, the method is derived in general geometry and implemented and verified with several 1D reactor problems (both LWR and VHTR).
The Foundations of Computable General Equilibrium Theory
Velupillai, K. Vela
2005-01-01
A constructive and recursion theoretic analysis of the standard Computable General Equilibrium (CGE) model of economic theory is undertaken. It is shown, contrary to widely expressed views and textbook versions of the CGE model, that the standard CGE model is neither computable nor constructive in the strict mathematical senses.
Generalized structural theory of freezing
International Nuclear Information System (INIS)
The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)
Simple Recursion Relations for General Field Theories
Cheung, Clifford; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-...
Stability analysis of nonlinear autonomous systems - General theory and application to flutter
Smith, L. L.; Morino, L.
1975-01-01
The analysis makes use of a singular perturbation method, the multiple time scaling. Concepts of stable and unstable limit cycles are introduced. The solution is obtained in the form of an asymptotic expansion. Numerical results are presented for the nonlinear flutter of panels and airfoils in supersonic flow. The approach used is an extension of a method for analyzing nonlinear panel flutter reported by Morino (1969).
Stability and Space Phase Analysis in f(R) theory with Generalized Exponential model
Boko, R. D.; Houndjo, M. J. S.; Tossa, J.
2016-01-01
We have studied in this paper, the stability of dynamical system in $f(R)$ gravity. We have considered the $f(R)$ $\\gamma$-gravity and explored its dynamical analysis. We found six critical points among which only one describes an universe fulled of both matter and dominated dark energy. It's shown that these critical points presents specific phase spaces described by the corresponding fluids. Furthermore, we've investigated the stability conditions of these critical points and find that thes...
Stability and Space Phase Analysis in f(R) theory with Generalized Exponential model
Boko, R D; Tossa, J
2016-01-01
We have studied in this paper, the stability of dynamical system in $f(R)$ gravity. We have considered the $f(R)$ $\\gamma$-gravity and explored its dynamical analysis. We found six critical points among which only one describes an universe fulled of both matter and dominated dark energy. It's shown that these critical points presents specific phase spaces described by the corresponding fluids. Furthermore, we've investigated the stability conditions of these critical points and find that theses conditions are dependent of the model parameters. We also study the stability of a new power-law $f_\\ast(R)$ model with de Sitter and power law solutions.
General framework for transfer path analysis: History, theory and classification of techniques
van der Seijs, Maarten V.; de Klerk, Dennis; Rixen, Daniel J.
2016-02-01
Transfer Path Analysis (TPA) designates the family of test-based methodologies to study the transmission of mechanical vibrations. Since the first adaptation of electric network analogies in the field of mechanical engineering a century ago, a multitude of TPA methods have emerged and found their way into industrial development processes. Nowadays the TPA paradigm is largely commercialised into out-of-the-box testing products, making it difficult to articulate the differences and underlying concepts that are paramount to understanding the vibration transmission problem. The aim of this paper is to derive and review a wide repertoire of TPA techniques from their conceptual basics, liberating them from their typical field of application. A selection of historical references is provided to align methodological developments with particular milestones in science. Eleven variants of TPA are derived from a unified framework and classified into three categories, namely classical, component-based and transmissibility-based TPA. Current challenges and practical aspects are discussed and reference is made to related fields of research.
Cosmology in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable ...
More about wormholes in generalized Galileon theories
Rubakov, V A
2016-01-01
We consider a class of generalized Galileon theories within General Relativity in space-times of more than two spatial dimensions. We show that these theories do not admit stable, static, spherically symmetric, asymptotically flat and traversable Lorentzian wormholes.
REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY
Directory of Open Access Journals (Sweden)
Anda Laura Lungu Petruescu
2013-06-01
Full Text Available Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal interpretation; the interpretation of the correlations and dependencies among indicators- normative interpretation; the interpretation of social and communicational processes in economic organizations- social and communicational interpretation; the interpretation of the community status of companies- transsocial interpretation; the interpretation of the purposes of human activities and their coherency – teleological interpretation; the interpretation of equilibrium/ disequilibrium from inside the economic systems- optimality interpretation. In order to respond to such demands, rigor, pragmatism, praxiology and contextual connectors are required. In order to progress, the economic science must improve its language, both its syntax and its semantics. The clarity of exposure requires a language clarity and the scientific theory progress asks for the need of hypotheses in the building of the theories. The switch from the common language to the symbolic one means the switch from ambiguity to rigor and rationality, that is order in thinking. But order implies structure, which implies formalization. Our paper should be a plea for these requirements, requirements which should be fulfilled by a modern interpretation theory.
Toposes in General Theory of Relativity
Guts, Alexandr K.; Grinkevich, Egor B.
1996-01-01
We study in this paper different topos-theoretical approaches to the problem of construction of General Theory of Relativity. In general case the resulting space-time theory will be non-classical, different from that of the usual Einstein theory of space-time. This is a new theory of space-time, created in a purely logical manner. Four possibitities are investigated: axiomatic approach to causal theory of space-time, the smooth toposes as a models of Theory of Relativity, Synthetic Theory of ...
Generalized Liquid Film Atomization Theory
Institute of Scientific and Technical Information of China (English)
HeraldoS.Couto; DemetrioBastos－Netto
2000-01-01
The increase of the fuel burning area required by most practical combustion processes in order to guarantee the minimum energy density rate release for their start up and operation is normally achieved by the proper choice among several existing types of atomizers.For instance.impinging and multi-impinging jets atomizers are used in rocket combustion chambers.while splash-plate atomizers find their use when wall film cooling is required.Pressure swirl atomizers,either of simplex or duplex kind,along with Y-jet or SPider Jet atomizers are used in industrial applications and in turbine combustion chambers.Notice.however,that all the types of atomizing devices listed above have one point in common:they are of pre-filming kind.i.e.,befor the droplet spray is generated,a liquid film is formed.This liquid film is broken into unstable ligaments which contract under the action of surface tension forming the droplets.Once the film thickness is estimated.the droplets'SMD(Sauter Mean Diameter)can be calculated.yielding a crucial prameter for the combustion chamber design.However,although this mechanism of droplet fromation has been under study for several decades.most of the available results.are based upon experimental data.valid for a special type of atomizer under the given sepcific conditions only.This work offers a generalized theory for theoretically estimating the SMD of sprays generated by liquid pre-filming atomizers in gereral.
Jiao Sujuan; Li Jun; Hua Hongxing; Shen Rongying
2008-01-01
The spectral element matrix is derived for a straight and uniform beam element having an arbitrary cross-section. The general higher-order beam theory is used, which accurately accounts for the transverse shear deformation out of the cross-sectional plane and antielastic-type deformation within the cross-sectional plane. Two coupled equations of motion are derived by use of Hamilton's principle along with the full three-dimensional constitutive relations. The theoretical expressions of the sp...
Generalized Kinetic Theory of Electrons and Phonons
A. Rossani
2002-01-01
A Generalized Kinetic Theory was proposed in order to have the possibility to treat particles which obey a very general statistics. By adopting the same approach, we generalize here the Kinetic Theory of electrons and phonons. Equilibrium solutions and their stability are investigated.
70 years of the general theory of relativity
International Nuclear Information System (INIS)
In view of the 70th anniversary of the discovery of the General Theory of Relativity, an analysis was made of the special and general theories. The basic postulates, their consequences in the formulation of the theories, the main results, some aspects related to the experimental verification and its applications are presented, as are some elements of the mathematical formalism of the theories, to facilitate the logical interrelationships between its results and consequences. (author)
General relativity, torsion, and quantum theory
Singh, Tejinder P
2015-01-01
We recall some of the obstacles which arise when one tries to reconcile the general theory of relativity with quantum theory. We consider the possibility that gravitation theories which include torsion, and not only curvature, provide better insight into a quantum theory of gravity. We speculate on how the Dirac equation and Einstein gravity could be thought of as limiting cases of a gravitation theory which possesses torsion.
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
Generalized string theory mapping relations between gravity and gauge theory
Bjerrum-Bohr, N E J
2003-01-01
A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, -- linking diagrams in gravity and Yang-Mills theory, -- as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings.
Generalized string theory mapping relations between gravity and gauge theory
International Nuclear Information System (INIS)
A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings
Diffusion in the general theory of relativity
Herrmann, Joachim
2010-01-01
The Markovian diffusion theory in the phase space is generalized within the framework of the general theory of relativity. The introduction of moving orthonormal frame vectors both for the position as well the velocity space enables to bypass difficulties in the general relativistic stochastic calculus. The general relativistic Kramers equation in the phase space is derived both in the parametrization of phase space proper time and the coordinate time. The transformation of the obtained diffu...
The generalized second law of thermodynamics in generalized gravity theories
Wu, Shao-Feng; Wang, Bin; Yang, Guo-Hong; Zhang, Peng-Ming
2008-01-01
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity, (even in the phantom-dominated universe with a Schwarzschild black hol...
Transform analysis of generalized functions
Misra, O P
1986-01-01
Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will
General Relativity as a constrained Gauge Theory
Cianci, R.; Vignolo, S.; Bruno, D
2006-01-01
The formulation of General Relativity presented in math-ph/0506077 and the Hamiltonian formulation of Gauge theories described in math-ph/0507001 are made to interact. The resulting scheme allows to see General Relativity as a constrained Gauge theory.
Schumpeter's general theory of social evolution
DEFF Research Database (Denmark)
Andersen, Esben Sloth
The recent neo-Schumpeterian and evolutionary economics appears to cover a much smaller range of topics than Joseph Schumpeter confronted. Thus, it has hardly been recognised that Schumpeter wanted to develop a general theory that served the analysis of evolution in any sector of social life as...... well as the analysis of the evolution of social life as a whole. This paper demonstrates this ambition by studying his first two books (from 1908 and 1912, partly available in recent English translations). Schumpeter's starting point was the Walrasian System, which he generalised for the study of any...... sector of social life. Schumpeter's elitist Vision of all types of social change drove this generalisation, but it is his emphasis on moving from Vision to Analysis that gives current value to his early work....
Kaluza's theory in generalized coordinates
García-Perciante, A L; García-Colin, L S; Garcia-Perciante, Ana Laura; Sandoval-Villalbazo, Alfredo
2001-01-01
Maxwell's equations can be obtained in generalized coordinates by considering the electromagnetic field as an external agent. The work here presented shows how to obtain the electrodynamics for a charged particle in generalized coordinates eliminating the concept of external force. Based on Kaluza's formalism, the one here presented extends the 5x5 metric into a 6x6 space-time giving enough room to include magnetic monopoles in a very natural way.
General Relativity Theory: Recognition through Time
Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Zhuk, A. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E. V.; Yatskiv, Ya. S.
2015-10-01
The book provides an overview of the current state of the General Relativity Theory on the eve of its centennial. The authors describe briefly the basis of this theory, systematize experimental verifications and outline the main areas of its applications in astrophysics, cosmology and astrometry in the light of the last decade. For researchers and students specializing in the Relativity Theory as well as for anyone interested in Relativity Theory, relativistic astrophysics and cosmology.
General Theory of the Zitterbewegung
David, Gy.; Cserti, J.
2009-01-01
We derive a general and simple expression for the time-dependence of the position operator of a multi-band Hamiltonian with arbitrary matrix elements depending only on the momentum of the quasi-particle. Our result shows that in such systems the Zitterbewegung like term related to a trembling motion of the quasi-particle, always appears in the position operator. Moreover, the Zitterbewegung is, in general, a multi-frequency oscillatory motion of the quasi-particle. We derive a few different e...
Generalized geometries and scalar tensor theories
International Nuclear Information System (INIS)
Those generalized geometries satisfying the conditions that (a) parallel transfer with respect to the connection hamiltonian is path independent and (b) the geodesics of the metric g have the same trajectories as the auto-parallels of the connection hamiltonian, are determined. Some uniqueness theorems of the metric in terms of the curvature are shown for such generalized geometries. Geometries of this type may be useful for constructing geometrized theories of gravitation more general than Einstein's theory. (author)
JIT supply chain; an investigation through general system theory
Mishra, O P; Vikas kumar; Dixit Garg
2013-01-01
This paper explains theoretical approach of the four theories of General system Theory (GST) developed by Yourdon (1989) [Yourdon, E. (1989). Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007) [Caddy I.N., & Helou, M.M. (2007). Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–32...
Generalizing Boolean Satisfiability II: Theory
Dixon, H E; Luks, E M; Parkes, A J; 10.1613/jair.1555
2011-01-01
This is the second of three planned papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal is to define a representation in which this structure is apparent and can easily be exploited to improve computational performance. This paper presents the theoretical basis for the ideas underlying ZAP, arguing that existing ideas in this area exploit a single, recurring structure in that multiple database axioms can be obtained by operating on a single axiom using a subgroup of the group of permutations on the literals in the problem. We argue that the group structure precisely captures the general structure at which earlier approaches hinted, and give numerous examples of its use. We go on to extend the Davis-Putnam-Logemann-...
Vainshtein mechanism in general disformal gravity theory
Karwan, Khamphee; Jaksri, Saksith
2016-01-01
We consider a theory of gravity in which the action is a result from the general disformal transformation on the Einstein-Hilbert action. We investigate the conditions where this theory can drive an accelerated expansion of the present universe, and then study the Vainshtein mechanism in this theory under such conditions. We find that the Vainshtein mechanism can work if the kinetic terms of the scalar field in the theory take non-canonical forms. Based on the constraint from local gravity experiments, we find that General Relativity is recovered inside the Vainshtein radius which can be of the order of the radius of the Milky Way.
Carloni, Sante; Nojiri, Shin'ichi; Odintsov, Sergei D; Oksanen, Markku; Tureanu, Anca
2010-01-01
We propose the most general modified first-order Ho\\v{r}ava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat FRW space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified $F(R)$ Ho\\v{r}ava-Lifshitz gravity is introduced. The study of its ultraviolet properties shows that its $z=3$ version seems to be renormalizable in the same way as the original Ho\\v{r}ava-Lifshitz proposal. The Hamiltonian analysis of the modified $F(R)$ Ho\\v{r}ava-Lifshitz gravity shows that it is in general a consistent theory. The $F(R)$ gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for th...
Generalized perturbation theory for thermalhydraulics problems
International Nuclear Information System (INIS)
The Oblow's perturbation expressions are presented for a generic functional in a heat and mass transfer transient problem for a typical subset of nuclear reactor using the generalized perturbation theory formalism proposed by Gandini. (E.G.)
Quantising general relativity using QED theory
Bell, Sarah B. M.; Diaz, Bernard M.
2002-01-01
We apply QED theory to quantum gravity and find it leads to general relativity in the classical limit. We discuss the implications of the result for the quantum-classical divide. This enables us to relate our result to M-theory.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori
2015-01-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is us...
Cosmology in General Massive Gravity Theories
Comelli, D.; Nesti, F.; Pilo, L.
2013-01-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is ...
Perturbative Double Field Theory on General Backgrounds
Hohm, Olaf
2015-01-01
We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as $SU(2) \\simeq S^3$ with $H$-flux. In the full string theory this corresponds to a WZW background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler and L\\"ust. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.
The General Theory : a neglected work?!
Hayes, M G
2012-01-01
The General Theory (Keynes, 1936, hereafter G.T.) a neglected work? Am I joking? Few books have been subject to so much review, criticism and interpretation. Yet I suggest that its impact on modern economic theory, both neoClassical and Post Keynesian, has in fact been minimal. This theoretical neglect has also limited Keynes’s impact on policy, other than as a poster boy for a traditional policy of public works which predated The General Theory. My aim in this lecture is to tr...
A nonlinear theory of generalized functions
1990-01-01
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.;
2013-01-01
molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for......The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in...... molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...
A General Duality Theory for Clones
Kerkhoff, Sebastian
2011-01-01
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
Sturmians and generalized sturmians in quantum theory
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb Stur...
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
International Nuclear Information System (INIS)
Highlights: • The MUSAD code for the sensitivity and uncertainty analysis was developed. • The sensitivity coefficients were derived based on the generalized perturbation theory. • The generalized adjoint flux solver was implemented into DeCART code. • The covariance data were aggregated to the cross section type definition of DeCART. • The uncertainties by MUSAD were investigated on two VHTR problems. - Abstract: A computer code, MUSAD was developed for the uncertainty and sensitivity analysis on the DeCART neutron transport calculations for a high temperature gas-cooled reactor. MUSAD is based on a deterministic method in which the sensitivity coefficients of the multiplication factor and the microscopic cross sections are derived using the generalized perturbation theory. Then, the uncertainties of the reactor physics responses are calculated by the product of the covariance matrix and the sensitivity coefficients. MUSAD has been verified against the uncertainty analyses on several benchmark problems including the GODIVA benchmark problem, the PMR-200 pin-cell, and the MHTGR-350 core benchmark problems. A good agreement in comparison with the reference codes, TSUNAMI and McCARD shows the applicability of MUSAD to the uncertainty and sensitivity analyses on the HTGR neutron transport calculations
Quantum theory from the perspective of general probabilistic theories
Al-Safi, Sabri Walid
2015-01-01
This thesis explores various perspectives on quantum phenomena, and how our understanding of these phenomena is informed by the study of general probabilistic theories. Particular attention is given to quantum nonlocality, and its interaction with areas of physical and mathematical interest such as entropy, reversible dynamics, information-based games and the idea of negative probability. We begin with a review of non-signaling distributions and convex operational theories, including ?black b...
Principle of general covariance and quantum theory
International Nuclear Information System (INIS)
The authors emphasise the distinction between formal and operational notions of general covariance. Classical, formal covariance implies operational covariance. This is not true in quantum theory. Two observers may not agree on the results of measurement of a tensorial object like T/sub ik/ (stress tensor) in quantum theory. In particular, one observer might conclude that the measured value is zero while another might attribute non-zero value to it
Grounded Theory as a General Research Methodology
Directory of Open Access Journals (Sweden)
Judith A. Holton, Ph.D.
2008-06-01
Full Text Available Since its inception over forty years ago, grounded theory has achieved canonical status in the research world (Locke, 2001, p.1. Qualitative researchers, in particular, have embraced grounded theory although often without sufficient scholarship in the methodology (Partington, 2000, p.93; 2002, p.136. The embrace renders many researchers unable to perceive grounded theory as a general methodology and an alternative to the dominant qualitative and quantitative research paradigms. The result is methodological confusion and an often unconscious remodelling of the original methodology (Glaser, 2003. Given the various interpretations and approaches that have been popularised under the rubric of grounded theory, this paper addresses the important distinction between grounded theory as a general methodology and its popularisation as a qualitative research method. The paper begins with a brief overview of grounded theory’s origins and its philosophical foundations then continues by addressing the basic distinction between abstract conceptualisation as employed in classic grounded theory and the conceptual description approach as adopted by many qualitative researchers. The paper continues with a brief overview of the criteria for judging the quality of classic grounded theory and concludes by detailing its methodological principles.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and...... geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN...
The generalized second law of thermodynamics in generalized gravity theories
International Nuclear Information System (INIS)
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds
The general theory of relativity a mathematical exposition
Das, Anadijiban
2012-01-01
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: • tensor analysis • the special theory of relativity • the general theory of relativity and Einstein’s field equations • spherically symmetric solutions and experimental confirmations • static and stationary space-time domains • black holes • cosmological models • algebraic classifications and the Newman-Penrose equations • the coupled Einstein-Maxwell-Klein-Gordon equations • appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Irelan...
On the relation of the theoretical foundations of quantum theory and general relativity theory
International Nuclear Information System (INIS)
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
JIT supply chain; an investigation through general system theory
Directory of Open Access Journals (Sweden)
O P Mishra
2013-03-01
Full Text Available This paper explains theoretical approach of the four theories of General system Theory (GST developed by Yourdon (1989 [Yourdon, E. (1989. Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007 [Caddy I.N., & Helou, M.M. (2007. Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–327.] in field of supply chain and management. JIT philosophy in core activities of supply chain i.e. procurement, production processes, and logistics are discussed through general system theory. The growing structure of the supply chain poses the implication restrictions and requires a heavy support system, many times a compromise is done while implementing JIT. The study would be useful to understand the general trends generated naturally regarding the adoption of the JIT philosophy in the supply chain.
Poisson theory of generalized Bikhoff equations
Institute of Scientific and Technical Information of China (English)
Shang Mei; Mei Feng-Xiang
2009-01-01
This paper presents a Poisson theory of the generalized Birkhoff equations,including the algebraic structure of the equations,the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny;
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...
Nonlinear SUSY General Relativity Theory and Significances
Shima, Kazunari; Tsuda, Motomu
2011-01-01
We show some consequences of the nonlinear supersymmetric general relativity (NLSUSYGR) theory on particle physics, cosmology and their relations. They may give new insights into the SUSY breaking mechanism, dark energy, dark matter and the low enegy superpartner particles which are compatible with the recent LHC data.
Generalized Semilocal Theories and Higher Hopf Maps
Hindmarsh, M; Kephart, T W; Vachaspati, T; Hindmarsh, Mark; Holman, Richard; Kephart, Thomas W.; Vachaspati, Tanmay
1993-01-01
\\def\\mon{S^3\\stackrel{S^1}{\\rightarrow}S^2} \\def\\inst{S^7\\stackrel{S^3}{\\rightarrow}S^4} \\def\\octo{S^{15}\\stackrel{S^7}{\\rightarrow}S^8} In semilocal theories, the vacuum manifold is fibered in a non-trivial way by the action of the gauge group. Here we generalize the original semilocal theory (which was based on the Hopf bundle $\\mon$) to realize the next Hopf bundle $\\inst$, and its extensions $S^{2n+1}\\stackrel{S^3}\\rightarrow \\H P^n$. The semilocal defects in this class of theories are classified by $\\pi_3(S^3)$, and are interpreted as constrained instantons or generalized sphaleron configurations. We fail to find a field theoretic realization of the final Hopf bundle $\\octo$, but are able to construct other semilocal spaces realizing Stiefel bundles over Grassmanian spaces.
Generalized semilocal theories and higher Hopf maps
International Nuclear Information System (INIS)
In semilocal theories, the vacuum manifold is fibered in a non- trivial way by the action of the gauge group. Here we generalize the original semilocal theory (which was based on the Hopf bundle S3 →S1 S2) to realize the next Hopf bundle S7 →S3 S1, and its extensions S2n+1yieldsS3 HPn. The semilocal defects in this class of theories are classified by π3(S 3), and are interpreted as constrained instantons or generalized sphaleron configurations. We fail to find a field theoretic realization of the final Hopf bundle S15 →S7 S8, but are able to construct other semilocal spaces realizing Stiefel bundles over Grassmanian spaces
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
A General Theory of Decision Making
Hansen, Frank
2003-01-01
We formulate a general theory of decision making based on a lattice of observable events, and we exhibit a large class of representations called the general model. Some of the representations are equivalent to the so called standard model in which observable events are modelled by an algebra of measurable subsets of a state space, while others are not compatible with such a description. We show that the general model collapses to the standard model, if and only if an additional axiom is satis...
Bitopological spaces theory, relations with generalized algebraic structures and applications
Dvalishvili, Badri
2005-01-01
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Relativity the special and the general theory
Einstein, Albert
2015-01-01
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...
Generalized density functional theory for effective potentials
International Nuclear Information System (INIS)
We demonstrate the existence of different density functionals that retain selected properties of the many-body ground state in the non-interacting density functional solution. We focus on diffusion Monte Carlo applications that require trial wave functions with Fermion optimal nodes. The theory can be extended and used to understand current practices in several electronic structure methods [GW-BSE,CI,EPM] within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials but also cautions on the limits of their applicability. The theoretical concepts are tested against a near-analytic model that can be solved to numerical precision
General Conceptual View on Resource Advantage Theory
Directory of Open Access Journals (Sweden)
Bilal Yalcin
2010-04-01
Full Text Available In order to continue for an organization to exist it needs to finance itself for its own resource on the other hand service with considering consumers need and expectations by present them lowest price and highest quality also. Under these conditions these kind of organizations need to analyze the behaviour (nature of the rival organizations and position themselves accordingly in order to get advantage on the rival organizations. In this study, a general conceptual view on resource advantage theory is developed. Theory explains having the lowest cost resources than rival organisations geting advantage with organisation resources, market position, financial performance and evironmental factors. Theory is able to achieve efficiency and effectiveness in the organisations and use to have strategic marketing decisions.
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
2006-01-01
the Fermi energy lies in a spectral gap, we rigorously prove theWidom-Streda formula. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in......This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. At zero temperature and zero frequency, if...... field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work....
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse...... conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field B. Then the linear term in B of this expansion is written down in terms of the zero...... magnetic field Green function and the zero field current operator. In the periodic case, the linear term in B of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed...
The Faraday effect revisited General theory
Cornean, H D; Pedersen, T G
2005-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field $B$. Then the linear term in $B$ of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in $B$ of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work.
On the general theory of quantized fields
International Nuclear Information System (INIS)
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Cosmology in general massive gravity theories
International Nuclear Information System (INIS)
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state weff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of weff from -1. Taking into account current limits on weff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of weff form -1 in a weakly coupled massive gravity theory
Effective quantum field theories in general spacetimes
Raab, Andreas
2008-01-01
We introduce regular charts as physical reference frames in spacetime, and we show that general spacetimes can always be fully captured by regular charts. Effective quantum field theories (QFTs) can be conveniently defined in regular reference frames, and the definition is independent of specific background metric and independent of specific regular reference frame. As a consequence, coupling to classical gravity is possible in effective QFTs without getting back-reaction effects. Moreover, w...
Advances in heuristically based generalized perturbation theory
International Nuclear Information System (INIS)
A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs
Module theory, extending modules and generalizations
Tercan, Adnan
2016-01-01
The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...
Generalized conservation laws in non-local field theories
International Nuclear Information System (INIS)
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose–Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity. (paper)
Generalized conservation laws in non-local field theories
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
General Poincar\\'e Gauge Theory Cosmology
Ho, Fei-Hung; Nester, James M; Yo, Hwei-Jang
2015-01-01
For the quadratic Poincar\\'e gauge theory of gravity (PG) we consider the FLRW cosmologies using an isotropic Bianchi representation. Here the considered cosmologies are for the general case: all the even and odd parity terms of the quadratic PG with their respective scalar and pseudoscalar parameters are allowed with no \\emph{a priori} restrictions on their values. With the aid of a manifestly homogeneous and isotropic representation, an effective Lagrangian gives the second order dynamical equations for the gauge potentials. An equivalent set of first order equations for the observables is presented. The generic behavior of physical solutions is discussed and illustrated using numerical simulations.
The general physics theory for 21 century
International Nuclear Information System (INIS)
By solving the coupled system of kinetic equations for interacting system of electrons positrons (holes) and photons (phonons) at high external electric, arbitrary magnetic and at the propagation of strong electromagnetic waves non-equilibrium and non-stationary distribution function of photons (phonons) and charge carriers by taking into account of arbitrary heating and mutual drag of carriers and photons (phonons) was found. Author was sure that received him in 1976 distribution function of photons (phonons) must lay on the basis of Theoretical Physics of 21 Century, as the equilibrium Planck's distribution function of black-body radiation received in 1900 lied on the basis of Quantum Physics of 20 Century. Authors many years mental work (from 1976 till today) confirmed the rightness of searched him way and leads to the conclusion that Kinetic Theory is more general and fundamental theory of nature, which unificated Non-stationary Dynamics (the left-hand side) with Non-stationary Statistical Mechanics (the right-hand side) of Kinetic Equation. It is shown that other sections of Theoretical Physics such as Newtonian, Hamiltonian and Relativistic Classical Mechanics, Quantum Physics, Optics, Statistical Mechanics and Thermodynamics, Particle Physics may be received from Kinetic Theory under the special conditions and are the special parts of this theory. The problems such as the irreversibility and instability, the paradox of time, quantum paradox and others are solved. This new General Theory explains all the problems and troubles contents with the foundations and interpretation of quantum mechanics and relativity. It was found the mechanism of quantization and transition from one energetic level to another,the squeezed effect, the transition of particles wave-packets through the energetic barriers. It is shown the possibility of superluminal motion of light pulses and wave-packets through the medium and photonic barriers. It is well known that the experiments
General Relativity Theory: Tests through Time
Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E.V .; Khmil, S. V.
2006-08-01
Theoretical basis of the General Relativity theory (GR), its experimental tests as well as GR applications were briefly summarized in the new textbook devoted to the World Year of Physics-2005 (authors - Yatskiv Ya.S., Alexandrov A.N., Vavilova I.B., Zhdanov V.I., Kudrya Yu.N., Parnovsky S.L., Fedorova E.V., Khmil S.V., Kyiv:Akademperiodika, 2005, 288 p.). The monograph addresses scientists, post-graduate students, and students specialized in the natural sciences as well as everyone who takes a great interest in GR. Special attention is paid on Relativistic Reference Systems, as an attachment to this book, including attachment to this book where the Resolution of the XXIV IAU General Assembly is given (in Ukrainian).
On the Theory of Generalized Algebraic Transformations
Strecka, Jozef
2010-01-01
This book deals with the theory of generalized algebraic transformations, which is elaborated with the aim to provide a relatively simple theoretical tool that enables an exact treatment of diverse more complex lattice-statistical models. In addition to a brief historical account on the developments of this exact mapping method, the versatility of generalized algebraic transformations will be convincingly evidenced when providing exact results for two different families of exactly solvable models. The family of exactly solved Ising models brings a deeper insight into various aspects closely associated especially with phase transitions and critical phenomena. The second class of exactly solved Ising-Heisenberg models sheds light on striking quantum manifestations of spontaneously long-range ordered systems, which are closely connected with a mutual interplay between quantum and cooperative phenomena.
A general theory of quantum relativity
Minic, Djordje; Tze, Chia-Hsiung
2004-02-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Inflation in general covariant theory of gravity
Huang, Yongqing; Wu, Qiang
2012-01-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Ho\\v{r}ava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant $\\lambda$. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applied the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the...
Regularized Generalized Canonical Correlation Analysis
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
A generalized Theory of Diffusion based on Kinetic Theory
Schaefer, Thomas
2016-01-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high temperature limit [Sommer et al., Nature 472, 201 (2011)] is consistent with the diffusion constant predicted by kinetic theory.
General Theory of the Plasmoid Instability
Comisso, L; Huang, Y -M; Bhattacharjee, A
2016-01-01
A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $\\left({\\hat w}_0\\right)$, the characteristic rate of current sheet evolution $\\left(1/\\tau\\right)$, and the Lundquist number $\\left(S\\right)$. They are not simple power laws, and are proportional to $S^{\\alpha} \\tau^{\\beta} \\left[\\ln f(S,\\tau,{\\hat w}_0)\\right]^\\sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
A Generalized Theory of Varying Alpha
Barrow, John D
2011-01-01
In this paper, we formulate a generalization of the simple Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory of varying alpha by allowing the coupling constant, \\omega, for the corresponding scalar field \\psi\\ to depend on \\psi. We focus on the situation where \\omega\\ is exponential in \\psi\\ and find the late-time behaviours that occur in matter-dominated and dark-energy dominated cosmologies. We also consider the situation when the background expansion scale factor of the universe evolves in proportion to an arbitrary power of the cosmic time. We find the conditions under which the fine structure `constant' increases with time, as in the BSBM theory, and establish a cosmic no-hair behaviour for accelerating universes. We also find the conditions under which the fine structure `constant' can decrease with time and compare the whole family of models with astronomical data from quasar absorption spectra. Finally, we show that spatial variations on sub-horizon scales can dominate over the cosmological time evolut...
Integrable theories and generalized graded Maillet algebras
International Nuclear Information System (INIS)
We present a general formalism to investigate the integrable properties of a large class of non-ultralocal models which in principle allows the construction of the corresponding lattice versions. Our main motivation comes from the su(1|1) subsector of the string theory on AdS5 × S5 in the uniform gauge, where such type of non-ultralocality appears in the resulting Alday–Arutyunov–Frolov (AAF) model. We first show how to account for the second derivative of the delta function in the Lax algebra of the AAF model by modifying Maillet’s r- and s-matrices formalism, and derive a well-defined algebra of transition matrices, which allows for the lattice formulation of the theory. We illustrate our formalism on the examples of the bosonic Wadati–Konno–Ichikawa–Shimizu (WKIS) model and the two-dimensional free massive Dirac fermion model, which can be obtained by a consistent reduction of the full AAF model, and give the explicit forms of their corresponding r-matrices. (paper)
Quantization of higher abelian gauge theory in generalized differential cohomology
Szabo, R.
We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.
Theory and interpretation in qualitative studies from general practice
DEFF Research Database (Denmark)
Malterud, Kirsti
2016-01-01
of the interpretative paradigm. Associations between paradigms, philosophies, methodologies and methods are examined and different strategies for theoretical commitment presented. Finally, I discuss the impact of theory for interpretation and the development of general practice knowledge. Main...... theoretical commitment in qualitative analysis are presented, emphasizing substantive theories to sharpen the interpretative focus. Such approaches are clearly within reach for a general practice researcher contributing to clinical practice by doing more than summarizing what the participants talked about......Objective: In this article, I want to promote theoretical awareness and commitment among qualitative researchers in general practice and suggest adequate and feasible theoretical approaches. Approach: I discuss different theoretical aspects of qualitative research and present the basic foundations...
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
D numbers theory: a generalization of Dempster-Shafer theory
Deng, Xinyang; Deng, Yong
2014-01-01
Dempster-Shafer theory is widely applied to uncertainty modelling and knowledge reasoning due to its ability of expressing uncertain information. However, some conditions, such as exclusiveness hypothesis and completeness constraint, limit its development and application to a large extend. To overcome these shortcomings in Dempster-Shafer theory and enhance its capability of representing uncertain information, a novel theory called D numbers theory is systematically proposed in this paper. Wi...
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANGDian-Fu; SONGHe-Shan
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Dynamical Breaking of Generalized Yang-Mills Theory
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SONG He-Shah
2004-01-01
The dynamical breaking of a generalized Yang-Mills theory is discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills theory. The combination of the generalized Yang-Mills theory and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.
Generalized principal component analysis
Vidal, René; Sastry, S S
2016-01-01
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts ...
Generalized gauge field theories with non-topological soliton solutions
International Nuclear Information System (INIS)
We perform a systematic analysis of the conditions under which generalized gauge field theories of compact semisimple Lie groups exhibit electrostatic spherically symmetric non-topological soliton solutions in three space dimensions. By the term generalized, we mean that the dynamics of the concerned fields is governed by Lagrangian densities which are general functions of the quadratic field invariants, leading to physically consistent models. The analysis defines exhaustively the class of this kind of Lagrangian models supporting those soliton solutions and leads to methods for their explicit determination. The necessary and sufficient conditions for the linear stability of the finite-energy solutions against charge-preserving perturbations are established, going beyond the usual Derrick-like criteria, which only provides necessary conditions
General theory for the mechanics of confined microtubule asters
International Nuclear Information System (INIS)
In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos. (paper)
Sound damping constant for generalized theories of gravity
International Nuclear Information System (INIS)
The near-horizon metric for a black brane in anti-de Sitter space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified from its Einstein form for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories, but suggestions are made as to how this restriction might eventually be lifted.
Incorporation of generalized uncertainty principle into Lifshitz field theories
International Nuclear Information System (INIS)
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle
Theory Sessions Documents - 31710 General Linguistics I
Muñoz Baell, Irma María
2012-01-01
Please follow the link below to download all the course materials required for the theory sessions. You will find 1 Student Introductory Assignment, 1 Introductory Activity, 9 Reading Assignments, 11 Team Based Learning Activities, 1Student Peer Review Activity, and 1 Final Week Activity - Academic year 2011-2012 (ECTS credits: 6 (150 hours)). See the Planned Weekly Schedule (Theory sessions).
Optimality theory as a general cognitive architecture
Biró, T.; Gervain, J.
2011-01-01
It was exactly 25 years ago that Paul Smolensky introduced Harmony Theory (Smolensky, 1986), a framework that would pursue an exciting, but certainly not straight path through linguistics (namely, Optimality Theory) and other cognitive domains. The goal of this workshop is not so much to look back to this path, but rather to discuss its potential continuation(s).
The role of Einstein's general relativity theory in today's physics
International Nuclear Information System (INIS)
The relationships are discussed of the general relativity theory to other fields of today's physics. Recent results are reported of studies into gravitational radiation, relativistic astrophysics, cosmology and the quantum theory. (Z.M.)
Fiber Bundles, Yang-Mills Theory, and General Relativity
Weatherall, JO
2014-01-01
© 2015 Springer Science+Business Media Dordrecht I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.
Can one tell Einstein's unimodular theory from Einstein's general relativity?
Alvarez, Enrique
2005-01-01
The so called unimodular theory of gravitation is compared with general relativity in the quadratic (Fierz-Pauli) regime, using a quite broad framework, and it is argued that quantum effects allow in principle to discriminate between both theories.
Generalizing Prototype Theory: A Formal Quantum Framework
Directory of Open Access Journals (Sweden)
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Are there metric theories of gravity other than General Relativity?
Magnano, Guido
1995-01-01
Current generalizations of the classical Einstein-Hilbert Lagrangian formulation of General Relativity are reviewed. Some alternative variational principles are known to reproduce Einstein's gravitational equations, and should therefore be regarded as equivalent descriptions of the same physical model, while other variational principles ("Scalar-tensor theories" and "Higher-derivative theories") are commonly presented as truly alternative physical theories. Such theories, however, are also kn...
Program Theory Evaluation: Logic Analysis
Brousselle, Astrid; Champagne, Francois
2011-01-01
Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…
Absence of conical singularities in beyond-generalized Proca theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a conical singularity in the case where the parameter $\\alpha_{\\rm H}$ characterizing the deviation from Horndeski theories approaches a non-vanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field $A^{\\mu}$ can be consistently extended to beyond-generalized Proca theories, which recover the shift-symmetric GLPV theories in the scalar limit $A^{\\mu} \\to \
Generalized Elliptical Distributions: Theory and Applications
Frahm, Gabriel
2004-01-01
The thesis recalls the traditional theory of elliptically symmetric distributions. Their basic properties are derived in detail and some important additional properties are mentioned. Further, the thesis concentrates on the dependence structures of elliptical or even meta-elliptical distributions using extreme value theory and copulas. Some recent results concerning regular variation and bivariate asymptotic dependence of elliptical distributions are presented. Further, the traditional class ...
Molder, te H.F.M.
2009-01-01
Available in both print and electronic formats, the Encyclopedia of Communication Theory provides students and researchers with a comprehensive two-volume overview of contemporary communication theory. Reference librarians report that students frequently approach them seeking a source that will prov
The Fixed Point Theory for Some Generalized Nonexpansive Mappings
Enrique Llorens Fuster; Elena Moreno Gálvez
2011-01-01
We study some aspects of the fixed point theory for a class of generalized nonexpansive mappings, which among others contain the class of generalized nonexpansive mappings recently defined by Suzuki in 2008.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
Geometric theory of fundamental interactions. Generalized electromagnetic field
International Nuclear Information System (INIS)
In this report a theory of a generalized electromagnetic field is formulated, which is titled so because the singlet state of this field corresponds to the electromagnetic field. A concept of a ground state of the generalized electromagnetic field is introduced and deductive derivation of equations of this field in both geometrical and dynamical form is given. The general covariant Maxwell equations for the electric and magnetic fields are derived. A physical interpretation of the theory of the generalized electromagnetic field is given
GENERAL RELATIVITY AND THEORY OF ELECTROMAGNETIC DRIVE
Directory of Open Access Journals (Sweden)
Trunev A. P.
2015-12-01
Full Text Available The article presents the theory of the electromagnetic type of rocket motor. The apparatus consists of a magnetron and a conical cavity in which electromagnetic oscillations are excited. We explain the mechanism of trust in such a device based on Maxwell's theory and the Abraham force. We built a dynamic model of the motor and calculated the optimal parameters. It is shown, that the laws of conservation of momentum and energy for the rocket motor of electromagnetic type are true, taking into account the gravitational field. In simulation, the movement used the theory of relativity. The source of the motion in an electromagnetic drive is the mass conversion in various kinds of radiation. The optimization of the operating parameters of the device is done, namely by the excitation frequency, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of heat transfer and forced from the temperature dependence of the resistance of the material of the cavity walls. It was found that the effective conversion of electromagnetic energy in the trust force necessary to minimize the deviation of the excitation frequency of the primary resonance frequency of the cavity. The mechanism of formation of trust under change the metrics of space-time, taking into account the contribution of the Yang-Mills theory and electromagnetic field tensor of energymomentum has been proposed
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Generalized Bernoulli numbers on the KO-theory
IMAOKA, MITSUNORI
1996-01-01
The Bernoulli number defined on the generalized cohomology theory is studied, mainly focusing it on complex unoriented theories. We give a concrete formula about it on the KO-theory for the stunted quaternionic quasi-projective space, and apply the formula to represent a factorization of the double transfer map concerning such projective spaces.
Hypermass generalization of Einstein's gravitation theory
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
Generalizing the Dempster-Shafer Theory to Fuzzy Sets
Yen, John
2013-01-01
With the desire to apply the Dempster-Shafer theory to complex real world problems where the evidential strength is often imprecise and vague, several attempts have been made to generalize the theory. However, the important concept in the D-S theory that the belief and plausibility functions are lower and upper probabilities is no longer preserved in these generalizations. In this paper, we describe a generalized theory of evidence where the degree of belief in a fuzzy set is obtained by mini...
General autocatalytic theory and simple model of financial markets
Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.
Client-Controlled Case Information: A General System Theory Perspective
Fitch, Dale
2004-01-01
The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…
The multichannel generalization of multiple scattering theory
International Nuclear Information System (INIS)
We outline a many-body description of the photoemission and photoabsorption processes that incorporates the multichannel treatment of the atomic dynamical excitations into the framework of the multiple scattering theory. In this way the interplay between excitation dynamics and electronic and geometrical structure of the ground state is elucidated. At the same time this approach provides a theoretical model for the study of the evolution from the adiabetic to the sudden regime. We derive a new multiple scattering expansion that takes into account interchannel transitions as well. As an application we discuss the homogeneous and inhomogeneous mixed-valent compounds, where the theory provides a clue at resolution of the ''threshold puzzle'' and sheds light onto the relation between photoemission and photoabsorption spectroscopy
A general theory of comic entertainment
DEFF Research Database (Denmark)
Grodal, Torben Kragh
2014-01-01
The article claims that comic entertainment consists of five elements 1. priming of the comic events to come 2. some comic entertainment inputs that creates arousal 3. Entertainment-internal signals of the playful nature of the comic input 4. Appraisal processes in audience members that evaluate...... the input as 'not real but playful', 5. this leads to a change in hedonic tone, and arousal is combined with the release of endorphins (a morphine-based neurotransmitter) that makes the arousal pleasant. The theory of comic entertainment accords with the PECMA flow theory proposed in Grodal: Embodied...... Visions, because the evaluation: playful, not real, influences the muscular directness towards the world that drops. Comic entertainment is further linked to human bonding....
Interval Analysis done in Fuzzy Class Theory
Czech Academy of Sciences Publication Activity Database
Horčík, Rostislav
Linz : Johannes Kepler Universität, 2008 - (Klement, E.; Rodabaugh, S.; Stout, L.). s. 59-62 [Linz Seminar on Fuzzy Set Theory /29./. 12.02.2008-16.02.2008, Linz] R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : fuzzy interval analysis * fuzzy number * fuzzy class theory Subject RIV: BA - General Mathematics
Testing General Free Functions in Preferred Scale Theories
Mozaffari, Ali
2016-01-01
Building on previous work, we explore the parameter space of general free functions in non-relativistic modified gravity theories motivated by k-essence and other scalar-tensor theories. Using a few proposed tests, we aim to update Solar System based constraints on these ideas in line with previous theories and suggest their utility in constraining modification to GR, potentially even being able to test k-essence type theories.
Geometric Analysis and General Relativity
Andersson, L.
2005-01-01
This article discusses methods of geometric analysis in general relativity, with special focus on the role of "critical surfaces" such as minimal surfaces, marginal surface, maximal surfaces and null surfaces.
General Open Systems Theory and the Substrata-Factor Theory of Reading.
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a series of…
Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G
2016-01-01
This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.
Dynamics of generalized Palatini theories of gravity
International Nuclear Information System (INIS)
It is known that in f(R) theories of gravity with an independent connection which can be both nonmetric and nonsymmetric, this connection can always be algebraically eliminated in favor of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons for this contradiction.
Conserved Quasilocal Quantities and General Covariant Theories in Two Dimensions
Kummer, W; Widerin, P.
1995-01-01
General matterless--theories in 1+1 dimensions include dilaton gravity, Yang--Mills theory as well as non--Einsteinian gravity with dynamical torsion and higher power gravity, and even models of spherically symmetric d = 4 General Relativity. Their recent identification as special cases of 'Poisson--sigma--models' with simple general solution in an arbitrary gauge, allows a comprehensive discussion of the relation between the known absolutely conserved quantities in all those cases and Noethe...
Quantum Networks: General theory and applications
International Nuclear Information System (INIS)
In this work we present a general mathematical framework to deal with Quantum Networks, i.e. networks resulting from the interconnection of elementary quantum circuits. The cornerstone of our approach is a generalization of the Choi isomorphism that allows one to efficiently represent any given Quantum Network in terms of a single positive operator. Our formalism allows one to face and solve many quantum information processing problems that would be hardly manageable otherwise, the most relevant of which are reviewed in this work: quantum process tomography, quantum cloning and learning of transformations, inversion of a unitary gate, information-disturbance tradeoff in estimating a unitary transformation, cloning and learning of a measurement device (Authors)
The general equilibrium theory as economic metatheory
MAURICIO MARTINELLI LUPERI
2015-01-01
Many economists show certain nonconformity relative to the excessive mathematical formalization of economics. This stems from dissatisfaction with the old debate about the lack of correspondence between mainstream theoretical models and reality. Although we do not propose to settle this debate here, this article seeks to associate the mismatch of mathematized models with the reality of the adoption of the hypothetical-deductive method as reproduced by general equilibrium. We begin by defining...
The linear model and hypothesis a general unifying theory
Seber, George
2015-01-01
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
International Nuclear Information System (INIS)
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (gμν, Γμνα) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
General theory of kinetic ballooning modes
International Nuclear Information System (INIS)
The ballooning mode formalism, previously developed for the ideal MHD problem, is applied here to the kinetic problem in tokamaks. The general two-dimensional equation governing drift and trapped-electron eigenmodes reduces to a one-dimensional integral equation along the lines of force with the radial structure determined by a WKB procedure. Comparisons made between the present one-dimensional code and a previous two-dimensional code embodying identical physical assumptions indicate reasonable agreement. This correspondence holds both for the structure along the field line and for the radial structure in the special case of closely spaced turning points
Proper time dynamics in general relativity and conformal unified theory
International Nuclear Information System (INIS)
The paper is devoted to the analysis of the notion 'proper time' in general relativity. Using as examples the models of the Hamiltonian mechanics, special relativity, and cosmology which are invariant under the reparametrization of time, we discuss the method of Hamiltonian reduction in which one of the initial extended system becomes a parameter of evolution of the reduced system. We derive the equation of dynamics of the 'proper time' of an observer with respect to an evolution parameter of the reduced system. In cosmological models, this equation describes the Friedmann observables (the Hubble law, the red shift). In GR, the ADM-metric and the Lichnerowicz conformal invariant variables allow us to extract the evolution parameter of the reduced system as the global component of the space metric and to derive the Friedmann like equation for the 'proper time' of an observer in the Einstein theory. The principles of correspondence and causality distinguish the conformal time of an observed as more preferable than the proper one. We consider a conformal-invariant theory where the conformal time becomes measurable for an observer. This conformal unified theory (CUT) is based on the standard model of fundamental interactions in which dynamics of the scalar field is described by the Penrose-Chernicov-Tagirov Lagrangian and the elementary particle mass plays part of the evolution parameter. The cosmological evolution of the Universe in CUT is discussed
A generalized theory of preferential linking
Hu, Haibo; Liu, Xuan
2013-01-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, present unified analytical results describing network characteristics for 27 preference scenarios, and explore the relation between preferential linking mechanism and network features. We find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic...
Institute of Scientific and Technical Information of China (English)
LI; Yong(李永); SONG; Jian(宋健); ZHANG; Zhimin(张志民)
2002-01-01
FGM structure is defined as a kind of generalized equivalent structure according to the structure and properties of materials. This paper uses the mature plate theory and the composite material laminate theory in the analysis of FGM structure and thus puts forward a kind of new concept and a new idea. A brand-new theory, the generalized equivalent antisymmetry bending theory, which can be used to analyze the structure and properties of FGM, is formed. In addition, the correctness, reliability and foresightedness of the theory are testified through concrete analysis and calculation of the applicable FGM structure by utilizing the generalized double Fourier series solution on one hand; on the other hand, it is compared with the existing theories and experiments.
A generalized theory of preferential linking
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
A multistep general theory of transition to addiction
Piazza, Pier Vincenzo; Deroche-Gamonet, Véronique
2013-01-01
Background Several theories propose alternative explanations for drug addiction. Objectives We propose a general theory of transition to addiction that synthesizes knowledge generated in the field of addiction into a unitary explanatory frame. Major principles of the theory Transition to addiction results from a sequential three-step interaction between: (1) individual vulnerability; (2) degree/amount of drug exposure. The first step, sporadic recreational drug use is a learning process media...
Generalized pseudopotential theory of d-band metals
International Nuclear Information System (INIS)
The generalized pseudopotential theory (GPT) of metals is reviewed with emphasis on recent developments. This theory, which attempts to rigorously extend to d-band metals the spirit of conventional simple-metal pseudopotential perturbation theory, has now been optimized and fully integrated with the Kohn-Sham local-density-functional formalism, allowing for systematic first-principles calculations. Recent work on the problems of cohesion, lattice dynamics, structural phase stability, pressure- and temperature-induced phase transitions, and melting is discussed
Generalized Schrodinger Equation and Constructions of Quantum Field Theory
Stoyanovsky, A. V.
2003-01-01
The generalized Schrodinger equation deduced in the earlier papers is compared with conventional constructions of quantum field theory. In particular, it yields the usual Schrodinger equation of quantum field theory written without normal ordering. This leads to a definition of certain mathematical version of Feynman integral.
General Applied Theory of Micropolar thin Elastic Shells
Sargsyan S.H.
2011-01-01
In the present paper on the basis of asymptotically confirmed hypotheses method, depending on the values of physical size-less parameters, there are constructed general applied two-dimensional theories of micropolar shells with independent rotation, constraint rotation, and with “small shift rigidity”. Transverse shift and related deformation are completely taken into account in constructing the mentioned theories.
The General Theory of Magnetothermoelasticity of Thin Shells
Directory of Open Access Journals (Sweden)
Sargsyan S. H.
2010-06-01
Full Text Available The present paper provides asymptotically grounded hypotheses, on the basis of which the general specified applied-two-dimensional theory of magneto-thermoelasticity of electro- and thermoconducting non-ferromagnetic thin shells is constructed. In case of this theory the shift deformations in the shell are completely taken into account.
General Strain Theory, Peer Rejection, and Delinquency/Crime
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
Fibre bundles, connections, general relativity, and Einstein-Cartan theory
Socolovsky, Miguel
2011-01-01
We present in the most natural way, that is, in the context of the theory of vector and principal bundles and connections in them, fundamental geometrical concepts related to General Relativity and one of its extensions, the Einstein-Cartan theory.
General Form of Dilaton Gravity and Nonlinear Gauge Theory
Ikeda, Noriaki; -I, Izawa K.
1993-01-01
We construct a gauge theory based on general nonlinear Lie algebras. The generic form of `dilaton' gravity is derived from nonlinear Poincar{\\' e} algebra, which exhibits a gauge-theoretical origin of the non-geometric scalar field in two-dimensional gravitation theory.
Why and How to overcome General Equilibrium Theory
Glötzl, Erhard
2015-01-01
For more than 100 years economists have tried to describe economics in analogy to physics, more precisely to classical Newtonian mechanics. The development of the Neoclassical General Equilibrium Theory has to be understood as the result of these efforts. But there are many reasons why General Equilibrium Theory is inadequate: 1. No true dynamics. 2. The assumption of the existence of utility functions and the possibility to aggregate them to one “Master” utility function. 3. The impossibilit...
Behavior, Organization, Substance: Three Gestalts of General Systems Theory
De Florio, Vincenzo
2014-01-01
The term gestalt, when used in the context of general systems theory, assumes the value of "systemic touchstone", namely a figure of reference used to categorize the properties or qualities of a set of systems. Typical gestalts used in biology are those based on anatomical or physiological characteristics, which correspond respectively to architectural and organizational design choices in natural and artificial systems. In this paper we discuss three gestalts of general systems theory: behavi...
Black holes from generalized gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, E-33007 Oviedo, Asturias (Spain)
2011-02-01
We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r {yields} {infinity} (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.
A general theory for gauge-free lifting
International Nuclear Information System (INIS)
A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physics, the particle dynamics replaces conventional constitutive relations for matter. Several examples are considered including the usual Vlasov-Maxwell theory, a guiding center kinetic theory, Vlasov-Maxwell theory with the inclusion of spin, and a Vlasov-Maxwell theory with the inclusion of Dirac's magnetic monopoles. All are shown to be Hamiltonian field theories and the Jacobi identity is proven directly.
Analytical solution for multilayer plates using general layerwise plate theory
Directory of Open Access Journals (Sweden)
Vuksanović Đorđe M.
2005-01-01
Full Text Available This paper deals with closed-form solution for static analysis of simply supported composite plate, based on generalized laminate plate theory (GLPT. The mathematical model assumes piece-wise linear variation of in-plane displacement components and a constant transverse displacement through the thickness. It also include discrete transverse shear effect into the assumed displacement field, thus providing accurate prediction of transverse shear stresses. Namely, transverse stresses satisfy Hook's law, 3D equilibrium equations and traction free boundary conditions. With assumed displacement field, linear strain-displacement relation, and constitutive equations of the lamina, equilibrium equations are derived using principle of virtual displacements. Navier-type closed form solution of GLPT, is derived for simply supported plate, made of orthotropic laminae, loaded by harmonic and uniform distribution of transverse pressure. Results are compared with 3D elasticity solutions and excellent agreement is found.
On the relativistic generalization of Newton's gravitation theory. Part 1
International Nuclear Information System (INIS)
The present paper is the first of a series of three papers intended to present a new relativistic gravitational theory. After an analysis of Newton's force law and the concept of distance, Newton's theory is presented in an approariate (coordinate-free) form and interpreted as a field theory on R3, where the field is described by a particular differential 2-form PSI. It is pointed out how this theory may be considered as a static field theory on the Minkovski space-time M4
Theory of generalized tautology in revised Kleene system
Institute of Scientific and Technical Information of China (English)
WU; Hongbo
2001-01-01
Karman, Th., Zur theorie der spanungszustnde in plastischen und sandartigen medion, Nachr. Gesellsch. Wissensch., Gttingen, 1909.［17］Szczepinski, W., Introduction to the Mechanics of Plastic Forming of Metals, Netherlands: Sijthoff and Noordhoff, 1979.［18］Chen, W. F., Limit Analysis and Soil Plasticity, New York: Elsevier, 1975.［19］Yu, M. H., He, L. N., A new model and theory on yield and failure of materials under complex stress state, Mechanical Behaviors of Materials～6, Oxford: Pergamon Press, 1991, 3: 841—846.［20］Yu, M. H., New System of Strength Theory (in Chinese), Xi'an: Xi'an Jiaotong Universitry Press, 1992.［21］Yu, M. H., He, L. N., Song, L. Y., Twin shear stress theory and its generalization, Scientia Sinica (Science in China), Series A, 1985, 28(11): 1174—1183.［22］Yu, M. H., Yang, S. Y. et al., Unified elasto-plastic associated and non-associated constitutive model and its engineering applications, Computers and Structures, 1999, 71: 627—636.［23］Ma, G. W., Shoji, I., Plastic limit analysis of circular plates with respect to unified yield criterion, Int. J. Mech. Sci., 1998, 40(10): 963.［24］Ma, G. W., Hao, H., Unified plastic limit analyses of circular plates under arbitrary load, Journal of Applied Mechanics, ASME, 1999, 66(2): 568.［25］Qiang, H. F., Lu, N., Liu, B. J., Unified solutions of crack tip plastic zone under small scale yielding, Chinese Journal of Mechanical Engineering, (in Chinese with English abstract), 1999, 35(1): 34—38.［26］Yang, S. Y., Yu, M. H., Constitutive descriptions of multiphase poropus media, Acta Mechanica Sinica (in Chinese with English abstract), 2000, 32(1):11—24.［27］Yang, S. Y., Yu, M. H., An elasto-plastic damage model for saturated and unsaturated geomaterials, Acta Mechanica Sinica (in Chinese with English abstract), 2000, 32(2): 198—206.［28］Cheng, H. X., Li, J. J., Zhang, G. S. et al., Finite element analysis program system HAJIF(X), Chinese Journal of
Sequential approach to Colombeau's theory of generalized functions
International Nuclear Information System (INIS)
J.F. Colombeau's generalized functions are constructed as equivalence classes of the elements of a specially chosen ultrapower of the class of the C∞-functions. The elements of this ultrapower are considered as sequences of C∞-functions, so in a sense, the sequential construction presented here refers to the original Colombeau theory just as, for example, the Mikusinski sequential approach to the distribution theory refers to the original Schwartz theory of distributions. The paper could be used as an elementary introduction to the Colombeau theory in which recently a solution was found to the problem of multiplication of Schwartz distributions. (author). Refs
Quantising general relativity using QED theory, an overview and extension
Bell, Sarah B. M.
2004-01-01
We summarise and discuss some of our previous results, which show that Bohr's theory of the one-electron atom may be derived from the theory underpinning Quantum ElectroDynamics (QED) or vice versa, and that General Relativity may also be derived from QED theory in the classical limit, if we use Newtonian mechanics in the right frame and self-similar tesseral hierarchies. We circumvent Newton's arguments against Descartes' vortex theory to show that the inverse square law for a force combined...
Generalization of the test theory of relativity to noninertial frames
International Nuclear Information System (INIS)
We present a generalized test theory of special relativity, using a noninertial frame. Within the framework of the special theory of relativity the transport- and Einstein-synchronizations are equivalent on a rigidly rotating disk. But in any theory with a preferred frame such an equivalence does not hold. The time difference resulting from the two synchronization procedures is a measurable quantity within the reach of existing clock systems on the earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of the special relativity. (author). 13 refs
Whiteheadian approach to quantum theory and the generalized bell's theorem
International Nuclear Information System (INIS)
The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory
Quantum mechanical generalization of the balistic electron wind theory
Lacina, A.
1980-06-01
The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.
Generalized Ablowitz–Ladik hierarchy in topological string theory
International Nuclear Information System (INIS)
This paper addresses the issue of integrable structures in topological string theory on generalized conifolds. Open string amplitudes of this theory can be expressed as the matrix elements of an operator on the Fock space of 2D charged free fermion fields. The generating function of these amplitudes with respect to the product of two independent Schur functions becomes a tau function of the 2D Toda hierarchy. The associated Lax operators turn out to have a particular factorized form. This factorized form of the Lax operators characterizes a generalization of the Ablowitz–Ladik hierarchy embedded in the 2D Toda hierarchy. The generalized Ablowitz–Ladik hierarchy is thus identified as a fundamental integrable structure of topological string theory on the generalized conifolds. (paper)
Theory-independent limits on correlations from generalized Bayesian networks
International Nuclear Information System (INIS)
Bayesian networks provide a powerful tool for reasoning about probabilistic causation, used in many areas of science. They are, however, intrinsically classical. In particular, Bayesian networks naturally yield the Bell inequalities. Inspired by this connection, we generalize the formalism of classical Bayesian networks in order to investigate non-classical correlations in arbitrary causal structures. Our framework of ‘generalized Bayesian networks’ replaces latent variables with the resources of any generalized probabilistic theory, most importantly quantum theory, but also, for example, Popescu–Rohrlich boxes. We obtain three main sets of results. Firstly, we prove that all of the observable conditional independences required by the classical theory also hold in our generalization; to obtain this, we extend the classical d-separation theorem to our setting. Secondly, we find that the theory-independent constraints on probabilities can go beyond these conditional independences. For example we find that no probabilistic theory predicts perfect correlation between three parties using only bipartite common causes. Finally, we begin a classification of those causal structures, such as the Bell scenario, that may yield a separation between classical, quantum and general-probabilistic correlations. (paper)
Mathematical theory of sedimentation analysis
Fujita, Hiroshi; Van Rysselberghe, P
1962-01-01
Mathematical Theory of Sedimentation Analysis presents the flow equations for the ultracentrifuge. This book is organized into two parts encompassing six chapters that evaluate the systems of reacting components, the differential equations for the ultracentrifuge, and the case of negligible diffusion. The first chapters consider the Archibald method for molecular weight determination; pressure-dependent sedimentation; expressions for the refractive index and its gradient; relation between refractive index and concentration; and the analysis of Gaussian distribution. Other chapters deal with th
No-Go Theorems for Generalized Chameleon Field Theories
Wang, Junpu; Khoury, Justin
2012-01-01
The chameleon, or generalizations thereof, is a light scalar that couple to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: i) the Compton wavelength of such a scalar can be at most Mpc at present cosmic density, which restricts its impact to non-linear scales; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleon-like scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleon-like scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broa...
Hyperbolicity of physical theories with application to general relativity
Hilditch, David; Richter, Ronny
2016-08-01
We consider gauge theories from the free evolution point of view, in which initial data satisfying constraints of a theory are given, and because the constraints satisfy a closed evolution system, they remain so. We study a model constrained Hamiltonian theory and identify a particular structure in the equations of motion which we call the standard gauge freedom. The pure gauge subsystem of this model theory is identified, and the manner in which the gauge variables couple to the field equations is presented. We demonstrate that the set of gauge choices that can be coupled to the field equations to obtain a strongly hyperbolic formulation is exactly the set of strongly hyperbolic pure gauges. Consequently we analyze a parametrized family of formulations of general relativity. The generalization of the harmonic gauge formulation to a five parameter family of gauge conditions is obtained.
General theory of light propagation and imaging through the atmosphere
McKechnie, T Stewart
2016-01-01
This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...
A general theory for gauge-free lifting
Morrison, P. J.
2012-01-01
A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physics, the particle dynamics replaces conventional constitutive relations for matter. Several examples a...
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
General System theory, Like-Quantum Semantics and Fuzzy Sets
Licata, Ignazio
2007-01-01
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we...
Classical Belief Conditioning and its Generalization to DSm Theory
Czech Academy of Sciences Publication Activity Database
Daniel, Milan
2008-01-01
Roč. 2, č. 4 (2008), s. 267-279. ISSN 1752-8917 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics http://www.worldacademicunion.com/journal/jus/jusVol02No4paper04.pdf
An extended Coleman-Noll procedure for generalized continuum theories
Hütter, Geralf
2016-05-01
Within rational continuum mechanics, the Coleman-Noll procedure is established to derive requirements to constitutive equations. Aiming in particular at generalized continuum theories, the present contribution demonstrates how this procedure can be extended to yield additionally the underlying balance equations of stress-type quantities. This is demonstrated for micromorphic and strain gradient media as well as for the microforce theory. The relation between the extended Coleman-Noll procedure and the method of virtual powers is pointed out.
Shape analysis and classification theory and practice
da Fontoura Costa, Luciano
2010-01-01
Advances in shape analysis impact a wide range of disciplines, from mathematics and engineering to medicine, archeology, and art. Anyone just entering the field, however, may find the few existing books on shape analysis too specific or advanced, and for students interested in the specific problem of shape recognition and characterization, traditional books on computer vision are too general.Shape Analysis and Classification: Theory and Practice offers an integrated and conceptual introduction to this dynamic field and its myriad applications. Beginning with the basic mathematical concepts, it
Ward identities and gauge independence in general chiral gauge theories
Anselmi, Damiano
2015-01-01
Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on...
Generalized Second Law of Thermodynamic in Modified Teleparallel Theory
Zubair, M
2016-01-01
This study is conducted to examine the validity of generalized second law of thermodynamics (GSLT) in modified teleparallel gravity involving coupling between a scalar field with the torsion scalar and a boundary term. This theory is very useful since it can reproduce other well-known theories in suitable limits. The power law solution is employed to develop the constraints on coupling parameters for different theories of gravity in the background of thermodynamics properties for all potentials. We have also considered the logarithmic entropy corrected relation and discuss the GSLT both on apparent and event horizons. In case of entropy correction, we have constrained the coupling parameters for quartic and inverse potentials.
Structure of Optimal State Discrimination in Generalized Probabilistic Theories
Directory of Open Access Journals (Sweden)
Joonwoo Bae
2016-01-01
Full Text Available We consider optimal state discrimination in a general convex operational framework, so-called generalized probabilistic theories (GPTs, and present a general method of optimal discrimination by applying the complementarity problem from convex optimization. The method exploits the convex geometry of states but not other detailed conditions or relations of states and effects. We also show that properties in optimal quantum state discrimination are shared in GPTs in general: (i no measurement sometimes gives optimal discrimination, and (ii optimal measurement is not unique.
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
Generally covariant quantum field theory and scaling limits
International Nuclear Information System (INIS)
The formulation of a generally covariant quantum field theory is described. It demands the elimination of global features and a characterization of the theory in terms of the allowed germs of families of states. A simple application is the computation of counting rates of accelerated idealized detectors. As a first orientation we discuss here the consequences of the assumption that the states have a short distance scaling limit. The scaling limit at a point gives a reduction of the theory to tangent space. It contains kinematical information but not the full dynamical laws. The reduced theory will, under rather general conditions, be invariant under translations and under a proper subgroup of the linear transformations in tangent space. One interesting possibility is that it is invariant under SLR(4). Then the macroscopic metric must evolve as a cooperative effect in finite size regions. The other natural possibility is that each family (coherent folium) of states defines a microscopic metric by the scaling limit and the tangent space theory reduces to a theory of free massless fields in a Minkowski space. Irrespective of the assumption of a scaling limit we show that the theory can be constructed from strictly local information. (orig.)
The Hamilton-Jacobi Theory, Quantum Mechanics and General Relativity
Sidharth, B G
2005-01-01
The Hamilton-Jacobi theory of Classical Mechanics can be extended in a novel manner to systems which are fuzzy in the sense that they can be represented by wave functions. A constructive interference of the phases of the wave functions then gives us back Classical systems. In a suitable description this includes both Quantum Theory and General Relativity in the well known superspace formulation. However, there are several nuances which provide insight into these latter systems. All this is considered in this paper together with suitable generalization, to cascades of super universes.
Unification of General Relativity with Quantum Field Theory
International Nuclear Information System (INIS)
In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)
The Eclipse to Confirm the General Theory of Relativity
Beléndez Vázquez, Augusto
2015-01-01
One of the milestones of the science of light commemorated during this International Year of Light and Light-based Technologies is “the embedding of light in cosmology through general relativity in 1915,” that is, the celebration of the centenary of Albert Einstein’s general theory of relativity. As Adolfo de Azcárraga, president of the Spanish Royal Physics Society (RSEF), points out in his book titled Albert Einstein, His Science and His Time, Einstein’s theory contained a spectacular predi...
GENERAL RELIABILITY THEORY STUDY ON SEMI-FLEXIBLE OUTPUT TYPE AND REPAIRABLE PRODUCTION SYSTEM
Institute of Scientific and Technical Information of China (English)
马云东; 高宏伟
1996-01-01
This paper puts forward the conceptions of semi-flexible units and semi-flexible system, and builds up the theory of semi-flexible output type and repairable production system general reliability analysis and general reliability design, which discusses the reliability problems of semi-flexible units and semi-flexible system from three aspects of time, task and capacity.
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G∞4 as the local gauge symmetry group and the symmetrical tensor of rank two gμν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
General Strain Theory and Substance Use among American Indian Adolescents
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Healt...
The aggregation of propositional attitudes: towards a general theory
Dietrich, Franz; List, Christian
2008-01-01
How can the propositional attitudes of several individuals be aggregated into overall collective propositional attitudes? Although there are large bodies of work on the aggregation of various special kinds of propositional attitudes, such as preferences, judgments, probabilities and utilities, the aggregation of propositional attitudes is seldom studied in full generality. In this paper, we seek to contribute to filling this gap in the literature. We sketch the ingredients of a general theory...
Theories and models of structural dynamics: an ‘ideal’ general framework ?
Schilirò, Daniele
2007-01-01
This contribution concerns models and theories of structural economic dynamics. The theories and models analyzed in the paper follow two different approaches, circular and vertical, in the analysis of structural dynamics. The content of this contribution is essentially methodological. This work also aims at identifying a possible ‘ideal’ general framework for the analysis of structural economic dynamics, by singling out a core set of fundamental methodological and analytical principles that s...
Report on the second SEMAT workshop on general theory of software engineering (GTSE 2013)
Johnson, Pontus; Ralph, Paul; Goedicke, Michael; Ng, Pan-Wei; Stol, Klaas-Jan; Smolander, Kari; Exman, Iaakov; Perry, Dewayne E.
2013-01-01
peer-reviewed Software engineering needs a general theory, i.e., a theory that applies across the field and unifies existing empirical and theoretical work. General theories are common in other domains, such as physics. While many software engineering theories exist, no general theory of software engineering is evident. Consequently, this report reviews the emerging consensus on a general theory in software engineering from the Second SEMAT General Theory of Software E...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty
2003-10-01
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Towards a General Theory of Bilingual Legal Lexicography
DEFF Research Database (Denmark)
Nielsen, Sandro
2003-01-01
As the need for intercultural communication in the field of law has increased, the foundation of a general theory of bilingual legal lexicography must be given priority. This paper introduces, describes and explains the elements necessary for compiling the optimal bilingual law dictionary...
What Should Instructional Designers Know about General Systems Theory?
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
An Application of General System Theory (GST) to Group Therapy.
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Eu, Byung Chan
2016-01-01
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...
Generalized cable theory for neurons in complex and heterogeneous media
Bédard, Claude; Destexhe, Alain
2013-08-01
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
Dynamical Gravitational Coupling as a Modified Theory of General Relativity
Finster, Felix
2016-01-01
A modified theory of general relativity is proposed, where the gravitational constant is replaced by a dynamical variable in space-time. The dynamics of the gravitational coupling is described by a family of parametrized null geodesics, implying that the gravitational coupling at a space-time point is determined by solving transport equations along all null geodesics through this point. General relativity with dynamical gravitational coupling (DGC) is introduced. We motivate DGC from general considerations and explain how it arises in the context of causal fermion systems. The underlying physical idea is that the gravitational coupling is determined by microscopic structures on the Planck scale which propagate with the speed of light. In order to clarify the mathematical structure, we analyze the conformal behavior and prove local existence and uniqueness of the time evolution. The differences to Einstein's theory are worked out in the examples of the Friedmann-Robertson-Walker model and the spherically symme...
Density functional theory based generalized effective fragment potential method
International Nuclear Information System (INIS)
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes
On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.
On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.
Gravitation experiments at Stanford. [using general relativity theory
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
de La Sierra, Ruben Ulises
The present study introduces entropy mapping as a comprehensive method to analyze and describe complex interactive systems; and to assess the effect that entropy has in paradigm changes as described by transition theory. Dynamics of interactions among environmental, economic and demographic conditions affect a number of fast growing locations throughout the world. One of the regions especially affected by accelerated growth in terms of demographic and economic development is the border region between Mexico and the US. As the contrast between these countries provides a significant economic and cultural differential, the dynamics of capital, goods, services and people and the rates at which they interact are rather unique. To illustrate the most fundamental economic and political changes affecting the region, a background addressing the causes for these changes leading to the North America Free Trade Agreement (NAFTA) is presented. Although the concept of thermodynamic entropy was first observed in physical sciences, a relevant homology exists in biological, social and economic sciences as the universal tendency towards disorder, dissipation and equilibrium is present in these disciplines when energy or resources become deficient. Furthermore, information theory is expressed as uncertainty and randomness in terms of efficiency in transmission of information. Although entropy in closed systems is unavoidable, its increase in open systems, can be arrested by a flux of energy, resources and/or information. A critical component of all systems is the boundary. If a boundary is impermeable, it will prevent energy flow from the environment into the system; likewise, if the boundary is too porous, it will not be able to prevent the dissipation of energy and resources into the environment, and will not prevent entropy from entering. Therefore, two expressions of entropy--thermodynamic and information--are identified and related to systems in transition and to spatial
GENERALIZED LANDSCAPE THEORY: AGENT-BASED APPROACH TO ALLIANCE FORMATIONS IN CIVIL AVIATION INDUSTRY
Institute of Scientific and Technical Information of China (English)
Kyoichi Kijima
2001-01-01
The purpose of this paper is to generalize Landscape theory proposed by R.Axelrod and, then, to apply it to the civil aviation industry for simulating alliance formations in it. Landscape theory provides a well-known agent-based simulation model for analyzing alliance (or coalition) formation process. When a set N of agents or autonomous decision makers is given, the theory assumes that each agent tries to make a coalition in such a way that the resulting alliance minimizes its frustration. The theory is essentially based on two premises. One is that a propensity is symmetric,i.e., the propensity of agent i toward j is exactly the same as that of j toward i for anyagents i and j in N. The other is that the number of alliances is restricted to two, i.e., at any moment N is partitioned into two parties. Though the two basic premises underpin the theory and make the model simple and operational, they do not always reflect alliance formation processes in a realistic way. A generalized Landscape theory that this paper proposes removes them and allows asymmetric propensity and existence of alliances of any number. Since the premises are essential for the model, the generalization requires a drastic reconstruction of the whole idea of the theory. Finally, we analyze a real alliance formation process in the civil aviation industry.This analysis provides interesting insights about the industry as well as some validation of our generalized Landscape theory.
Density functional theory generalized to degenerate excited states
International Nuclear Information System (INIS)
In this paper it is shown that the density functional theory can be generalized to systems with degenerate excited states. There is a one-to-one map between the subspace, spanned by the ground state and any one of the first degenerate excited states, and the sum of their densities. But only a one way correspondence exists between external potential and subspace, as well as between external potential and the sum of densities. The extension of the Hohenberg-Kohn-Sham theory for degenerate excited states has also been developed. (author)
Classical Belief Conditioning and its Generalization to DSm Theory
Czech Academy of Sciences Publication Activity Database
Daniel, Milan
San Luis Obispo : California Polytechnic State University, 2007 - (Lee, T.; Liu, Y.; Zhao, X.), s. 596-603 ISSN 1539-2023. - (Series of Information & Management Sciences. 6). [International Conference on Information and Management Sciences /6./. Lhasa (CN), 01.06.2007-06.06.2007] R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics
A general theory for flooding implementing cuspoids catastrophe
International Nuclear Information System (INIS)
This paper combines Kelvin-Helmholtz Theory and Catastrophe Theory to develop a general mathematical framework for the flooding phenomenon. The theoretical model proposed in this paper is based on the functional relationship between the gas and liquid flow rates expressed in terms of a modified Kutateladze number that takes into account the effects of entrainment and geometry. A large number of experimental data has been examined against the theoretical model prediction. In most cases, good agreement is obtained by empirically varying only one coefficient. (orig.)
General Mission Analysis Tool (GMAT)
Hughes, Steven P. (Compiler)
2016-01-01
This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.
Generalized analysis of molecular variance.
Directory of Open Access Journals (Sweden)
Caroline M Nievergelt
2007-04-01
Full Text Available Many studies in the fields of genetic epidemiology and applied population genetics are predicated on, or require, an assessment of the genetic background diversity of the individuals chosen for study. A number of strategies have been developed for assessing genetic background diversity. These strategies typically focus on genotype data collected on the individuals in the study, based on a panel of DNA markers. However, many of these strategies are either rooted in cluster analysis techniques, and hence suffer from problems inherent to the assignment of the biological and statistical meaning to resulting clusters, or have formulations that do not permit easy and intuitive extensions. We describe a very general approach to the problem of assessing genetic background diversity that extends the analysis of molecular variance (AMOVA strategy introduced by Excoffier and colleagues some time ago. As in the original AMOVA strategy, the proposed approach, termed generalized AMOVA (GAMOVA, requires a genetic similarity matrix constructed from the allelic profiles of individuals under study and/or allele frequency summaries of the populations from which the individuals have been sampled. The proposed strategy can be used to either estimate the fraction of genetic variation explained by grouping factors such as country of origin, race, or ethnicity, or to quantify the strength of the relationship of the observed genetic background variation to quantitative measures collected on the subjects, such as blood pressure levels or anthropometric measures. Since the formulation of our test statistic is rooted in multivariate linear models, sets of variables can be related to genetic background in multiple regression-like contexts. GAMOVA can also be used to complement graphical representations of genetic diversity such as tree diagrams (dendrograms or heatmaps. We examine features, advantages, and power of the proposed procedure and showcase its flexibility by
Directory of Open Access Journals (Sweden)
Lutsenko Y. V.
2014-01-01
Full Text Available This article briefly reviews the classical concept of functional dependence in mathematics, determines the limitations of this concept for adequate modeling of reality and formulates the problem, consisting in search of such generalization of the concept of func-tions, which is more suitable for the adequate reflec-tion of causal relationships in the real domain. Also, it discusses theoretical and practical solving the prob-lem, consisting in: (a we suggest the universal method of calculating the amount of information in the value of argument about the meaning of the function, i.e. cognitive functions which is independent from the subject area; b we offer software tools: Eidos intelli-gent system, allowing in practice to carry out these calculations, i.e. to build cognitive functions based on a fragmented noisy empirical data of high dimension. We also offer the concepts of nonreducing, partially and completely reduced direct and inverse, positive and negative cognitive functions and the method of formation of reduced cognitive function, which is a generalization of known weighted least-squares meth-od on the basis of observation the amount of infor-mation in the values of the argument about the values of the functions accounting
General theories for the electrical transport properties of carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Singh, L T; Nanda, K K, E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)
2011-08-05
We have shown that the general theories of metals and semiconductors can be employed to understand the diameter and voltage dependency of current through metallic and semiconducting carbon nanotubes, respectively. The current through a semiconducting multiwalled carbon nanotube (MWCNT) is associated with the energy gap that is different for different shells. The contribution of the outermost shell is larger as compared to the inner shells. The general theories can also explain the diameter dependency of maximum current through nanotubes. We have also compared the current carrying ability of a MWCNT and an array of the same diameter of single wall carbon nanotubes (SWCNTs) and found that MWCNTs are better suited and deserve further investigation for possible applications as interconnects.
A Possible Modification of Einstein's Theory of General Relativity
Institute of Scientific and Technical Information of China (English)
QIAN Shang-Wu
2004-01-01
This article suggests a new metric theory of gravitation, in which metric field is determined not only by matter and nongravitational field but also by vector graviton field, and in principle there is no need to introduce the Einstein's tensor. In order to satisfy automatically the geodesic postulate, an additional coordinate condition is needed.For the spherically symmetric static field, it leads us to quite different conclusions from those of Einstein's general relativity in the interior region of the surface of infinite redshift. Accurate to the first order of GM/r, it obtains the same results about the four experimental tests of general relativity.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-Li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic v...
Topological Field Theory approach to the Generalized Benney Hierarchy
Chang, Jen-Hsu; Tu, Ming-Hsien
2001-01-01
The integrability of the generalized Benney hierarchy with three primary fields is investigated from the point of view of two-dimensional topological field theories coupled to gravity. The associated primary free energy and correlation functions at genus zero are obtained via Landau-Ginzburg formulation and the string equation is derived using the twistor construction for the Orlov operators. By adopting the approach of Dubrovin and Zhang we obtain the genus-one corrections of the Poisson bra...
Ultraviolet Fixed Points in Conformal Gravity and General Quadratic Theories
Ohta, Nobuyoshi; Percacci, Roberto
2015-01-01
We study the beta functions for four-dimensional conformal gravity using two different parametrizations of metric fluctuation, linear split and exponential parametrization. We find that after imposing the traceless conditions, the beta functions are the same in four dimensions though the dependence on the dimensions are quite different. This indicates the universality of these results. We also examine the beta functions in general quadratic theory with the Einstein and cosmological terms for ...
General Theory of Spontaneous Emission Near Exceptional Points
Pick, Adi; Zhen, Bo; Miller, Owen D.; Hsu, Chia W.; Hernandez, Felipe; Rodriguez, Alejandro W.; Soljacic, Marin; Johnson, Steven G
2016-01-01
Exceptional points (EPs)---non-Hermitian degeneracies where both the eigenvalues and the eigenvectors coalesce---have recently been realized in various optical systems. Here we present a general theory of spontaneous emission near such degeneracies, where standard mode-expansion methods lead to erroneous divergent results. We show that significant (and finite) enhancements for light-matter interaction can occur in systems with gain, whereas in passive systems the enhancement is at most four-f...
Generalized Lorenz-Mie theories, the third decade: A perspective
International Nuclear Information System (INIS)
During the year 2008, we have been commemorating, in several places, the hundredth anniversary of the famous 1908-paper by Mie describing the interaction between an electromagnetic plane wave and a homogeneous sphere defined by its diameter d and its complex refractive index m. Due to the existence of a prior version by Lorenz, Mie's theory may also be named as Lorenz-Mie theory (LMT). The generalized Lorenz-Mie theory (GLMT) stricto sensu deals with the more general case when the illuminating wave is an arbitrary shaped beam (say: a laser beam) still interacting with a homogeneous sphere defined by its diameter d and its complex refractive index m. The name 'GLMTs' is generically used to designate various variants for other particle shapes when the method of separation of variables is used. The present paper provides a review of the work accomplished in this generalized field during the last decade (the third decade). As a convenient selection criterion, only papers citing the work of the group of Rouen have been essentially used, with ISIweb of knowledge providing a database.
Theory of Nonlocal Point Transformations in General Relativity
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2016-01-01
Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.
The generalized Newton's law of gravitation versus the general theory of relativity
2011-01-01
Einstein general theory of relativity (GTR) accounted well for the precession of the perihelion of planets and binary pulsars. While the ordinary Newton law of gravitation failed, a generalized version yields similar results. We have shown here that these effects can be accounted for as due to the existence of gravitomagnetism only, and not necessarily due to the curvature of space time. Or alternatively, gravitomagnetism is equivalent to a curved space-time. The precession of the perihelion ...
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
Ward identities and gauge independence in general chiral gauge theories
Anselmi, Damiano
2015-07-01
Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.
Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory
International Nuclear Information System (INIS)
It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory
A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories
Lagos, Macarena; Ferreira, Pedro G; Noller, Johannes
2016-01-01
We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and "Beyond Horndeski" theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbations that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (\\`a la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic act...
Generalized perturbation theory in DRAGON: application to CANDU cell calculations
International Nuclear Information System (INIS)
Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)
Institute of Scientific and Technical Information of China (English)
PENG Huan-Wu
2005-01-01
Taking Dirac's large number hypothesis as true, we have shown [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703] the inconsistency of applying Einstein's theory of general relativity with fixed gravitation constant G to cosmology, and a modified theory for varying G is found, which reduces to Einstein's theory outside the gravitating body for phenomena of short duration in small distances, thereby agrees with all the crucial tests formerly supporting Einstein's theory. The modified theory, when applied to the usual homogeneous cosmological model, gives rise to a variable cosmological tensor term determined by the derivatives of G, in place of the cosmological constant term usually introduced ad hoc. Without any free parameter the theoretical Hubble's relation obtained from the modified theory seems not in contradiction to observations, as Dr. Wang's preliminary analysis of the recent data indicates [Commun.Theor. Phys. (Beijing, China) 42 (2004) 703]. As a complement to Commun. Theor. Phys. (Beijing, China) 42 (2004)703 we shall study in this paper the modification of electromagnetism due to Dirac's large number hypothesis in more detail to show that the approximation of geometric optics still leads to null geodesics for the path of light, and that the general relation between the luminosity distance and the proper geometric distance is still valid in our theory as in Einstein's theory, and give the equations for homogeneous cosmological model involving matter plus electromagnetic radiation. Finally we consider the impact of the modification to quantum mechanics and statistical mechanics, and arrive at a systematic theory of evolving natural constants including Planck's h as well as Boltzmann's kB by finding out their cosmologically combined counterparts with factors of appropriate powers of G that may remain truly constant to cosmologically long time.
A general construction of conformal field theories from scalar anti-de Sitter quantum field theories
International Nuclear Information System (INIS)
We provide a new general setting for scalar interacting fields on the covering of a ( d+1 )-dimensional AdS spacetime. The formalism is used at first to construct a one-parameter family of field theories, each living on a corresponding spacetime submanifold of AdS, which is a cylinder RxSd-1 . We then introduce a limiting procedure which directly produces Luescher-Mack CFT's on the covering of the AdS asymptotic cone. Our generalized AdS → CFT construction is nonperturbative, and is illustrated by a complete treatment of two-point functions, the case of Klein-Gordon fields appearing as particularly simple in our context. We also show how the Minkowskian representation of these boundary CFT's can be directly generated by an alternative limiting procedure involving Minkowskian theories in horocyclic sections (nowadays called (d-1)-branes, 3-branes for AdS5 ). These theories are restrictions to the brane of the ambient AdS field theory considered. This provides a more general correspondence between the AdS field theory and a Poincare invariant QFT on the brane, satisfying all the Wightman axioms. The case of two-point functions is again studied in detail from this viewpoint as well as the CFT limit on the boundary
Energy Technology Data Exchange (ETDEWEB)
Kober, Martin
2010-07-01
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
Nureev Rustem, M.
2016-01-01
The paper was prepared for the 80-th anniversary of publishing of John Maynard Keynes’ “General Theory of Employment, Interest and Money”. It discusses the stages of the economist’s life, the main books written prior to "The General Theory ...". Particular attention is devoted to the development issues of the monetary policy in the works of "Indian Currency and Finance", ”A Tract on Monetary Reform” and "A Treatise on Money". A special section is dedicated to the analysis of Keynes’ methodolo...
Generalized Bogolubov-de Gennes theory for nanoscale superconductors
International Nuclear Information System (INIS)
The generalized Bogolubov-de Gennes (BdG) theory, including explicitly the Zeeman energy of electrons, is developed for nanoscale superconductors. To this end the system of four BdG equations is derived, corresponding to four coherent functions (instead of two in conventional BdG theory), two for electron-like excitations and two for hole-like excitations. These equations are transformed into matrix equations by using the basis set of particle-in-the-box problem and solved self-consistently with the equation for the order parameter and the chemical potential. The proposed microscopic approach is suitable for the study of unconventional vortex states and the appearance of FFLO phase in thin nanoscale superconductors
General form of the quantum-defect theory
International Nuclear Information System (INIS)
The quantum-defect-theory (QDT) treatment of an electron in the Coulomb field surrounding an ionic core is recast in a form largely independent of field characteristics and thus applicable, e.g., to square wells or to the Morse fields of diatomic molecules. The reformulation parallels Seaton's classification of alternative Coulomb-field wave functions, and makes it applicable to other fields. Wronskians of alternative pairs of base functions have an important role in the theory. For electron energies epsilon < 0 in a Coulomb field these Wronskians reduce to trigonometric functions of ν = (-2epsilon)/sup -1/2/, familiar in the QDT; other fields lead to trigonometric functions of different arguments. Quantum defects are generalized to eigenvalues of a reaction matrix, as in Seaton's work, but this matrix can now be calculated even below threshold energies with the introduction of a ''smooth'' Green's function appropriate to QDT applications
Unsteady compressible potential flow around lifting bodies - General theory.
Morino, L.
1973-01-01
The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green's function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. This representation reduces properly to the lifting surface theories as well as to other classical mathematical formulas. Under small perturbation assumption, the potential at any point P in the field depends only upon the values of the potential and its normal derivative on the surface of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integrodifferential equation relating the potential and its normal derivative on the surface of the body.
Quantum mechanics in general quantum systems (II): Perturbation theory
Wang, A M
2006-01-01
We propose an improved scheme of perturbation theory based on our exact solution [See: An Min Wang, quant-ph/0611217] in general quantum systems independent of time. Our elementary start-point is to introduce the perturbing parameter as late as possible. Our main skills are Hamiltonian redivision so as to overcome a flaw of the usual perturbation theory, and the perturbing Hamiltonian matrix product decomposition in order to separate the contraction and anti-contraction terms. Our calculational technology is the limit process for eliminating apparent divergences. Our central idea is ``dynamical rearrangement and summation" for the sake of the partial contributions from the high order even all order approximations absorbed in our perturbed solution. Consequently, we obtain the improved forms of the zeroth, first, second and third order perturbed solutions absorbing the partial contributions from the high order even all order approximations of perturbation. Then we deduce the improved transition probability. In...
Potential Performance Theory (PPT): A General Theory of Task Performance Applied to Morality
Trafimow, David; Rice, Stephen
2008-01-01
People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task…
General Strain Theory and Substance Use among American Indian Adolescents.
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
General relativity as an extended canonical gauge theory
Struckmeier, J.
2015-04-01
It is widely accepted that the fundamental geometrical law of nature should follow from an action principle. The particular subset of transformations of a system's dynamical variables that maintain the form of the action principle comprises the group of canonical transformations. In the context of canonical field theory, the adjective "extended" signifies that not only the fields but also the space-time geometry is subject to transformation. Thus, in order to be physical, the transition to another, possibly noninertial frame of reference must necessarily constitute an extended canonical transformation that defines the general mapping of the connection coefficients, hence the quantities that determine the space-time curvature and torsion of the respective reference frame. The canonical transformation formalism defines simultaneously the transformation rules for the conjugates of the connection coefficients and for the Hamiltonian. As will be shown, this yields unambiguously a particular Hamiltonian that is form-invariant under the canonical transformation of the connection coefficients and thus satisfies the general principle of relativity. This Hamiltonian turns out to be a quadratic function of the curvature tensor. Its Legendre-transformed counterpart then establishes a unique Lagrangian description of the dynamics of space-time that is not postulated but derived from basic principles, namely the action principle and the general principle of relativity. Moreover, the resulting theory satisfies the principle of scale invariance and is renormalizable.
SO(10) grand unified theory in generalized covariant derivative formalism
International Nuclear Information System (INIS)
The SO(10) grand unified theory is reformulated in a new field theory with a unified field strength for both the gauge and Higgs fields, and the fine-tuning problem and the condition for the symmetry breakings are investigated. The unified field strength for the gauge and Higgs fields, which takes values in the Dirac algebra, is defined by means of the commutator of the generalized covariant derivative for a multi-spinor field decreasing all families of quarks and leptons. The bosonic Lagrangian is constructed from a general sum of quadratic invariants of the field strength. Among the Yukawa coupling constants and other parameters related to the Higgs field self-couplings, there exist additional relations that are interpreted as initial conditions for renormalization equations. The grand unified symmetry is broken down to the low energy symmetry by the 210-, 45-, 126- and 10-dimensional Higgs fields. The Higgs potential turns out to have a discrete symmetry among Higgs fields. This symmetry makes it subtle and difficult to solve the fine-tuning problem, which required accurate adjustments of the parameters included in the generalized covariant derivative. It is shown that the 45-dimensional Higgs field plays an essential role to break the discrete symmetry and to solve the fine-tuning problem. (author)
A General Theory of Wireless Power Transfer via Inductive Links
Pan, Jiacheng
2015-01-01
This thesis presents a comprehensive theory of wireless power transfer via inductive links. Design-oriented analysis is used to offer a different and insightful perspective. This thesis analyzes different architectures of wireless power transfer and different ways to realize stable power delivery over distance variations. Among various techniques for maintaining stable power delivery, a frequency-adapting architecture is proposed and implemented, in which an oscillator is used as the driver a...
Generalized probabilistic theories and conic extensions of polytopes
International Nuclear Information System (INIS)
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in Rn, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by logn. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization. (paper)
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Study of Thermodynamic Quantities in Generalized Gravity Theories
Chattopadhyay, Surajit; Debnath, Ujjal; Bhattacharya, Samarpita
2011-01-01
In this work, we have studied the thermodynamic quantities like temperature of the universe, heat capacity and squared speed of sound in generalized gravity theories like Brans-Dicke, Ho$\\check{\\text r}$ava-Lifshitz and $f(R)$ gravities. We have considered the universe filled with dark matter and dark energy. Also we have considered the equation of state parameters for open, closed and flat models. We have observed that in all cases the equation of state behaves like quintessence. The tempera...
Thick brane models in generalized theories of gravity
International Nuclear Information System (INIS)
This work deals with thick braneworld models, in an environment where the Ricci scalar is changed to accommodate the addition of two extra terms, one depending on the Ricci scalar itself, and the other, which takes into account the trace of the energy–momentum tensor of the scalar field that sources the braneworld scenario. We suppose that the scalar field engenders standard kinematics, and we show explicitly that the gravity sector of this new braneworld scenario is linearly stable. We illustrate the general results investigating two distinct models, focusing on how the brane profile is changed in the modified theories
Ultraviolet fixed points in conformal gravity and general quadratic theories
Ohta, Nobuyoshi; Percacci, Roberto
2016-02-01
We study the beta functions for four-dimensional conformal gravity using two different parametrizations of metric fluctuation, linear split and exponential parametrization. We find that after imposing the traceless conditions, the beta functions are the same in four dimensions though the dependence on the dimensions are quite different. This indicates the universality of these results. We also examine the beta functions in general quadratic theory with the Einstein and cosmological terms for exponential parametrization, and find that it leads to results for beta functions of dimensionful couplings different from linear split, though the fact that there exists a nontrivial fixed point remains the same and the fixed points also remain the same.
Branes from Moyal Deformation Quantization of Generalized Yang Mills Theories
Castro, C
1999-01-01
It is shown that a Moyal deformation quantization of the SO(4k) Generalized Yang-Mills (GYM) theory action in D=4k dimensions, for spacetime independent field configurations, in the $\\hbar \\to 0$ limit, yields the Dolan-Tchrakian p-brane action after fixing the conformal and world volume reparametrization invariance, associated with the p-brane world volume dimension p+1=4k, embedded in a D=4k target spacetime background. The gauge fields/target spacetime coordinates correspondence is required but no large N limit is necessary.
Maximum Accretion Efficiency in General Theory of Relativity
Mitra, Abhas
1998-01-01
We derive here the expression for the accretion luminosity, $L(\\infty)$, as seen by a distant inertial observer $S_\\infty$, for the case of spherical accretion onto a static compact object having a surface gravitational red-shift $z_x$. It is found that the ``efficiency'' for conversion of mass energy into accretion energy is given by $\\epsilon = z_x/(1+z_x)$. And since the maximum value of $z_x$ permitted by General Theory of Relativity (GTR) is 2, the maximum theoretical value of the accret...
The two-loop renormalization of general quantum field theories
International Nuclear Information System (INIS)
This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)
General Theory of Spontaneous Emission Near Exceptional Points
Pick, Adi; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljacic, Marin; Johnson, Steven G
2016-01-01
Exceptional points (EPs)---non-Hermitian degeneracies where both the eigenvalues and the eigenvectors coalesce---have recently been realized in various optical systems. Here we present a general theory of spontaneous emission near such degeneracies, where standard mode-expansion methods lead to erroneous divergent results. We show that significant (and finite) enhancements for light-matter interaction can occur in systems with gain, whereas in passive systems the enhancement is at most four-fold. Under special conditions, the emission spectral lineshape near the EP becomes a squared Lorentzian, and the enhancement scales quadratically with the resonance lifetime.
A new quantum theory of gravity in the framework of general relativity
Zhu, Chang-Yu; Fan, Heng
2009-01-01
Observed physical phenomena can be described well by quantum mechanics or general relativity. People may try to find an unified fundamental theory which mainly aims to merge gravity with quantum theory. However, difficulty in merging those theories self-consistently still exists, and no such theory is generally accepted. Here we try to propose a quantum theory with space and time in symmetrical positions in the framework of general relativity. In this theory, Dirac matter fields, gauge fields...
General Theory of Relativity: Will It Survive the Next Decade?
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Olmo, Gonzalo J
2015-01-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Application of Neutrosophic Set Theory in Generalized Assignment Problem
Directory of Open Access Journals (Sweden)
Supriya Kar
2015-09-01
Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.
Einstein's general theory of relativity with modern applications in cosmology
Grøn, Øyvind
2007-01-01
Many of us have experienced the same; fallen and broken something. Yet supposedly, gravity is the weakest of the fundamental forces; it is claimed to be 10-15 times weaker than electromagnetism. Still, every one of us has more or less had a personal relationship with gravity. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology by Oyvind Gron and Sigbjorn Hervik is about gravity and the concept of gravity as Albert Einstein saw it- curved spaces, four-dimensional manifolds and geodesics. The book starts with the 1st principals of relativity and an introduction to Einstein’s field equations. Next up are the three classical tests of the relativity theory and an introduction to black holes. The book contains several topics not found in other textbooks, such as Kaluza-Klein theory, anisotropic models of the universe, and new developments involving brane cosmology. Gron and Hervik have included a part in the book called "Advanced Topics." These topics range from the very edge of resea...
Study of Thermodynamic Quantities in Generalized Gravity Theories
Chattopadhyay, Surajit; Bhattacharya, Samarpita
2011-01-01
In this work, we have studied the thermodynamic quantities like temperature of the universe, heat capacity and squared speed of sound in generalized gravity theories like Brans-Dicke, Ho$\\check{\\text r}$ava-Lifshitz and $f(R)$ gravities. We have considered the universe filled with dark matter and dark energy. Also we have considered the equation of state parameters for open, closed and flat models. We have observed that in all cases the equation of state behaves like quintessence. The temperature and heat capacity of the universe are found to decrease with the expansion of the universe in all cases. In Brans-Dicke and $f(R)$ gravity theories the squared speed of sound is found to exhibit increasing behavior for open, closed and flat models and in Ho$\\check{\\text r}$ava-Lifshitz gravity theory it is found to exhibit decreasing behavior for open and closed models with the evolution of the universe. However, for flat universe, the squared speed of sound remains constant in Ho$\\check{\\text r}$ava-Lifshitz gravity...
Generalized virial relations and the theory of subdynamics
International Nuclear Information System (INIS)
In this paper, we discuss the implication of the generalized virial relations in the spectral analysis of Liouville operators. In particular, we refer to the existence problem of the analytic continuation of these super-operators and their resolvents occurring in the reduced dynamics description of open systems. For completeness, we outline the main ideas of the subdynamics approach. (author)
Barbosa-Cendejas, Nandinii; Kanakoglou, Konstantinos; Paschalis, Joannis E
2011-01-01
In this paper we recall a simple formulation of the stationary electrovacuum theory in terms of the famous complex Ernst potentials, a pair of functions which allows one to generate new exact solutions from known ones by means of the so-called nonlinear hidden symmetries of Lie-Backlund type. This formalism turned out to be very useful to perform a complete classification of all 4D solutions which present two spacetime symmetries or possess two Killing vectors. Curiously enough, the Ernst formalism can be extended and applied to stationary General Relativity as well as the effective heterotic string theory reduced down to three spatial dimensions by means of a (real) matrix generalization of the Ernst potentials. Thus, in this theory one can also make use of nonlinear matrix hidden symmetries in order to generate new exact solutions from seed ones. Due to the explicit independence of the matrix Ernst potential formalism of the original theory (prior to dimensional reduction) on the dimension D, in the case wh...
Conformal field theories near a boundary in general dimensions
International Nuclear Information System (INIS)
The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ2 in φ4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φα and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2αφβ and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)
A generalized preimage theorem in global analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The concept of locally fine point and generalized regular valueof a C1 map between Banach spaces were carried over C1 map between Banach manifolds. Hence the preimage theorem, a principle constructing Banach manifolds in global analysis, is generalized.
Dimensional Analysis and General Relativity
Lovatt, Ian
2009-01-01
Newton's law of gravitation is a central topic in the first-year physics curriculum. A lecturer can go beyond the physical details and use the history of gravitation to discuss the development of scientific ideas; unfortunately, the most recent chapter in this history, general relativity, is not covered in first-year courses. This paper discusses…
Mathematical analysis, approximation theory and their applications
Gupta, Vijay
2016-01-01
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Qin, Hong; Burby, J W; Chung, Moses
2015-01-01
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parameterized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or an U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetr...
Sukenik, Miroslav; Sima, Jozef; Vanko, Julius
2000-01-01
Applying the Vaidya metrics in the model of Expansive Nondecelerative Universe (ENU) leads to compatibility of the ENU model both with the classic Newton gravitational theory and the general theory of relativity in weak fields
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...
A geometric theory of zero area singularities in general relativity
Bray, Hubert L
2013-01-01
The Schwarzschild spacetime metric of negative mass is well-known to contain a naked singularity. In a spacelike slice, this singularity of the metric is characterized by the property that nearby surfaces have arbitrarily small area. We develop a theory of such ``zero area singularities'' in Riemannian manifolds, generalizing far beyond the Schwarzschild case (for example, allowing the singularities to have nontrivial topology). We also define the mass of such singularities. The main result of this paper is a lower bound on the ADM mass of an asymptotically flat manifold of nonnegative scalar curvature in terms of the masses of its singularities, assuming a certain conjecture in conformal geometry. The proof relies on the Riemannian Penrose Inequality. Equality is attained in the inequality by the Schwarzschild metric of negative mass. An immediate corollary is a version of the Positive Mass Theorem that allows for certain types of incomplete metrics.
Slab waveguide theory for general multi-slot waveguide
Le, ZiChun; Yin, LiXiang; Zou, Yu; Wu, Xiang
2016-07-01
Optical devices based on slot waveguide are of considerable interest in numerous applications due to the distinct feature of strong electric field confinement in a low-refractive index region. A theoretical model based on multi-slab waveguide theory is used to reveal the physical mechanism of the slot waveguide. The calculation results derived from the basic Helmholtz equation for the conventional single-slot waveguide with a ~2% validation of the effective refractive index are compared to the former experiment results by the Cornell University group. Moreover, we extend the theoretical model to a general multi-slot waveguide. Its electric field distribution and key properties such as optical power confinement factor and enhancement factor in slot are deduced theoretically and fully discussed.
Cosmology in nonrelativistic general covariant theory of gravity
Wang, Anzhong; Wu, Yumei
2011-02-01
Horava and Melby-Thompson recently proposed a new version of the Horava-Lifshitz theory of gravity, in which the spin-0 graviton is eliminated by introducing a Newtonian prepotential φ and a local U(1) gauge field A. In this paper, we first derive the corresponding Hamiltonian, supermomentum constraints, the dynamical equations, and the equations for φ and A, in the presence of matter fields. Then, we apply the theory to cosmology and obtain the modified Friedmann equation and the conservation law of energy, in addition to the equations for φ and A. When the spatial curvature is different from zero, terms behaving like dark radiation and stiff-fluid exist, from which, among other possibilities, a bouncing universe can be constructed. We also study linear perturbations of the Friedmann-Robertson-Walker universe with any given spatial curvature k, and we derive the most general formulas for scalar perturbations. The vector and tensor perturbations are the same as those recently given by one of the present authors [A. Wang, Phys. Rev. DPRVDAQ1550-7998 82, 124063 (2010).] in the setup of Sotiriou, Visser, and Weinfurtner. Applying these formulas to the Minkowski background, we have shown explicitly that the scalar and vector perturbations of the metric indeed vanish, and the only remaining modes are the massless spin-2 gravitons.
Introduction: Is a General Theory of Violence Possible?
Directory of Open Access Journals (Sweden)
Manuel Eisner
2009-05-01
Full Text Available “There once was a man who aspired to be the author of the general theory of holes. When asked ‘What kind of hole—holes dug by children in the sand for amusement, holes dug by gardeners to plant lettuce seedlings, tank traps, holes made by road makers?’ he would reply indignantly that he wished for a general theory that would explain all of these. He rejected ab initio the—as he saw it—pathetically common-sense view that of the digging of different kinds of holes there are quite different kinds of explanations to be given; why then he would ask do we have the concept of a hole? Lacking the explanations to which he originally aspired, he then fell to discovering statistically significant correlations; he found for example that there is a correlation between the aggregate hole-digging achievement of a society as measured, or at least one day to be measured, by econometric techniques, and its degree of techno- logical development. The United States surpasses both Paraguay and Upper Volta in hole-digging; there are more holes in Vietnam than there were. These observations, he would always insist, were neutral and value-free. This man’s achievement has passed totally unnoticed except by me. Had he however turned his talents to political science, had he concerned himself not with holes, but with modernization, urbanization or violence, I find it difficult to believe that he might not have achieved high office in the APSA.” (MacIntyre 1971, 260
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
SOCIAL NETWORK ANALYSIS ON GRAPH THEORY
Directory of Open Access Journals (Sweden)
DHARMAIAH GURRAM AND N.VEDAVATHI
2013-02-01
Full Text Available Although graph theory is one of the younger branches of mathematics, it isfundamental to a number of applied fields, including operations research, computerscience, and social network analysis. In this paper we discuss the basic concepts ofgraph theory from the point of view of social network analysis.
Antenna theory analysis and design
Balanis, Constantine A
2005-01-01
The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e
Huang, C; Zhou, B H
2016-01-01
This paper gives general intrinsic theory of general large $N_{c}$ QCD, SU(3) QCD, SU(2) hadron-dynamics and U(1) QED gauge field theories in general field theory and progress towards solving the nucleon spin crisis, i.e., presents general large $N_{c}$ QCD's inner structures, gauge invariant angular momenta and new corresponding Coulomb theorem in quark-gluon field interaction systems based on general field theory, and naturally deduces the gauge invariant spin and orbital angular momentum operators of quark and gauge fields with $SU(N_{c})$ gauge symmetry by Noether theorem in general field theory. In the general large $N_{c}$ QCD, we discover not only the general covariant transverse and parallel conditions ( namely, non-Abelian divergence and curl ), but also that this general system has good intrinsic symmetry characteristics. Specially, this paper's generally decomposing gauge potential theory presents a new technique, it should play a votal role in future physics research. Therefore, this paper breakth...
A generalization of λ-mode xenon stability analysis
International Nuclear Information System (INIS)
A new method for analyzing xenon transients in nuclear reactors based on λ-mode stability analysis is developed. Like previous work, the new analysis method is based on a linearization of the coupled diffusion, iodine, and xenon equations, but the approach is generalized here to permit flux perturbations that include a component in the fundamental spatial mode and thus a complete expansion of any perturbation. This extension also allows power to be explicitly constrained. The typical constant-reactivity approach to λ-mode analysis appears as a special case of the new generalized theory. (author)
Index analysis approach theory at work
Lowen, R
2015-01-01
A featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is the...
Energy Technology Data Exchange (ETDEWEB)
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.
General Equilibrium and Social Justice: Neoclassical Theory as a Political Philosophy?
Vincent Desreumaux
2013-01-01
We study the willingness of some authors, including H. Varian in the 70’s, to elaborate a theory of justice that would fit standard general equilibrium theory in its Pareto’s canonical version. We first show, through an analysis of market socialism in the 30’s, that the Paretian ethic is based on the value judgment of consumer sovereignty. Then we are able to discuss the specific contribution of Varian, who, by introducing the criterion of equity as envy-freeness, produces a – very specific –...
Improved theory of generalized meteo-ballistic weighting factor functions and their use
Directory of Open Access Journals (Sweden)
Vladimir Cech
2016-06-01
Full Text Available It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model. Trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions (WFFs which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements µB (ballistic wind wB, density ρB, virtual temperature τB, pressure pB as well. We have found that the existing theory of WFF calculation has several significant shortcomings. The aim of the article is to present a new, improved theory of generalized WFFs that eliminates the deficiencies found. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.
Generalized Potts-Models and their Relevance for Gauge Theories
Directory of Open Access Journals (Sweden)
Andreas Wipf
2007-01-01
Full Text Available We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.
Number Theory, Analysis and Geometry
Goldfeld, Dorian; Jones, Peter
2012-01-01
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th
A general theory of multimetric indices and their properties
Schoolmaster, Donald R., Jr.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
Directory of Open Access Journals (Sweden)
Nureev Rustem, M.
2016-03-01
Full Text Available The paper was prepared for the 80-th anniversary of publishing of John Maynard Keynes’ “General Theory of Employment, Interest and Money”. It discusses the stages of the economist’s life, the main books written prior to "The General Theory ...". Particular attention is devoted to the development issues of the monetary policy in the works of "Indian Currency and Finance", ”A Tract on Monetary Reform” and "A Treatise on Money". A special section is dedicated to the analysis of Keynes’ methodology, its logic and structure, influenced by John. E. Moore. The paper reveals the unity and the difference in approaches of A. Marshall and John M. Keynes, and explores new categories of behavioral economics and marginal analysis, which established the success of "General Theory of Employment, Interest and Money", shows the value of Keynes's theory for the further development of macroeconomics. Particular attention is paid to the popularization of Keynes's ideas from the initial interpretations of "The General Theory ..." to the neoclassical synthesis and further to neo-Keynesianism and post-Keynesianism. The paper studies the unity and the distinction between Hicks’ and American Keynesianism. Hicksian assumptions of a savings-investment function have determined the features of the IS-LM model. The contributions to the development of Keynesianism A. Hansen and P. A. Samuelson are also shown, as well as the history of the "Keynesian Cross". A comparative analysis of the neoclassical and Keynesian models of general economic equilibrium is given and analyzes the institutional reasons explaining differences between neoclassical and Keynesian paradigms. A special section is devoted to the Keynesian theory of growth, showing unity and difference of R. Harrod and E. Domar models, along with their impact on the creation of Development Economics. Simplified understanding of Keynes's legacy has caused the emergence of unorthodox Keynesianism. The paper
General orbital invariant MP2-F12 theory.
Werner, Hans-Joachim; Adler, Thomas B; Manby, Frederick R
2007-04-28
A general form of orbital invariant explicitly correlated second-order closed-shell Moller-Plesset perturbation theory (MP2-F12) is derived, and compact working equations are presented. Many-electron integrals are avoided by resolution of the identity (RI) approximations using the complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is introduced, differing from the exact theory by the neglect of terms involving matrix elements over the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis is complete. In the next lower approximation it is assumed that the occupied orbital space is closed under action of the Fock operator [generalized Brillouin condition (GBC)]; this is equivalent to approximation 2B of Klopper and Samson [J. Chem. Phys. 116, 6397 (2002)]. Further approximations can be introduced by assuming the extended Brillouin condition (EBC) or by neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C, which is closely related to the MP2-R12/C method recently proposed by Kedzuch et al. [Int. J. Quantum Chem. 105, 929 (2005)] is described. In the limit of a complete RI basis this method is equivalent to MP2-F12/3B. The effect of the various approximations (GBC, EBC, and exchange) is tested by studying the convergence of the correlation energies with respect to the atomic orbital and auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16 chemical reactions. Approximation 3C is found to perform equally well as the computationally more demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals
On the general theory of the origins of retroviruses
Directory of Open Access Journals (Sweden)
Wayengera Misaki
2010-02-01
Full Text Available Abstract Background The order retroviridae comprises viruses based on ribonucleic acids (RNA. Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm and host adaptability (Ha; along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv from a non-primate species Xy to Homo sapiens (Hs, initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO, sfv shedding is (1 enhanced by two transmitting tensors (Tt, (i virus-specific immunity (VSI and (ii evolutionary defenses such as APOBEC, RNA interference pathways, and (when present expedited therapeutics (denoted e2D; and (2 opposed by the five accepting scalars (At: (a genomic integration hot spots, gIHS, (b nuclear envelope transit (NMt vectors, (c virus-specific cellular biochemistry, VSCB, (d virus-specific cellular receptor repertoire, VSCR, and (e pH-mediated cell membrane transit, (↓pH CMat. Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt. Overall, If sfv encounters no unforeseen effects on
Deformation theory of objects in homotopy and derived categories I: general theory
Efimov, Alexander I.; Lunts, Valery A.; Orlov, Dmitri O.
2007-01-01
This is the first paper in a series. We develop a general deformation theory of objects in homotopy and derived categories of DG categories. Namely, for a DG module $E$ over a DG category we define four deformation functors $\\Def ^{\\h}(E)$, $\\coDef ^{\\h}(E)$, $\\Def (E)$, $\\coDef (E)$. The first two functors describe the deformations (and co-deformations) of $E$ in the homotopy category, and the last two - in the derived category. We study their properties and relations. These functors are def...
Information theory as a general language for functional systems
Collier, John
2000-05-01
Function refers to a broad family of concepts of varying abstractness and range of application, from a many-one mathematical relation of great generality to, for example, highly specialized roles of designed elements in complex machines such as degaussing in a television set, or contributory processes to control mechanisms in complex metabolic pathways, such as the inhibitory function of the appropriate part of the lac-operon on the production of lactase through its action on the genome in the absence of lactose. We would like a language broad enough, neutral enough, but yet powerful enough to cover all such cases, and at the same time to give a framework form explanation both of the family resemblances and differences. General logic and mathematics are too abstract, but more importantly, too broad, whereas other discourses of function, such as the biological and teleological contexts, are too narrow. Information is especially suited since it is mathematically grounded, but also has a well-known physical interpretation through the Schrodinger/Brillouin Negentropy. Principle of Information, and an engineering or design interpretation through Shannon's communication theory. My main focus will be on the functions of autonomous anticipatory systems, but I will try to demonstrate both the connections between this notion of function and the others, especially to dynamical systems with a physical interpretation on the one side and intentional systems on the other. The former are based in concepts like force, energy and work, while the latter involve notions like representation, control and purpose, traditionally, at least in Modern times, on opposite sides of the Cartesian divide. In principle, information can be reduced to energy, but it has the advantage of being more flexible, and easier to apply to higher level phenomena.
International Nuclear Information System (INIS)
A method is proposed that makes it possible to determine whether a timelike singularity corresponds to a point, linear, or other type of gravitational field source. It is shown that in the general theory of relativity it is also possible to have sources of a quite different type with no analogs in a space of finite curvature. An analysis is made of some well-known solutions containing timelike singularities whose type varies depending on the signs of the functions that occur in the solutions. The form of the solution near simple linear sources [W. Israel, Phys. Rev. D15, 935 (1977)] and generalized anisotropic solutions [S. L. Parnovsky, Physica (Utrecht) 104A, 210 (1980); E. M. Lifshitz and I. M. Khalatnikov, Sov. Phys. Usp. 6, 359 (1963)] is determined more accurately; the space-time described by the γ metric (3) is completely investigated; and the form of the metric near the ends and singular points of linear Weyl singularities is found
Methods of Fourier analysis and approximation theory
Tikhonov, Sergey
2016-01-01
Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.
Adaptive neural network error control for generalized perturbation theory
International Nuclear Information System (INIS)
This paper addresses the issue of adaptive error control within generalized perturbation theory (GPT). The strategy herein assessed considers an artificial neural network (ANN) error estimator. The underlying tool facilitating this research is the FORMOSA-P code, a pressurized water reactor (PWR) nuclear fuel management optimization package, which combines simulated annealing and nodal GPT. A number of applications exist where traditional GPT may be limited by the magnitude of perturbations, which it can accurately handle. In fact, other alternative such as supervariational techniques (i.e., n'th-order GPT) and/or multireference strategies (i.e., rodded adjoints) are being sought for boiling water reactor and rodded applications. A perhaps not-so-obvious alternative could be to employ a neural network for adaptive error control within GPT. This study presents the results of two ANN models. The first model constitutes an intensively well-trained ANN used to contrast its global core parameter (i.e., keff) prediction capability versus that of a GPT model. The second model is a similar ANN intended for adaptive GPT error correction. In other words, the latter ANN is trained on-the-fly within the scope of a standard FORMOSA-P calculation
A Specific Case of Generalized Einstein-aether Theories
Institute of Scientific and Technical Information of China (English)
孟新河; 杜小龙
2012-01-01
With the dark energy phenomena explored over a decade, in this present work we discuss a specific case of the generalized Einstein-aether theories, in which the modified Friedmann equation is similar to that in the Dvali- Gabadadze-Porrati （DGP） brahe world model. We compute the joint statistic constraints on model parameters in this specific case by using the recent type Ia supernovae （SNe Ia） data, the cosmic microwave background （CMB） shift parameter data, and the baryonic acoustic oscillations （BAOs） data traced by the S1oan Digital Sky Survey （SDSS）. Furthermore, we analyze other constrains from the observational Hubble parameter data （OHD）. The comparison with the standard cosmological model （cosmological constant A cold dark matter （ACDM） model） is dearly shown; also we comment on the interesting relation between the coupling constant M in this model and the special accelerate scale in the modified Newtonian dynamies （MOND） model initially given by Milgrom with the hope for interpreting the galaxy rotation curves without introducing mysterious dark matter.
Formal analysis of physical theories
International Nuclear Information System (INIS)
The rules of inference that are made use of in formalization are considered. It is maintained that a physical law represents the universal assertion of a probability, and not the assessment of the probability of a universal assertion. The precision of the apparatus used to collect the experimental evidence is introduced as an essential part of the theoretical structure of physics. This approach allows the author to define the concept of truth in a satisfactory way, abandoning the unacceptable notion of approximate truth. It is shown that a considerable amount of light can be shed on a number of much debated problems arising in the logic of quantum mechanics. It is stressed that the deductive structure of quantum theory seems to be essentially founded on a kind of mixture of different logics. Two different concepts of truth are distinguished within quantum theory, an empirical truth and quantum-logical truth. (Auth.)
Indian Academy of Sciences (India)
M D Sharma
2007-08-01
Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two different approaches. One is the dynamic approach of Biot’s theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion. The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic waves in the medium. The other defines a matrix to relate the relative displacement of fluid particles to the displacement of solid particles. The modified Christoffel equations are solved further to get a quartic equation whose roots represent complex velocities of the four attenuating quasi-waves in the medium. These complex velocities define the phase velocities of propagation and quality factors for attenuation of all the quasi-waves propagating along a given phase direction in three-dimensional space. The derivations in the mathematical models from different theories are compared in order to work out the equivalence between them. The variations of phase velocities and attenuation factors with the direction of phase propagation are computed, for a realistic numerical model. Differences between the velocities and attenuations of quasi-waves from the two approaches are exhibited numerically.
Fixed point theory, variational analysis, and optimization
Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan
2015-01-01
""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China
Proofs and advice in general physical theories: a trade-off between states and dynamics?
Lee, Ciarán M.; Hoban, Matty J.
2015-01-01
Quantum theory presents us with the tools for potential computational and communication complexity advantages over classical theory. It has been suggested that this quantum advantage in both tasks is because quantum theory has both entangled states and entangling dynamics. Within a framework of general physical theories, one can construct theories that excel even quantum theory at communication tasks but at the cost of faring worse at computational tasks, and vice versa. So while quantum comp...
Fundamentals of the fuzzy logic-based generalized theory of decisions
Aliev, Rafik Aziz
2013-01-01
Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than comput...
The standard model and its generalizations in the Epstein-Glaser approach to renormalization theory
International Nuclear Information System (INIS)
We continue our study of non-Abelian gauge theories in the framework of the Epstein-Glaser approach to renormalization theory. We consider the case when massive spin-1 bosons are present in the theory and we modify appropriately the analysis of the origin of the gauge invariance performed in a preceding paper in the case of null-mass spin-1 bosons. Then we are able to extend a result of Deutsch and Scharf concerning the uniqueness of the standard model, consistent with renormalization theory. In fact we consider the most general case, i.e. the consistent interaction of r spin-1 bosons, and we do not impose any restrictions on the gauge group and the mass spectrum of the theory. We show that, besides the natural emergence of a group structure (as in the massless case), we obtain new conditions of a group theoretical nature, namely the existence of a certain representation of the gauge group associated to the Higgs fields. Some other mass relations connecting the structure constants of the gauge group and the masses of the bosons emerge naturally. The proof is carried out using the Epstein-Glaser approach to renormalization theory. (author)
Gauge field theories spin one and spin two : 100 years after general relativity
Scharf, Gunter
2016-01-01
One of the main problems of theoretical physics concerns the unification of gravity with quantum theory. This monograph examines unification by means of the appropriate formulation of quantum gauge invariance. Topics include free fields, causal perturbation theory, spin-1 gauge theories involving both massless and massive gauge fields, spin-2 gauge theories, and non-geometric general relativity.
Analysis of network by generalized mutual entropies
Gudkov, V.; Montealegre, V.
2007-01-01
Generalized mutual entropy is defined for networks and applied for analysis of complex network structures. The method is tested for the case of computer simulated scale free networks, random networks, and their mixtures. The possible applications for real network analysis are discussed.
Analytic Multi-Regge Theory and the Pomeron in QCD; 2, Gauge Theory Analysis
White, Alan R
1993-01-01
The high-energy Regge behavior of gauge theories is studied via the formalism of Analytic Multi-Regge Theory. Perturbative results for spontaneously-broken theories are first organised into reggeon diagrams. Unbroken gauge theories are studied via a reggeon diagram infra-red analysis of symmetry restoration. Massless fermions play a crucial role and the case of QCD involves the Super-Critical Pomeron as an essential intermediate stage. An introductory review of the build up of transverse momentum diagrams and reggeon diagrams from leading log calculations in gauge theories is presented first. It is then shown that the results closely reproduce the general structure for multi-regge amplitudes derived in Part I of the article, allowing the construction of general reggeon diagrams for spontaneously-broken theories. Next it is argued that, with a transverse-momentum cut-off, unbroken gauge theories can be reached through an infra-red limiting process which successively decouples fundamental representation Higgs f...
Analysis of QCD by superstring theory
International Nuclear Information System (INIS)
It has been proposed by Sakai and Sugimoto recently to construct QCD by using superstring theory and to analyze on the basis of gauge/gravity correspondence. It is tried here to explain the practical applications of the analyzing method specifically to make it possible for those readers, who are not familiar with the superstring theory, to use this method only by reading this paper. Using the method proposed, the description by five-dimensional gauge theory expressed by the action explained in the text is naturally derived for the effective theory of mesons. Once the expression of the action is accepted, it is no more necessary to refer to the superstring theory and gauge/gravity correspondence. In section 2) Specific Important Points of the Analyses: two subsections are provided. 2.1 Five-dimensional gauge theory to four dimensional meson effective theory, and 2.2 Introduction of external field. In section 3) Main Results, the following subsections are given, 3.1 General notes, 3.2 Meson spectra, 3.3 Spontaneous breaking of chiral symmetry and effective action of pions, 3.4 Vector meson dominance, 3.5 Kawarabayashi-Suzuki-Riazuddin-Fawazuddin (KSRF) relation, 3.6 Pion form factor, 37 Chiral anomaly and Wess-Zumino-Witten term, 3.8 ω meson decay, and 3.9 Other topics. In the summary, an overview of the relation between the superstring theory and QCD is given. (S. Funahashi)
ROBFIT: A general purpose spectral analysis package
International Nuclear Information System (INIS)
We show how the spectral analysis code ROBFIT has been used in analyzing gamma-rays output from Supernova 1987A. The observations were performed using the GRAD detector which was on-board a balloon launched from McMurdo Station, Antarctica on January 8 1986. A spectral analysis code, ROBFIT, capable of distinguishing peak at the noise level used to analyze the data. ROBFIT is a general purpose spectral analysis package which as been developed at the University of Florida
Global analysis of generalized parton distributions -- collider kinematics --
Lautenschlager, Tobias; Schaefer, A
2013-01-01
We utilize H1 and ZEUS data for exclusive electroproduction of photons, $\\rho^0$- and $\\phi$-mesons to access generalized parton distributions at small momentum fraction. To do so, we employ state-of-the art techniques, based on next-to-leading order perturbation theory, flexible model parametrization, and Bayesian inference. We provide a partonic interpretation of our analysis, where emphasize is given to the transverse distribution of sea quarks and gluons.
Type IIB string theory, S-duality, and generalized cohomology
Energy Technology Data Exchange (ETDEWEB)
Kriz, Igor [Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: ikriz@umich.edu; Sati, Hisham [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia) and Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005 (Australia)]. E-mail: hsati@maths.adelaide.edu.au
2005-05-30
In the presence of background Neveu-Schwarz flux, the description of the Ramond-Ramond fields of type IIB string theory using twisted K-theory is not compatible with S-duality. We argue that other possible variants of twisted K-theory would still not resolve this issue. We propose instead a connection of S-duality with elliptic cohomology, and a possible T-duality relation of this to a previous proposal for IIA theory, and higher-dimensional limits. In the process, we obtain some other results which may be interesting on their own. In particular, we prove a conjecture of Witten that the 11-dimensional spin cobordism group vanishes on K(Z,6), which eliminates a potential new {theta}-angle in type IIB string theory.
Entropies in General Probabilistic Theories and its Application to Holevo Bound
Kimura, Gen; Ishiguro, Junji; Fukui, Makoto
2016-01-01
General probabilistic theories are designed to provide operationally the most general probabilistic models including both classical and quantum theories. In this letter, we introduce a systematic method to construct a series of entropies, all of which generalize Shannon entropy in classical system and von Neumann entropy in quantum system. Using these entropies, the Holevo bound, an upper bound of the accessible information from a quantum system, is generalized to hold in any general probabil...
Document analysis and recognition with wavelet and fractal theories
Tang, Yuan Yan
2012-01-01
Many phenomena around the research in document analysis and understanding are much better described through the powerful multiscale signal representations than by traditional ways. From this perspective, the recent emergence of powerful multiscale signal representations in general and fractal/wavelet basis representations in particular, has been particularly timely. Indeed, out of these theories arise highly natural and extremely useful representations for a variety of important phenomena in document analysis and understanding. This book presents both the development of these new approaches as
Conformal generally covariant quantum field theory. The scalar field and its Wick products
International Nuclear Information System (INIS)
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale μ appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Development of Generalized Perturbation Theory Capability within the SCALE Code Package
International Nuclear Information System (INIS)
Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28 (epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239Pu(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark.
Development of generalized perturbation theory capability within the scale code package
International Nuclear Information System (INIS)
Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28ρ(epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239U(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark. (authors)
Peter Dorman
2001-01-01
The current framework for the introductory microeconomics course is predicated on the Invisible Hand lessons of mid-twentieth century General Equilibrium Theory. During the final decades of the century, however, the theory changed. Proofs of the path-dependent instability of general equilibrium, the multiplicity of equilibria and the problem of equilibrium selection, and the failure of asymptotic convergence to the properties of equilibrium (The General Theory of the Second Best) provided a s...
Zou, Peng-Cheng; Huang, Yong-Chang(Institute of Theoretical Physics, Beijing University of Technology, 100124, Beijing, China)
2012-01-01
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as the invariant light velocity in current theories, we get the corresponding special theory of relativity. Further, this Letter deduces triple special theories of relativity in cosmology, and cancels the invariant presumption of light velocity, it ...
International Nuclear Information System (INIS)
At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization
Reading Assignment 8 (theory sessions) - 31710 General Linguistics I
Muñoz Baell, Irma María
2012-01-01
Reading Assignment 8 - Driving questions: HOW IS LANGUAGE STUDIED? WHAT DOES IT MEAN THAT LANGUAGE IS STUDIED SCIENTIFICALLY? - Academic year 2011-2012 (ECTS credits: 6 (150 hours)). See the Planned Weekly Schedule (Theory sessions).
Towards a generalized Landau theory of quasi-particles for hot dense matter
International Nuclear Information System (INIS)
In this thesis it is tried to construct a Landau quasi-particle theory for relativistic systems, using field-theoretical methods. It includes a perturbative calculation of the pressure of a quark-gluon plasma. It reports the existence of a hitherto unnoticed plasmon contribution of the order g3 due to transverse quasi-gluons. A new and Lorentz covariant formulation of the Landau theory is being developed, for a general relativistic system. A detailed calculation is presented of the observables of a quantum electrodynamical (QED) plasma, in lowest orders of perturbation theory. A transverse plasmon effect is discovered, both analytically and numerically. In addition, the analysis shows quasi-electrons and positrons to be stable excitations at any temperature. This is proven in all orders of perturbation theory. Along with a Landau theory for quark-gluon matter, a linearized kinetic equation is derived for the singlet quark distribution function, with a collision term for soft encounters between quasi-quarks. (Auth.)
Monte Carlo Hamiltonian: Generalization to Quantum Field Theory
Luo, Xiang-Qian; Jirari, H.; Kroger, H; Moriarty, K.
2001-01-01
Monte Carlo techniques with importance sampling have been extensively applied to lattice gauge theory in the Lagrangian formulation. Unfortunately, it is extremely difficult to compute the excited states using the conventional Monte Carlo algorithm. Our recently developed approach: the Monte Carlo Hamiltonian method, has been designed to overcome the difficulties of the conventional approach. In this paper, we extend the method to many body systems and quantum field theory. The Klein-Gordon f...
A general theory of interference fringes in x-ray phase grating imaging
International Nuclear Information System (INIS)
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers
A general theory of interference fringes in x-ray phase grating imaging
Energy Technology Data Exchange (ETDEWEB)
Yan, Aimin; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: liu@ou.edu [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35249 (United States); Liu, Hong, E-mail: xwu@uabmc.edu, E-mail: liu@ou.edu [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)
2015-06-15
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.
Scalar masses in general N=2 gauged supergravity theories
International Nuclear Information System (INIS)
We readdress the question of whether any universal upper bound exists on the square mass m2 of the lightest scalar around a supersymmetry breaking vacuum in generic N=2 gauged supergravity theories for a given gravitino mass m3/2 and cosmological constant V. We review the known bounds which apply to theories with restricted matter content from a new perspective. We then extend these results to theories with both hyper and vector multiplets and a gauging involving only one generator, for which we show that such a bound exists for both V>0 and V<0. We finally argue that there is no bound for the same theories with a gauging involving two or more generators. These results imply that in N=2 supergravity theories metastable de Sitter vacua with V≪m2 3/2 can only arise if at least two isometries are gauged, while those with V≫m2 3/2 can also arise when a single isometry is gauged
General Education Requirements: A Comparative Analysis
Warner, Darrell B.; Koeppel, Katie
2009-01-01
While "general education" is a phrase heavily used in higher education, Leskes and Wright note that it has multiple meanings: it can refer to those courses that a college or university requires all of its students must pass as a condition for graduation, a common curriculum, a distribution requirement, or even core texts. This analysis of general…
Harmonic analysis and the theory of probability
Bochner, Salomon
2005-01-01
Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic pro
Geometric measure theory and real analysis
2014-01-01
In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Cosmology in nonrelativistic general covariant theory of gravity
Wang, Anzhong; Wu, Yumei
2010-01-01
Horava and Melby-Thompson recently proposed a new version of the Horava-Lifshitz theory of gravity, in which the spin-0 graviton is eliminated by introducing a Newtonian pre-potential $\\phi$ and a local U(1) gauge field $A$. In this paper, we first derive the corresponding Hamiltonian, super-momentum constraints, the dynamical equations, and the equations for $\\phi$ and $A$, in the presence of matter fields. Then, we apply the theory to cosmology, and obtain the modified Friedmann equation an...
A general theory of wave interactions in layered flows
Guha, Anirban
2016-01-01
Using kinematics, we propose a theory of non-modal interactions between the interfaces of a 2D, inviscid, multi-layered fluid system. Specifically, a $3$-interface problem with kinematic and geometric symmetry is explored. Repetitive, extremely short bursts of very high wave growth/decay-rates are observed in the parameter ranges where normal-mode theory predicts stability. The underlying dynamical system predicts chaotic outcomes for some initial conditions. For realistic multi-layered flows, such instabilities of finite amplitude may alter the mean flow to a noisy, unpredictable state.
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
. For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman equation, in the form of a system of on-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All...
Kimura, Rampei; Kobayashi, Tsutomu; YAMAMOTO Kazuhiro
2011-01-01
A generic second-order scalar-tensor theory contains a nonlinear derivative self-interaction of the scalar degree of freedom $\\phi$ \\`{a} la Galileon models, which allows for the Vainshtein screening mechanism. We investigate this effect on subhorizon scales in a cosmological background, based on the most general second-order scalar-tensor theory. Our analysis takes into account all the relevant nonlinear terms and the effect of metric perturbations consistently. We derive an explicit form of...
Integrated control-system design via generalized LQG (GLQG) theory
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
The Mössbauer rotor experiment and the general theory of relativity
Corda, Christian
2016-05-01
In the recent paper Yarman et al. (2015), the authors claim that our general relativistic analysis in Corda (2015), with the additional effect due to clock synchronization, cannot explain the extra energy shift in the Mössbauer rotor experiment. In their opinion, the extra energy shift due to the clock synchronization is of order 10-13 and cannot be detected by the detectors of γ-quanta which are completely insensitive to such a very low order of energy shifts. In addition, they claim to have shown that the extra energy shift can be explained in the framework of the so-called YARK gravitational theory. They indeed claim that such a theory should replace the general theory of relativity (GTR) as the correct theory of gravity. In this paper we show that the authors Yarman et al. (2015) had a misunderstanding of our theoretical analysis in Corda (2015). In fact, in that paper we have shown that electromagnetic radiation launched by the central source of the apparatus is redshifted of a quantity 0 . 6 ¯ v2/c2 when arriving to the detector of γ-quanta. This holds independently by the issue that the original photons are detected by the resonant absorber which, in turns, triggers the γ-quanta which arrive to the final detector. In other words, the result in Corda (2015) was a purely theoretical result that is completely independent of the way the experiment is concretely realized. Now, we show that, with some clarification, the results of Corda (2015) hold also when one considers the various steps of the concrete detection. In that case, the resonant absorber detects the energy shift and the separated detector of γ-quanta merely measures the resulting intensity. In addition, we also show that the YARK gravitational theory is in macroscopic contrast with geodesic motion and, in turn, with the weak equivalence principle (WEP). This is in contrast with another claim of the authors of Yarman et al. (2015), i.e. that the YARK gravitational theory arises from the WEP
A note on the falsification of the general theory of relativity by means of an acceleration test
International Nuclear Information System (INIS)
It is a well recognised fact that the results of the Fitzgerald-Lorentz-Larmor ether theory cannot be experimentally distinguished from the results obtained in the framework of the special theory of relativity. The difference between these two theories can be realised only on the basis of an epistemological analysis. A quite different situation appears when considering the general theory of relativity. Einstein's theory is based on the supposition that the Minkowski geometry is the right geometry for the description of the physical world. The validity of the Minkowski geometry, however, is bounded on the important (tacit) supposition that the rates of the used clocks are not affected by their acceleration. Therefore, an experiment which would show that the proper time of a particle depends on its acceleration would falsify the very basis of Einstein's theory of gravitation. (Auth.)
Erlicher, Silvano; Point, Nelly
2006-01-01
International audience A simple way to define the flow rules of plasticity models is the assumption of generalized normality associated with a suitable pseudo-potential function. This approach, however, is not usually employed to formulate endochronic theory and non-linear kinematic (NLK) hardening rules as well as generalized plasticity models. In this paper, generalized normality is used to give a new formulation of these classes of models. As a result, a suited pseudo-potential is intro...
Boubaker, K; Colantoni, A; Petkova, P.
2013-01-01
The earliest models used in the study of lattice structures are mean field theories, which do not contain structural dependence. The Lattice Compatibility Theory (LCT) proposes here a novel framework where the measure of the disorder is based on Urbach tailing features and lattice matching features between the host matrix and doping agent intrinsic structures. This study has been implemented on a particular compound (BTO:Co) and refers to the Simha-Somcynsky (SS) theory, a mean field theory w...
Directory of Open Access Journals (Sweden)
Borissova L.
2005-07-01
Full Text Available This research shows that gravitational waves and gravitational inertial waves are linked to a special structure of the Riemann-Christoffel curvature tensor. Proceeding from this a classification of the waves is given, according to Petrov’s classification of Einstein spaces and gravitational fields located therein. The world-lines deviation equation for two free particles (the Synge equation is deduced and that for two force- interacting particles (the Synge-Weber equation in the terms of chronometric invariants - physical observable quantities in the General Theory of Relativity. The main result drawn from the deduced equations is that in the field of a falling gravitational wave there are not only spatial deviations between the particles but also deviations in the time flow. Therefore an effect from a falling gravitational wave can manifest only if the particles located on the neighbouring world-lines (both geodesics and non- geodesics are in motion at the initial moment of time: gravitational waves can act only on moving neighbouring particles. This effect is purely parametric, not of a resonance kind. Neither free-mass detectors nor solid-body detectors (the Weber pigs used in current experiments can register gravitational waves, because the experimental statement (freezing the pigs etc. forces the particles of which they consist to be at rest. In aiming to detect gravitational waves other devices should be employed, where neighbouring particles are in relative motion at high speeds. Such a device could, for instance, consist of two parallel laser beams.
On the construction of a psychologically based, general theory of observation: an introduction
Nyman, Göte
2013-01-01
The perception-related origins of physical measures and standards are considered within the framework of the general observer theory. The impact of observer characteristics on the development of observer-centric physics, physical concepts and metrics are analyzed. A preliminary theoretical approach is suggested for the construction of a general observer theory and formulation of its relationship to observer-centered physical concepts and theories. The approach makes it possible to construct a theory of the observer, intrinsic in any theory of physics.
Calculus of variations in rate of reactions tax using the general pertubation theory
International Nuclear Information System (INIS)
A perturbation expression to calculate the variations in the rates of integral parameters (such as reaction rates) of a reactor using a Time-Independent Generalized Perturbation Theory, was developed. This theory makes use of the concepts of neutron generation and neutron importance with respect to a given process occurring in a system. The application of Time-Dependent Generalized Perturbation Theory to the calculation of Burnup, by using the expressions derived by A. Gandini, along with the perturbation expression derived in the Time Independent Generalized Perturbation Theory, is done. (Author)
A positive formalism for quantum theory in the general boundary formulation
Oeckl, Robert
2012-01-01
We introduce a new "positive formalism" for encoding quantum theories in the general boundary formulation, somewhat analogous to the mixed state formalism of the standard formulation. This makes the probability interpretation more natural and elegant, eliminates operationally irrelevant structure and opens the general boundary formulation to quantum information theory.
Supersymmetric Background of Type II Theories and Generalized Geometry
International Nuclear Information System (INIS)
I will present an outline of generalised geometry and I show how it provides a natural description of supersymmetric backgrounds. The discussion will be in slightly different terms to those appearing in the majority of the literature. It appears that: -) generalized geometry is a natural extension of differential geometry, -) we have brackets, metrics, spinors etc, in generalized geometry, and -) N=1 vacuum equations look more natural in this language. This document is composed of the slides of the presentation. (author)
Generalized Social Marginal Welfare Weights for Optimal Tax Theory
Emmanuel Saez; Stefanie Stantcheva
2013-01-01
This paper proposes a new way to evaluate tax reforms, by aggregating losses and gains of different individuals using “generalized social marginal welfare weights.” A tax system is optimal if no budget neutral small reform can increase the weighted sum of (money metric) gains and losses across individuals. Optimum tax formulas take the same form as standard welfarist tax formulas by simply substituting standard marginal social welfare weights with those generalized marginal social welfare wei...
Symmetry analysis for anisotropic field theories
Energy Technology Data Exchange (ETDEWEB)
Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Correspondence analysis theory, practice and new strategies
Beh, Eric J
2014-01-01
A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use. Particular attention is given to the history and mathematical links of the developments made. These links include not just those majo
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
Cosmological Theories of Special and General Relativity - II
Carmeli, M
2004-01-01
Astronomers measure distances to faraway galaxies and their velocities. They do that in order to determine the expansion rate of the Universe. In Part I of these lectures the foundations of the theory of the expansion of the Universe was given. In this part we present the theory. A formula for the distance of the galaxy in terms of its velocity is given. It is very simple: $r(v)=c\\tau/\\beta\\sinh\\beta v/c$, where $\\tau$ is the Big Bang time, $\\beta =\\sqrt{1-\\Omega_m}$, and $\\Omega_m$ is the mass density of the Universe. For $\\Omega_m<1$ this formula clearly indicates that the Universe is expanding with acceleration, as experiments clearly show.
Transforming Teacher Education, An Activity Theory Analysis
McNicholl, Jane; Blake, Allan
2013-01-01
This paper explores the work of teacher education in England and Scotland. It seeks to locate this work within conflicting sociocultural views of professional practice and academic work. Drawing on an activity theory framework that integrates the analysis of these seemingly contradictory discourses with a study of teacher educators' practical…
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.; Todd, B. D.; Bruus, Henrik
2013-01-01
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for ...
Information and measurement in generally covariant quantum theory
Olson, S. Jay; Dowling, Jonathan P.
2007-01-01
Due to the absence of an external, classical time variable, the probabilistic predictions of covariant quantum theory are ambiguous when multiple measurements are considered. Here, we introduce an information theoretic framework to the covariant formalism, and use it to interpret the measurement process. We find that the time ordering of measurements emerges as an entropy relationship in the state of the observers, giving unique probabilities for multiple measurements. This approach suggests ...
Contest dynamics general biomechanical theory of contest sports
Sacripanti, Attilio
2008-01-01
In this report it is approched the Contest dynamics as mathematical theory, therefore applicable to all contest sports. Starting with the physical definition of Athlete and Couple of Athlete systems and after singling out the interaction basic parameter, there are analyzed the classes of possible potentials describing the interaction. At the end there are specified the physical bases of mutual interaction between athletes and the trajectories of flight motion. All the matter will be connected...
Bivariate drought analysis using entropy theory
Hao, Zengchao; Singh, Vijay P
2012-01-01
Drought analysis is important for water resources planning and management. Drought duration and severity are two main characteristics that have often been used for drought analysis, which can be defined using run theory with hydrological variables (e. g., streamflow). A traditional way to characterize the drought duration or severity is based on fitting a probability density function. The drought duration can be modeled by a geometric distribution (discrete) or an exponential distribution ...
Bagger-Lambert theory for general Lie algebras
International Nuclear Information System (INIS)
We construct the totally antisymmetric structure constants fABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants fABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the 'center-of-mass' mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large gYM.
Suicidality among Students: An Experiment of Agnew\\\\\\'s General Strain Theory
Akbar Aliverdinia; Neda Usefi
2014-01-01
Introduction Agnew's general strain theory is one of the best known theories of criminology. The popularity of this theory is derived from its scope and breadth which allows researchers to investigate about the effects of a variety of structural and psychological stressors on a range of deleterious outcomes. Although this theory is developed and tested to explain crime, it can also be applied to explain behaviors such as substance abuse and suicide. The main objective of this study is to p...
Type and structure of time-like singularities in general relativity theory
International Nuclear Information System (INIS)
A method is proposed which permits one to deterMine whether a time-like singularity refers to a point, linear or some other type of gravitational field singularity. It is shown that in the general theory of relativity an altogether different type of source may be possible which does not have any analogs in finite curvature space. An analysis is made of a number of solutions containing time-like singularities whose type varies depending on the sign of the functions involved in the solutions. The form of the solution near simple linear sources and of generalized anisotropic solutions is determined more accurately. The space-time described by the γ-metric is investigated completely and the form of the metric near the ends and at singular points of linear Weyl singularities is found
Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media
André Ambrosio, Leonardo
2016-09-01
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.
General N-body theory of nonrelativistic quantum scattering
International Nuclear Information System (INIS)
The two-Hilbert-space theory of scattering is reviewed with particular reference to its application to non-relativistic multichannel quantum-mechanical scattering theory. In part I the abstract assumptions of the theory are collected, transition operators (both on- and off-energy-shell) are defined, the dynamical equations that determine the off-shell transition operators are presented and their real-energy limits examined, and the convergence of sequences of approximate transition operators is established. A section on how to incorporate group symmetries into the formalism reports new work. The material of part I is relevant to a variety of both classical and quantum scattering systems. In part II attention is directed specifically to N-body non-relativistic quantum scattering systems in which the particles interact via short-range pair potentials. A method of constructing approximate transition operators is presented and shown to satisfy all the abstract assumptions of part I. The dynamical equations that determine the half-on-shell approximate transition operators are shown to be coupled one-dimensional integral equations that have compact kernels and unique solutions when considered as operators on a Hilbert space of Hoelder continuous functions. Moreover, the on-shell parts of those approximate transition amplitudes are shown to converge to the exact on-shell amplitudes as the order of the approximation increases. Detailed formulas for the kernels of the integral equations are written down for systems of particles that are distinguishable and for systems containing identical particles. Finally, some important open problems are described. (author)
Interior point algorithms theory and analysis
Ye, Yinyu
2011-01-01
The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject.
A model for hot electron phenomena: Theory and general results
International Nuclear Information System (INIS)
We propose a model for the description of the hot electron phenomena in semiconductors. Based on this model we are able to reproduce accurately the main characteristics observed in experiments of electric field transport, optical absorption, steady state photoluminescence and relaxation process. Our theory does not contain free nor adjustable parameters, it is very fast computerwise, and incorporates the main collision mechanisms including screening and phonon heating effects. Our description on a set of nonlinear rate equations in which the interactions are represented by coupling coefficients or effective frequencies. We calculate three coefficients from the characteristic constants and the band structure of the material. (author). 22 refs, 5 figs, 1 tab
Generalize 't Hooft's quantum state of the black hole theory
International Nuclear Information System (INIS)
Stating from 't Hooft's theory in which the black hole is treated as quantum states with high degeneracy with considerations of the quantum effect of the black hole and the Heisenberg uncertainty principle, the authors find out that the coordinations near horizon are noncommutative. Using the noncommutative field method, the authors study the non-extreme Reissner-nordstroem macro-black hole, and successfully calculate the black hole entropy and the Hawking temperature. The authors also predict the number of the dynamical freedom of the field and our quantum horizon model supports the Minimal Super-symmetric Standard Model. (authors)
The General Theory of Homogenization A Personalized Introduction
Tartar, Luc
2010-01-01
Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,
Contest dynamics general biomechanical theory of contest sports
Sacripanti, Attilio
2008-01-01
In this report it is approched the Contest dynamics as mathematical theory, therefore applicable to all contest sports. Starting with the physical definition of Athlete and Couple of Athlete systems and after singling out the interaction basic parameter, there are analyzed the classes of possible potentials describing the interaction. At the end there are specified the physical bases of mutual interaction between athletes and the trajectories of flight motion. All the matter will be connected to measurable quantities or parameters useful for researchers and trainers.
International Nuclear Information System (INIS)
The chase after a world formula is presently the most iridescent task for natural science. By the development of a radical new scientistic theory, unifying not only relativity and quantum theory as also astrophysics and string theory to a common view, the author lances the first serious candidate for a TOE (Theory of Everything) in the scientific discussion. The General Theory of Duality (GDT) offers not only surprising answers to fundamental questions of physics, but also discovers the smallest component of our universe, which is still known since a longer time, which we ignored: Planck's Constant. May be possible that by this book a new world view in physics can be created. (GL)
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Noncommutative analysis, operator theory and applications
Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc
2016-01-01
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
Quantum field theory for a general class of accelerated observers
International Nuclear Information System (INIS)
The authors formulate QFT in a wide class of accelerated coordinates in four dimensions. This generalizes the approach given previously by the author in terms of holomorphic (and / or anti-holomorphic) mappings. They give a characterization of global and asymptotic thermal equilibrium situations, an unicity theorem concerning the Rindler space and a discussion of the quantum detection and the isotropy of thermal radiation
Toward a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.
2006-01-01
In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Ma
Instability of Static Semi-Closed Worlds in Generalized Galileon Theories
Evseev, O A
2016-01-01
We consider generalized Galileon theories within general relativity in four-dimensional space-time. We provide the argument showing that the generalized Galileons described by a wide class of Lagrangians do not admit stable, static, spherically symmetric semi-closed worlds. We also show that in a class of theories with $p_{\\perp} = - \\rho$ (where $p_{\\perp}$ is transverse pressure and $\\rho$ is energy density), semi-closed worlds, if exist, would be observed as objects of negative mass.
Einstein-aether theory with a Maxwell field: General formalism
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B., E-mail: Alexander.Balakin@kpfu.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation); Lemos, José P.S., E-mail: joselemos@ist.utl.pt [Centro Multidisciplinar de Astrofísica-CENTRA, Departamento de Física, Instituto Superior Técnico-IST, Universidade de Lisboa-UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
Generalization of entropy based divergence measures for symbolic sequence analysis.
Directory of Open Access Journals (Sweden)
Miguel A Ré
Full Text Available Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD, is of particular interest because of its sharing properties with families of other divergence measures and its interpretability in different domains including statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise because of a number of attributes including generalization to any number of probability distributions and association of weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S. enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal organisms.
THEORY AND APPLICATION OF WAVELET ANALYSIS INSTRUMENT LIBRARY
Institute of Scientific and Technical Information of China (English)
BO Lin; QIN Shuren; LIU Xiaofeng
2006-01-01
Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT),wavelet denosing and mother wavelet selection, etc. Using the component-based hierarchy mode, the platform for virtual instrument (Ⅵ) is constructed, and the functions such as data sampling, data analysis and data present, etc are provided. Subsequently, the wavelet analysis library is designed and developed. The library consists of expert system, experienced database, development platform and abundant wavelet analysis functional module, which together implement general and special wavelet analysis in the field of mechanical engineering, energy source, transportation and biomedicine, etc.Finally, the wavelet analysis virtual instrument library is applied to detect fault called engine knock.Experimental result indicates that the wavelet analysis virtual instrument library can efficiently solve the engineering problem such as detecting engine knock.
A Proof Theoretic Analysis of Intruder Theories
Tiu, Alwen; Dawson, Jeremy
2010-01-01
We consider the problem of intruder deduction in security protocol analysis: that is, deciding whether a given message M can be deduced from a set of messages Gamma under the theory of blind signatures and arbitrary convergent equational theories modulo associativity and commutativity (AC) of certain binary operators. The traditional formulations of intruder deduction are usually given in natural-deduction-like systems and proving decidability requires significant effort in showing that the rules are "local" in some sense. By using the well-known translation between natural deduction and sequent calculus, we recast the intruder deduction problem as proof search in sequent calculus, in which locality is immediate. Using standard proof theoretic methods, such as permutability of rules and cut elimination, we show that the intruder deduction problem can be reduced, in polynomial time, to the elementary deduction problem, which amounts to solving certain equations in the underlying individual equational theories....
Colombeau's generalized functions and non-standard analysis
International Nuclear Information System (INIS)
Using some methods of the Non-Standard Analysis we modify one of Colombeau's classes of generalized functions. As a result we define a class ε-circumflex of the so-called meta-functions which possesses all good properties of Colombeau's generalized functions, i.e. (i) ε-circumflex is an associative and commutative algebra over the system of the so-called complex meta-numbers C-circumflex; (ii) Every meta-function has partial derivatives of any order (which are meta-functions again); (iii) Every meta-function is integrable on any compact set of Rn and the integral is a number from C-circumflex; (iv) ε-circumflex contains all tempered distributions S', i.e. S' is contained in ε' isomorphically with respect to all linear operations (including the differentiation). Thus, within the class ε-circumflex the problem of multiplication of the tempered distributions is satisfactorily solved (every two distributions in S' have a well-defined product in ε-circumflex). The crucial point is that C-circumflex is a field in contrast to the system of Colombeau's generalized numbers C-bar which is a ring only (C-bar is the counterpart of C-circumflex in Colombeau's theory). In this way we simplify and improve slightly the properties of the integral and notion of ''values of the meta-functions'' as well as the properties of the whole class ε-circumflex itself if compared with the original Colombeau theory. And, what is maybe more important, we clarify the connection between the Non-Standard Analysis and Colombeau's theory of new generalized functions in the framework of which the problem of multiplication of distributions was recently solved. (author). 14 refs
The origin of continental crust: Outlines of a general theory
Lowman, P. D., Jr.
1985-01-01
The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).
Electrostatic stability of plasmas of finite length. General theory
International Nuclear Information System (INIS)
With the simple model of a plane geometry, taking into account the finite extension of the plasma along the magnetic field and the existence of a cold plasma between the hot plasma and exterior conducting plates, as well as the reflection of the particles at the mirrors, the curvature of the field lines and the density gradient, the equation for electrostatic perturbations, supposing β << 1, is given with the most general particle equilibrium state. This equation is solved. It contains new terms related to the mirror effect, having poles for all the linear combination with integer numbers of the various frequencies of the system for each species of particles. It does no longer admit as previously a 'free wave' solution. Furthermore, we give the general dispersion relation, applying the boundary conditions, from which the electrostatic stability of the system can be studied. This will be done elsewhere, but some properties of open systems are indebted. (author)
Game Theory and Empirical Generalizations Concerning Competitive Promotions
Ram C. Rao; Ramesh V. Arjunji; B. P. S. Murthi
1995-01-01
This paper offers the generalization that competitive promotions are mixed strategies. First an empirical regularity is established that promotions are independent across competitors. This regularity is then elaborated on in the context of a promotion game. The promotion game is linked to observable outcomes, and a classification of possible situations is developed. In particular, the classification includes the prisoners' dilemma, battle of the sexes, and marketing models of promotion compet...
Learning and generalization theories of large committee--machines
Monasson, Remi; Zecchina, Riccardo
1996-01-01
The study of the distribution of volumes associated to the internal representations of learning examples allows us to derive the critical learning capacity ($\\alpha_c=\\frac{16}{\\pi} \\sqrt{\\ln K}$) of large committee machines, to verify the stability of the solution in the limit of a large number $K$ of hidden units and to find a Bayesian generalization cross--over at $\\alpha=K$.
On the algebraic structure of isotropic generalized elasticity theories
AUFFRAY, Nicolas
2013-01-01
In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order...
On the algebraical structure of isotropic generalized elasticity theories
AUFFRAY, Nicolas
2013-01-01
International audience In this paper the algebraical structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elem...
An Integration of General Relativity and Relativistic Quantum Theory
Johnson, Joseph E.
2016-01-01
In previous work, the author extended the Poincare Lie algebra to include a four position operator as a natural extension to a large fifteen parameter Lie algebra of operators. We here propose to generalize the metric contained in those structure constants to be the Riemann metric as determined by Einstein's equations from the energy momentum tensor. This gives a new type of "Lie" algebra whose structure constants are space-time dependent. One obtains a new type of uncertainty principle in st...
Generalized Virasoro anomaly and stress tensor for dilaton coupled theories
Fabbri, Alessandro; Farese, Sara; Navarro Salas, José
2003-01-01
We derive the anomalous transformation law of the quantum stress tensor for a 2D massless scalar field coupled to an external dilaton. This provides a generalization of the Virasoro anomaly which turns out to be consistent with the trace anomaly. We apply it together with the equivalence principle to compute the expectation values of the covariant quantum stress tensor on a curved background. Finally we briefly illustrate how to evaluate vacuum polarization and Hawking radiation effects from ...
Multi-attribute utility theory. Toward a more general framework
International Nuclear Information System (INIS)
Optimizing maintenance programs for nuclear power plants is a difficult task. Beyond the reliability of the systems at hand, one has to consider several conflicting objectives such as safety, availability, maintenance costs, personal exposure to radiations, all under risk. Multi-Attributed Utility Theory is a widely used framework to cope with such problems. This procedure is, however, based on a set of axioms which imply an expected utility treatment of risk. It has been shown elsewhere that the risk structure to be considered in such cases does not correspond to behavior consistent with such a treatment of risk, but would rather correspond to a rank dependent evaluation type of model. The question raised is then how to use a multi-attributed scheme of preferences under such conditions. (author)
Algebric generalization of symmetry Dirac bracket. Application to field theory
International Nuclear Information System (INIS)
The A set of observable of a physical system with finite e infinite number of degrees of freedom and submitted to certain constraint conditions, is considered. Using jordan algebra structure on A in relation to bymmetric Poisson bracket obtained by Droz-Vincent, a jordan product is obtained on the A/I quocient set with regard to I ideal generated by constraints of second class. It is shown that this product on A/I corresponds to symmetric Dirac bracket. The developed formulation is applied to a system corresponding to harmonic oscillators, non relativistic field, Rarita-Schwinger field and the possibility of its utilization in fermionic string theories is discussed. (M.C.K.)
General nonlinear theory of quasiparticle dynamics and kinetics in crystals
International Nuclear Information System (INIS)
In solid state physics quasiparticles are elementary excitations the excited states consist of. They are carriers of a corresponding type of motion of the whole system. There are different types of motion in every solid and the excitation of each type generates its own quasiparticles. It is seen therefore, that quantum mechanics, and, particularly, the quasiparticle approach, suggest a new way for characterizing systems whose dependence is not on their building elements but on the possible types of motion. In such a way the quantum mechanical consideration replaces the red particles and the periodic lattice potential by quasiparticles with complicated diversion law and consequently, one has to develop for quasiparticles new mechanics, new scattering theory, new statistics, new kinetics, etc. 17 refs
Multi-attribute utility theory. Toward a more general framework
Energy Technology Data Exchange (ETDEWEB)
Beaudoin, F. [Electricite de France, 78 - Chatou (France). Groupe Aide a la Decision de Maintenance; Munier, B. [Ecole Normale Superieure, 94 - Cachan (France). Economic et Gestion; Serquin, Y. [Electricite de France, 78 - Chatou (France). Groupe Aide a la Decision de Maintenance]|[Ecole Normale Superieure, 94 - Cachan (France). Dept. Economic et Gestion
1997-12-01
Optimizing maintenance programs for nuclear power plants is a difficult task. Beyond the reliability of the systems at hand, one has to consider several conflicting objectives such as safety, availability, maintenance costs, personal exposure to radiations, all under risk. Multi-Attributed Utility Theory is a widely used framework to cope with such problems. This procedure is, however, based on a set of axioms which imply an expected utility treatment of risk. It has been shown elsewhere that the risk structure to be considered in such cases does not correspond to behavior consistent with such a treatment of risk, but would rather correspond to a rank dependent evaluation type of model. The question raised is then how to use a multi-attributed scheme of preferences under such conditions. (author) 20 refs.
Some open questions in the theory of generalized permutable subgroups
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A subgroup H of a group G is said to be weakly s-supplemented in G if H has a supplement T in G such that H ∩ T HsG, where HsG is the largest s-permutable subgroup of G contained in H. This paper constructs an example to show that the open questions 6.3 and 6.4 in J Algebra, 315: 192–209 (2007) have negative solutions, and shows that in many cases Question 6.4 is positive. A series of known results are unified and generalized.
An Integration of General Relativity and Relativistic Quantum Theory
Johnson, Joseph E
2016-01-01
In previous work, the author extended the Poincare Lie algebra to include a four position operator as a natural extension to a large fifteen parameter Lie algebra of operators. We here propose to generalize the metric contained in those structure constants to be the Riemann metric as determined by Einstein's equations from the energy momentum tensor. This gives a new type of "Lie" algebra whose structure constants are space-time dependent. One obtains a new type of uncertainty principle in strong gravitational fields and an altered spectra for the hydrogen atom.
A superconducting gyroscope to test Einstein's general theory of relativity
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
(Split-)octonions, generalized supersymmetries and M-theory
International Nuclear Information System (INIS)
In this talk I discuss the results of a joint paper with Z. Kuznetsova, where the split-division algebras are introduced to construct generalized supersymmetries in different space-time signatures. In particular, in D=11 dimensions, it is shown that split-octonions allow to introduce a split-octonionic M-algebra which extends to the (6,5) signature the properties of the 11-dimensional octonionic M-algebras, only existing in (10,1) and (2,9) signatures. The three space-times above form a triality-related set of (split-)octonionic, eleven dimensional, spacetimes. (author)
International Nuclear Information System (INIS)
The classification of second order symmetric tensors in general relativity theory is examined. Having defined the tensors to be classified and considered their role in Einstein's theory, the theory of bivectors is introduced. Known methods of classifying Weyl and Ricci tensors are discussed and spaces admitting symmetries and in particular the restrictions imposed on the Ricci tensor by locally isotropic space-times are considered. Finally the classifications of the Ricci tensor due to Ludwig and Scanlon and Penrose are investigated. (U.K.)
Univariate and multivariate general linear models theory and applications with SAS
Kim, Kevin
2006-01-01
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences.With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regr
Fluctuation-exchange theory for general lattice Hamiltonians
International Nuclear Information System (INIS)
The fluctuation-exchange, or FLEX, approximation for interacting electrons is derived for lattice Hamiltonians with general instantaneous one- and two-body terms. The use of a two-body basis set indexed by relative separation, rather than relative momentum, is emphasized. The fluctuation-exchange approximation for the three-orbital CuO2 model with on-site and near-neighbor Coulomb interactions is solved for one-particle properties. Unit-cell densities corresponding to both open-quotes hole dopingclose quotes and open-quotes electron dopingclose quotes are studied. The model is found to be far from a charge-density instability for all reasonable parameter values. The only nearly unstable particle-hole channel for unit-cell densities close to unity has Q∼(π,π) and S=1 (antiferromagnetic). The Fermi surface of the interacting system is computed, and the Luttinger theorem verified numerically in its most general context. Orbital-projected occupancy factors and spectral densities are examined. copyright 1996 The American Physical Society
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
Enlivening analysis through performance : practising set theory.
Mawer, Deborah H.
2003-01-01
This is a sister article to one that appeared in this journal in 1999, which established benefits in coupling instrumental study and voice-leading analysis, primarily for performers but also for analysts. That analytical students too were more receptive to study when connected with their instrument was the cue for the present article; performance has much to offer the teaching/learning of non-tonal analytical techniques founded on the basic tenets of set theory. This article details an experi...
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
General theory of intraband relaxation processes in heavily doped graphene
Kupčić, I.
2015-05-01
The frequency and wave-vector-dependent memory function in the longitudinal conductivity tensor of weakly interacting electronic systems is calculated by using an approach based on quantum transport equations. In this paper, we show that there is a close relation between the single-electron self-energy, the electron-hole pair self-energy, and the memory function. It is also shown in which way singular long-range Coulomb interactions, together with other q ≈0 scattering processes, drop out of both the memory function and the related transport equations. The theory is illustrated on heavily doped graphene, which is the prototype of weakly interacting single-band electron-phonon systems. A steplike increase of the width of the quasiparticle peak in angle-resolved photoemission spectra at frequencies of the order of the frequency of in-plane optical phonons is shown to be consistent with the behavior of an intraband plasmon peak in the energy loss spectroscopy spectra. Both anomalies can be understood as a direct consequence of weak electron scattering from in-plane optical phonons.
General theory of frictional heating with application to rubber friction
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
T-equivariant K-theory of generalized flag varieties.
Kostant, B; Kumar, S
1987-07-01
Let G be a Kac-Moody group with Borel subgroup B and compact maximal torus T. Analogous to Kostant and Kumar [Kostant, B. & Kumar, S. (1986) Proc. Natl. Acad. Sci. USA 83, 1543-1545], we define a certain ring Y, purely in terms of the Weyl group W (associated to G) and its action on T. By dualizing Y we get another ring Psi, which, we prove, is "canonically" isomorphic with the T-equivariant K-theory K(T)(G/B) of G/B. Now K(T)(G/B), apart from being an algebra over K(T)(pt.) approximately A(T), also has a Weyl group action and, moreover, K(T)(G/B) admits certain operators {D(w)}w[unk]W similar to the Demazure operators defined on A(T). We prove that these structures on K(T)(G/B) come naturally from the ring Y. By "evaluating" the A(T)-module Psi at 1, we recover K(G/B) together with the above-mentioned structures. We believe that many of the results of this paper are new in the finite case (i.e., G is a finite-dimensional semisimple group over C) as well. PMID:16593856
General theory of frictional heating with application to rubber friction
International Nuclear Information System (INIS)
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s−1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction. (paper)
Analysis IV integration and spectral theory, harmonic analysis, the garden of modular delights
Godement, Roger
2015-01-01
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern and classical, is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.
Suicidality among Students: An Experiment of Agnew\\\\\\'s General Strain Theory
Directory of Open Access Journals (Sweden)
Akbar Aliverdinia
2014-05-01
This study examined the impacts of several variables from Agnew’s general strain theory on suicidality. The results suggest that general strain theory is to some extent effective in explaining students' suicidality and can provide a theoretical model for studying suicide. The results of the study show that there is direct and significant relationship between removal of positive stimuli and suicidality, in the sense that by increasing in the likelihood of this variable, the rate of suicidality also increases. So when a person tries to deal with removal of positive stimuli, he or she is more likely to engage in deviant behaviors such as suicide. The results also suggest that students with status strain are more likely to experience suicidality. Likewise, students with relational strain are more likely to experience suicidality. A person who is exposed to more negative relationships with others, will be more likely to committee suicide. Thus, the findings suggest that a positive relationship with family and peers is an important protective factor against suicidality. Multiple regression analysis also shows that independent variables of this study are strong predictors of suicidality, they include removal of positive stimulus (beta coefficient=0/147, status strain (beta coefficient=0/140, relational strain (beta coefficient=0/127.
D numbers theory: a generalization of Dempster-Shafer evidence theory
Deng, Yong
2014-01-01
Efficient modeling of uncertain information in real world is still an open issue. Dempster-Shafer evidence theory is one of the most commonly used methods. However, the Dempster-Shafer evidence theory has the assumption that the hypothesis in the framework of discernment is exclusive of each other. This condition can be violated in real applications, especially in linguistic decision making since the linguistic variables are not exclusive of each others essentially. In this paper, a new theor...
A generalized preimage theorem in global analysis
Institute of Scientific and Technical Information of China (English)
MA; Jipu
2001-01-01
［1］Ma Jipu, (1.2) inverses of operators between Banach spaces and conjugacy theorem, Chinese Annals of Math., B, 1999, 20(1): 57.［2］Ma Jipu, Rank theorem of operators between Banach spaces, Science in China, Ser. A, 2000, 43(1): 1.［3］Ma Jipu, Local conjugacy theorem, rank theorems in advenced calculus and a generalized principle constructing Banach manifolds, Science in China, Ser. A, 2000, 43(12): 1233.［4］Zeidler, A. E., Nonlinear Function Analysis and Its Applications, IV: Applications to Mathematical Physics, New York: Springer-Verlag, 1988.
Relation between quantum effects in general relativity and embedding theory
Paston, S. A.
2015-10-01
We discuss results relevant to the relation between quantum effects in a Riemannian space and on the surface appearing as a result of its isometric embedding in a flat space of a higher dimension. We discuss the correspondence between the Hawking effect fixed by an observer in the Riemannian space with a horizon and the Unruh effect related to an accelerated motion of this observer in the ambient space. We present examples for which this correspondence holds and examples for which there is no correspondence. We describe the general form of the hyperbolic embedding of the metric with a horizon smoothly covering the horizon and prove that there is a correspondence between the Hawking and Unruh effects for this embedding. We also discuss the possibility of relating two-point functions in a Riemannian space and the ambient space in which it is embedded. We obtain restrictions on the geometric parameters of the embedding for which such a relation is known.
Relation between quantum effects in General Relativity and embedding theory
Paston, S A
2015-01-01
We present results relevant to the relation between quantum effects in a Riemannian space and on the surface appearing as a result of its isometric embedding in a flat space of a higher dimension. We discuss the mapping between the Hawking effect fixed by an observer in the Riemannian space with a horizon and the Unruh effect related to an accelerated motion of this observer in the ambient space. We present examples for which this mapping holds and examples for which there is no mapping. We describe the general form of the hyperbolic embedding of the metric with a horizon smoothly covering the horizon and prove that there is a Hawking into Unruh mapping for this embedding. We also discuss the possibility of relating two-point functions in a Riemannian space and the ambient space in which it is embedded. We obtain restrictions on the geometric parameters of the embedding for which such a relation is known.
Compositional Data Analysis Theory and Applications
Pawlowsky-Glahn, Vera
2011-01-01
This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code
General theory of detection of signal induced in vibrating magnetometer
International Nuclear Information System (INIS)
Assuming the point dipole approximation only and making use of the vectorial notation, signal (EMF) induced in a single-turn pick-up coil of the vibrating magnetometer are calculated for the case of any orientation of the coil, of vibration axis and of the magnetic moment of the sample. On the basis of formula obtained, three types of measurement geometries have been distinquished and for these the qualitative analysis is made. (author)
Harmonic Analysis Associated with the Generalized q-Bessel Operator
Ahmed Abouelaz; Radouan Daher; El Mehdi Loualid
2016-01-01
In this article, we give a new harmonic analysis associated with the generalized q-Bessel operator. We introduce the generalized $q$-Bessel transform, the generalized q-Bessel translation and the generalized $q$-Bessel convolution product.
General theory of peak compression in liquid chromatography.
Gritti, Fabrice
2016-02-12
A new and general expression of the peak compression factor in liquid chromatography is derived. It applies to any type of gradients induced by non-uniform columns (stationary) or by temporal variations (dynamic) of the elution strength related to changes in solvent composition, temperature, or in any external field. The new equation is validated in two ideal cases for which the exact solutions are already known. From a practical viewpoint, it is used to predict the achievable degree of peak compression for curved retention models, retained solvent gradients, and for temperature-programmed liquid chromatography. The results reveal that: (1) curved retention models affect little the compression factor with respect to the best linear strength retention models, (2) gradient peaks can be indefinitely compressed with respect to isocratic peaks if the propagation speed of the gradient (solvent or temperature) becomes smaller than the chromatographic velocity, (3) limitations are inherent to the maximum intensity of the experimental intrinsic gradient steepness, and (4) dynamic temperature gradients can be advantageously combined to solvent gradients in order to improve peak capacities of microfluidic separation devices. PMID:26805599
Integrability of generalized (matrix) Ernst equations in string theory
Alekseev, G A
2004-01-01
The integrability structures of various matrix generalizations of the Ernst equation for a Hermitian or complex symmetric $d\\times d$-matrix Ernst potentials which arise respectively as the equations of motion for a truncated bosonic parts of the low-energy string effective action for a dilaton and $2d\\times 2d$ - matrix of moduli fields with vanishing all gauge fields or for a string gravity model with a scalar (dilaton) field, one U(1) gauge vector field and an antisymmetric 3-form field, all depending on two space-time coordinates only, are elucidated. We construct the corresponding spectral problems based on the overdetermined $2d\\times 2d$-linear systems with a spectral parameter possessing the universal (i.e. solution independent) structures of the canonical Jordan forms of their matrix coefficients. The additionally imposed conditions of existence for each of these systems of two matrix integrals with appropriate symmetries provide a specific (coset) structures of the related matrix variables. An equiv...
Post-Relativistic Gravity - A Hidden Variable Theory For General Relativity
Schmelzer, Ilja
1996-01-01
Post-relativistic gravity is a hidden variable theory for general relativity. It introduces the pre-relativistic notions absolute space, absolute time, and ether as hidden variables into general relativity. Evolution is defined by the equations of general relativity and the harmonic coordinate condition interpreted as a physical equation. There are minor differences in predictions compared with general relativity (i.e. trivial topology of the universe is predicted). The unobservable absolute ...
Generalized Electrodynamics as a Special Case of Metric Independent Stress Theory
Segev, Reuven
2014-01-01
We use a metric invariant stress theory of continuum mechanics to formulate a simple generalization of the the basic variables of electrodynamics and Maxwell's equations to general differentiable manifolds of any dimension, thus viewing generalized electrodynamics as a special case of continuum mechanics. The basic variable is the potential, or a variation thereof, which is represented as an $r$-form in a $d$-dimensional spacetime. The stress for the case of generalized electrodynamics, is as...
General relativity limit of the scalar-tensor theories for traceless matter field
Bhadra, A.
2002-01-01
$\\omega(\\phi) \\to \\infty$ limit of scalar tensor theories are studied for traceless matter source. It is shown that the limit $\\omega(\\phi) \\to \\infty$ does not reduce a scalar tensor theory to general relativity. An exact radiation solution of scalar tensor cosmology under Nordtvedt conditions is obtained for flat Friedmann universe.
Seidl, Michael; Gori-Giorgi, Paola; Savin, Andreas
2007-01-01
We reformulate the strong-interaction limit of electronic density functional theory in terms of a classical problem with a degenerate minimum. This allows us to clarify many aspects of this limit, and to write a general solution, which is explicitly calculated for spherical densities. We then compare our results with previous approximate solutions and discuss the implications for density functional theory.
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
Directory of Open Access Journals (Sweden)
Burgess Cliff P.
2004-01-01
Full Text Available This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
Kantowski-Sachs cosmological model with wet dark fluid in the general theory of relativity
RAVISHANKAR, Arun; Mishra, Bivudutta; SAHOO, Pradyumn Kumar
2013-01-01
The purpose of this study was to investigate the role of wet dark fluid (WDF) in Kantowski-Sachs space-time in the general theory of relativity. In this theory, we solved the field equations for the case where r WDF=-2pWDF. Various physical and geometrical properties of the model are also discussed.
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
Burgess Cliff P.
2003-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002
International Nuclear Information System (INIS)
OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)
About the origins of the general theory of relativity: Einstein's search for the truth
Trainer, M.
2005-01-01
On the 20th June 1933 Professor Einstein addressed a large and enthusiastic audience in the Victorian Gothic Bute Hall of the University of Glasgow. Einstein spoke 'About the Origins of the General Theory of Relativity'. In 1905 Einstein had changed the face of physics forever with the publication of his radical new ideas on special relativity. His general theory of relativity was introduced to the world in 1915. However in 1933, Einstein faced another challenge—survival in a world of change....
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels; Mørk, Jesper
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input-output characteristics and the modulation response are investigated and the limits of the rate equation approach are discussed.
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
DEFF Research Database (Denmark)
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels;
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...
Higher order Fourier analysis as an algebraic theory II
Szegedy, Balazs
2009-01-01
Our approach to higher order Fourier analysis is to study the ultra product of finite (or compact) Abelian groups on which a new algebraic theory appears. This theory has consequences on finite (or compact) groups usually in the form of approximative statements. The present paper is the second part of a paper in which higher order characters and decompositions were introduced. We generalize the concept of the Pontrjagin dual group and introduce higher order versions of it. We study the algebraic structure of the higher order dual groups. We prove a simple formula for the Gowers uniformity norms in terms of higher order decompositions. We present a simple spectral algorithm to produce higher order decompositions. We briefly study a multi linear version of Fourier analysis. Along these lines we obtain new inverse theorems for Gowers's norms.
Astrophysical data analysis with information field theory
Energy Technology Data Exchange (ETDEWEB)
Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Astrophysical data analysis with information field theory
International Nuclear Information System (INIS)
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-01-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Arun, K G
2013-01-01
Gravitational Wave (GW) observations of coalescing compact binaries will be unique probes of strong-field, dynamical aspects of relativistic gravity. We present a short review of various schemes proposed in the literature to test General Relativity (GR) and alternative theories of gravity using inspiral waveforms. Broadly these schemes may be classified into two types: model dependent and model independent. In the model dependent category, GW observations are compared against a specific waveform model representative of a particular theory or a class of theories like Scalar-Tensor theories, Dynamical Chern-Simons theory and Massive graviton theories. Model independent tests are attempts to write down a parametrised gravitational waveform where the free parameters take different values for different theories and (at least some of) which can be constrained by GW observations. We revisit some of the proposed bounds in the case of downscaled LISA configuration (eLISA) and compare them with the original LISA config...
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Epigenetics of complex diseases: from general theory to laboratory experiments.
Schumacher, A; Petronis, A
2006-01-01
Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases. PMID:16909908
General Stationary, Spherically-Symmetric Solutions in the Gauge Theory of Gravity
Francis, M R; Francis, Matthew R.; Kosowsky, Arthur
2003-01-01
This paper provides a concise overview of the gauge theory of gravity, as recently formulated by Lasenby, Doran, and Gull. Instead of representing gravitation via spacetime curvature, the effects of gravity are given by gauge fields in flat spacetime; the gauge group is that of Lorentz transformations plus covariance under diffeomorphisms. The resulting theory is formally similar to the Cartan formulation of general relativity, and we make detailed comparisons with conventional representations of general relativity. We provide a constructive method for solving the field equations in gauge theory gravity, and apply this method to the spherically symmetric case. The most general vacuum solution results, which explicitly displays all coordinate freedom in terms of free functions of radius. Through particular choices of these functions, our general solution reduces to all known metric representations of spherically symmetric, stationary vacuum spacetime. We also obtain the corresponding generalization of the Reis...
Directory of Open Access Journals (Sweden)
Ashworth Mark
2010-11-01
Full Text Available Abstract Background Non-adherence to clinical guidelines has been identified as a consistent finding in general practice. The purpose of this study was to develop theory-informed, computer-delivered interventions to promote the implementation of guidelines in general practice. Specifically, our aim was to develop computer-delivered prompts to promote guideline adherence for antibiotic prescribing in respiratory tract infections (RTIs, and adherence to recommendations for secondary stroke prevention. Methods A qualitative design was used involving 33 face-to-face interviews with general practitioners (GPs. The prompts used in the interventions were initially developed using aspects of social cognitive theory, drawing on nationally recommended standards for clinical content. The prompts were then presented to GPs during interviews, and iteratively modified and refined based on interview feedback. Inductive thematic analysis was employed to identify responses to the prompts and factors involved in the decision to use them. Results GPs reported being more likely to use the prompts if they were perceived as offering support and choice, but less likely to use them if they were perceived as being a method of enforcement. Attitudes towards using the prompts were also related to anticipated patient outcomes, individual prescriber differences, accessibility and presentation of prompts and acceptability of guidelines. Comments on the prompts were largely positive after modifying them based on participant feedback. Conclusions Acceptability and satisfaction with computer-delivered prompts to follow guidelines may be increased by working with practitioners to ensure that the prompts will be perceived as valuable tools that can support GPs' practice.
A formal framework for a nonlocal generalization of Einstein's theory of gravitation
Hehl, Friedrich W
2009-01-01
The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with ``dark matter''. The nature of the predicted ``dark matter'', which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
Formal framework for a nonlocal generalization of Einstein's theory of gravitation
International Nuclear Information System (INIS)
The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with 'dark matter'. The nature of the predicted dark matter, which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
Generalized 2D Yang-Mills theories: Large-N limit and Phase Structure
Alimohammadi, Masoud
2000-01-01
After review the 2D Yang--Mills theories (YM2) and its large--N behaviour, the Generalized 2D Yang--Mills theories (gYM2) and their partition functions on a general two--dimensional Riemann surface are discussed.The large--N behaviour of these models is studied in weak regime, and in strong regime, we restrict ourselves to f4 gYM2. We show that this model has a third order phase transition, similar to ordinary YM2 theory.
The process of theory analysis: an examination of the nursing theory of Dorothea E. Orem.
Melnyk, K A
1983-01-01
The process of theory analysis is undertaken examining the nursing theory of Dorothea E. Orem on three levels, using the analytic framework devised by Barbara J. Stevens. The commonplaces of the theory are described, the elements and principles are identified, the internal construction is examined, and the theory as a whole is then evaluated in terms of its relationship to modern nursing. PMID:6551778
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2015-01-01
We study superconformal indices of 4d N = 2 $$ \\mathcal{N}=2 $$ class S theories with certain irregular punctures called type I k,N . This class of theories include generalized Argyres-Douglas theories of type ( A k −1 , A N −1 ) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I k,N . We write the Schur limit of the wave function when...
Non-local 2D Generalized Yang-Mills theories on arbitrary surfaces with boundary
Saaidi, Khaled
2005-01-01
The non-local generalized two dimensional Yang Mills theories on an arbitrary orientable and non-orientable surfaces with boundaries is studied. We obtain the effective action of these theories for the case which the gauge group is near the identity, $U\\simeq I$. Furthermore, by obtaining the effective action at the large-N limit, it is shown that the phase structure of these theories is the same as that obtain for these theories on orientable and non-orientable surface without boundaries. It...
Color/kinematics duality for general abelian orbifolds of N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
To explore color/kinematics duality for general representations of the gauge group we formulate the duality for general abelian orbifolds of the SU(N), N=4 super Yang-Mills theory in four dimensions, which have fields in the bi-fundamental representation, and use it to construct explicitly complete four-vector and four-scalar amplitudes at one loop. For fixed number of supercharges, graph-organized L-loop n-point integrands of all orbifold theories are given in terms of a fixed set of polynomials labeled by L representations of the orbifold group. In contrast to the standard duality-satisfying presentation of amplitudes of the N=4 super Yang-Mills theory, each graph may appear several times with different internal states. The color and R-charge flow provide a way to deform the amplitudes of orbifold theories to those of more general quiver gauge theories which do not necessarily exhibit color/kinematics duality on their own. Based on the organization of amplitudes required by the duality between color and kinematics in orbifold theories we show how the amplitudes of certain non-factorized matter-coupled supergravity theories can be found through a double-copy construction. We also carry out a comprehensive search for theories with fields solely in the adjoint representation of the gauge group and amplitudes exhibiting color/kinematics duality for all external states and find an interesting relation between supersymmetry and existence of the duality
Generalized Analysis of a Distribution Separation Method
Directory of Open Access Journals (Sweden)
Peng Zhang
2016-04-01
Full Text Available Separating two probability distributions from a mixture model that is made up of the combinations of the two is essential to a wide range of applications. For example, in information retrieval (IR, there often exists a mixture distribution consisting of a relevance distribution that we need to estimate and an irrelevance distribution that we hope to get rid of. Recently, a distribution separation method (DSM was proposed to approximate the relevance distribution, by separating a seed irrelevance distribution from the mixture distribution. It was successfully applied to an IR task, namely pseudo-relevance feedback (PRF, where the query expansion model is often a mixture term distribution. Although initially developed in the context of IR, DSM is indeed a general mathematical formulation for probability distribution separation. Thus, it is important to further generalize its basic analysis and to explore its connections to other related methods. In this article, we first extend DSM’s theoretical analysis, which was originally based on the Pearson correlation coefficient, to entropy-related measures, including the KL-divergence (Kullback–Leibler divergence, the symmetrized KL-divergence and the JS-divergence (Jensen–Shannon divergence. Second, we investigate the distribution separation idea in a well-known method, namely the mixture model feedback (MMF approach. We prove that MMF also complies with the linear combination assumption, and then, DSM’s linear separation algorithm can largely simplify the EM algorithm in MMF. These theoretical analyses, as well as further empirical evaluation results demonstrate the advantages of our DSM approach.
A statistical correlation model and proposed general statement of theory for common cause failures
International Nuclear Information System (INIS)
A general theory for common cause failures (CCFs) is proposed in this paper. This theory, which is based on standard statistical concepts, allows the current CCF data base to be explained in terms of fundamental principles and suggests several new ideas. The cornerstone of this theory is the hypothesis that there are two types of dependencies responsible for CCFs: (1) direct physical dependencies between failure events, and (2) statistical correlations between component unavailabilities. These dependencies result in cascade and coupled failures, respectively. The proposed theory delineates the nature and cause of both cascade and coupled failures and the relationship between them and independent failures. Based on this theory, a general methodology and a statistical correlation model are described which can account naturally for CCFs in reliability analyses
A New track for unifying general relativity with quantum field theories
Pierre, Christian
2005-01-01
In the perspective of unifying quantum field theories with general relativity,the equations of the internal dynamics of the vacuum and mass structures of a set of interacting particles are proved to be in one-to-one correspondence with the equations of general relativity. This leads us to envisage a high value for the cosmological constant,as expected theoretically.
General relativity the most beautiful of theories : applications and trends after 100 years
2015-01-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. On the occasion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as “the most beautiful of the existing physical theories”.
A new track for unifying general relativity with quantum field theories
Pierre, Christian
2005-01-01
In the perspective of unifying quantum field theories with general relativity,the equations of the internal dynamics of the vacuum and mass structures of a set of interacting particles are proved to be in one-to-one correspondence with the equations of general relativity. This leads us to envisage a high value for the cosmological constant,as expected theoretically.
Erlicher, Silvano; 10.1016/j.ijsolstr.2005.03.022
2008-01-01
A simple way to define the flow rules of plasticity models is the assumption of generalized normality associated with a suitable pseudo-potential function. This approach, however, is not usually employed to formulate endochronic theory and non-linear kinematic (NLK) hardening rules as well as generalized plasticity models. In this paper, generalized normality is used to give a new formulation of these classes of models. As a result, a suited pseudo-potential is introduced for endochronic models and a non-standard description of NLK hardening and generalized plasticity models is also provided. This new formulation allows for an effective investigation of the relationships between these three classes of plasticity models.
Contributions to sensitivity analysis and generalized discriminant analysis
International Nuclear Information System (INIS)
Two topics are studied in this thesis: sensitivity analysis and generalized discriminant analysis. Global sensitivity analysis of a mathematical model studies how the output variables of this last react to variations of its inputs. The methods based on the study of the variance quantify the part of variance of the response of the model due to each input variable and each subset of input variables. The first subject of this thesis is the impact of a model uncertainty on results of a sensitivity analysis. Two particular forms of uncertainty are studied: that due to a change of the model of reference, and that due to the use of a simplified model with the place of the model of reference. A second problem was studied during this thesis, that of models with correlated inputs. Indeed, classical sensitivity indices not having significance (from an interpretation point of view) in the presence of correlation of the inputs, we propose a multidimensional approach consisting in expressing the sensitivity of the output of the model to groups of correlated variables. Applications in the field of nuclear engineering illustrate this work. Generalized discriminant analysis consists in classifying the individuals of a test sample in groups, by using information contained in a training sample, when these two samples do not come from the same population. This work extends existing methods in a Gaussian context to the case of binary data. An application in public health illustrates the utility of generalized discrimination models thus defined. (author)
A General Setting and Solution of Bellman Equation in Monetary Theory
Directory of Open Access Journals (Sweden)
Xiaoli Gan
2014-01-01
Full Text Available As an important tool in theoretical economics, Bellman equation is very powerful in solving optimization problems of discrete time and is frequently used in monetary theory. Because there is not a general method to solve this problem in monetary theory, it is hard to grasp the setting and solution of Bellman equation and easy to reach wrong conclusions. In this paper, we discuss the rules and problems that should be paid attention to when incorporating money into general equilibrium models. A general setting and solution of Bellman equation in monetary theory are provided. The proposed method is clear, is easy to grasp, is generalized, and always leads to the correct results.
Organisational change theory and the use of indicators in general practice.
Rhydderch, M; Elwyn, G; Marshall, M; Grol, R
2004-06-01
General practices are making greater use of indicators to help shape and develop organisational arrangements supporting the delivery of health care. Debate continues concerning what exactly such indicators should measure and how they should be used to achieve improvement. Organisational theories can provide an analytical backdrop to inform the design of indicators, critique their construction, and evaluate their use. Systems theory, organisational development, social worlds theory, and complexity theory each has a practical contribution to make to our understanding of how indicators work in prompting quality improvements and why they sometimes don't. This paper argues that systems theory exerts the most influence over the use of indicators. It concludes that a strategic framework for quality improvement should take account of all four theories, recognising the multiple realities that any one approach will fail to reflect. PMID:15175493
A Unification of General Theory of Relativity with Dirac＇s Large Number Hypothesis
Institute of Scientific and Technical Information of China (English)
PENGHuan-Wu
2004-01-01
Taking a hint from Dirac's large number hypothesis, we note the existence of cosmologically combined conservation laws that work cosmologically long time. We thus modify Einstein's theory of general relativity with fixed gravitation constant G to a theory for varying G, with a tensor term arising naturally from the derivatives of G in place of the cosmological constant term usually introduced ad hoc. The modified theory, when applied to cosmology, is consistent with Dirac's large number hypothesis, and gives a theoretical Hubble's relation not contradicting the observational data.For phenomena of duration and distance being short compared with those of the universe, our theory reduces to Einstein's theory with G being constant outside the gravitating matter, and thus also passes the crucial tests of Einstein's theory.
A Unification of General Theory of Relativity with Dirac's Large Number Hypothesis
Institute of Scientific and Technical Information of China (English)
PENG Huan-Wu
2004-01-01
Taking a hint from Dirac's large number hypothesis, we note the existence of cosmologically combined conservation laws that work cosmologically long time. We thus modify Einstein's theory of general relativity with fixed gravitation constant G to a theory for varying G, with a tensor term arising naturally from the derivatives or G in place of the cosmological constant term usually introduced ad hoc. The modified theory, when applied to cosmology, is consistent with Dirac's large number hypothesis, and gives a theoretical Hubble's relation not contradicting the observational data.For phenomena of duration and distance being short compared with those of the universe, our theory reduces to Einstein's theory with G being constant outside the gravitating matter, and thus also passes the crucial tests of Einstein's theory.
Perturbative analysis in higher-spin theories
Didenko, V E; Vasiliev, M A
2015-01-01
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
Nonlinear analysis approximation theory, optimization and applications
2014-01-01
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
A Translation Case Analysis Based on Skopos Theory
Institute of Scientific and Technical Information of China (English)
刘冬梅
2015-01-01
With the spread of globalization,the role of translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.
A Translation Case Analysis Based on Skopos Theory
Institute of Scientific and Technical Information of China (English)
刘冬梅
2015-01-01
With the spread of globalization,the roleof translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.
A Comparative Analysis of Three Unique Theories of Organizational Learning
Leavitt, Carol C.
2011-01-01
The purpose of this paper is to present three classical theories on organizational learning and conduct a comparative analysis that highlights their strengths, similarities, and differences. Two of the theories -- experiential learning theory and adaptive -- generative learning theory -- represent the thinking of the cognitive perspective, while…
Effective field theory of dark energy: a dynamical analysis
International Nuclear Information System (INIS)
The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity
Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity
International Nuclear Information System (INIS)
The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.
Thought analysis on self-organization theories of MHD plasma
International Nuclear Information System (INIS)
A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)
Vasques, Richard
2013-01-01
This paper extends a recently introduced theory describing particle transport for random statistically homogeneous systems in which the distribution function p(s) for chord lengths between scattering centers is non-exponential. Here, we relax the previous assumption that p(s) does not depend on the direction of flight \\Omega; this leads to an extended generalized linear Boltzmann equation that includes angular-dependent cross sections, and to an extended generalized diffusion equation that accounts for anisotropic behavior resulting from the statistics of the system.
General practitioner residency consultations: video feedback analysis
Directory of Open Access Journals (Sweden)
Afonso M. Cavaco
2011-12-01
Full Text Available Objectives: The purpose of this study was to analyse longitudinally two decades of Portuguese general practi-tioner (GP residents' consultation features, such as consultation length- estimating its major determinants- as well as to compare with GP residents from other Western practices. Methods: This pilot study followed a retrospective and descriptive design, comprising of the analysis of videotaped consultations with real patients from GP residents (southern Portugal, between 1990 and 2008. Main studied variables were consultation length and purpose, participant demographics and residency site characteristics. Results: From 516 residents, 68.0were females, mainly between 26-35 years old (50.6. Female patients' proportion equalled doctors', with the most frequent age group being the 46-65 years old (41.3. The consultation took on average 22 minutes and 22 seconds, with no significant differences by year and residency location. Main consultation purposes were previous scheduling (31.6 and acute symptoms (30.0. Duration was consistently longer than practising GPs from other countries, keeping in mind the supervised practice. Significant and positive predictors of consultation length were number of attendants and patients' frequency at the residency site. Conclusions: South Portugal GP residency program consultations were lengthier in comparison to similar practice in Europe and other Western countries. Length correlated preferably with patient related variables than with professionals', while confirming the longitudinal homogeneity in the residency consultation format for the last two decades.
A generalized theory of sun-climate/weather link and climatic change
International Nuclear Information System (INIS)
We generalize the theory of Sun-Climate/weather links and climatic change developed earlier by the author. On the basis of this theory, we show mathematically that key climatic/weather parameters are continuously subjected to determinable amplitude modulations and other variations which may be useful in climatic prediction work. A number of new and known terrestrial oscillations in climate and atmospheric behaviour in general, including the known quasi-biennial oscillations and many others, are deduced from the theory and accounted for in terms of their causative physical processes. Finally we briefly discuss the possibility of applying the theory to the planets Mars and Venus as well as Saturn's largest satellite, Titan. (author). 30 refs, 1 fig
Dimensional analysis, similarity, analogy, and the simulation theory
Energy Technology Data Exchange (ETDEWEB)
Davis, A.A.
1978-01-01
Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others.
Generalized analysis method for neutron resonance transmission analysis
International Nuclear Information System (INIS)
Neutron resonance densitometry (NRD) is a non-destructive analysis method, which can be applied to quantify special nuclear materials (SNM) in small particle-like debris of melted fuel that are formed in severe accidents of nuclear reactors such as the Fukushima Daiichi nuclear power plants. NRD uses neutron resonance transmission analysis (NRTA) to quantify SNM and neutron resonance capture analysis (NRCA) to identify matrix materials and impurities. To apply NRD for the characterization of arbitrary-shaped thick materials, a generalized method for the analysis of NRTA data has been developed. The method has been applied on data resulting from transmission through thick samples with an irregular shape and an areal density of SNM up to 0.253 at/b (≈100 g/cm2). The investigation shows that NRD can be used to quantify SNM with a high accuracy not only in inhomogeneous samples made of particle-like debris but also in samples made of large rocks with an irregular shape by applying the generalized analysis method for NRTA. (author)
Stepped-frequency radar sensors theory, analysis and design
Nguyen, Cam
2016-01-01
This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....
Error Analysis of English Writing Based on Interlanguage Theory
Institute of Scientific and Technical Information of China (English)
李玲
2014-01-01
Language learning process has been hunted by learner’s errors,which is an unavoidable phenomenon.In the 1950 s and 1960 s,Contractive Analysis(CA) based on behaviorism and structuralism was generally employed in analyzing learners’ errors.CA soon lost its popularity.Error Analysis(EA),a branch of applied linguistics,has made great contributions to the study of second language learning and throws some light on the process of second language learning.Careful study of the errors reveals the common problems shared by the language learners.Writing is important in language learning process.Under Chinese context,English writing is always a difficult question for Chinese teachers and students,so errors in students’ written works are unavoidable.In this thesis,the author studies on error analysis of English writing with the interlanguage theory as its theoretical guidance.
Error Analysis of English Writing Based on Interlanguage Theory
Institute of Scientific and Technical Information of China (English)
李玲
2014-01-01
Language learning process has been hunted by learner’s errors,which is an unavoidable phenomenon.In the 1950s and 1960s,Contractive Analysis (CA) based on behaviorism and structuralism was generally employed in analyzing learners’ errors. CA soon lost its popularity.Error Analysis (EA),a branch of applied linguistics,has made great contributions to the study of second language learning and throws some light on the process of second language learning.Careful study of the errors reveals the common problems shared by the language learners.Writing is important in language learning process.Under Chinese context,English writing is always a difficult question for Chinese teachers and students,so errors in students’ written works are unavoidable.In this thesis,the author studies on error analysis of English writing with the interlanguage theory as its theoretical guidance.
Beyond This Point There Be Dragons: Developing General Theory in Music Therapy
Carolyn B. Kenny
2003-01-01
This article attempts to address the topic of "general theory" in music therapy. If we look at the history of ideas which serve practice, we know that fields do not survive without substantive theories or maps, which represent unique features, characteristics, attributes of the specific practice. Creative ideas are born out of practice. And we come upon these creative ideas in the territory of discourse.
Measurement entropy in Generalized Non-Signalling Theory cannot detect bipartite non-locality
Cadney, Josh; Linden, Noah
2012-01-01
We consider entropy in Generalized Non-Signalling Theory (also known as box world) where the most common definition of entropy is the measurement entropy. In this setting, we completely characterize the set of allowed entropies for a bipartite state. We find that the only inequalities amongst these entropies are subadditivity and non-negativity. What is surprising is that non-locality does not play a role - in fact any bipartite entropy vector can be achieved by separable states of the theory...
Non-Markovian generalization of the Lindblad theory of open quantum systems
Breuer, Heinz-Peter
2006-01-01
A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the ...
Beyond This Point There Be Dragons: Developing General Theory in Music Therapy
Directory of Open Access Journals (Sweden)
Carolyn B. Kenny
2003-07-01
Full Text Available This article attempts to address the topic of "general theory" in music therapy. If we look at the history of ideas which serve practice, we know that fields do not survive without substantive theories or maps, which represent unique features, characteristics, attributes of the specific practice. Creative ideas are born out of practice. And we come upon these creative ideas in the territory of discourse.
Generalized Dirac duality and CP violation in a two photon theory
Arias, P; Gamboa, J; Mendez, F
2016-01-01
A kinetic mixing term, which generalizes the duality symmetry of Dirac, is studied in a theory with two photons (visible and hidden). This theory can be either CP conserving or CP violating depending on the transformation of fields in the hidden sector. However if CP is violated, it necessarily occurs in the hidden sector. This opens up an interesting possibility of new sources of CP violation.
Dirichlet Boundary Conditions in Generalized Liouville Theory toward a QCD String
Nakamura, Shin
2000-01-01
We consider bosonic noncritical strings as QCD strings and we present a basic strategy to construct them in the context of Liouville theory. We show that Dirichlet boundary conditions play important roles in generalized Liouville theory. Specifically, they are used to stabilize the classical configuration of strings and also utilized to treat tachyon condensation in our model. We point out that Dirichlet boundary conditions for the Liouville mode maintains Weyl invariance, if an appropriate c...
Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics
H. H. Wensink; Jackson, G.
2009-01-01
We present a generalized van der Waals theory for a lyotropic cholesteric system of chiral spherocylinders based on the classical Onsager theory for hard anisometric bodies. The rods consist of a hard spherocylindrical backbone surrounded with a square-well potential to account for attractive (or soft repulsive) interactions. Long-ranged chiral interactions are described by means of a simple pseudo-scalar potential which is appropriate for weak chiral forces of a predominant electrostatic ori...
How unimodular gravity theories differ from general relativity at quantum level
Bufalo, R.; Oksanen, M.; Tureanu, A.
2015-01-01
We investigate path integral quantization of two versions of unimodular gravity. First a fully diffeomorphism-invariant theory is analyzed, which does not include a unimodular condition on the metric, while still being equivalent to other unimodular gravity theories at the classical level. The path integral has the same form as in general relativity (GR), except that the cosmological constant is an unspecified value of a variable, and it thus is unrelated to any coupling constant. When the st...
Diffraction by a half-plane: a generalization of the Fresnel diffraction theory.
Sheppard, C J; Hrynevych, M
1991-07-15
A generalization of the Fresnel approximation in diffraction theory is proposed. The phase term in the diffraction integral is approximated by a parabolic variation, not by a binomial expansion but rather by matching up at the critical points for asymptotic evaluation of the integral. The method provides a correction to the optical coordinates of the Fresnel diffraction theory that extends its region of validity. It is applied to diffraction of an inclined plane wave by a half-plane. PMID:19776875
Maps for general open quantum systems and a theory of linear quantum error correction
International Nuclear Information System (INIS)
We show that quantum subdynamics of an open quantum system can always be described by a linear, Hermitian map irrespective of the form of the initial total system state. Since the theory of quantum error correction was developed based on the assumption of completely positive (CP) maps, we present a generalized theory of linear quantum error correction, which applies to any linear map describing the open system evolution. In the physically relevant setting of Hermitian maps, we show that the CP-map-based version of quantum error correction theory applies without modifications. However, we show that a more general scenario is also possible, where the recovery map is Hermitian but not CP. Since non-CP maps have nonpositive matrices in their range, we provide a geometric characterization of the positivity domain of general linear maps. In particular, we show that this domain is convex and that this implies a simple algorithm for finding its boundary.
First Order Extended Gravity and the Dark Side of the Universe: the General Theory
Capozziello, S; Francaviglia, M; Mercadante, S
2009-01-01
General Relativity is not the definitive theory of Gravitation due to several shortcomings which are coming out both from theoretical and experimental viewpoints. At large scales (astrophysical and cosmological scales) the attempts to match it with the today observational data lead to invoke Dark Energy and Dark Matter as the bulk components of the cosmic fluid. Since no final evidence, at fundamental level, exists for such ingredients, it is clear that General Relativity presents shortcomings at infrared scales. On the other hand, the attempts to formulate theories more general than the Einstein one give rise to mathematical difficulties that need workarounds which, in turn, generate problems from the interpretative viewpoint. We present here a completely new approach to the mathematical objects in terms of which a theory of Gravitation may be written in a first-order `a la Palatini formalism, and introduce the concept of Dark Metric which could completely bypass the introduction of disturbing concepts as Da...
Bosonic Part of 4d N=1 Supersymmetric Gauge Theory with General Couplings: Local Existence
Akbar, Fiki T; Triyanta,; Zen, Freddy P
2013-01-01
In this paper, we prove the local existence of the bosonic part of N=1 supersymmetric gauge theory in four dimensions with general couplings. We start with the Lagrangian of generally coupled vector and chiral multiplets with scalar potential turned on. Then, for the sake of simplicity, we set all fermions vanish at the level of equations of motions, so we only have the bosonic parts of the theory. We apply Segal's general theory to show the local existence of solutions of field equations of motions by taking K\\"ahler potential to be bounded above by U(n) symmetric K\\"ahler potential and the first derivative of gauge couplings to be at most linear growth functions.
Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction
Goutéraux, Blaise; Smolic, Milena; Skenderis, Kostas; Taylor, Marika
2011-01-01
We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are related to higher dimensional AdS-Maxwell gravity via a dimensional reduction over compact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (`generalized dimensional reduction'). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of conformal and generalized conformal invariance. We compute holograp...
General Relativity: The most beautiful of theories. Applications and trends after 100 years
Rovelli, Carlo
2015-02-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories".
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
International Nuclear Information System (INIS)
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
International Nuclear Information System (INIS)
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function α (in the Einstein frame). We show that, in general, the evolution of the scalar field (φ) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, α0, strongly differ from some theories to others. For example, in theories defined by α ∝ |φ| analytical estimates lead to very stringent nucleosynthesis bounds on α0(∼-19). By contrast, in scalar-tensor theories defined by α ∝ φ much larger limits on α0(∼-7) are found
Kerner, Boris S.
2013-11-01
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Modular-invariance of trace functions in orbifold theory and generalized moonshine
International Nuclear Information System (INIS)
The goal of the present paper is to provide a mathematically rigorous foundation to certain aspects of the theory of rational orbifold models in conformal field theory, in other words the theory of rational vertex operator algebras and their automorphisms. Under a certain finiteness condition on a rational vertex operator algebra V which holds in all known examples, we determine the precise number of g-twisted sectors for any automorphism g of V of finite order. We prove that the trace functions and correlation functions associated with such twisted sectors are holomorphic functions in the upper half-plane and, under suitable conditions, afford a representation of the modular group of the type prescribed in string theory. We establish the rationality of conformal weights and central charge. In addition to conformal field theory itself, where our conclusions are required on physical grounds, there are applications to the generalized moonshine conjectures of Conway-Norton-Queen and to equivariant elliptic cohomology. (orig.)
The non-local 2D generalized Yang-Mills theories on arbitrary surfaces with boundaries
Energy Technology Data Exchange (ETDEWEB)
Saaidi, Kh [Department of Physics, Faculty of Science, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of) and Azad University, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: ksaaidi@uok.ac.ir
2008-07-15
The non-local generalized two-dimensional Yang-Mills theories on arbitrary orientable and non-orientable surfaces with boundaries is studied. We obtain the effective action of these theories for the case when the holonomy of the gauge field around the boundary components is near the identity, U{approx_equal}I. Furthermore, by obtaining the effective action at the large-N limit, it is shown that the phase structure of these theories is the same as that obtained for these theories on orientable and non-orientable surfaces without boundaries. It is seen that the {phi}{sup 2} model of these theories on arbitrary orientable and non-orientable surfaces with boundaries have third-order phase transition only on g=0 and r=1 surfaces, with modified area A-tilde+A/2 for orientable and A-bar+A for non-orientable surfaces, respectively.
Keldysh theory re-examined: Application of the generalized Bessel functions
Bauer, J H
2015-01-01
A derivation of the ionization rate for the hydrogen-like ion in the strong linearly polarized laser field is presented. This derivation utilizes the famous Keldysh probability amplitude in the length gauge (in the dipole approximation) and without Coulomb effects in the final state of the ionized electron. No further approximations are being made, because the amplitude has been expanded in the double Fourier series in a time domain (with the help of the generalized Bessel functions). Thus, our theory has no other limitations characteristic of the original Keldysh theory. We compare our "exact" theory with the original Keldysh one, studying photoionization energy spectra and total ionization rates. We show breakdown of the original Keldysh theory for higher frequencies. In the barrier-suppresion regime the "exact" Keldysh theory gives results closer to well-known numerical or other analytical results.
One-loop anomalies and Wess-Zumino terms for general gauge theories
International Nuclear Information System (INIS)
One-loop anomalies and their dependence on antifields for general gauge theories are investigated within a Pauli-Villars regularization scheme. For on-shell theories i.e. with open algebras or on-shell reducible theories, the antifield dependence is cohomologically non-trivial. The associated Wess-Zumino term depends also on antifields. In the classical basis the antifield-independent part of the WZ term is expressed in terms of the anomaly and finite gauge transformations by introducing gauge degrees of freedom as the extra dynamical variables. The complete WZ term is reconstructed from the antifield-independent part. (orig.)
A General Linear Wave Theory for Water Waves Propagating over Uneven Porous Bottoms
Institute of Scientific and Technical Information of China (English)
锁要红; 黄虎
2004-01-01
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.
Siegert pseudostate formulation of scattering theory: General three-dimensional case
Krainov, Lev O.; Batishchev, Pavel A.; Tolstikhin, Oleg I.
2016-04-01
This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green's function, scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely discrete basis capable of representing both discrete and continuous spectra in solving various stationary and time-dependent quantum-mechanical problems.