WorldWideScience

Sample records for analysis fourier

  1. Principles of Fourier analysis

    CERN Document Server

    Howell, Kenneth B

    2001-01-01

    Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

  2. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  3. Fourier Analysis on Groups

    CERN Document Server

    Rudin, Walter

    2011-01-01

    In the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compact abelian (LCA) groups. Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.

  4. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  5. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  6. Fourier Analysis of Musical Intervals

    Science.gov (United States)

    LoPresto, Michael C.

    2008-11-01

    Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in The Physics Teacher aptly demonstrated the use of MacScope2 in just such a manner as a way to teach Fourier analysis.3 A logical continuation of this project is to use MacScope not just to analyze the Fourier composition of musical tones but also musical intervals.

  7. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  8. On higher order Fourier analysis

    CERN Document Server

    Szegedy, Balazs

    2012-01-01

    We develop a theory of higher order structures in compact abelian groups. In the frame of this theory we prove general inverse theorems and regularity lemmas for Gowers's uniformity norms. We put forward an algebraic interpretation of the notion "higher order Fourier analysis" in terms of continuous morphisms between structures called compact $k$-step nilspaces. As a byproduct of our results we obtain a new type of limit theory for functions on abelian groups in the spirit of the so-called graph limit theory. Our proofs are based on an exact (non-approximative) version of higher order Fourier analysis which appears on ultra product groups.

  9. Fourier Analysis of Blazar Variability

    CERN Document Server

    Finke, Justin D

    2014-01-01

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton (SSC), and external Compton (EC) emission components, from sub-mm to gamma-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We a...

  10. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  11. Fourier analysis of blazar variability

    Energy Technology Data Exchange (ETDEWEB)

    Finke, Justin D. [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375-5352 (United States); Becker, Peter A., E-mail: justin.finke@nrl.navy.mil [School of Physics, Astronomy, and Computational Sciences, MS 5C3, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2014-08-10

    Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.

  12. Handbook of Fourier analysis & its applications

    CERN Document Server

    Marks, Robert J

    2009-01-01

    Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process

  13. Fourier methods for biosequence analysis.

    OpenAIRE

    Benson, D C

    1990-01-01

    Novel methods are discussed for using fast Fourier transforms for DNA or protein sequence comparison. These methods are also intended as a contribution to the more general computer science problem of text search. These methods extend the capabilities of previous FFT methods and show that these methods are capable of considerable refinement. In particular, novel methods are given which (1) enable the detection of clusters of matching letters, (2) facilitate the insertion of gaps to enhance seq...

  14. Fourier analysis and synthesis tomography.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Kelvin H. (University of Colorado at Boulder, Boulder, CO); Sinclair, Michael B.; Feldkuhn, Daniel (University of Colorado at Boulder, Boulder, CO)

    2010-05-01

    Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.

  15. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  16. Adaptive Fourier Analysis For Unequally-Spaced Time Series Data

    OpenAIRE

    Liang, Hong

    2002-01-01

    Adaptive Fourier Analysis For Unequally-Spaced Time Series Data by Hong Liang Robert V. Foutz, Chairman Statistics (ABSTRACT) Fourier analysis, Walsh-Fourier analysis, and wavelet analysis have often been used in time series analysis. Fourier analysis can be used to detect periodic components that have sinusoidal shape; however, it might be misleading when the periodic components are not sinusoidal. Walsh-Fourier analysis is suitable for revealing the rectangular ...

  17. Functional Equations and Fourier Analysis

    OpenAIRE

    Yang, Dilian

    2010-01-01

    By exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations -- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation, on compact groups.

  18. Fourier analysis and boundary value problems

    CERN Document Server

    Gonzalez-Velasco, Enrique A

    1996-01-01

    Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...

  19. A Fourier analysis of extremal events

    DEFF Research Database (Denmark)

    Zhao, Yuwei

    extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...

  20. Harmonic oscillator: an analysis via Fourier series

    OpenAIRE

    de Castro, A. S.

    2013-01-01

    The Fourier series method is used to solve the homogeneous equation governing the motion of the harmonic oscillator. It is shown that the general solution to the problem can be found in a surprisingly simple way for the case of the simple harmonic oscillator. It is also shown that the damped harmonic oscillator is susceptible to the analysis.

  1. Adaptive Fourier Decomposition Based Time-Frequency Analysis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming Zhang

    2014-01-01

    The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.

  2. Oversampling analysis in fractional Fourier domain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; TAO Ran; WANG Yue

    2009-01-01

    Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal Is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.

  3. Modified Tangential Frequency Filtering Decomposition and its Fourier Analysis

    OpenAIRE

    Niu, Qiang; Grigori, Laura; Kumar, Pawan; Nataf, Frédéric

    2008-01-01

    In this paper, a modified tangential frequency filtering decomposition (MTFFD) preconditioner is proposed. The optimal order of the modification and the optimal relaxation parameter are determined by Fourier analysis. With this choice of the optimal order of modification, the Fourier results show that the condition number of the preconditioned matrix is ${\\cal O}(h^{-\\frac{2}{3}})$, and the spectrum distribution of the preconditioned matrix can be predicted by the Fourier results. The perform...

  4. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  5. Double Fourier analysis for Emotion Identification in Voiced Speech

    Science.gov (United States)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  6. A Fourier analysis of extreme events

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Zhao, Yuwei

    2014-01-01

    The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram generated from a suitable sequence of indicator functions of rare events. We derive basic ...... properties of the periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show that weighted versions of the periodogram are consistent estimators of a spectral density derived from the extremogram....

  7. Fourier mode analysis of source iteration in spatially periodic media

    International Nuclear Information System (INIS)

    The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media

  8. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin

    2013-01-01

    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  9. Comparative analysis of imaging configurations and objectives for Fourier microscopy

    CERN Document Server

    Kurvits, Jonathan A; Zia, Rashid

    2015-01-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes, which have been optimized for conventional real-space imaging. Here, we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we ide...

  10. International conference Fourier Analysis and Pseudo-Differential Operators

    CERN Document Server

    Turunen, Ville; Fourier Analysis : Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations

    2014-01-01

    This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. This collection of 20 refereed articles is based on selected talks given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland, and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”

  11. Fourier analysis of time series an introduction

    CERN Document Server

    Bloomfield, Peter

    2000-01-01

    A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample

  12. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  13. Discrete Fourier analysis with lattices on planar domains

    CERN Document Server

    Li, Huiyuan; Xu, Yuan

    2009-01-01

    A discrete Fourier analysis associated with translation lattices is developed recently by the authors. It permits two lattices, one determining the integral domain and the other determining the family of exponential functions. Possible choices of lattices are discussed in the case of lattices that tile $\\RR^2$ and several new results on cubature and interpolation by trigonometric, as well as algebraic, polynomials are obtained.

  14. Fourier analysis of the parametric resonance in neutrino oscillations

    International Nuclear Information System (INIS)

    Parametric enhancement of the appearance probability of the neutrino oscillation under the inhomogeneous matter is studied. Fourier expansion of the matter density profile leads to a simple resonance condition and manifests that each Fourier mode modifies the energy spectrum of oscillation probability at around the corresponding energy; below the MSW resonance energy, a large-scale variation modifies the spectrum in high energies while a small-scale one does in low energies. In contrast to the simple parametric resonance, the enhancement of the oscillation probability is itself an slow oscillation as demonstrated by a numerical analysis with a single Fourier mode of the matter density. We derive an analytic solution to the evolution equation on the resonance energy, including the expression of frequency of the slow oscillation.

  15. Teaching Fourier Analysis and Wave Physics with the Bass Guitar

    CERN Document Server

    Courtney, M; Courtney, Michael; Althausen, Norm

    2006-01-01

    This article describes a laboratory or demonstration technique employing the bass guitar and a Vernier LabPro (or a PC soundcard) for teaching wave physics and introducing Fourier analysis. The Fourier transform of an open string provides a demonstration of oscillatory modes out to the 20th harmonic consistent with expectations containing a fundamental frequency and harmonics. The playing of "harmonics" (suppressing resonant modes by lightly touching the string to enforce nodes at desired locations) demonstrates oscillations made up (mostly) of individual modes. Students see that the complete set of Fourier components (fundamental and harmonics) present on the open string can be explicitly connected with individual resonant frequencies as described in typical textbook discussions of natural frequencies of waves on a string. The use of a bass guitar rather than the six string electric guitar allows higher harmonics to be individually excited, and it is also easier for students to play the harmonics themselves.

  16. Fourier analysis for discontinuous Galerkin and related methods

    Institute of Scientific and Technical Information of China (English)

    ZHANG MengPing; SHU Chi-Wang

    2009-01-01

    In this paper we review a series of recent work on using a Fourier analysis technique to study the sta-bility and error estimates for the discontinuous Galerkin method and other related schemes. The ad-vantage of this approach is that it can reveal instability of certain "bad"' schemes; it can verify stability for certain good schemes which are not easily amendable to standard finite element stability analysis techniques; it can provide quantitative error comparisons among different schemes; and it can be used to study superconvergence and time evolution of errors for the discontinuous Galerkin method. We will briefly describe this Fourier analysis technique, summarize its usage in stability and error estimates for various schemes, and indicate the advantages and disadvantages of this technique in comparison with other finite element techniques.

  17. Higher order Fourier analysis as an algebraic theory II

    CERN Document Server

    Szegedy, Balazs

    2009-01-01

    Our approach to higher order Fourier analysis is to study the ultra product of finite (or compact) Abelian groups on which a new algebraic theory appears. This theory has consequences on finite (or compact) groups usually in the form of approximative statements. The present paper is the second part of a paper in which higher order characters and decompositions were introduced. We generalize the concept of the Pontrjagin dual group and introduce higher order versions of it. We study the algebraic structure of the higher order dual groups. We prove a simple formula for the Gowers uniformity norms in terms of higher order decompositions. We present a simple spectral algorithm to produce higher order decompositions. We briefly study a multi linear version of Fourier analysis. Along these lines we obtain new inverse theorems for Gowers's norms.

  18. On One Application of Fourier Analysis in Plastic Surgery

    Science.gov (United States)

    Rakhimov, Abdumalik; Zainuddin, Hishamuddin

    In present paper, we discuss the spectral methods of measurement of the degree of speech and/or quality of sound by comparing the coefficient of performance indicators depending on energy distributions, ratio of energy of the fundamental tone and energy of overtones. Such a method is very efficient for string oscillation with different initial conditions and it is useful for justification of applications of Fourier analysis in plastic surgery in treatment of some medical diseases.

  19. Higher order Fourier analysis as an algebraic theory I

    OpenAIRE

    Szegedy, Balazs

    2009-01-01

    Ergodic theory, Higher order Fourier analysis and the hyper graph regularity method are three possible approaches to Szemer\\'edi type theorems in abelian groups. In this paper we develop an algebraic theory that creates a connection between these approaches. Our main method is to take the ultra product of abelian groups and to develop a precise algebraic theory of higher order characters on it. These results then can be turned back into approximative statements about finite Abelian groups.

  20. Evaluation of gastric motility by Fourier analysis of condensed images

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R.; Muenzing, W.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich, Munich (Germany)

    2000-10-01

    In this study Fourier analysis was applied to condensed images of gastric emptying with the aim of evaluating the amplitude and frequency of gastric contractions as well as gastric emptying in patients with various well-defined disorders. In 15 controls, 65 patients with progressive systemic sclerosis (PSS), 41 patients with diabetes mellitus type I (DM), 12 patients with pyloric stenosis and 9 patients who had undergone gastric surgery, gastric emptying was determined after ingestion of a semi-solid test meal. In addition, condensed images were generated to evaluate the amplitude and frequency of gastric contractions by means of Fourier analysis. In PSS and DM patients, gastric emptying and contraction amplitudes were significantly reduced (P<0.01). Patients with pyloric stenosis displayed regular peristalsis but significantly delayed emptying (P<0.01). Patients who had undergone gastric surgery showed normal or rapid gastric emptying associated with decreased amplitudes (P<0.01). The frequency of gastric contractions in the patient groups was not different from that in controls. This study showed Fourier analysis of condensed images to be a rapid and feasible approach for the evaluation of gastric contractions. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Data on gastric contractions provided additional information compared with results obtained by conventional emptying studies. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.)

  1. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures

    Institute of Scientific and Technical Information of China (English)

    Jilie KONG; Shaoning YU

    2007-01-01

    Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.

  2. Fourier analysis of conductive heat transfer for glazed roofing materials

    Science.gov (United States)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  3. Fourier analysis of conductive heat transfer for glazed roofing materials

    International Nuclear Information System (INIS)

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate

  4. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  5. Spatial Fourier analysis of video photobleaching measurements. Principles and optimization.

    Science.gov (United States)

    Tsay, T T; Jacobson, K A

    1991-08-01

    The major use of the fluorescence recovery after photobleaching (FRAP) technique is to measure the translational motion of the molecular components in various condensed media. In a conventional laser spot photobleaching experiment, a photomultiplier is used to measure the total brightness levels of the bleached region in the sample, so no spatial information can be directly obtained. In video-FRAP, a series of images after photobleaching is acquired, allowing the spatial character of the recovery to be determined; this permits direct detection of both anisotropic diffusion and flow. To utilize all of the available image data to determine the transport coefficients, a two-dimensional spatial Fourier transform analysis of the images after photobleaching was employed. The change in the transform between two time points reflects the action of diffusion during the interim. An important advantage of this method, which involves taking the ratio of image transforms at different time points, is that it does not require a specific initial condition to be created by laser photobleaching. The ability of the analysis to extract transport coefficients from computer-simulated diffusional recovery is assessed in the presence of increasing amounts of noise. Experimental data analysis from the diffusion of proteins in viscous solutions and from the diffusion of protein receptors on cell surfaces demonstrate the feasibility of the Fourier analysis to obtain transport coefficients from the video FRAP measurement. PMID:1912279

  6. Some Topics in Fourier Analysis and Approximation Theory

    CERN Document Server

    Trigub, R M

    1996-01-01

    This manuscript presents shortly the results obtained by participants of the scientific seminar which is held more than twenty years under leadership of the author at Donetsk University. In the list of references main publications are given. These results are published in serious scientific journals and reported at various conferences, including international ones at Moscow,ICM66; Kaluga,1975; Kiev,1983; Haifa,1994; Zürich,ICM94; Moscow,1995. The area of investigation is the Fourier analysis and the theory of approximation of functions. Used are methods of classical analysis including special functions, Banach spaces, etc., of harmonic analysis in finitedimensional Euclidean space, of Diophantine analysis, of random choice, etc. The results due to the author and active participants of the seminar, namely E. S. Belinskii, O. I. Kuznetsova, E. R. Liflyand, Yu. L. Nosenko, V. A. Glukhov, V. P. Zastavny, Val. V. Volchkov, V. O. Leontyev, and others, are given. Besides the participants of the seminar and other ma...

  7. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-06-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage development of the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, centroid position, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations. 

  8. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    Directory of Open Access Journals (Sweden)

    Ovidiu Hâruţa

    2011-02-01

    Full Text Available Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression equations between crown volumes and dbh, and crown volumes and stem volumes were derived, explaining more than half of data variability. Employment of elliptic Fourier analysis (EFA, a powerful analysis tool, permitted the extraction of the mean shape from crowns, characterized by high morphological variability. The extracted, most important, coefficients were used to reconstruct the average shape of the crowns, using Inverse Fourier Transform. A mean shape of the crown, corresponding to stand conditions in which competition is added as influential shaping factor, aside genetic program of the species, is described for each stem diameter class. Crown regions with highest shape variability, from the perspective of stage developmentof the trees, were determined. Accordingly, the main crown shape characteristics are: crown elongation, mass center, asymmetry with regard to the main axis, lateral regions symmetrical and asymmetrical variations.

  9. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    Science.gov (United States)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  10. Analysis of morphology of pulmonary nodules using a fourier descriptor

    International Nuclear Information System (INIS)

    The usefulness of computer aided diagnosis (CAD) systems in the differential diagnosis of pulmonary nodules detected by lung cancer screening CT has been widely acknowledged. In this study, we quantified the morphological features of such nodules and assessed whether they could be used for objective evaluation to improve diagnostic accuracy, based on hypotheses regarding differences in growth appearance between benign and malignant nodules. Quantification was achieved for both high-resolution CT images and simulation images using Fourier description. Benign pulmonary nodules (inflammatory scars) showed high amplitude in the lower harmonics, while malignant nodules (lung cancers) showed high amplitude in the higher harmonics. These values were compared by Mahalanobis generalized distance multivariate analysis. The mean predictive values of this analysis for the inflammatory scar and lung cancer groups were 85% and 90%, respectively. The mean predictive value for the two groups was 87.5%. (author)

  11. Construction and Fourier analysis of invariant surfaces from tracking data

    International Nuclear Information System (INIS)

    We study invariant surfaces in phase space by application of a symplectic tracking code. For motion in two degrees of freedom we use the code to compute I(s), /Phi/(s) for s = 0,C,2C...nC, where I = (I1,I2), /Phi/ = (/phi/1,/phi/2) are action-angle coordinates of points on a single orbit, and C is the circumference of the reference orbit. As a test to see whether the orbit lies on an invariant surface (i.e., to test for regular and nonresonant motion) we fit the points to a smooth, piece-wise polynomial surface I = /cflx I/(/phi/1,/phi/2). We then compute additional points on the same orbit, and test for their closeness to /cflx I/. We find that data from a few thousand turns are sufficient to construct accurate approximations to an invariant surface, even in cases with strong nonlinearities. Two-dimensional Fourier analysis of the surface leads to information on the strength of nonlinear resonances, and provides the generator of a canonical transformation as a Fourier series in angle variables. The generator can be used in a program to derive rigorous bounds on the motion for a finite time T. 6 refs., 2 figs., 1 tab

  12. Determination of total body water by Fourier transform infrared analysis

    International Nuclear Information System (INIS)

    A new technique for determinig body water using deuterium isotope dilution for Fourier transform infrared (FTIR) analysis is described. The advantages of the FTIR over conventional dispersion and filter infrared instruments include greater flexibility through computer controlled operations and availability of 'on-line' analytical software. The technique was further improved by the development of a simple procedure for determining D2O concentration in untreated serum samples. A validation study of six normal adults showed that the fat-free-mass determined from the deuterium-space (total body water) correlated well with the results obtained by total body nitrogen (r = 0.997), total body potassium (r = 0.99f6) and anthropometric (r = 0.995) measurements. 17 refs., 4 tabs., 4 figs

  13. Higher-order Fourier analysis over finite fields and applications

    Science.gov (United States)

    Hatami, Pooya

    Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low

  14. On The Fourier And Wavelet Analysis Of Coronal Time Series

    CERN Document Server

    Auchère, F; Bocchialini, K; Buchlin, E; Solomon, J

    2016-01-01

    Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provies a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence & Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence & Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default c...

  15. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  16. Left ventricular wall motion abnormalities evaluated by factor analysis as compared with Fourier analysis

    International Nuclear Information System (INIS)

    Factor analysis was applied to multigated cardiac pool scintigraphy to evaluate its ability to detect left ventricular wall motion abnormalities in 35 patients with old myocardial infarction (MI), and in 12 control cases with normal left ventriculography. All cases were also evaluated by conventional Fourier analysis. In most cases with normal left ventriculography, the ventricular and atrial factors were extracted by factor analysis. In cases with MI, the third factor was obtained in the left ventricle corresponding to wall motion abnormality. Each case was scored according to the coincidence of findings of ventriculography and those of factor analysis or Fourier analysis. Scores were recorded for three items; the existence, location, and degree of asynergy. In cases of MI, the detection rate of asynergy was 94 % by factor analysis, 83 % by Fourier analysis, and the agreement in respect to location was 71 % and 66 %, respectively. Factor analysis had higher scores than Fourier analysis, but this was not significant. The interobserver error of factor analysis was less than that of Fourier analysis. Factor analysis can display locations and dynamic motion curves of asynergy, and it is regarded as a useful method for detecting and evaluating left ventricular wall motion abnormalities. (author)

  17. Gas Analysis by Fourier Transform Mm-Wave Spectroscopy

    Science.gov (United States)

    Harris, Brent J.; Steber, Amanda L.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    Molecular rotational spectroscopy of low pressure, room temperature gases offers high chemical selectivity and sensitivity with the potential for a wide range of applications in gas analysis. A strength of the technique is the potential to identify molecules that have not been previously studied by rotational spectroscopy by comparing experimental results to predictions of the spectroscopic parameters from quantum chemistry -6 so called library-free detection. The development of Fourier transform mm-wave spectrometers using high peak power (30 mW) active multiplier chain mm-wave sources brings new measurement capabilities to the analysis of complex gas mixtures. Strategies for gas analysis based on high-throughput mm-wave spectroscopy and arbitrary waveform generator driven mm-wave sources are described. Several new measurement capabilities come from the intrinsic time-domain measurement technique. High-sensitivity double-resonance measurements can be performed to speed the analysis of a complex gas sample containing several species. This technique uses a "pi-pulse" to selectively invert the population of two selected rotational energy levels and the effect of this excitation pulse on all other transitions in the spectrometer operating range is monitored using segmented chirped-pulse Fourier transform spectroscopy. This method can lead to automated determination of the molecular rotational constants. Rapid pulse duration scan experiments can be used to estimate the magnitude and direction of the dipole moment of the molecule from an unknown spectrum. Coherent pulse echo experiments, using the traditional Hahn sequence or two-color population recovery methods, can be used to determine the collisional relaxation rate of the unknown molecule. This rate determination improves the ability to estimate the mass of the unknown molecule from the determination of the Doppler dephasing rate. By performing a suite of automated, high-throughput measurements, there is the

  18. Fast Fourier transformation in vibration analysis of physically active systems

    International Nuclear Information System (INIS)

    Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)

  19. Experimental display of Fourier analysis through the optical physics and its didatical utilization

    International Nuclear Information System (INIS)

    The properties of Fourier analysis through physical optics are displayed experimentally. Within physical optics topics that illustrate didactically Fourier analysis, a subject usually considered purely mathematical are selected. The most important properties of Fourier transform and their utilization in cleaning up images through spatial filtering are presented, in this way the properties of convolution to analyse image formation and characterize some diffraction patterns are also used. (Author)

  20. Fourier Analysis of the Parametric Resonance in Neutrino Oscillations

    OpenAIRE

    Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe

    2009-01-01

    Parametric enhancement of the appearance probability of the neutrino oscillation under the inhomogeneous matter is studied. Fourier expansion of the matter density profile leads to a simple resonance condition and manifests that each Fourier mode modifies the energy spectrum of oscillation probability at around the corresponding energy; below the MSW resonance energy, a large-scale variation modifies the spectrum in high energies while a small-scale one does in low energies. In contrast to th...

  1. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry

    International Nuclear Information System (INIS)

    In this study, a systematic approach based on the application of Fourier transform infrared spectrophotometry (FTIR) was taken, in order to quantitatively analyze the corrosion products formed in the secondary cycle of pressurized water reactors (PWR). Binary mixtures of iron oxides were prepared with known compositions containing pure commercial magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) for calibration purposes. Calcium oxide (lime) was added to all samples as a standard reference in obtaining the calibration curves. Using regression analysis, relationships were developed for intensity versus concentration for absorption bands corresponding to each of the phases in their corresponding FTIR spectrum. Correlation coefficients, R2, of 0.82, 0.87, and 0.86 were obtained for maghemite-magnetite, hematite-magnetite, and hematite-maghemite systems, respectively. The calibration curves generated were used to quantify phases in multi-component unknown field samples that were obtained from different components (moisture separators, condensers, and high- and low- pressure heaters) of the two units (units 1 and 2) of the secondary cycle of the Comanche Peak PWR

  2. Fourier analysis of polar cap electric field and current distributions

    Science.gov (United States)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  3. Fourier analysis of multi-tracer cosmological surveys

    CERN Document Server

    Abramo, L Raul; Loureiro, Arthur

    2015-01-01

    We present optimal quadratic estimators for the Fourier analysis of cosmological surveys that detect several different types of tracers of large-scale structure. Our estimators can be used to simultaneously fit the matter power spectrum and the biases of the tracers - as well as redshift-space distortions (RSDs), non-Gaussianities (NGs), or any other effects that are manifested through differences between the clusterings of distinct species of tracers. Our estimators reduce to the one by Feldman, Kaiser & Peacock (ApJ 1994, FKP) in the case of a survey consisting of a single species of tracer. We show that the multi-tracer estimators are unbiased, and that their covariance is given by the inverse of the multi-tracer Fisher matrix (Abramo, MNRAS 2013; Abramo & Leonard, MNRAS 2013). When the biases, RSDs and NGs are fixed to their fiducial values, and one is only interested in measuring the underlying power spectrum, our estimators are projected into the estimator found by Percival, Verde & Peacock ...

  4. Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis

    Science.gov (United States)

    LoPresto, Michael C.

    2013-01-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  5. Using musical intervals to demonstrate superposition of waves and Fourier analysis

    Science.gov (United States)

    LoPresto, Michael C.

    2013-09-01

    What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.

  6. Neutron Fourier Diffractometer FSD for Internal Stress Analysis First Results

    CERN Document Server

    Aksenov, V L; Bokuchava, G D; Zhuravlev, V V; Kuzmin, E S; Bulkin, A P; Kudryashov, V A; Trounov, V A

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR) a specialised instrument - neutron Fourier diffractometer FSD - intended for internal stress measurements in bulk materials is under construction. Internal stress studies by neutron diffraction has been successfully developed last years in leading neutron centres, including Dubna and Gatchina, due to several important advantages of this method in comparison with other techniques. In current work the operation principles and construction of the diffractometer, basic parameters and outcomes of test experiments are presented.

  7. Fourier analysis of a gated blood-pool study during atrial flutter

    International Nuclear Information System (INIS)

    First-harmonic Fourier analysis of a gated blood-pool study is based on the assumption that the cardiac chambers contract once per cardiac cycle. In atrial arrhythmias this condition may not exist for the atria. We recently studied a patient with atrial flutter and 2:1 artioventricular conduction. There were predictable alterations in the first-harmonic Fourier phase and amplitude images. The observed changes from first-harmonic Fourier analysis were: (a) very low atrial amplitude values, and (b) absence of identifiable atrial regions on the phase image

  8. Fast fourier algorithms in spectral computation and analysis of vibrating machines

    International Nuclear Information System (INIS)

    In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)

  9. Fourier and spectral envelope analysis of medically important bacterial and fungal sequences

    OpenAIRE

    Chang, C.; Chan, KKH; Chan, FHY

    2004-01-01

    In this paper, we introduce the Fourier and spectral envelope analysis methods to analyze some biomolecular sequences, particularly medically important bacteria and fungi DNA sequences, to get their interesting frequency properties. Fourier analysis includes mapping character strings into numerical sequences, calculating spectra of DNA sequences and setting and solving optimization problem in order to construct a powerful predictor of exons along the long DNA sequences. The spectral envelope ...

  10. A Fourier analysis for a fast simulation algorithm. [for switching converters

    Science.gov (United States)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  11. Fourier analysis of metallic near-field superlens

    Science.gov (United States)

    Sheng, Yunlong; Tremblay, Guillaume; Gravel, Yann

    2011-11-01

    In the application to nanometre resolution lithography of the metallic near-field superlens, the image quality becomes a critical issue. Fundamental Fourier optics is applied to analyze the image system. The transfer function is computed with the transfer matrix method, the Surface Plasmon Polariton (SPP) resonance and the SPP waveguide theory. However, as the scattering of the object nano-structure involving the solution of the Maxwell's equations, so that the object function is in general unknown, and the impulse response is less likely useful for computing the image. Especially, metal object may induce the electrical dipoles, which launch the SPP and act as sources of radiation. The superlens may be optimized based on the transfer function using the long-range SPP mode cut-off technique, the genetic algorithm and other techniques in order to improve significantly the image quality. Design examples are presented, and confirmed by the real image computed with numerical simulation using the FDTD method.

  12. Tow-dimensional Strain Analysis by Fourier Transform Moire Interferometry

    International Nuclear Information System (INIS)

    Moire interferometry using a diffraction grating and a laser is a powerful technique for analyzing small deformation of a specimen. In the method, the x and y-directional fringe patterns are obtained by using the x and y-directional sets of two beams. If the both sets of two beams are simultaneously incident to the specimen, the x and y-directional fringe patterns are super imposed. In this case, it is difficult to separate each directional fringe pattern. Therefore each fringe pattern has been separately recorded by selecting each set of two beams. In order to analyze a two-dimensional strain changing with time, Moire interferometry using the two-dimensional fourier transform method is proposed and the x and y-directional fringes are separated. By this method, the thermal deformation of a glass plate is analyzed

  13. Investigation of stingray spines by Fourier transform infrared spectroscopy analysis to recognize functional groups

    OpenAIRE

    Muthuramalingam Uthaya Siva; Mohideen Abdul Badhul Haq; Deivasigamani Selvam; Ganesan Dinesh Babu; Rathinam Bakyaraj

    2013-01-01

    Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis. Methods: The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus sephen were centrifuged at 6 000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2) and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform ...

  14. Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mehrotra Ranjana

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer among women and the leading cause of death among gynecologic malignancies. In recent years, infrared (IR spectroscopy has gained attention as a simple and inexpensive method for the biomedical study of several diseases. In the present study infrared spectra of normal and malignant ovarian tissues were recorded in the 650 cm-1 to 4000 cm-1 region. Methods Post surgical tissue samples were taken from the normal and tumor sections of the tissue. Fourier Transform Infrared (FTIR data on twelve cases of ovarian cancer with different grades of malignancy from patients of different age groups were analyzed. Results Significant spectral differences between the normal and the ovarian cancerous tissues were observed. In particular changes in frequency and intensity in the spectral region of protein, nucleic acid and lipid vibrational modes were observed. It was evident that the sample-to-sample or patient-to-patient variations were small and the spectral differences between normal and diseased tissues were reproducible. Conclusion The measured spectroscopic features, which are the spectroscopic fingerprints of the tissues, provided the important differentiating information about the malignant and normal tissues. The findings of this study demonstrate the possible use of infrared spectroscopy in differentiating normal and malignant ovarian tissues.

  15. Fourier Analysis for Demand Forecasting in a Fashion Company

    Directory of Open Access Journals (Sweden)

    Andrea Fumi

    2013-08-01

    sectors. The entire analysis was performed on a common spreadsheet, in order to demonstrate that accurate results exploiting advanced numerical computation techniques can be carried out without necessarily using expensive software.

  16. Elliptic Fourier analysis of crown shapes in Quercus petraea trees

    OpenAIRE

    Ovidiu Hâruţa

    2011-01-01

    Shape is a fundamental morphological descriptor, significant in taxonomic research as well as in ecomorphology, one method of estimation being from digitally processed images. In the present study, were analysed shapes of Q. petraea crowns, pertaining to five different stem diameter classes, from three similar stands. Based on measurements on terrestrial digital vertical photos, crown size analysis was performed and correlations between crown and stem variables were tested. Linear regression ...

  17. The combined use of order tracking techniques for enhanced Fourier analysis of order components

    Science.gov (United States)

    Wang, K. S.; Heyns, P. S.

    2011-04-01

    Order tracking is one of the most important vibration analysis techniques for diagnosing faults in rotating machinery. It can be performed in many different ways, each of these with distinct advantages and disadvantages. However, in the end the analyst will often use Fourier analysis to transform the data from a time series to frequency or order spectra. It is therefore surprising that the study of the Fourier analysis of order-tracked systems seems to have been largely ignored in the literature. This paper considers the frequently used Vold-Kalman filter-based order tracking and computed order tracking techniques. The main pros and cons of each technique for Fourier analysis are discussed and the sequential use of Vold-Kalman filtering and computed order tracking is proposed as a novel idea to enhance the results of Fourier analysis for determining the order components. The advantages of the combined use of these order tracking techniques are demonstrated numerically on an SDOF rotor simulation model. Finally, the approach is also demonstrated on experimental data from a real rotating machine.

  18. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  19. The use of Fourier functions to eliminate interferences in spectrophotometric analysis (theory and application).

    Science.gov (United States)

    Wahbi, A M; Abdine, H; Korany, M A

    1978-05-01

    The basic principle for the use of Fourier functions in spectrophotometric analysis is discussed. Fourier function coefficients are linearly related to concentration and are associated with relative standard deviations of less than 1%. The proper choice of function and range, number of points and the transformation of an absorption curve are discussed. New trigonometric functions are derived to correct for linear irrelevant absorption. The method is illustrated by the determination of progesterone and testosterone propionate in oily solutions without prior chromatography. The results obtained are compared with those obtained using orthogonal polynomials. PMID:674337

  20. The methods and computer structures for adaptive Fourier descriptive image analysis

    OpenAIRE

    V.Perzhu; A. Gurau

    1997-01-01

    New architectures of image processing computer systems, based on the algorithms of Fourier - descriptive (FD) analysis have been developed. A new computing processes organisation method on the basis of FD image features has been proposed. The structures of two problem-oriented optical-electronic computer systems have been developed. The estimation of time expenditures in the systems have been carried out.

  1. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    OpenAIRE

    Xiaojun Tang; Yuntao Liang; Haozhe Dong; Yong Sun; Haizhu Luo

    2014-01-01

    Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS) is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysi...

  2. Program for the analysis of time series. [by means of fast Fourier transform algorithm

    Science.gov (United States)

    Brown, T. J.; Brown, C. G.; Hardin, J. C.

    1974-01-01

    A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

  3. Performance analysis of SHE-PWM using Fourier Series and Newton-Raphson analysis

    Science.gov (United States)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Nor, A. S. M.; Yuen, J. G. M.

    2015-05-01

    The performance of inverter has become a vital role in contributing effective power system nowadays. However the major issue that will reduce the inverter performance is the harmonic distortions that contribute to power losses. Thus, there are a variety of controls techniques have been implemented for inverters switching such as square wave, SHE-PWM, unipolar and bipolar. The square wave type inverter produces output voltage in square shape which has simple logic control and power switches. Next, unipolar and bipolar techniques are using comparator to compare the reference voltage waveform with the triangular waveform. The difference between unipolar and bipolar is there are two reference signals which are compared with the triangular waveform for unipolar switching. On the other hand, bipolar switching compares triangular waveform with a reference signal. Selective Harmonic Elimination Pulse-Width Modulation (SHE-PWM) is another control technique for inverters. This research propose SHE-PWM as a low switching frequency strategy that uses Fourier Series and Newton-Raphson analysis to calculate the switching angles for elimination of harmonic distortion. Fourier Series is used to determine the amplitude of any odd harmonic in the output signal whereas Newton-Raphson is used to solve the equation for finding switching angles. As a result, SHE-PWM can select the low frequency harmonic components need to be eliminated and reduce the harmonic distortion. It also prevents the harmonic distortion that sensitive to the inverter performance

  4. Fourier analysis in magnetic induction tomography: mapping of anisotropic, inhomogeneous resistivity

    International Nuclear Information System (INIS)

    Magnetic induction tomography is an electromagnetic technique for mapping the passive electromagnetic properties of conductors and has the potential for applications in biomedical imaging. In a previous analysis, we approached the inverse problem of determining isotropic resistivity with a Fourier-based analysis. Here, we extend that analysis to anisotropic media. The proposed Fourier-based solution method, when properly filtered, robustly handles noise to accurately map the inhomogeneous terms of the resistivity tensor. We observe a random variation in the measure of accuracy (mean deviation) that is resolved with independent spatial frequencies in the x- and y-directions in the applied field. Further, the formation of improper images we noted in our previous analysis is addressed through the use of independent spatial frequencies and through the use of additional applied fields. We conclude with a discussion of computation time for the large system of linear equations that this method requires and propose methods for limiting memory usage

  5. Time sequence analysis of flickering auroras. I - Application of Fourier analysis. [in atmosphere

    Science.gov (United States)

    Berkey, F. T.; Silevitch, M. B.; Parsons, N. R.

    1980-01-01

    Using a technique that enables one to digitize the brightness of auroral displays from individual fields of a video signal, we have analyzed the frequency content of flickering aurora. Through the application of Fourier analysis to our data, we have found that flickering aurora contains a wide range of enhanced frequencies, although the dominant frequency enhancement generally occurs in the range 6-12 Hz. Each incidence of flickering that we observed was associated with increased radio wave absorption. Furthermore, we have found that flickering occurs in bright auroral surges, the occurrence of which is not limited to the 'breakup' phase of auroral substorms. Our results are interpreted in terms of a recently proposed theory of fluctuating double layers that accounts for a number of the observational features.

  6. Diamond cell Fourier transform infrared spectroscopy transmittance analysis of black toners on questioned documents

    OpenAIRE

    Almeida Assis, A.C.; Barbosa, M F; Valente Nabais, J.M.; Custódio, A.F.; Tropecelo, P.

    2012-01-01

    This paper describes the use of a diamond cell Fourier transform infrared (FTIR) spectroscopy methodology for the analysis of black toners commercialised in Portugal. A total of one hundred and thirty-eight samples from eighteen manufacturers were analysed in transmittance mode through a diamond cell. This methodology was considered to be non-destructive as it allows the forensic analysis of the questioned documents while preserving their integrity. The questioned documents’ subst...

  7. Interpreting the Phase Spectrum in Fourier Analysis of Partial Ranking Data

    Directory of Open Access Journals (Sweden)

    Ramakrishna Kakarala

    2012-01-01

    Full Text Available Whenever ranking data are collected, such as in elections, surveys, and database searches, it is frequently the case that partial rankings are available instead of, or sometimes in addition to, full rankings. Statistical methods for partial rankings have been discussed in the literature. However, there has been relatively little published on their Fourier analysis, perhaps because the abstract nature of the transforms involved impede insight. This paper provides as its novel contributions an analysis of the Fourier transform for partial rankings, with particular attention to the first three ranks, while emphasizing on basic signal processing properties of transform magnitude and phase. It shows that the transform and its magnitude satisfy a projection invariance and analyzes the reconstruction of data from either magnitude or phase alone. The analysis is motivated by appealing to corresponding properties of the familiar DFT and by application to two real-world data sets.

  8. Advantages Of A Time Series Analysis Using Wavelet Transform As Compared With A Fourier Analysis

    Directory of Open Access Journals (Sweden)

    Sleziak Patrik

    2015-06-01

    Full Text Available The paper presents an analysis of changes in the structure of the average annual discharges, average annual air temperature, and average annual precipitation time series in Slovakia. Three time series with lengths of observation from 1961 to 2006 were analyzed. An introduction to spectral analysis with Fourier analysis (FA is given. This method is used to determine significant periods of a time series. Later in this article a description of a wavelet transform (WT is reviewed. This method is able to work with non-stationary time series and detect when significant periods are presented. Subsequently, models for the detection of potential changes in the structure of the time series analyzed were created with the aim of capturing changes in the cyclical components and the multiannual variability of the time series selected for Slovakia. Finally, some of the comparisons of the time series analyzed are discussed. The aim of the paper is to show the advantages of time series analysis using WT compared with FT. The results were processed in the R software environment.

  9. Application of Fourier analysis to the study of roughness profiles of eroded samples

    International Nuclear Information System (INIS)

    Fourier transforms are applied to analyse surface roughness profiles recorded on samples coming from erosion-corrosion essays. The information retrieved using this method clearly complements that revealed by the more classical roughness amplitude parameters. The analysis procedure here proposed can be applied not only to characterise the surface of corroded samples but, in general, to evaluate the quality of any surface after application of finishing treatments. (Author) 7 refs

  10. A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations

    Institute of Scientific and Technical Information of China (English)

    DANCHIN; Raphaёl

    2012-01-01

    Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations.In this survey paper,we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space.We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.

  11. Fourier amplitude and phase analysis in the clinical evaluation of patients with cardiomyopathy

    International Nuclear Information System (INIS)

    Fifty-four patients with a cardiomyopathy were studied by Radionuclide Cardangiography (RNCA) and Fourier amplitude and phase image analysis. The study group included patients with ischemic cardiomyopathy (27) and an equal number of patients with a primary cardiomyopathy: drug-induced (22), idiopathic (three), radiation-induced (one), and amyloidosis (one). Twenty-eight patients had rest studies alone and 26 had both rest and stress studies (80 total). The mean rest LVEF in the ischemic group was 27.9%, in the drug-induced group 36.5%, and in the idiopathic group 30%. The stress LVEF decreased in 92% of patients with ischemic cardiomyopathy and 45% of patients with primary (drug-induced) cardiomyopathy. Fourier amplitude and phase images were generated for each study. Amplitude and phase images were abnormal in all patients with an ischemic cardiomyopathy. LV amplitude abnormalities were regional and phase was directional. A zone of dysynergy on phase analysis was present in 44% of patients with ischemic cardiomyopathy. In the drug-induced primary cardiomyopathy group, all patients had abnormal amplitude and 86% had abnormal phase. Amplitude abnormalities were global rather than regional and phase patterns were nondirectional. Only one patient had a zone of dysynergy on the phase image. We conclude that the stress LVEF alone cannot consistently differentiate between ischemic and primary cardiomyopathies and that Fourier amplitude and phase analysis may be useful in determining the etiology of a cardiomyopathy (ischemic vs primary)

  12. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    Science.gov (United States)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  13. A new approach to the Fourier analysis on semi-direct products of groups

    CERN Document Server

    Farashahi, Arash Ghaani

    2012-01-01

    Let $H$ and $K$ be locally compact groups and also $\\tau:H\\to Aut(K)$ be a continuous homomorphism and $G_\\tau=H\\ltimes_\\tau K$ be the semi-direct product of $H$ and $K$ with respect to the continuous homomorphism $\\tau$. This paper presents a novel approach to the Fourier analysis of $G_\\tau$, when $K$ is abelian. We define the $\\tau$-dual group $G_{\\hat{\\tau}}$ of $G_\\tau$ as the semi-direct product $H\\ltimes_{\\hat{\\tau}}\\hat{K}$, where $\\hat{\\tau}:H\\to Aut(\\hat{K})$ defined via (\\ref{A}). We prove a Ponterjagin duality Theorem and also we study $\\tau$-Fourier transforms on $G_\\tau$. As a concrete application we show that how these techniques apply for the affine group and also we compute the $\\tau$-dual group of Euclidean groups and the Weyl-Heisenberg groups.

  14. Assessment of valve actuator motor rotor degradation by Fourier analysis of current waveform

    International Nuclear Information System (INIS)

    This paper presents a test report of a motor diagnostic system that uses Fourier Analysis of the motor current waveform to detect broken rotor bars in the motor or defects in the driven equipment. The test was conducted on a valve actuator motor driving a valve actuator that was in turn driving a dynamometer to measure the actuator torque output. The motor was gradually degraded by open circuiting rotor bars. The test confirmed the efficacy of the waveform analysis method for assessing motor rotor degradation and also provided data regarding the change in waveform characteristic as motor rotors are gradually degraded to failure

  15. Processing of gamma-ray spectra employing a Fourier deconvolver for the analysis of complex spectra

    International Nuclear Information System (INIS)

    Processing of a nuclear spectrum e.g. gamma ray spectrum is concerned with the estimation of energies and intensities of radiation. The processing involves filtering, peak detection and its significance, baseline delineation, the qualitative and the quantitative analysis of singlets and multiplets present in the spectrum. The methodology for the analysis of singlets is well established. However, the analysis of multiplets provides a challenge and is a extremely difficult problem. This report incorporates a Fourier deconvolver for the quantitative analysis of doublets separated by more than a full width at half maximum. The method is easy to implement. The report discusses the methodology, mathematical analysis, and the results obtained by analyzing both synthetic and observed spectra. A computer program, developed for the analysis of a nuclear spectrum, was verified by analyzing a 152Eu gamma ray spectrum. The proposed technique compared favourably with SAMPO and MDFT method. (author). 16 refs., 3 tabs

  16. Simulated bipolar cells in fovea of human retina. V. Use of Fourier analysis to determine resolution.

    Science.gov (United States)

    Siminoff, R

    1991-01-01

    Fourier analysis is used to study resolution of images processed by the matrix of simulated red-center (BCR) and green-center (BCG) bipolar cells (BC) of the human central fovea. Simulated achromatic and chromatic sine and square waves, and a two-bar stimulus are used to activate the BCs. Due to the "honeycomb" packing of the cones and BC matrices Fourier transforms are computed row by row using a one-dimensional FFT. Resolution computed by the Fourier transform is compared with the resolution index (RI), which is a method for determining resolution based on two-point discrimination in the space domain. In general the harmonic with the maximum amplitude gives the best correlation with RI for the three stimuli. Amplitudes at all spatial frequencies are enhanced by increasing the number of cycles in the sine and square wave gratings. Results with simulated BCs compare favorably with human and macaque psychophysics measuring contrast sensitivity. Square wave gratings are better than sine wave greetings for studying resolution. PMID:1768719

  17. Fourier transform method for sensitivity analysis in coal fired power plant

    International Nuclear Information System (INIS)

    This work proposes a Fourier transform method to determine the sensitivities associated with a real coal power plant using a Rankine cycle. Power demand determines the plant revenue and is supposed to be the most important parameter to be accurately measured, and this hypothesis is at the center of this study. The results confirm that under full design load, variables such as steam pressure, temperature and mass flow rate are closely dependent on power demand, though overall thermal efficiency is more sensitive to boiler efficiency. Partial load simulation shows that the overall thermal efficiency remains strongly dependent on the boiler parameters, but other operational variables such as steam temperature at the turbine outlet changes its sensitivity according to the load. The results from the Fourier transform method are in good agreement with those determined by classical differential and Monte Carlo methods. However, the Fourier transform method requires only a single run, providing major savings in computational time as compared to the Monte Carlo method, a major advantage for analysis of power systems whether operating under full or partial load

  18. Fourier and factorial analysis: An objective and comparative evaluation on a cardiac phantom

    International Nuclear Information System (INIS)

    Orthogonal and oblique factor analysis represent an alternative to Fourier analysis in the evaluation of cardiac dynamic behaviour in gated blood pool studies. In order to estimate their respective places, orthogonal factor analysis (OFA), factor analysis of dynamic structures (FADS) and Fourier analysis (FA) are tested on a dynamic and periodical phantom with well known and reproducible kinetics. The phantom data are acquired under standard conditions by varying the counting rates and the temporal frequency sampling. To compare the results of the three methods with maximal objectivity, the relative contribution of each component is calculated. With standard acquisition conditions, FA and OFA give very close results. Only a minor advantage in evaluation of small phase differences is observed with OFA. FADS solutions are effectively related to the dynamic behaviour of the phantom, but their interpretation is more complicated and the quality of the oblique factors is reduced as the number of calculated factors increases. The influence of the counting statistics on FA, OFA and FADS is very similar. However, in cases of undersampling, robustness is demonstrated with the factorial technics. (orig.)

  19. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Pressure Vessel Code, Section VIII, Division 2 and ASME STS-1. -- Highlights: • Fourier series is used to predict the load carrying capacity of cylindrical vessel. • Reliability approach used for analysis as against the deterministic approach. • Cylindrical pressure vessel is subjected to axial end load and external pressure. • Axisymmetric and asymmetric analysis carried out for imperfect pressure vessels. • Results are compared to the recommendations laid out in ASME B and PV Code

  20. Analysis of thermal plasma radiation by Fourier transform, wavelet analysis and phase portraits

    Czech Academy of Sciences Publication Activity Database

    Gruber, Jan; Šonský, Jiří; Hlína, Jan

    Prague: Institute of Thermomechanics ASCR, v. v. i., 2014, s. 19-20. ISBN 978-80-87012-52-9. [Symposium on Electric Machines, Drives and Power Electronics. Prague (CZ), 09.09.2014-11.09.2014] Institutional support: RVO:61388998 Keywords : atmospheric-pressure plasmas * Fourier transform * plasma cutting Subject RIV: BL - Plasma and Gas Discharge Physics

  1. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    DEFF Research Database (Denmark)

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;

    2012-01-01

    trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...... of diffusion coefficients and the trapping forces....

  2. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    Science.gov (United States)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  3. Fourier analysis of blurred images for the measurement of the in-plane dynamics of MEMS

    International Nuclear Information System (INIS)

    The goal of this paper is to use FFT imaging techniques to measure in-plane resonances of MEMS devices from blurred microphotographs where the presence of resonance is not visually discernable. A method is presented for measuring the high-frequency (in the 10s–100s of kHz range) response characteristics of MEMS devices using only standard optical microscope cameras (15–30 Hz frame rate) and applying Fourier analysis of camera images of periodic patterns on the oscillating devices. In the frequency domain, in-plane blurring acts as a low pass filter, attenuating all frequency components, but preferentially attenuating the higher order harmonics. A theoretical formula for the blur-induced attenuation of the harmonics of Fourier series components is derived and it is shown that it follows a Bessel curve. The theoretical predictions were verified experimentally using a series of camera microphotographs of three different variations of an electro-thermally driven pad suspended on springs. The predicted attenuations of harmonics were observed and verified. The analysis of the measured attenuation was able to (1) determine in-plane resonant frequencies, (2) measure submicron motions and (3) characterize the nonlinear dynamics (modeled by the Duffing equation). The amplitude uncertainty of the FFT method for detecting in-plane resonant peaks at 75 kHz and 3.5 V was found to be ±0.027 µm using a single image and ±0.011 µm using an average of 10 images. (paper)

  4. Investigation of stingray spines by Fourier transform infrared spectroscopy analysis to recognize functional groups

    Institute of Scientific and Technical Information of China (English)

    Muthuramalingam Uthaya Siva; Mohideen Abdul Badhul Haq; Deivasigamani Selvam; Ganesan Dinesh Babu; Rathinam Bakyaraj

    2013-01-01

    Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis.Methods:sephen were centrifuged at 6000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2) and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform infrared spectroscopic analysis.Results:The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus and random coiled secondary structure. The presence of O-H stretch, C=O stretch, C-H stretch, N-H deformation, O-H deformation and C-O stretch in the sample aligned with standard bovine serum albumin. The influence of functional groups within the molecule was because of the impact of preferred spatial orientation, chemical and physical interaction on the molecule. In conclusion, compared to bovine serum albumin, Himantura imbricata consists of two C=O stretch, are involved in the hydrogen bonding that takes place between the different elements of secondary structure.Conclusions:The results identified that the presence of free amino acids and protein having β-sheet medicine not available for treatment against injuries causing stingray. Therefore, it's the baseline study, to motivate further process and produce effective antibiotics. The venom of poisonous animals has been extensively studied, since standard.

  5. Investigation of stingray spines by Fourier transform infrared spectroscopy analysis to recognize functional groups

    Directory of Open Access Journals (Sweden)

    Muthuramalingam Uthaya Siva

    2013-10-01

    Full Text Available Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis. Methods: The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus sephen were centrifuged at 6 000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2 and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform infrared spectroscopic analysis. Results: The results identified that the presence of free amino acids and protein having β-sheet and random coiled secondary structure. The presence of O-H stretch, C=O stretch, C-H stretch, N-H deformation, O-H deformation and C-O stretch in the sample aligned with standard bovine serum albumin. The influence of functional groups within the molecule was because of the impact of preferred spatial orientation, chemical and physical interaction on the molecule. In conclusion, compared to bovine serum albumin, Himantura imbricata consists of two C=O stretch, are involved in the hydrogen bonding that takes place between the different elements of secondary structure. Conclusions: The venom of poisonous animals has been extensively studied, since standard medicine not available for treatment against injuries causing stingray. Therefore, it's the baseline study, to motivate further process and produce effective antibiotics.

  6. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    Science.gov (United States)

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211

  7. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    International Nuclear Information System (INIS)

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance

  8. Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer

    Science.gov (United States)

    Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William

    2004-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.

  9. EVALUATION OF ANTIOXIDANT POTENTIAL AND FOURIER TRANSFORM INFRARED SPECTROSCOPY ANALYSIS OF ANANUS COMOSUS (L. MERRILL PEEL

    Directory of Open Access Journals (Sweden)

    Manokaran Kalaiselvi

    2012-02-01

    Full Text Available Ananas comosus (L. Merrill is belonging to the family Bromeliaceae which act as an anti-inflammatory, antitumor effect. The present study is aimed to appraise the antioxidant potential and Fourier transform infrared spectroscopy (FTIR analysis in Ananus comosus peel. The enzymatic and non enzymatic antioxidants profiles were analyzed in fresh peel of pineapple with the standard protocols and the FTIR was applied and Infrared spectrum in mid infrared region 4000–400 cm–1 was used for discriminating and to identify various functional groups present in the ethanolic extract of Ananus comosus. The fresh peel shows the significant amount of antioxidants and the FTIR analysis also found the presence of amino acids, alkenes, nitrates, nitrites, ethers, esters, aldehydes, alkynes, aromatic compounds, organic halogen compounds, carbohydrates, sulphur derivatives and polysaccharides. In conclusion, the results presented in the peel of Ananus comosus have strong antioxidant content which may be act as good pharmacotherapeutic agents in future.

  10. Symmetric discontinuous Galerkin methods for 1-D waves Fourier analysis, propagation, observability and applications

    CERN Document Server

    Marica, Aurora

    2014-01-01

    This work describes the propagation properties of the so-called symmetric interior penalty discontinuous Galerkin (SIPG) approximations of the 1-d wave equation. This is done by means of linear approximations on uniform meshes. First, a careful Fourier analysis is constructed, highlighting the coexistence of two Fourier spectral branches or spectral diagrams (physical and spurious) related to the two components of the numerical solution (averages and jumps). Efficient filtering mechanisms are also developed by means of techniques previously proved to be appropriate for classical schemes like finite differences or P1-classical finite elements. In particular, the work presents a proof that the uniform observability property is recovered uniformly by considering initial data with null jumps and averages given by a bi-grid filtering algorithm. Finally, the book explains how these results can be extended to other more sophisticated conforming and non-conforming finite element methods, in particular to quad...

  11. Characterization of right or left ventricular contraction heterogeneity using Fourier phase analysis

    International Nuclear Information System (INIS)

    The standard deviation of the first harmonic Fourier phase histogram is an indicator of the contraction heterogeneity of the heart ventricles. This approach has been applied to analyse tomographic blood pool (99mTc) examinations in a group of 32 patients with angiographically verified mainly right (RV) but also left (LV) kinetic disorders in relation to severe ventricular arrhythmias and suspicion of arrhythmogenic right ventricular dysplasia (ARVD). The reference group consisted of ten patients with low probability of cardiac kinetic abnormalities. Thick tomographic slices including both ventricles have been reconstructed in the horizontal long axis orientation from a series of 32 gated projections recorded over a 3600 rotation. Separately for each ventricle the Fourier phase histograms have been computed and characterized by their standard deviations (PSD). Normal values were significantly lower than those measured in abnormal cases. Detailed analysis of the data supports the hypothesis of a primary RV disease in ARVD, with secondary LV extension. PSD seems to be a good predictor of an organic cardiac disease underlying ventricular arrhythmias and may be used for screening the patients. (orig.)

  12. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  13. Validation of measurements of Fourier phase and amplitude analysis of technetium99 gated cardiac scans using artificial hearts

    International Nuclear Information System (INIS)

    The use of artificial hearts, developed for total heart replacement programs, allows assessment of the accuracy of measuring the first Fourier component phase and amplitude when applied to gated cardiac technetium 99 scans. In the extreme example of asynchrony of ventricular contraction in coronary artery disease that of ventricular aneurysms, the first Fourier component measurements of amplitude were highly correlated to volume increases suggesting that the calculated amplitude accurately reflects volume changes. The calculated asynchrony using Fourier analysis of the gated technetium 99 studies of two artificial hearts was highly accurate when compared to the predetermined calculation of phase angle difference and hence degree of asynchrony. The studies suggest that measurement of phase and amplitude using the first Fourier component of time-activity waves of gated cardiac technetium 99 studies accurately measure degree of asynchrony and volume changes respectively

  14. Fabrication and analysis of tall-stepped mirror for use in static Fourier transform infrared spectrometer

    Science.gov (United States)

    Chen, Cheng; Liang, Jingqiu; Liang, Zhongzhu; Lü, Jinguang; Qin, Yuxin; Tian, Chao; Wang, Weibiao

    2015-12-01

    A method of "slope splicing" is proposed to build a tall-stepped mirror with high precision in a stepped-mirror-based static Fourier transform infrared spectrometer. The structural parameters were designed, and their errors were analyzed. We present the test results and an analysis of the combined effect of the errors on the recovered spectrum. The spectrum-constructing error of the constructed spectrum, 5.81%, meets the requirements for the system and suitable for realization of a miniaturized spectrometer. We performed experiments with the tall-stepped mirror to obtain the interferogram and spectrum of a silicon carbide light source. Further work is needed to optimize the capability of the system.

  15. Single frame method for resolution enhancement of the Fourier fringe analysis method

    Science.gov (United States)

    Tavares, Paulo J.; Vaz, Mário A. P.

    2013-11-01

    Fourier Transform Profilometry (FTP) is one of the most popular fringe analysis methods in Optical Metrology for a wealth of applications in Mechanical Engineering, such as shape profilometry or defect detection with shearography or holographic interferometry methods. Gradient range and spatial resolution in the FTP method depend on the size of the filter window in reciprocal space. The authors have previously reported on a method that uses a single crossed fringe pattern for the elimination of the fundamental frequency and enlargement of the carrier window, which is therefore inherently able to cope with dynamic situations. This article describes an improved version of the technique that no longer resources to bit-shifting operations, greatly improving the flexibility of the previously reported technique, whilst retaining its main advantages.

  16. Analysis of parameter estimation using the sampling-type algorithm of discrete fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    Bing DENG; Jun-bao LUAN; Shi-qi CUI

    2014-01-01

    Parameter estimation is analyzed using two kinds of common sampling-type DFRFT (discrete fractional Fourier transform) algorithm. A model of parameter estimation is established. The factors which influence estimation accuracy are analyzed. And the simulation is made to verify the conclusions. From the theoretic analysis and simulation verification, it can be drawn that, for the estimation of chirp-rate and initial fre-quency, Pei's method [10] is more suitable if the absolute value of chirp-rate is small relatively; Ozaktas' method [9] is more suitable if the absolute value of chirp-rate is large relatively;and the two methods are both workable if the absolute value of chirp-rate is moderate. The scope of moderate chirp-rate can be approximately determined as [40 Hz/s, 110 Hz/s].

  17. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components

    Science.gov (United States)

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-01

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  18. Fast Fourier transform analysis of sounds made while swallowing various foods.

    Science.gov (United States)

    Taniwaki, Mitsuru; Kohyama, Kaoru

    2012-10-01

    The cervical auscultation method was applied to investigate sounds generated while swallowing various foods with unique physical properties, including liquid (water), semiliquid (yogurt), and solid (konjac jelly). To study the differences among swallowing sounds for various foods, fast Fourier transform (FFT) analysis was applied to signals that were attributed to the flow of a food bolus, which is a swallowable soft mass of chewed food. An FFT program was developed that enabled the calculation of a spectrum for a specified region of time domain swallowing sound signals. The intensity of spectra in the frequency range between 400 and 1000 Hz significantly differed: liquid > semiliquid > solid. The FFT spectrum in this range was suggested to represent the frequency characteristics of the swallowing sounds of various foods. PMID:23039442

  19. Local Fourier Analysis of the Complex Shifted Laplacian preconditioner for Helmholtz problems

    CERN Document Server

    Cools, Siegfried

    2011-01-01

    In this paper we solve the Helmholtz equation with multigrid preconditioned Krylov subspace methods. The class of Shifted Laplacian preconditioners are known to significantly speed-up Krylov convergence. However, these preconditioners have a parameter \\beta, a measure of the complex shift. Due to contradictory requirements for the multigrid and Krylov convergence, the choice of this shift parameter can be a bottleneck in applying the method. In this paper, we propose a wavenumber-dependent minimal complex shift parameter which is predicted by a rigorous k-grid Local Fourier Analysis (LFA) of the multigrid scheme. We claim that, given any (regionally constant) wavenumber, this minimal complex shift parameter provides the reader with a parameter choice that leads to efficient Krylov convergence. Numerical experiments in one and two spatial dimensions validate the theoretical results. It appears that the proposed complex shift is both the minimal requirement for a multigrid V-cycle to converge, as well as being ...

  20. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  1. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  2. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  3. Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher's discriminant analysis.

    Science.gov (United States)

    Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang

    2016-02-01

    Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher's discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354

  4. Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis

    Science.gov (United States)

    von Aulock, F. W.; Kennedy, B. M.; Schipper, C. I.; Castro, J. M.; Martin, D. E.; Oze, C.; Watkins, J. M.; Wallace, P. J.; Puskar, L.; Bégué, F.; Nichols, A. R. L.; Tuffen, H.

    2014-10-01

    Fourier transform infrared spectroscopy (FTIR) is an analytical technique utilized to measure the concentrations of H and C species in volcanic glasses. Water and CO2 are the most abundant volatile species in volcanic systems. Water is present in magmas in higher concentrations than CO2 and is also more soluble at lower pressures, and, therefore it is the dominant volatile forming bubbles during volcanic eruptions. Dissolved water affects both phase equilibria and melt physical properties such as density and viscosity, therefore, water is important for understanding magmatic processes. Additionally, quantitative measurements of different volatile species using FTIR can be achieved at high spatial resolution. Recent developments in analytical equipment such as synchrotron light sources and the development of focal plane array (FPA) detectors allow higher resolution measurements and the acquisition of concentration maps. These new capabilities are being used to characterize spatial gradients (or lack thereof) around bubbles and other textural features, which in turn lead to new insights into the behavior of volcanic feeder systems. Here, practical insights about sample preparation and analysis of the distribution and speciation of volatiles in volcanic glasses using FTIR spectroscopy are discussed. New advances in the field of FTIR analysis produce reliable data at high spatial resolution that can be used to produce datasets on the distribution, dissolution and diffusion of volatiles in volcanic materials.

  5. Fourier Analysis of the OMC1 Image at 1.1 mm Wavelength

    CERN Document Server

    Youn, Soyoung

    2012-01-01

    We present a 1.1 mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers that was in use at the James Clerk Maxwell Telescope (JCMT). The AzTEC observations of the OMC1 region at 1.1 mm reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and 850 micronm. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum which provides the distribution of length scale of the structures is measured. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. From the present analysis of the OMC1 filaments at the 1.1 mm emission, the power spectrum steepens at relatively smaller scales. At largest scales, the power spectrum flattens and the large scale power law becomes shallower. The power spectra of the 1.1 mm emission show clear deviations from ...

  6. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis

    Science.gov (United States)

    Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard

    2014-06-01

    Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.

  7. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Jones, Roger W. [Ames Laboratory; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  8. Compositional analysis of metal chelating materials using near-field photothermal Fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Moffat, Jonathan G; Mayes, Andrew G; Belton, Peter S; Craig, Duncan Q M; Reading, Mike

    2010-01-01

    Photothermal-Fourier transform-infrared (PT-FT-IR) microspectroscopy employs a thermal probe mounted in a scanning probe microscope (SPM). By placement of the tip of the probe on the surface of a solid sample, it can obtain localized IR spectra of a wide range of samples. A second mode of analysis is also available; a sample can be taken from the selected location using a technique called thermally assisted nanosampling (TAN), then a spectrum can be obtained of the nanosample while the probe is remote from the surface. We report a novel method of local compositional analysis that combines both of these types of measurement; a reagent is attached to the tip using TAN, then the reagent is placed in contact with analyte. IR spectroscopy can then be used to analyze any interaction between the reagent and surface it is placed in contact with. All of these modes of analysis were illustrated using a metal chelating agent. In the surface mode, changes to a solid bead of a chelating resin were measured using standard PT-FT-IR. In the nanosampling mode of analysis, a particle of a chelating polymer was attached to the tip of the probe using TAN and this was placed in contact with a concentrated calcium solution. Strong spectral changes were observed that mirrored those found when exposing the surface bound chelating resin bead to a solution of the same ion. A semiquantitative simulation of the PT spectrum for a chelating resin bead was achieved using a thermal diffusion model derived from photoacoustic spectroscopy indicating that semiquantitative or quantitative measurements will be possible in such a system. PMID:19957959

  9. Neutron Noise Analysis with Flash-Fourier Algorithm at the IBR-2M Reactor

    Directory of Open Access Journals (Sweden)

    Mihai O. Dima

    2013-01-01

    Full Text Available Neutron noise spectra in nuclear reactors are a convolution of multiple effects. For the IBR-2M pulsed reactor (JINR, Dubna, one part of these is represented by the reactivities induced by the two moving auxiliary reflectors and another part of these by other sources that are moderately stable. The study of neutron noise involves, foremostly, knowing its frequency spectral distribution, hence Fourier transforms of the noise. Traditional methods compute the Fourier transform of the autocorrelation function. We show in the present study that this is neither natural nor real-time adapted, for both the autocorrelation function and the Fourier transform are highly CPU intensive. We present flash algorithms for processing the Fourier-like transforms of the noise spectra.

  10. Theoretical Analysis and Experimental Evidence of NonFourier Heat Conduction Behavior

    Institute of Scientific and Technical Information of China (English)

    蒋方明; 刘登瀛; 蔡睿贤

    2001-01-01

    This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and an analytical expression of its temperature distribution is obtained. According to the expression, the non-Fourier heat conduction behavior that will appear in the hollow sphere is studied and some qualitative conditions that will result in distinct non-Fourier behavior in the medium is ultimately attained. (2) A novel experiment to observe non-Fourier heat conduction behavior in porous material (mainly ordinary duplicating paper) heated by a microsecond laser pulse is presented. The conditions for observing distinct non-Fourier heat conduction behavior in the experimental sample agree well with the theoretical results qualitatively.

  11. Fourier-bessel based image analysis for multi-parameter particle characterization

    OpenAIRE

    Vandewiele, Stijn; Drobchak, Oksana; Beunis, Filip; Neyts, Kristiaan; Strubbe, Filip

    2014-01-01

    We demonstrate a novel particle characterization method based on decomposition of conventional microscopy images in Fourier-Bessel (FB) components. This allows the simultaneous measurement of size, refractive index, 3D position and orientation of single colloidal particles.

  12. Neutron Noise Analysis with Flash-Fourier Algorithm at the IBR-2M Reactor

    OpenAIRE

    Dima, Mihai O.; Pepelyshev, Yuri N.(Joint Institute for Nuclear Research, FLNP, Dubna, Moscow 141980, Russia); Lachin Tayibov

    2014-01-01

    Neutron noise spectra in nuclear reactors are a convolution of multiple effects. For the IBR-2M pulsed reactor (JINR, Dubna), one part of these is represented by the reactivities induced by the two moving auxiliary reflectors and another part of these by other sources that are moderately stable. The study of neutron noise involves, foremostly, knowing its frequency spectral distribution, hence Fourier transforms of the noise. Traditional methods compute the Fourier transform of the autocorrel...

  13. Pipe-anchor discontinuity analysis utilizing power series solutions, Bessel functions, and Fourier series

    International Nuclear Information System (INIS)

    One of the paradigmatic classes of problems that frequently arise in piping stress analysis discipline is the effect of local stresses created by supports and restraints attachments. Over the past 20 years, concerns have been identified by both regulatory agencies in the nuclear power industry and others in the process and chemicals industries concerning the effect of various stiff clamping arrangements on the expected life of the pipe and its various piping components. In many of the commonly utilized geometries and arrangements of pipe clamps, the elasticity problem becomes the axisymmetric stress and deformation determination in a hollow cylinder (pipe) subjected to the appropriate boundary conditions and respective loads per se. One of the geometries that serve as a pipe anchor is comprised of two pipe clamps that are bolted tightly to the pipe and affixed to a modified shoe-type arrangement. The shoe is employed for the purpose of providing an immovable base that can be easily attached either by bolting or welding to a structural steel pipe rack. Over the past 50 years, the computational tools available to the piping analyst have changed dramatically and thereby have caused the implementation of solutions to the basic problems of elasticity to change likewise. The need to obtain closed form elasticity solutions, however, has always been a driving force in engineering. The employment of symbolic calculus that is currently available through numerous software packages makes closed form solutions very economical. This paper briefly traces the solutions over the past 50 years to a variety of axisymmetric stress problems involving hollow circular cylinders employing a Fourier series representation. In the present example, a properly chosen Fourier series represent the mathematical simulation of the imposed axial displacements on the outside diametrical surface. A general solution technique is introduced for the axisymmetric discontinuity stresses resulting from an

  14. Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control

    Science.gov (United States)

    Pugel, Diane

    2012-01-01

    Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.

  15. Carbonization mechanism of bamboo(phyllostachys) by means of Fourier Transform Infrared and elemental analysis

    Institute of Scientific and Technical Information of China (English)

    ZUOSong-lin; GAOShang-yu; YUANXi-gen; XUBo-sen

    2003-01-01

    Bamboo was carbonized at different temperatures ranging from 200℃ to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared (FTIR) spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo wasdecomposed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolution of water to escape.(2)200℃-250℃,cellulose in bamboo was brastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃-400℃,the net structure of lignin collapse,up to 400℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aromatization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.

  16. Temporal behavior of lung motion assested by xenon-127 scintigraphy using temporal Fourier analysis

    International Nuclear Information System (INIS)

    Temporal Fourier Analysis (TFA) was applied to standard 127Xe ventilation studies to determine the time-activity curves up to the third harmonic for a single composite respiratory cycle. A global respiratory index, RI3, defined as the ratio of the amplitude for the first three harmonics. Three nonobstructed subjects, two subjects with only small airway disease, five subjects with chronic ostructive pulmonary disease (COPD) and onne subject with restrictive lung disease were studied. Geometric mean values of posterior and anterior images gave a closer relationship between RI3 and flow or volume parameters than either image alone. RI3 of the first three harmonics correlated linearly with the values of 1-s forced expiratory volume (FEV1)(r 0.783, p 3 values for the five COPD subjects were significantly lower (t = 2.582, p 127Xe ventilation data therefore appears to be a potentially useful, noninvasive, in vivo technique for evaluation of lung ventilation at the localized level. (author). 20 refs.; 6 figs.; 3 tabs

  17. Verification of the helioseismic Fourier-Legendre analysis for meridional flow measurements

    CERN Document Server

    Roth, Markus; Hartlep, Thomas

    2016-01-01

    Measuring the Sun's internal meridional flow is one of the key issues of helioseismology. Using the Fourier-Legendre analysis is a technique for addressing this problem. We validate this technique with the help of artificial helioseismic data. The analysed data set was obtained by numerically simulating the effect of the meridional flow on the seismic wave field in the full volume of the Sun. In this way, a 51.2-hour long time series was generated. The resulting surface velocity field is then analyzed in various settings: Two $360^\\circ \\times 90^\\circ$ halfspheres, two $120^\\circ \\times 60^\\circ$ patches on the front and farside of the Sun (North and South, respectively) and two $120^\\circ \\times 60^\\circ$ patches on the northern and southern frontside only. We compare two possible measurement setups: observations from Earth and from an additional spacecraft on the solar farside, and observations from Earth only, in which case the full information of the global solar oscillation wave field was available. We ...

  18. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  19. Smoke gas analysis by Fourier transform infrared spectroscopy. The SAFIR project

    Energy Technology Data Exchange (ETDEWEB)

    Hakkarainen, T. [ed.] [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1999-07-01

    The determination of toxic components from fire gases is difficult because the environment is hot, reactions are often temperature dependent, and a lot of soot may be produced. Due to the different properties of the gas components, a different timeconsuming procedure for each species has traditionally been used. The use of FTIR (Fourier Transform InfraRed) spectrometers as a continuous monitoring technique overcomes many of the problems in smoke gas analyses. FTIR offers an opportunity to set up a calibration and prediction method for each gas showing a characteristic spectral band in the infra-red region of the spectrum. The objective of this project was to further develop the FTIR gas analysis of smoke gases to be an applicable and reliable method for the determination of toxic components in combustion gases related to fire test conditions. The project included the following tasks: small scale and large scale sampling; analysis, calibration and software techniques; the verification of the method; and an interlaboratory trial. The optimum probe design, filter parameters and the most suitable sampling lines in terms of flow rate, diameter, construction material and operating temperature have been specified. The gas adsorption onto the filter and the soot have been measured. In the large scale, special concern was given to the probe design and the effects of the probe location in relation to the fire source as well as practical considerations of the sampling line length. Quantitative calibration and prediction methods have been constructed for different components present in smoke gases. Recommendations on how to deal with interferents, non-linearities and outliers have been provided and a verification method for the spectrometer for unexpected variations and for the different models have been described. FTIR measurement procedures in different fire test scenarios have been studied using the recommendations of this project for measurement techniques and analysis

  20. Fourier transform infrared spectroscopic analysis of sperm chromatin structure and DNA stability.

    Science.gov (United States)

    Oldenhof, H; Schütze, S; Wolkers, W F; Sieme, H

    2016-05-01

    Sperm chromatin structure and condensation determine accessibility for damage, and hence success of fertilization and development. The aim of this study was to reveal characteristic spectral features coinciding with abnormal sperm chromatin packing (i.e., DNA-protein interactions) and decreased fertility, using Fourier transform infrared spectroscopy. Chromatin structure in spermatozoa obtained from different stallions was investigated. Furthermore, spermatozoa were exposed to oxidative stress, or treated with thiol-oxidizing and disulfide-reducing agents, to alter chromatin structure and packing. Spectroscopic studies were corroborated with flow cytometric analyses using the DNA-intercalating fluorescent dye acridine orange. Decreased fertility of individuals correlated with increased abnormal sperm morphology and decreased stability toward induced DNA damage. Treatment with the disulfide reducing agent dithiothreitol resulted in increased sperm chromatin decondensation and DNA accessibility, similar as found for less mature epididymal spermatozoa. In situ infrared spectroscopic analysis revealed that characteristic bands arising from the DNA backbone (ν1230, ν1086, ν1051 cm(-1) ) changed in response to induced oxidative damage, water removal, and decondensation. This coincided with changes in the amide-I region (intensity at ν1620 vs. ν1640 cm(-1) ) denoting concomitant changes in protein secondary structure. Reduction in protein disulfide bonds resulted in a decreased value of the asymmetric to symmetric phosphate band intensity (ν1230/ν1086 cm(-1) ), suggesting that this band ratio is sensitive for the degree of chromatin condensation. Moreover, when analyzing spermatozoa from different individuals, it was found that the asymmetric/symmetric phosphate band ratio negatively correlated with the percentage of morphologically abnormal spermatozoa. PMID:26916383

  1. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    Science.gov (United States)

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood. PMID:25208386

  2. Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows

    International Nuclear Information System (INIS)

    This is a survey of new results related to the study of the full Navier-Stokes-Fourier system for a general compressible, viscous, and heat conducting fluid, and its asymptotic behaviour as the Mach number approaches zero. The classical Navier-Stokes system for an incompressible fluid with lift, combined with the corresponding heat equation, is a limiting case.

  3. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    Science.gov (United States)

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  4. Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier modal methods

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří; Kwiecien, P.; Richter, I.

    2013-01-01

    Roč. 8, 23 March (2013), s. 130241-130246. ISSN 1990-2573 R&D Projects: GA ČR(CZ) GAP205/10/0046; GA MŠk OC09061 Institutional support: RVO:67985882 Keywords : Fourier modal method * Hybrid dielectric-plasmonic waveguide * Plasmonic waveguides Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.152, year: 2013

  5. The ubiquitous problem of learning system parameters for dissipative two-level quantum systems: Fourier analysis versus Bayesian estimation

    OpenAIRE

    Schirmer, Sophie; Langbein, Frank

    2014-01-01

    We compare the accuracy, precision and reliability of different methods for estimating key system parameters for two-level systems subject to Hamiltonian evolution and decoherence. It is demonstrated that the use of Bayesian modelling and maximum likelihood estimation is superior to common techniques based on Fourier analysis. Even for simple two-parameter estimation problems, the Bayesian approach yields higher accuracy and precision for the parameter estimates obtained. It requires less dat...

  6. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term

    OpenAIRE

    Suriyawichitseranee, A.; Grigoriev, Yu. N.; Meleshko, S. V.

    2014-01-01

    The paper is devoted to group analysis of the spatially homogeneous and isotropic Boltzmann equation with a source term. In fact, the Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. Using a particular class of solutions, the determining equation for the admitted Lie group is reduced to a partial differential equation for the source function. The latter equation is analyzed by an algebraic method. A complete group classification of the...

  7. Determination of sulphate for measuring magnesium sulphate in pharmaceuticals by flow analysis-fourier transforms infrared spectroscopy

    OpenAIRE

    Ovalles, Fernando; Gallignani, Máximo; Rondón, Rebeca; Brunetto, Maria R.; Luna, Rafael

    2009-01-01

    The viability of employing flow analysis coupled to Fourier transform infrared spectroscopy (FA-FTIR) as a useful tool for quantitative measuring of magnesium sulphate in pharmaceuticals was explored, developed and validated. The method was based on mid-IR transmittance measurements of the peak-area belonging to the sulphate band around 1110 cm–1 and the use of an external calibration curve. Dynamic range was established over a concentration range from 1 to 50 mg.ml–1 , with a lim...

  8. Differentiation of frog fats from vegetable and marine oils by Fourier Transform Infrared Spectroscopy and chemometric analysis

    OpenAIRE

    M. E. Ali; Nina Naquiah, A. N.; Mustafa, S; S. B. A. Hamid

    2015-01-01

    The agro-based production and consumption of frogs coupled with world-wide trading have been increased in the recent years giving rise to the risk of frog fat adulteration in expensive vegetable and marine oils. For the first time, we profiled here frog fats using Fourier Transform Infrared (FTIR) Spectroscopy coupled with multivariate principal component analysis (PCA). The comparison of the FTIR spectral absorbance intensities demonstrated linkage of frog fats to other edible fats and oils....

  9. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis

    OpenAIRE

    Glaucia Braz Alcantara; Andersson Barison; Maiara da Silva Santos; Luis P. S. Santos; José F. F. de Toledo; Antonio Gilberto Ferreira

    2010-01-01

    This paper describes the potentiality of Fourier transform infrared (FT-IR) spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs convent...

  10. The analysis of linear partial differential operators I distribution theory and Fourier analysis

    CERN Document Server

    Hörmander, Lars

    2003-01-01

    The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen­ tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen­ eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comm...

  11. Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study

    International Nuclear Information System (INIS)

    This study presents an analysis of trabecular bone structure in standard radiographs using Fourier transforms and principal components analysis (PCA) to identify contributions to hip fracture risk. Radiographs were obtained from 26 hip fracture patients and 24 controls. They were digitised and five regions of interest (ROI) were identified from the femoral head and neck for analysis. The power spectrum was obtained from the Fourier transform of each region and three profiles were produced; a circular profile and profiles parallel and perpendicular to the preferred orientation of the trabeculae. PCA was used to generate a score from each profile, which we hypothesised could be used to discriminate between the fracture and control groups. The fractal dimension was also calculated for comparison. The area under the receiver operating characteristic curve (Az) discriminating the hip fracture cases from controls was calculated for each analysis. Texture analysis of standard radiographs using the fast Fourier transform yielded variables that were significantly associated with fracture and not significantly correlated with age, body mass index or femoral neck bone mineral density. The anisotropy of the trabecular structure was important; both the perpendicular and circular profiles were significantly better than the parallel-profile (P < 0.05). No significant differences resulted from using the various ROI within the proximal femur. For the best three groupings of profile (circular, parallel or perpendicular), method (PCA or fractal) and ROI (Az = 0.84 – 0.93), there were no significant correlations with femoral neck bone mineral density, age, or body mass index. PCA analysis was found to perform better than fractal analysis (P = 0.019). Both PCA and fractal analysis of the FFT data could discriminate successfully between the fracture and control groups, although PCA was significantly stronger than fractal dimension. This method appears to provide a powerful tool for

  12. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2015-01-01

    This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.

  13. Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters

    CERN Document Server

    Stahn, Thorsten

    2008-01-01

    Quantitative helio- and asteroseismology require very precise measurements of the frequencies, amplitudes, and lifetimes of the global modes of stellar oscillation. It is common knowledge that the precision of these measurements depends on the total length (T), quality, and completeness of the observations. Except in a few simple cases, the effect of gaps in the data on measurement precision is poorly understood, in particular in Fourier space where the convolution of the observable with the observation window introduces correlations between different frequencies. Here we describe and implement a rather general method to retrieve maximum likelihood estimates of the oscillation parameters, taking into account the proper statistics of the observations. Our fitting method applies in complex Fourier space and exploits the phase information. We consider both solar-like stochastic oscillations and long-lived harmonic oscillations, plus random noise. Using numerical simulations, we demonstrate the existence of cases...

  14. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  15. The Navier-Stokes-Fourier system: From weak solutions to numerical analysis

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2015-01-01

    Roč. 35, č. 3 (2015), s. 185-193. ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * weak solution * mixed finite-volume finite-element numerical scheme Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1300/anly-2014-1300.xml

  16. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  17. Fourier Transform Analysis of STM Images of Multilayer Graphene Moir\\'e Patterns

    OpenAIRE

    Joucken, Frédéric; Frising, Fernande; Sporken, Robert

    2014-01-01

    With the help of a simple model, we analyze Scanning Tunneling Microscopy images of simple and double moir\\'e patterns resulting from misoriented bi- and tri-layers graphene stacks. It is found that the model reproduces surprisingly well non-trivial features observed in the Fast Fourier Transform of the images. We point out difficulties due to those features in interpreting the patterns seen on the FFT.

  18. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl

    2004-01-01

    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  19. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.

    Science.gov (United States)

    Chae, Byung Gyu

    2014-05-20

    We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image. PMID:24922205

  20. Single image orthogonal fringe technique for resolution enhancement of the Fourier transform fringe analysis method

    Science.gov (United States)

    Tavares, Paulo J.; Vaz, Mário A. P.

    2013-03-01

    Gradient range and spatial resolution in Fourier Transform Profilometry depend on the size of the filter window in reciprocal space. The proposed methods to date for the elimination of the fundamental frequency and enlargement of the filter window are either too computationally complex or depend on the possibility of using two frames, thus disabling the method's ability to cope with dynamic situations and subjecting the results to possible intensity changes between the two frame acquisitions. This article describes a simple method for using a single crossed fringe pattern to accomplish that objective, greatly improving the previously reported technique, whilst retaining its main advantages.

  1. Fluorescence spectrum analysis using Fourier series modeling for Fluorescein solution in Ethanol

    CERN Document Server

    Hadi, Mahasin F

    2011-01-01

    We have measured the fluorescence spectrum for fluorescein solution in ethanol with concentration 1 {\\times} 10-3 mol/liter at different temperatures from room temperature to freezing point of solvent, (T = 153, 183, 223, 253, and 303 K) using liquid nitrogen. Table curve 2D version 5.01 program has been used to determine the fitting curve and fitting equation for each fluorescence spectrum. Fourier series (3 {\\times} 2) was the most suitable fitting equation for all spectra. Theoretical fluorescence spectrum of fluorescein in ethanol at T = 183K was calculated and compared with experimental fluorescence spectrum at the same temperature. There is a good similarity between them.

  2. An application of linear programming duality to discrete Fourier analysis and additive problems

    OpenAIRE

    Croot, Ernie

    2007-01-01

    Suppose that f is a function from Z_p -> [0,1] (Z_p is my notation for the integers mod p, not the p-adics), and suppose that a_1,...,a_k are some places in Z_p. In some additive number theory applications it would be nice to perturb f slightly so that Fourier transform f^ vanishes at a_1,...,a_k, while additive properties are left intact. In the present paper, we show that even if we are unsuccessful in this, we can at least say something interesting by using the principle of the separating ...

  3. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  4. Analysis of Chaperone Complexes by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    OpenAIRE

    Geels, R.B.J.

    2008-01-01

    Investigation of methodologies for analyses of noncovalently bound protein assemblies using Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR-MS) and quadrupole Time-of-Flight (qToF) mass spectrometry. Specifically, the co-chaperonins GroEL and gp31 are used to perform activation measurements on in the gas-phase and in the solution-phase. Both protein complexes are noncovalently bound homoheptamers of 72kDa and 84kDa respectively. They have a slight functional differenc...

  5. Characterizing the Nanoscale Layers of Tomorrow___s Electronics An Application of Fourier Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Christopher Bishop; /Princeton U. /SLAC

    2012-08-24

    Thin film applications are of great interest to the semiconductor industry due to the important role they play in cutting edge technology such as thin film solar cells. X-Ray Reflectivity (XRR) characterizes thin films in a non-destructive and efficient manner yet complications exist in extracting these characteristics from raw XRR data. This study developed and tested two different algorithms to extract quantity of layers and thickness information on the nanometer scale from XRR data. It was concluded that an algorithm involving a local averaging technique revealed this information clearly in Fourier space.

  6. Drifting Sub-Pulse Analysis Using the Two-Dimensional Fourier Transform

    OpenAIRE

    Edwards, R,A; Stappers, B. W.

    2002-01-01

    The basic form of drifting sub-pulses is that of a periodicity whose phase depends (approximately linearly) on both pulse longitude and pulse number. As such, we argue that the two-dimensional Fourier transform of the longitude-time data (called the Two-Dimensional Fluctuation Spectrum; 2DFS) presents an ideal basis for studies of this phenomenon. We examine the 2DFS of a pulsar signal synthesized using the parameters of an empirical model for sub-pulse behaviour. We show that the transform c...

  7. Calibration of wavefront distortion in light modulator setup by Fourier analysis of multi-beam interference

    CERN Document Server

    Leszczyński, Adam

    2015-01-01

    We present a method to calibrate wavefront distortion of the spatial light modulator setup by registering far field images of several gaussian beams diffracted off the modulator. The Fourier transform of resulting interference images reveals phase differences between typically 5 movable points on the modulator. Repeating this measurement yields wavefront surface. Next, the amplitude efficiency is calibrated be registering near field image. As a verification we produced a superposition of 7th and 8th Bessel beams with different phase velocities and observed their interference.

  8. Pulsatile microvascular blood flow imaging by short-time Fourier transform analysis of ultrafast laser holographic interferometry

    CERN Document Server

    Puyo, L; Rancillac, A; Simonutti, M; Paques, M; Sahel, J A; Fink, M; Atlan, M

    2015-01-01

    We report on wide-field imaging of pulsatile microvascular blood flow in the exposed cerebral cortex of a mouse by holographic interferometry. We recorded interferograms of laser light backscattered by the tissue, beating against an off-axis reference beam with a 50 kHz framerate camera. Videos of local Doppler contrasts were rendered numerically by Fresnel transformation and short-time Fourier transform analysis. This approach enabled instantaneous imaging of pulsatile blood flow contrasts in superficial blood vessels over 256 x 256 pixels with a spatial resolution of 10 microns and a temporal resolution of 20 ms.

  9. Classification of fault diagnosis in a gear wheel by used probabilistic neural network, fast Fourier transform and principal component analysis

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2007-01-01

    Full Text Available This paper presents the results of an experimental application of artificial neural network as a classifier of the degree of cracking of a tooth root in a gear wheel. The neural classifier was based on the artificial neural network of Probabilistic Neural Network type (PNN. The input data for the classifier was in a form of matrix composedof statistical measures, obtained from fast Fourier transform (FFT and principal component analysis (PCA. The identified model of toothed gear transmission, operating in a circulating power system, served for generation of the teaching and testing set applied for the experiment.

  10. Analysis of F-Canyon Effluents During the Dissolution Cycle with a Fourier Transform Infrared Spectrometer/Multipath Cell

    International Nuclear Information System (INIS)

    Air samples from F-Canyon effluents were collected at the F-Canyon stack and transported to a laboratory at the Savannah River Technology Center (SRTC) for analysis using a Fourier transform infrared spectrometer in conjunction with a multipath cell. Air samples were collected during the decladding and acid cuts of the dissolution of the irradiated aluminum-cladded slugs. The FTIR analyses of the air samples show the presence of NO2, NO, HNO2, N2O, SF6, and 85Kr during the dissolution cycle. The concentration time profiles of these effluents corresponded with expected release rates from the F-Canyon operations

  11. Assessment of geometrical orientation of martensitic particles in TRIP steel by Fourier and wavelet transformation image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, T. [Graduate School of Engineering, Hiroshima Univ., Kagamiyama, Hiroschima (Japan); Tsuta, T. [Faculty of Health Science, Hiroshima International Univ., Hiroshima (Japan)

    2003-07-01

    Due to strain-induced martensitic transformation, TRIP steel possesses favorable mechanical properties such as high strength, ductility and toughness. From SEM observations, it was clarified that the martensitic particles orient geometrically against the loading axis in the micro region. It is necessary to evaluate their orientations in TRIP steel to describe in detail deformation behavior of TRIP steel. Here, in order to discuss the geometrical orientation distribution of the micrograph, the Fourier and Wavelet transformation image analysis (FTIA and WTIA) are used. Then, the dependence of their orientation on plastic strain, temperature and stress state will be investigated by the FTIA and WTIA. (orig.)

  12. ANALYSIS OF NON-FOURIER THERMAL BEHAVIOUR FOR MULTI-LAYER SKIN MODEL

    Directory of Open Access Journals (Sweden)

    Kuo-Chi Liu

    2011-01-01

    Full Text Available This paper studies the effect of micro-structural interaction on bioheat transfer in skin, which was stratified into epidermis, dermis, and subcutaneous. A modified non-Fourier equation of bio-heat transfer was developed based on the second-order Taylor expansion of dual-phase-lag model and can be simplified as the bio-heat transfer equations derived from Pennes' model, thermal wave model, and the linearized form of dual-phase-lag model. It is a fourth order partial differential equation, and the boundary conditions at the interface between two adjacent layers become complicated. There are mathematical difficulties in dealing with such a problem. A hybrid numerical scheme is extended to solve the present problem. The numerical results are in a good agreement with the contents of open literature. It evidences the rationality and reliability of the present results.

  13. An extensive theoretical analysis of the 1 : 2 ratio rotating polarizer-analyzer Fourier ellipsometer

    Energy Technology Data Exchange (ETDEWEB)

    El-Agez, T M; Taya, S A, E-mail: staya@iugaza.edu.p [Physics Department, Islamic University of Gaza, PO Box 108, Gaza (Palestinian Territory, Occupied)

    2011-02-15

    A full description of a scanning ellipsometer that incorporates the rotation of two polarizing elements simultaneously is presented in detail in this paper. Both the polarizer and the analyzer are rotating synchronously such that the angular speed of the analyzer is two times that of the polarizer. The intensity of the detected light is modulated by the rotation of these elements and by the reflection from the surface of the sample. The ideal Fourier spectrum of this signal includes nine coefficients, of which five are even and the rest are odd. All of these coefficients contain valuable information about the physical properties of the studied sample. Therefore, it is feasible to extract the ellipsometric parameters {psi} and {Delta} as well as the optical parameters of the sample by using any set containing three different coefficients. A comparison between these sets regarding the effect of noise on these parameters and on the results is presented.

  14. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    Science.gov (United States)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  15. Fourier Analysis of Peripheral Blood Pressure and Flow in Intraoperative Assessment of Infrainguinal Arterial Reconstructions

    Directory of Open Access Journals (Sweden)

    Cheshmedzhiev Mihail V.

    2014-08-01

    Full Text Available AIM: To assess infrainguinal arterial reconstructions by intraoperative flowmetry under the distal anastomosis using a fast Fourier transformation; calculate and compare the amplitude ratios of peripheral arterial blood pressure and volume flow before and after drug-induced vasodilation of occluded bypass grafts and bypass grafts that have been patent at least for 1 year. To find what magnitude of the change of these ratios indicate a long-term patency of the bypass grafting. PATIENTS AND METHODS: We compared the results of the intraoperative flowmetry tests of 97 patients with infrainguinal arterial reconstructions. The patients were divided into two groups based on the graft status: the grafts in 49 patients were patent for at least a year, and 48 patients had failed bypass. We used a fast Fourier transform (FFT of the pressure and blood flow waves and compared the ratios of their amplitudes before and after administration of a vasodilator drug into the graft. Comparing the ratios obtained before and those after administration of the drug we quantified their change in each group and analysed them. RESULTS: After a drug-induced vasodilation, the blood pressure and flow amplitude ratios for the group with compromised reconstructions were less than 1.9 times smaller than those before drug infusion, while for the group with bypass grafts that had been functional for at least 12 months the ratios declined by more than 1.9≈2 times. CONCLUSION: The magnitude of the change of amplitude ratios of the peripheral pressure and volume flow after drug-induced vasodilation can be used to make an assessment of the bypass graft and the distal arterial segment.

  16. Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2010-03-01

    Full Text Available Many food products are subjected to quality control analyses for detection of surface residue/contaminants, and there is a trend of requiring more and more documentation and reporting by farmers regarding their use of pesticides. Recent outbreaks of food borne illnesses have been a major contributor to this trend. With a growing need for food safety measures and “smart applications” of insecticides, it is important to develop methods for rapid and accurate assessments of surface residues on food and feed items. As a model system, we investigated detection of a miticide applied to maize leaves and its miticidal bioactivity over time, and we compared two types of reflectance data: fourier transformed infrared (FTIR data and hyperspectral imaging (HI data. The miticide (bifenazate was applied at a commercial field rate to maize leaves in the field, with or without application of a surfactant, and with or without application of a simulated “rain event”. In addition, we collected FTIR and HI from untreated control leaves (total of five treatments. Maize leaf data were collected at seven time intervals from 0 to 48 hours after application. FTIR data were analyzed using conventional analysis of variance of miticide-specific vibration peaks. Two unique FTIR vibration peaks were associated with miticide application (1,700 cm−1 and 763 cm−1. The integrated intensities of these two peaks, miticide application, surfactant, rain event, time between miticide application, and rain event were used as explanatory variables in a linear multi-regression fit to spider mite mortality. The same linear multi-regression approach was applied to variogram parameters derived from HI data in five selected spectral bands (664, 683, 706, 740, and 747 nm. For each spectral band, we conducted a spatial structure analysis, and the three standard variogram parameters (“sill”, “range”, and “nugget” were examined as possible “indicators” of miticide

  17. Right ventricular emptying perfomance in congenital heart disease assessed by temporal Fourier analysis of gated blood-pool study

    International Nuclear Information System (INIS)

    The right ventricular (RV) emptying performance in patients with congenital heart diseases was investigated by temporal Fourier analysis of multigated cardiac blood-pool studies on a pixel-by-pixel basis. In 15 normal subjects, no significant differences were detected between the mean values of phase of left ventricle (LV) and RV. In patients with ventricular septal defect (VSD), cases with minimal interventricular left-to-right (L-to-R) shunt without pulmonary hypertension (PH) showed normal phase and amplitude images, and cases with moderate or large L-to-R shunt with hyperkinetic PH showed delay of RV phase compared to LV, however, in a case of Eisenmenger type VSD, as well as in patients with primary PH, RV phase lag was not detected. In patients with mild pulmonary stenosis with intact ventricular septum, phase and amplitude images were normal. A case with moderate pulmonary artery stenosis showed mild delay of RV phase. Distinct phase lag of RV was shown in patients with tetralogy of Fallot. Evaluation of RV emptying performance by temporal Fourier analysis is highly valuable for pathophysiologic investigation of congenital heart disease

  18. Surrogates with random Fourier Phases

    CERN Document Server

    Raeth, Christoph

    2008-01-01

    The method of surrogates is widely used in the field of nonlinear data analysis for testing for weak nonlinearities. The two most commonly used algorithms for generating surrogates are the amplitude adjusted Fourier transform (AAFT) and the iterated amplitude adjusted Fourier transfom (IAAFT) algorithm. Both the AAFT and IAAFT algorithm conserve the amplitude distribution in real space and reproduce the power spectrum (PS) of the original data set very accurately. The basic assumption in both algorithms is that higher-order correlations can be wiped out using a Fourier phase randomization procedure. In both cases, however, the randomness of the Fourier phases is only imposed before the (first) Fourier back tranformation. Until now, it has not been studied how the subsequent remapping and iteration steps may affect the randomness of the phases. Using the Lorenz system as an example, we show that both algorithms may create surrogate realizations containing Fourier phase correlations. We present two new iterativ...

  19. The Spectrum and Term Analysis of Co III Measured Using Fourier Transform and Grating Spectroscopy

    Science.gov (United States)

    Smillie, D. G.; Pickering, J. C.; Nave, G.; Smith, P. L.

    2016-03-01

    The spectrum of Co iii has been recorded in the region 1562-2564 Å (64,000 cm-1-39,000 cm-1) by Fourier transform (FT) spectroscopy, and in the region 1317-2500 Å (164,000 cm-1-40,000 cm-1) using a 10.7 m grating spectrograph with phosphor image plate detectors. The spectrum was excited in a cobalt-neon Penning discharge lamp. We classified 514 Co iii lines measured using FT spectroscopy, the strongest having wavenumber uncertainties approaching 0.004 cm-1 (approximately 0.2 mÅ at 2000 Å, or 1 part in 107), and 240 lines measured with grating spectroscopy with uncertainties between 5 and 10 mÅ. The wavelength calibration of 790 lines of Raassen & Ortí Ortin and 87 lines from Shenstone has been revised and combined with our measurements to optimize the values of all but one of the 288 previously reported energy levels. Order of magnitude reductions in uncertainty for almost two-thirds of the 3d64s and almost half of the 3d64p revised energy levels are obtained. Ritz wavelengths have been calculated for an additional 100 forbidden lines. Eigenvector percentage compositions for the energy levels and predicted oscillator strengths have been calculated using the Cowan code.

  20. Fourier spatial frequency analysis for image classification: training the training set

    Science.gov (United States)

    Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart

    2016-04-01

    The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.

  1. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks

    Energy Technology Data Exchange (ETDEWEB)

    Balzar, D.; Ledbetter, H. (Materials Science and Engineering Lab., National Inst. of Standards and Technology, Boulder, CO (United States))

    1993-02-01

    With the assumption that both size- and strain-broadened profiles of the pure-specimen function are described with a Voigt function, it is shown that the analysis of Fourier coefficients leads to the Warren-Averbach method of separation of size and strain contributions. The analysis of size coefficients shows that the 'hook' effect occurs when the Cauchy content of the size-broadened profile is underestimated. The ratio of volume-weighted and surface-weighted domain sizes can change from [proportional to]1.31, for the minimum allowed Cauchy content, to 2, when the size-broadened profile is given solely by a Cauchy function. If the distortion coefficient is approximated by a harmonic term, mean-square strains decrease linearly with increasing the averaging distance. The local strain is finite only in the case of purely Gaussian strain broadening, because strains are then independent of averaging distance. (orig.).

  2. Wavelet-fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Yuan Lin

    2008-01-01

    This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.

  3. Mandibular shape analysis in fossil hominins: Fourier descriptors in norma lateralis.

    Science.gov (United States)

    Lestrel, P E; Wolfe, C A; Bodt, A

    2013-08-01

    Biological shape can be defined as the boundary of a form in 2-space (R(2)). An earlier study (Lestrel et al., 2010, HOMO-J. Comp. Hum. Biol.) of the cranial vault found that there were statistically significant differences between each of the three groups: H. erectus, H. heidelbergensis, and H. neanderthalensis compared with H. sapiens. In contrast, there was no statistically significant difference among the first three groups. These results suggest that these three groups may have formed single evolving lineage while H. sapiens represents a separate evolutionary development. The purpose of the current research was to discern if the mandible reflected a similar pattern as the cranial vault data. This study used lateral jpeg images of the mandible. Five fossil samples were used: A. robustus (n=7), H. erectus (n=12), H. heidelbergensis (n=4), H. neanderthalensis (n=22) and H. sapiens (n=61). Each mandible image was pre-processed with Photoshop Elements. Each image was then submitted to a specially written routine that digitized the 84 points along the mandible boundary. Each mandible was fitted with elliptical Fourier functions (EFFs). Procrustes superimposition was imposed to insure minimum shape differences. The mandible results largely mirrored the earlier cranial vault study with one exception. Statistically significant results were obtained for the mandible between the H. erectus and H. neanderthalensis samples in contrast to the earlier cranial vault data. F-tests disclosed that the statistical significance was limited to the anterior symphysis of the mandible. This mosaic pattern may be explained by the reduction in prognathism with the concomitant if rudimentary development of the chin as seen in H. neanderthalensis compared to H. erectus. PMID:23769600

  4. Rail inspection in track maintenance: A benchmark between the wavelet approach and the more conventional Fourier analysis

    Science.gov (United States)

    Caprioli, A.; Cigada, A.; Raveglia, D.

    2007-02-01

    Nowadays the power of data analysis tools like the wavelet decomposition of signals is well known and spread. On the other hand the theoretical advantages of such methods often fight with reality, when real field signals are collected and analysed: it sometimes comes out that this time-frequency approach somehow fails, demanding for a deeper insight into the kind of physical problem to be considered, and requiring a sort of "benchmark" between the traditional Fourier approach and the more recent time-frequency one. In this paper, sharply application-oriented, the possibilities offered by the wavelet techniques have been analysed: both the DSP specialist and the field engineer points of view have been joined to exploit the new approach of its best. A real problem has been considered, in which acceleration signals from a train bogie are collected and real-time analysed, to get a diagnostic tool to know the track condition of a subway line. This paper would like to look for a compromise point between complex mathematics based techniques, such as wavelet packet, sometimes hard to comprehend to the application engineer, and the physical meaning of these tools helping in fixing the real method limits. Therefore the aim is not just trying this analysis on an almost random process, like the accelerations measured on a running bogie, to locate defects, but rather a discussion on the development of the continuous and discrete wavelet transform, in comparison with the classical Fourier analysis or filter banks. Only the minimum mathematical background is provided in the text, with the needed references, to give tools fit for comprehending the physical meaning of the new tools, capable of sparing computing effort, while preserving or even improving the system effectiveness.

  5. Diagnosis of Periodontal Disease from Saliva Samples Using Fourier Transform Infrared Microscopy Coupled with Partial Least Squares Discriminant Analysis.

    Science.gov (United States)

    Fujii, Satoshi; Sato, Shinobu; Fukuda, Keisuke; Okinaga, Toshinori; Ariyoshi, Wataru; Usui, Michihiko; Nakashima, Keisuke; Nishihara, Tatsuji; Takenaka, Shigeori

    2016-01-01

    Diagnosis of periodontal disease by Fourier transform infrared (FT-IR) microscopic technique was achieved for saliva samples. Twenty-two saliva samples, collected from 10 patients with periodontal disease and 12 normal volunteers, were pre-processed and analyzed by FT-IR microscopy. We found that the periodontal samples showed a larger raw IR spectrum than the control samples. In addition, the shape of the second derivative spectrum was clearly different between the periodontal and control samples. Furthermore, the amount of saliva content and the mixture ratio were different between the two samples. Partial least squares discriminant analysis was used for the discrimination of periodontal samples based on the second derivative spectrum. The leave-one-out cross-validation discrimination accuracy was 94.3%. Thus, these results show that periodontal disease may be diagnosed by analyzing saliva samples with FT-IR microscopy. PMID:26860570

  6. Ubiquitous problem of learning system parameters for dissipative two-level quantum systems: Fourier analysis versus Bayesian estimation

    Science.gov (United States)

    Schirmer, Sophie G.; Langbein, Frank C.

    2015-02-01

    We compare the accuracy, precision, and reliability of different methods for estimating key system parameters for two-level systems subject to Hamiltonian evolution and decoherence. It is demonstrated that the use of Bayesian modeling and maximum likelihood estimation is superior to common techniques based on Fourier analysis. Even for simple two-parameter estimation problems, the Bayesian approach yields higher accuracy and precision for the parameter estimates obtained. It requires less data, is more flexible in dealing with different model systems, can deal better with uncertainty in initial conditions and measurements, and enables adaptive refinement of the estimates. The comparison results show that this holds for measurements of large ensembles of spins and atoms limited by Gaussian noise as well as projection noise limited data from repeated single-shot measurements of a single quantum device.

  7. Study of the gamma radiation effect on lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Sample of Lincomycin were irradiated by means of gamma radiation (60Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm-1) which belong to amide group, and the peak at (1050 - 1100 Cm-1) which belongs to the S-C groups have reduced. (author)

  8. Qualitative analysis of thin films of crude oil deposits on the metallic substrate by Fourier transform infrared (FTIR) microscopy

    DEFF Research Database (Denmark)

    Batina, N.; Reyna-Cordova, A.; Trinidad-Reyes, Y.;

    2005-01-01

    Thin films of crude oil samples were prepared for atomic force microscopy (AFM) analysis on the gold substrate. Sample preparation involved evaporation during a long (24 h) but mild thermal exposure (80 °C). Fourier transform infrared (FTIR) microscopy (reflectance spectroscopy) was employed...... to determinate the quality of the thin film surface, before the morphology characterization. The surface reflectance spectra were compared to direct transmittance FTIR of liquid oil samples. The two FTIR techniques showed different spectral characteristics related to oxygenated functionalities. This clearly...... indicated that the surface of the thin films of the oil samples prepared for AFM is oxidized. Oil samples of different origin show different degrees of oxidation seen by the development of carboxylic acid vibrations at 1750 cm-1 as well as vibrations in the 1300−1100 cm-1 region. The relative degree...

  9. Fast Fourier Transform Analysis of Welding Penetration Depth Using 2 kW CW Nd:YAG Laser Welding Machine

    International Nuclear Information System (INIS)

    We report experimental results on the correlations between welding penetration depth and the frequencies of the radiation from the welding pool. Various welding samples such as SUS304, brass, SUS316, etc. have been investigated with 2 kW CW Nd:YAG laser welding machine. The radiation signals from the plume generated by the interactions between the welding sample and laser with respect to the defocusing length was measured with fiber system collecting the plume signal. Analysis of the frequencies by using fast Fourier transform (FFT) shows that the penetration depth is deep as plume signal frequencies are low, shallow penetration depth for high frequencies. Frequencies up to 250 Hz for obtained signals can be analyzed with the discrete FFT. This is the useful method fur closed loop control of the laser power with respect to the welding penetration depth and is used for real time inspection of the welding quality

  10. Relativistic transformation between τ and TCB for Mars missions: Fourier analysis on its accessibility with clock offset

    International Nuclear Information System (INIS)

    In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time τ of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into account and investigate its accessibility by Fourier analysis on the residuals after fitting the τ-TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ∼ 10−5 s or ∼ 10−6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between τ and TCB will need to be carefully considered

  11. Stage-II-screening device for testing of heterogeneous catalysts in gas phase reactions with Fourier transform infrared analysis

    Science.gov (United States)

    Brüning, Rainer; Scholz, Peter; Ondruschka, Bernd

    2005-07-01

    The construction of a stage-II-screening device for heterogeneous catalysts in gas phase reactions under ambient pressure is described. The concentrations of the reaction products are determined by Fourier transform infrared analysis in combination with a chemometric interpretation of the obtained spectra. Thus, fast high-precision product analyses with complete mass balances are feasible, within the limits of accuracy of the measurements. The device is designed to screen up to 17 catalysts in one testing cycle. It is possible to determine temperature-conversion-selectivity dependencies as well as long-term measurements under constant conditions. With the help of the device described, the catalytic properties of new materials were parallel tested for the oxidative dehydrogenation of isopropanol.

  12. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    Science.gov (United States)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  13. XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis

    International Nuclear Information System (INIS)

    The computer program presented is based on the Fourier analysis of a singel X-ray diffraction profile. An X-ray diffraction method is presented which is capable of determining the average particle size, microstrain, stacking fault probability as well as the particle size distribution function in crystalline materials. The main numerical methods used are: (i) Smoothing and interpolation by 3rd-order piecewise polynomial functions or by cubic splines with the least squares method; (ii) numerical integration by successive five points formulae and numerical derivative by cubic splines with the least squares method; (iii) estimation of parameters by the weighted least squares method. The results for supported platinum catalysts used in the H/D isotopic exchange reaction are illustrated. (orig.)

  14. Assessing the spatial fidelity of resolution-enhanced imagery using Fourier analysis: a proof-of-concept study

    Science.gov (United States)

    Civco, Daniel L.; Witharana, Chandi

    2012-10-01

    Pan-sharpening of moderate resolution multispectral remote sensing data with those of a higher spatial resolution is a standard practice in remote sensing image processing. This paper suggests a method by which the spatial properties of resolution merge products can be assessed. Whereas there are several accepted metrics, such as correlation and root mean square error, for quantifying the spectral integrity of fused images, relative to the original multispectral data, there is less agreement on a means by which to assess the spatial properties, relative to the original higher-resolution, pansharpening data. In addition to qualitative, visual, and somewhat subjective evaluation, quantitative measures used have included correlations between high-pass filtered panchromatic and fused images, gradient analysis, wavelet analysis, among others. None of these methods, however, fully exploits the spatial and structural information contained in the original high resolution and fused images. This paper proposes the use of the Fourier transform as a means to quantify the degree to which a fused image preserves the spatial properties of the pan-sharpening high resolution data. A highresolution 8-bit panchromatic image was altered to produce a set of nine different test images, as well as a random image. The Fourier Magnitude (FM) image was calculated for each of the datasets and compared via FM to FM image correlation. Furthermore, the following edge detection algorithms were applied to the original and altered images: (a) Canny; (b) Sobel; and (c) Laplacian. These edge-filtered images were compared, again by way of correlation, with the original edge-filtered panchromatic image. Results indicate that the proposed method of using FTMI as a means of assessing the spatial fidelity of high-resolution imagery used in the data fusion process outperforms the correlations produced by way of comparing edge-enhanced images.

  15. A short biography of Joseph Fourier and historical development of Fourier series and Fourier transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-07-01

    The profound study of nature is the most fertile source of mathematical discoveries. Not only does this study, by offering a definite goal to research, have the advantage of excluding vague questions and futile calculations, but it is also a sure means of moulding analysis itself, and discerning those elements in it which it is still essential to know and which science ought to conserve. These fundamental elements are those which recur in all natural phenomena. Joseph Fourier pure mathematics enables us to discover the concepts and laws connecting them, which gives us the key to the understanding of the phenomena of nature. Albert Einstein This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made to his splendid research contributions to mathematical physics, pure and applied mathematics and his unprecedented public service accomplishments in the history of France. This is followed by historical comments about the significant and major impact of Fourier analysis on mathematical physics, probability and mathematical statistics, mathematical economics and many areas of pure and applied mathematics including geometry, harmonic analysis, signal analysis, wave propagation and wavelet analysis. Special attention is also given to the Fourier integral formula, Brownian motion and stochastic processes and many examples of applications including isoparametric inequality, everywhere continuous but nowhere differentiable functions, Heisenberg uncertainty principle, Dirichlets' theorem on primes in arithmetic progression, the Poisson summation formula and solutions of wave and diffusion equations. It is also shown that Fourier coefficients c n (t) in the Fourier expansion of a scalar field

  16. A Novel Method for Comparative Analysis of DNA Sequences by Ramanujan-Fourier Transform

    OpenAIRE

    Yin, Changchuan; Yin, Xuemeng E.; Wang, Jiasong

    2014-01-01

    Alignment-free sequence analysis approaches provide important alternatives over multiple sequence alignment (MSA) in biological sequence analysis because alignment-free approaches have low computation complexity and are not dependent on high level of sequence identity, however, most of the existing alignment-free methods do not employ true full information content of sequences and thus can not accurately reveal similarities and differences among DNA sequences. We present a novel alignment-fre...

  17. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  18. Ventricular emptying performance in patients with tetralogy of Fallot; Assessment with Fourier analysis of gated blood-pool data

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kan; Maeda, Hisato; Nakagawa, Tsuyoshi; Ito, Tsunao; Yamaguchi, Nobuo; Matsuda, Akira (Mie Univ., Tsu (Japan). School of Medicine)

    1989-12-01

    Comparison of emptying patterns between left and right ventricles (LV, RV) was performed with Fourier analysis of gated blood-pool data in patients with tetralogy of Fallot (TF). Using global time-activity curves, the phase and amplitude at the first-harmonic component of Fourier series were calculated and emptying patterns of both ventricles were evaluated by phase difference {l brace}D(phase)=RV phase minus LV phase{r brace} and RV/LV amplitude ratio {l brace}R(amp){r brace}. In 20 patients with normal cardiac function, D(phase) was minimal (mean 2.0{plus minus}6.6 degrees) and R(amp) was less than 1.0 (mean 0.60{plus minus}0.19). In 11 patients with TF, D(phase) was significantly larger than normal, with a mean value of 24.3{plus minus}10.0 degrees (p<0.01) and became greater in a reversed proportion to the ratio of the pulmonary-to-systemic blood flow (p<0.01). In all but one cases with TF, R(amp) was greater than 1.0 with a mean value of 1.4{plus minus}0.4, significantly larger than normal (p<0.001). Furthermore, using time-activity curves approximated by terms up to the 3rd-harmonic component, the temporal difference in emptying patterns between both ventricles was investigated. In TF cases, the time from end-diastole to minimum count (T2) was significantly larger in RV than in LV (p<0.001). The elongated T2 interval of RV seemed to play an important role in producing RV phase lag. Thus, this non-invasive method is valuable for pathophysiologic investigation of patients with TF and can be of help in estimating the severity of their disease. (author).

  19. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  20. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    International Nuclear Information System (INIS)

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 63000K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 47000K. 31 references

  1. Selection of window for inter-pulse analysis of simple pulsed radar signal using the short time Fourier transform

    Directory of Open Access Journals (Sweden)

    Ashraf Adamu Ahmad

    2015-11-01

    Full Text Available The electronic intelligence (ELINT system is used by the military to detect, extract information and classify incoming radar signals. This work utilizes short time Fourier transform (STFT - time frequency distribution (TFD for inter-pulse analysis of the radar signal in order to estimate basic radar signal time parameters (pulse width and pulse repetition period. Four well-known windows functions of different and unique characteristics were used for the localization of STFT to determine their various effects on the analysis. The window functions are Hamming, Hanning, Bartlett and Blackman window functions. Monte Carlo simulation is carried out to determine the performance of the signal analysis in presence of additive white Gaussian noise (AWGN. Results show that the lower the transition of main lobe width and higher the peak side lobe, the better the performance of the window function irrespective of time parameter being estimated. This is because 100 percent probability of correct estimation is achieved at signal to noise ratio of about -2dB for Bartlett, 4dB for both Hamming and Hanning, and 9dB for Blackman.

  2. Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  3. Fourier-Domain Analysis of Hydriding Kinetics Using Pneumato-Chemical Impedance Spectroscopy

    OpenAIRE

    Millet, P.; C. Decaux; R. Ngameni; Guymont, M.

    2007-01-01

    Analysis of phase transformation processes observed in hydrogen absorbing materials (pure metals, alloys, or compounds) is still a matter of active research. Using pneumato-chemical impedance spectroscopy (PIS), it is now possible to analyze the mechanism of hydriding reactions induced by the gas phase. Experimental impedance diagrams, measured on activated LaNi5 in single- and two-phase domains, are reported in this paper. It is shown that their shape is mostly affected by the slope of the i...

  4. Complex wavenumber Fourier analysis of the B-spline based finite element method

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Plešek, Jiří; Okrouhlík, Miloslav

    2014-01-01

    Roč. 51, č. 2 (2014), s. 348-359. ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315; GA ČR GPP101/10/P376; GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : elastic wave propagation * dispersion errors * B-spline * finite element method * isogeometric analysis Subject RIV: JR - Other Machinery Impact factor: 1.513, year: 2014 http://www.sciencedirect.com/science/article/pii/S0165212513001479

  5. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhou, Xibin; Shi, Quan; Zhang, Yahe; Zhao, Suoqi; Zhang, Rui; Chung, Keng H; Xu, Chunming

    2012-04-01

    A novel technique was developed for characterization of saturated hydrocarbons. Linear alkanes were selectively oxidized to ketones by ruthenium ion catalyzed oxidation (RICO). Branched and cyclic alkanes were oxidized to alcohols and ketones. The ketones were then reduced to alcohols by lithium aluminum hydride (LiAlH(4)). The monohydric alcohols (O(1)) in the products obtained from the RICO and RICO-LiAlH(4) reduction reactions were characterized using negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for identification of iso-paraffins, acyclic paraffins and cyclic paraffins. Various model saturated compounds were used to determine the RICO reaction and ionization selectivity. The results from the FTICR MS analysis on the petroleum distillates derived saturated fraction were in agreement with those from field ionization gas chromatography time-of-flight mass spectrometry (FI GC-TOF MS) analysis. The technique was also used to characterize a petroleum vacuum residue (VR) derived saturates. The results showed that the saturated molecules in the VR contained up to 11 cyclic rings, and the maximum carbon number was up to 92. PMID:22424498

  6. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis

    Directory of Open Access Journals (Sweden)

    Glaucia Braz Alcantara

    2010-06-01

    Full Text Available This paper describes the potentiality of Fourier transform infrared (FT-IR spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs conventional counterparts were directly investigated by FT-IR spectroscopy and chemometric analysis. The application of PCA and KNN methods permitted the discrimination and classification of the genetically modified samples from conventional ones when they were separately analysed. The analyses showed the chemical variation according to genetic modification. Furthermore, this methodology was efficient for cultivar grouping and highlights cultivar dependence for discrimination between transgenic and non-transgenic samples. According to this study, FT-IR and chemometrics could be used as a quick, easy and low cost tool to assess the chemical composition variation in genetically modified organisms.

  7. The use of Fourier transform (FT) surface-enhanced Raman scattering for biochemical analysis

    Science.gov (United States)

    Jeffers, Robert Butler

    Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that has created exciting opportunities in the field of bioanalytical chemistry, where it combines ultrasensitive detection of biologically relevant molecules with vibrational spectroscopy. Due to the difficulties in preparing reproducible SERS active substrates, SERS has been mainly used as a qualitative tool. In order for SERS to be utilized as a viable tool for quantitative analysis, simple, facile SERS substrates which generate clean, highly reproducible signals must be developed. This dissertation deals with the evaluation of three different methods of SERS that led to the development of a novel substrate for the analysis of biological molecules. In this dissertation, I demonstrated the generation of a SERS signal from pyridine adsorbed to the surface of a roughened silver electrode. The Raman signal was detected utilizing a remote fiber optic probe dispersive Raman instrument. The necessary parameters for generating the optimal SERS signal were established. The SERS spectrum of pyridine was successfully characterized. The synthesis of silver colloid solutions for use as a SERS active substrate was demonstrated. Two different synthetic methods were utilized and the conditions for optimal SERS signal strength were established. SERS signals from solutions of tryptophan were successfully generated and detected using an FT-Raman spectrometer. In this dissertation. I report the successful chemical deposition of a thin silver film on the surface of a quartz/glass fiber filter for use as a SERS active substrate. The successful detection of the SERS signal of solutions of phenylalanine and tryptophan utilizing the silver-coated filters and a FT-Raman instrument was demonstrated. Significant progress was made to develop a quantifiable SERS method utilizing the silver-coated filters. The silver-coated filter SERS method presented here is a novel and promising method for biochemical analysis

  8. An X-ray Fourier line shape analysis in cold-worked hexagonal titanium base alloys

    International Nuclear Information System (INIS)

    X-ray diffraction is an established technique for the analysis of microstructural parameters such as domain sizes, microstrains within the domains, and deformation fault densities in the deformed state of metals and alloys. These microstructural parameters influence the flow of dislocation in the lattice under deformation and thus regulate the strength and hardenability of the materials. The evaluation of such microdefects is this necessary for understanding the mechanical behavior of materials. In the present study, considering the wide applicability of titanium-base alloys in aviation industry, two alloy systems, i.e., titanium-base aluminum and titanium-base zirconium, have been selected. A number of X-ray diffraction profiles belonging to both fault-affected (H - K = 3N ± 1) and fault-unaffected (H - K = 3N) reflections have been recorded by a SIEMENS Kristolloflex-4 diffractometer using Cu Kα radiation, and the profiles have been analyzed to evaluate the microstructural parameters

  9. Polyimide analysis using diffuse reflectance-FTIR. [Fourier Transform IR Spectroscopy

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1985-01-01

    The thermal imidization of a number of polyimide precursors in the form of powders, films, and prepregs was examined by an in situ diffuse reflectance-FTIR technique where infrared spectra were determined while the material was being heated. An analysis of these spectra revealed that, with the exception of one water soluble adhesive, each precursor developed an anhydride band around 1850 cm/cu during imidization. This band diminished in intensity during final stages of cure. Efforts were made to quantify the amount of anhydride in several samples. Evidence obtained could be interpreted to mean that poly(amic acid) resins undergo an initial reduction in molecular weight during imidization before recombining to achieve their ultimate molecular weights as polyimides. Several reports in the literature are cited to support this interpretation. This report serves both to document anhydride formation during imidization and to increase our fundamental understanding of how polyimides cure.

  10. To See the World in a Grain of Sand: Recognizing the Origin of Sand Specimens by Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Multivariate Exploratory Data Analysis

    Science.gov (United States)

    Pezzolo, Alessandra De Lorenzi

    2011-01-01

    The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…

  11. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera.

    OpenAIRE

    Hyatt, C J; Maughan, D W

    1994-01-01

    A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about...

  12. Fourier techniques and applications

    CERN Document Server

    1985-01-01

    The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera­ ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis­ tribution was sinusoidal. He then asserted that any distri­ bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu­ tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...

  13. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    Science.gov (United States)

    Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  14. Sequence analysis of peptides with biological activities using electrospray-Fourier trans- form ion cyclotron resonance mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mass spectra of five peptides with biological activities are reported. All mass spectra were recorded using a 4.7-T Fourier transform ion cyclotron resonance mass spectrometer equipped with an external electrospray source. The accurate molecular weights for the five peptides prepared by solid phase synthesis were measured as 1765.9013, 1063.5420, 1092.5254, 820.3804 and 1078.5193, respectively. All the data were obtained with the external calibration. Differences between observed and theoretical monoisotopic molecular weights were in the (0.2-1.0)×10-6 range. The complete primary sequence for the five polypep-tides were determined using the method of in-source electro-spray ionization/collision induced dissociation (ESI/CID). All the intact y series ions and b series ions were obtained from various peptides respectively, thus determining the sequences of the five polypeptides. We found that the measured accura-te molecular mass of sample 4 was not in agreement with that expected from the planned synthetic peptide. The se-quences of sample 4 were determined through analysis. The corresponding accurate masses of b series ions and y series ions were gained, which proved that it was correct to re-determine the sequences.

  15. Space distribution of EEG responses to hanoi-moving visual and auditory stimulation with Fourier Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Shijun eLi

    2015-07-01

    Full Text Available Background and objective: The relationship between EEG source signals and action-related visual and auditory stimulation is still not well understood. The objective of this study was to identify EEG source signals and their associated action-related visual and auditory responses, especially independent components of EEG.Methods: A hand-moving-Hanoi video paradigm was used to study neural correlates of the action-related visual and auditory information processing determined by mu rhythm (8-12 Hz in 16 healthy young subjects. Independent component analysis (ICA was applied to identify separate EEG sources, and further computed in the frequency domain by applying-Fourier transform ICA (F-ICA.Results: F-ICA found more sensory stimuli-related independent components located within the sensorimotor region than ICA did. The total number of independent components of interest from F-ICA was 768, twice that of 384 from traditional time-domain ICA (p0.05.Conclusions: These results support the hypothesis that mu rhythm was sensitive to detection of the cognitive expression, which could be reflected by the function in the parietal lobe sensory-motor region. The results of this study could potentially be applied into early diagnosis for those with visual and hearing impairments in the future.

  16. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis

    Science.gov (United States)

    Hendrickson, Christopher L.; Quinn, John P.; Kaiser, Nathan K.; Smith, Donald F.; Blakney, Greg T.; Chen, Tong; Marshall, Alan G.; Weisbrod, Chad R.; Beu, Steven C.

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 ( m/Δm 50% ) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  17. A rapid method for peroxide value determination in edible oils based on flow analysis with Fourier transform infrared spectroscopic detection.

    Science.gov (United States)

    Ruíz, A; Ayora Cañada, M J; Lendl, B

    2001-02-01

    The development of an automated, rapid and highly precise method for determination of the peroxide value in edible oils based on a continuous flow system and Fourier transform infrared (FTIR) spectroscopic detection is described. The sample stream was mixed with a solvent mixture consisting of 25% (v/v) toluene in hexanol which contained triphenylphosphine (TPP). The hydroperoxides present in the sample reacted stoichiometrically with TPP to give triphenylphosphine oxide (TPPO) which has a characteristic and intense absorption band at 542 cm-1. A 10% (m/v) TPP solution in the solvent mixture and a 100 cm reaction coil were necessary for complete reaction. FTIR transmission spectra were recorded using a flow cell equipped with CsI windows having an optical pathlength of 100 microns. By using tert-butyl hydroperoxide spiked oil standards and evaluation of the band formed at 542 cm-1 a linear calibration graph covering the range 1-100 PV (peroxide value; mequiv O2 kg-1 oil) was obtained. The relative standard deviation was 0.23% (n = 11) and the throughput 24 samples h-1. The developed system was also applied to the determination of PV in olive, sunflower and corn oils, showing good agreement with the official reference method of the European Community which is based on titration using organic solvents. The results obtained clearly show that the developed method is superior to the standard wet chemical method, hence suggesting its application in routine analysis and quality control. PMID:11235111

  18. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    Directory of Open Access Journals (Sweden)

    Charles W. Ross

    2016-06-01

    Full Text Available Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI, sheath flow electrospray ionization (ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS and high-field nuclear magnetic resonance (NMR analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  19. Introduction to body composition assessment using the deuterium dilution technique with analysis of saliva samples by fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    For many years, the IAEA has fostered the more widespread use of stable isotope techniques to assess body composition in different population groups to address priority areas in public health nutrition in Member States. The objective is to support national and regional nutrition projects through both the IAEA's technical cooperation programme and its coordinated research projects. In particular, during the last few years, the increased access to analyses of deuterium enrichment by Fourier transform infrared (FTIR) spectrometry has increased the application of this technique in Africa, Asia and Latin America. This publication was developed by an international group of experts to provide practical, hands-on guidance in the use of this technique in settings where the analysis of deuterium enrichment in saliva samples will be made by FTIR. It is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical application of state of the art methodologies to monitor changes in body composition can be found in an IAEA publication entitled Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques (IAEA Human Health Series No. 3)

  20. A Hybrid Finite Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-01-01

    Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.

  1. Fourier analysis of multi-gated cardiac blood-pool data in patients with congenital heart diseases, (2)

    International Nuclear Information System (INIS)

    The clinical usefulness of Fourier analysis of multi-gated cardiac blood-pool data was evaluated in 18 subjects with normal cardiac functions and 14 patients with complex cardiac anomalies (ten with tetralogy of Fallot, two with tricuspid atresia (TA), one with double-outlet right ventricle (DORV), and one with Ebstein's anomaly (EA)). Using global ventricular time-activity curves, the phase and amplitude at fundamental frequency were calculated, and emptying patterns of the left and right ventricles (LV, RV) were evaluated by phase difference [D(phase)=RV phase minus LV phase] and amplitude ratio of RV to LV [R(amp)]. In patients with TOF, mean values of D (phase) and R(amp) were 25.3+-10.5 degrees and 13.5+-0.49 respectively and significantly larger than those of normal subjects (p<0.001). D (phase) became larger in inverse proportion to the ratio of pulmonary-to-systemic blood flow and there was an inverse linear correlation between these two variables (r=-0.830, p<0.01). On visual interpretation of functional images, the dynamic property of hypoplastic ventricles could be easily estimated in patients with TA or DORV. In a case with EA, the atrialized RV was shown clearly as a hypokinetic, atrial phase area. This method is valuable for pathophysiologic investigation of diseases with complex cardiac anomalies. (author)

  2. Using Fourier and Taylor series expansion in semi-analytical deformation analysis of thick-walled isotropic and wound composite structures

    Directory of Open Access Journals (Sweden)

    Jiran L.

    2016-06-01

    Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.

  3. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia

    OpenAIRE

    Samsir, Sri A’jilah; Bunawan, Hamidun; Yen, Choong Chee; Noor, Normah Mohd

    2016-01-01

    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600–3100 cm− 1 in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (...

  4. Component analysis and growth process of nasopharyngeal calculus as revealed by Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Ogawa, T; Shibata, A; Maeda, Y; Uno, Y; Okano, M; Nishizaki, K; Ohsaki, K

    2003-06-01

    A quite rare case of nasopharyngeal calculus in a woman in her twenties associated with the nasal discharge of pseudomonas infection was reported. As the substance was irregularly large in size, we extracted it partially by piecemeal resection using forceps and also by cracking technique using the holmium yttrium-aluminum-garnet (YAG) laser, under saline irrigation and stereotactic microscopic navigator (SMN) system under endoscopic observation. The substance was firmly fixed to the pharyngeal tonsil bed. The final extract was a small piece of singly folded bandage, which is probably the focal background for calculus formation. In a cross section of calculus specimen removed during surgery, Fourier transform infrared (FT-IR) analysis revealed that a) signal ratio of methylene group (organic substance) to amide I (protein) was 21.6% at the nasal cavity side, gradually decreased toward nasal mucous membrane showing approximate 50%, b) signal ratio of amide I to P04(3-) (inorganic substance) ranged between 17.7% and 26.7% at the different sites and inside the calculus, the protein content was approximate 1/5 of the inorganic substance, and c) signal ratio of the methylene group to amide I at the nasal cavity site showed that their contents were almost equal. The quantity of the organic substance was estimated at approximate 1/2 quantity of the protein at both the central part and the part contacted with the mucous membrane. From these results, it seems that throughout the course of calculus growth, both inorganic substance and protein remain almost constant inside the calculus, while organic substance is released from the internal part of the calculus being probably formed at an early stage. PMID:12899453

  5. Integrated Fourier transform infrared spectroscopy and gas chromatography tandem mass spectrometry for forensic engine lubricating oil and biodiesel analysis

    International Nuclear Information System (INIS)

    Gas chromatography/mass spectrometry(GC/MS) is commonly used for oil fingerprinting and provides investigators with good forensic data. However, new challenges face oil spill forensic chemistry with the growing use of biodiesel as well as the recycling and reprocessing of used oil, particularly lubricating oils. This paper demonstrated that Fourier transform infrared (FTIR) spectroscopy may be a fast, cost effective and complementary method for forensic analysis of biodiesels (fatty acid methyl esters) and lubricating oils. Attenuated total reflectance (ATR)-FTIR spectroscopy was shown to be an interesting analytic method because of its use in monitoring and quantifying minor chemical compounds in sample matrices and its ability to identify a broad range or organic compounds. Unlike chromatography, FTIR spectroscopy with ATR can provide results without compound separation or lengthy sample preparation steps. This study described the combined use of GC and ATR-FTIR in environmental oil spill identification through the matching of source lube oil samples with artificially weathered samples. Samples recovered from a biodiesel spill incident were also investigated. ATR-FTIR provided detailed spectral information for rapid lube oil differentiation. This study was part of a continuing effort to develop a methodology to deal with chemical spills of unknown origin, which is an important aspect in environmental protection and emergency preparedness. This method was only successfully applied to the short term artificially weathered and fresh lube oil characterization, and to limited cases of biodiesel spills. It was concluded that further validation tests are needed to determine if this method can be applied to real-world weather lube oil samples. 10 refs., 11 figs.

  6. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  7. Fourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs

    Science.gov (United States)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Kushnerick, L. Y.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.

    2013-09-01

    The optical model of polycrystalline networks of histological sections of rectum wall is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented. They characterize the coordinate polarization distributions of Fourier transforms of laser images of blood plasma and oncological changes. The diagnostic criteria of rectum cancer are determined.

  8. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...

  9. Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms

    Science.gov (United States)

    Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.

    1979-01-01

    Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.

  10. Vibrational analysis of Fourier transform spectrum of the $B^3 ^-_u (0^+_u) - X^3 ^-_g (0^+_g)$ transition of 80Se2 molecule

    Indian Academy of Sciences (India)

    Pavitra Tandon; K Sunanda; M N Deo; M D Saksena; K N Uttam

    2011-04-01

    The emission spectra of $B^3 ^-_u (0^+_u) - X^3 ^-_g (0^+_g)$ transition of the isotopic species 80Se2, excited in an electrodeless discharge lamp by the microwave, was recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm-1. Vibrational constants were improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and -centroid values.

  11. Evaluation with Fourier analysis on radionuclide angiography of viable but stunned myocardium in patients with right ventricular myocardial infarction

    International Nuclear Information System (INIS)

    Stunned myocardium of right ventricle was studied by radionuclide angiography (RNA) and thallium myocardial scintigraphy (TL) in 39 patients with inferior myocardial infarction (MI) with and without right ventricular myocardial infarction (RVMI). RNA was performed within 1 week of the onset (acute phase) and after 1 month, when exercise cardiac scintigraphy (EX-TL) was also performed. The ejection fraction (EF) of each ventricle calculated from RNA and the phase and amplitude evaluated visually and quantitatively by Fourier analysis were compared between the acute phase and 1 month after the onset of MI. The degree of visualization of right ventricle (RV) was examined in EX-TL 1 month after the onset. In RNA obtained in the acute MI, abnormalities in RV (delayed phase or low amplitude image) were observed in 18 (46%) but not in 21 (54%) of the 39 patients (N group). Of those 18 patients, the abnormalities in RV alleviated in 11 (RVMI-A group) but persisted in 7 (RVMI-B group) in RNA obtained 1 month after the onset. In the acute phase, RVEF was 39.4±10.4% in N group, 30.8±5.3% in RVMI-A group, and 29.6±8.9% in RVMI-B group, with significant differences between N group and the other two groups, but no significant difference between RVMI-A and RVMI-B groups. After 1 month, RVEF was 40.1±10.1% in N group, 42.2±8.4% in RVMI-A group and 32.2±9.8% in RVMI-B group, being improved in RVMI-A group and showing a significant difference as compared with RVMI-B group. In EX-TL of RVMI-A group, RV was visible although the uptake of TL was reduced in the entire right ventricle. In RVMI-B group, only part of the right ventricular free wall was visible with defects in the other areas of RV. The sign of RVMI showed improvements in many of the patients after the acute phase, and their condition was considered to have been so-called stunned myocardium, which is a complex of symptoms of reversible myocardial ischemia, rather than RVMI. (author)

  12. Immobilisation-induced changes in forearm bone quantity and quality: radiographic fourier image analysis vs bone densitometry

    International Nuclear Information System (INIS)

    Full text: Determinants of bone fracture risk include indices of bone 'quantity' such as bone mineral content (BMC, mineral mass per unit scanned bone length), plus 'environmental' (eg impact force) and 'quality' factors (Melton L.J. III et al, Bone and Min 2: 321, 1987). Bone 'quality' refers largely to the micro-geometry of bone (∼ 10-200μ), but has been less well studied because of the need for bone slices from (invasive) bone biopsies. Such studies often compare the geometry of trabecular networks (eg trabecular bone volume, trabecular number) with clinical outcomes such as fracture rates. Another (invasive) approach is to examine the two-dimensional (2-D) Fourier transform (FT) of a high-resolution radiographic image of the bone slice, since structural information is in theory encoded in the 2-D spatial-frequency (ν) spectrum. Additionally, the FT method can be applied to bone images obtained in-vivo, though superposition of information from the third dimension is a major confounding factor in their interpretation. Quantitative radiography of the ultradistal (UD) forearm permits determination of BMC (Price R et al; ACPSEM 6: 128- 137, 1983 and ACPSEM 11: 36-43, 1988), and (as a bonus) reveals a pattern (suitable for FT analysis) of the radiographic shadows of the 3-D trabecular network projected onto the image plane. Hemiplegia is associated with excessive bone loss in the paralysed (hemi) forearm, and is a model for the study of immobilisation osteoporosis. Thus, by comparing hemiplegia-induced changes in BMC and trabecular structure, derived from the same in vivo radiographic image, it is possible to compare directly the effects of disease on both bone quantity and quality, using the image of the non-paralysed (non-hemi) arm as a control. Seventy-four patients with hemiplegia of duration 3.6±3.6 (Mean±SD) years were studied cross-sectionally for radiographic BMC of their normal and paralysed UD forearms in AP view, each arm in duplicate. Methods

  13. Improving speed and precision of local frequency analysis using Gaussian ridge interpolation for wavelet and windowed Fourier ridge algorithms

    Science.gov (United States)

    Dehaeck, S.; Colinet, P.

    2016-02-01

    When analysing fringe images, wavelet and windowed Fourier ridge algorithms allow to extract phase and local frequency even in the presence of considerable noise levels. However, the precision of the local frequency information is often limited by the relatively small number of analysing frequencies used in practice. This on account of the direct trade-off between frequency precision and processing time, which can become prohibitive in some cases. In the present paper, a method is shown capable of reducing the processing time by a factor 3 for the wavelet ridge technique and by up to 15 times for the windowed Fourier ridge algorithm. This is accomplished by a 3-point Gaussian ridge interpolation. This approach is also shown to lead to an improved frequency precision for moderate noise levels.

  14. Fourier analysis of non-Blazhko ab-type RR Lyrae stars observed with the Kepler space telescope

    CERN Document Server

    Nemec, J M; Benko, J M; Moskalik, P; Kolenberg, K; Szabo, R; Kurtz, D W; Bryson, S; Guggenberger, E; Chadid, M; Jeon, Y -B; Kunder, A; Layden, A C; Kinemuchi, K; Kiss, L L; Poretti, E; Christensen-Dalsgaard, J; Kjeldsen, H; Caldwell, D; Ripepi, V; Derekas, A; Nuspl, J; Mullally, F; Thompson, S E; Borucki, W J

    2011-01-01

    Nineteen of the ~40 RR Lyr stars in the Kepler field have been identified as candidate non-Blazhko (or unmodulated) stars. In this paper we present the results of Fourier decomposition of the time-series photometry of these stars acquired during the first 417 days of operation (Q0-Q5) of the Kepler telescope. Fourier parameters based on ~18400 long-cadence observations per star (and ~150000 short-cadence observations for FN Lyr and for AW Dra) are derived. None of the stars shows the recently discovered `period-doubling' effect seen in Blazhko variables; however, KIC 7021124 has been found to pulsate simultaneously in the fundamental and second overtone modes with a period ratio P2/P0 ~ 0.59305 and is similar to the double-mode star V350 Lyr. Period change rates are derived from O-C diagrams spanning, in some cases, over 100 years; these are compared with high-precision periods derived from the Kepler data alone. Extant Fourier correlations by Kovacs, Jurcsik et al. (with minor transformations from the V to t...

  15. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images

    Science.gov (United States)

    Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk

    2011-05-01

    Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.

  16. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia.

    Science.gov (United States)

    Samsir, Sri A'jilah; Bunawan, Hamidun; Yen, Choong Chee; Noor, Normah Mohd

    2016-09-01

    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group. PMID:27257614

  17. Weighted Fourier and Fourier-Stieltjes Algebras

    Directory of Open Access Journals (Sweden)

    Amin Mahmoodi

    2010-10-01

    Full Text Available Let $G$ be a locally compact group and $omega$ be a symmetric weight function on $G$. We define a co-product $Gamma_omega$ on the weighted algebra $L^infty(G, omega^{-1}$ of essentially $omega$-bounded Borel measurable functions on $G$ and show that $L^infty(G, omega^{-1}$ becomes a Kac algebra with natural co-inverse $kappa_omega$ and Haar weight $phi_omega$. We use the machinery of Kac algebras to introduce the weighted Fourier and Fourier-Stieltjes algebra $ A(G,omega^{-1}$ and $ B(G,omega^{-1}$ of $G$.

  18. Weighted Fourier and Fourier-Stieltjes Algebras

    OpenAIRE

    Amin Mahmoodi

    2010-01-01

    Let $G$ be a locally compact group and $omega$ be a symmetric weight function on $G$. We define a co-product $Gamma_omega$ on the weighted algebra $L^infty(G, omega^{-1})$ of essentially $omega$-bounded Borel measurable functions on $G$ and show that $L^infty(G, omega^{-1})$ becomes a Kac algebra with natural co-inverse $kappa_omega$ and Haar weight $phi_omega$. We use the machinery of Kac algebras to introduce the weighted Fourier and Fourier-Stieltjes algebra $ A(G,omega^{-1})$ and $ B(G,o...

  19. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalat...... esters are given. It is demonstrated that the presence of phthalate esters in PVC products is readily detectable by FT-Raman spectroscopy. By use of proper ref. samples quant. detn. of the phthalate ester content becomes possible as well....

  20. Modelling nanoparticle transport in dielectrophoretic microdevices using a Fourier-Bessel series and applications for data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bakewell, D J, E-mail: d.bakewell@liv.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ (United Kingdom)

    2011-03-02

    A Fourier-Bessel (FB) series solution is derived that describes the dielectrophoretic-driven transport of nanoparticles in a microdevice. The solution assumes that the nanoparticles do not interact and is based on a linear Fokker-Planck equation that includes the effects of thermal diffusion. The solution is applicable for a dielectrophoretic force that varies exponentially in the microdevice, such as in the far field of planar interdigitated arrays. Important applications of the FB solution are demonstrated that include simulation and system classification of nanoparticle movement under the action of weak and strong dielectrophoretic forces. Methods are demonstrated for the inverse process of estimating model parameters, such as the dielectrophoretic force, based on nanoparticle concentration data obtained experimentally. Data decomposition into separate spatial and temporal modes is demonstrated and Fourier transformation of the series solution yields a representation in the frequency domain. The frequency response predicted by transforming the time-dependent FB solution indicates the presence of a dielectrophoresis modulation bandwidth that concurs with observations of preliminary experiments.

  1. Fourier descriptors analysis of anisotropy and preferred Orientation in geological samples; Analisis de la anisotropia y la orientacion preferente en materiales geologicos mediante el Metodo de Descriptoes de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Santiago Buey, C. de

    2011-07-01

    This study focuses on the use of Fourier descriptors to evaluate and quantify two specific fabric characteristics of geological materials: anisotropy of particles or voids morphologies and particle orientation. To this end, a theoretical section of a rock was created, made of ellipses and rectangles of different axes ratios and different orientations. The Fourier descriptors method was applied to calculate the anisotropy and orientation of each particle and, finally, a rose diagram was constructed to represent the particles orientations distribution and to observe the presence or not of any preferred orientation. (Author) 15 refs.

  2. Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: a new graphical analysis of trends.

    Science.gov (United States)

    Abdulla, Hussain A N; Sleighter, Rachel L; Hatcher, Patrick G

    2013-04-16

    Two-dimensional (2D) correlation analysis was applied to 20 Fourier transform ion cyclotron resonance mass spectra (FTICR-MS) of ultrafiltered dissolved organic matter samples from a salinity transect of the lower Chesapeake Bay. We were able to investigate the chemical changes in the dissolved organic matter pool at the molecular level and classify the individual peaks based on their biogeochemical reactivity. The power of this technique is its ability to be used on either the presence/absence of the individual peaks or their normalized magnitudes. The presence or absence of the peaks are utilized to identify the reactivity and correlation between peaks that plot in different regions of the van Krevelen diagram, whereas the normalized magnitudes are used to correlate the changes among individual peaks. One of the promising advantages of 2D correlation of FTICR-MS data is the ability to associate the variations of the individual peaks with the changes in the functional groups that are measured by other spectroscopic techniques. This approach takes us one step further from identifying molecular formulas to proposing chemical structures. PMID:23472832

  3. Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography.

    Science.gov (United States)

    Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Eigenwillig, Christoph M; Palte, Gesa; Huber, Robert

    2008-12-01

    We demonstrate a Raman-pumped Fourier-domain mode-locked (FDML) fiber laser and optical coherence tomography imaging with this source. The wavelength sweep range of only 30 nm centered around 1550 nm results in limited axial resolution, hence a nonbiological sample is imaged. An output power of 1.9 mW was achieved at a sweep rate of 66 kHz and a maximum ranging depth of ~2.5 cm. Roll-off characteristics are found to be similar to FDML lasers with semiconductor optical amplifiers as gain media. The application of Raman gain also enables unperturbed cavity ring-down experiments in FDML lasers for the first time, providing direct access to the photon lifetime in the laser cavity. Good agreement with nonswept cw operation is proof of the stationary operation of FDML lasers. PMID:19037436

  4. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....

  5. Fourier-transform Raman and infrared spectroscopic analysis of 2-nitro-tetraphenylporphyrin and metallo-2-nitro-tetraphenylporphyrins

    Science.gov (United States)

    Hu, J.; Pavel, I.; Moigno, D.; Wumaier, M.; Kiefer, W.; Chen, Z.; Ye, Y.; Wu, Q.; Huang, Q.; Chen, S.; Niu, F.; Gu, Y.

    2003-07-01

    The Fourier-transform Raman (FT-Raman) and infrared (FT-IR) spectra of 2-nitro-tetraphenylporphyrin (2-NO 2-TPP), nickel-2-nitro-tetraphenylporphyrin (Ni-2-NO 2-TPP), zinc-2-nitro-tetraphenylporphyrin (Zn-2-NO 2-TPP) and copper-2-nitro-tetraphenylporphyrin (Cu-2-NO 2-TPP) were acquired for the first time and carefully assigned and discussed. The effects of a β-NO 2 group and the influence of the central metal on the molecular symmetry and vibrational spectra of the porphyrin macrocycle were also examined. The bands at 1323-1339, 1516-1526 and 961-971 cm -1 were attributed to the symmetric and asymmetric stretching vibration of the NO 2 group and to the stretching vibration of the C βN bond, respectively, which connects the NO 2 group with the β-carbon of the porphyrin macrocycle. These bands can act as a marker to distinguish β-NO 2 TPPs from other β-substituent TPPs. Cu-2-NO 2-TPP has a C4 ν molecular symmetry, which is different from those of Ni-2-NO 2-TPP and Zn-2-NO 2-TPP, i.e. D4 h.

  6. Phase Error Caused by Speed Mismatch Analysis in the Line-Scan Defect Detection by Using Fourier Transform Technique

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2015-01-01

    Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.

  7. Relative pointing offset analysis of calibration targets with repeated observations with Herschel-SPIRE Fourier-Transform Spectrometer

    CERN Document Server

    Valtchanov, Ivan; Polehampton, Edward; Benielli, Dominique; Fulton, Trevor; Imhof, Peter; Konopczynski, Tomasz; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Swinyard, Bruce

    2014-01-01

    We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with the highest observed continuum. Assuming that any pointing offset leads to an overall shift of the continuum level, then these ratios represent the relative flux loss due to mispointing. The mispointing effects are more pronounced for a smaller beam, so we consider only the FTS short wavelength array (SSW, 958-1546 GHz) to derive a pointing correction. We obtain the relative pointing offset by comparing the ratio to a grid of expected losses for a model source at different distances from the centre of the beam, under the assumption that the SSW FTS beam can be well approximated by a Gaussian. In order to avoid dependency on the...

  8. Winding numbers and Fourier series

    CERN Document Server

    Kahane, Jean-Pierre

    2010-01-01

    This is an expository talk on a topic of classical analysis, arising from the VMO theory of the topological degree due to Br\\'ezis and Nirenberg (1995). We sketch the history of the subject and some of its recent developments. The paper is organized as a sequence of questions. Most of them, in particular the last one, deal with Fourier series of continuous functions of constant absolute value. One of them contains new results on the comparison of summation processes.

  9. Depth profiling of SBS/PET layered materials using step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy and two-dimensional correlation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.

  10. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    Science.gov (United States)

    Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu

    2012-05-01

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.

  11. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Science.gov (United States)

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  12. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Directory of Open Access Journals (Sweden)

    Ryo eNakabayashi

    2015-12-01

    Full Text Available In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis. To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs. The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  13. Boosting Sensitivity in Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids.

    Science.gov (United States)

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  14. Teaching Fourier optics through ray matrices

    International Nuclear Information System (INIS)

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

  15. Photonic crystal biosensor in spatial fourier domain

    OpenAIRE

    Hallynck, Elewout; Bienstman, Peter

    2011-01-01

    We propose a photonic crystal biosensor, operating at a single wavelength, based on analysis of resonant guided modes in the spatial Fourier domain. Sensitivities of 65 degrees per RIU and more have been simulated.

  16. Characterization of right or left ventricular contraction heterogeneity using Fourier phase analysis. Application to a group of patients with severe ventricular arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R.; Casset, D.; Philippe, L.; Fauchier, J.P.; Cosnay, P.; Huguet, R.

    1988-07-01

    The standard deviation of the first harmonic Fourier phase histogram is an indicator of the contraction heterogeneity of the heart ventricles. This approach has been applied to analyse tomographic blood pool (/sup 99m/Tc) examinations in a group of 32 patients with angiographically verified mainly right (RV) but also left (LV) kinetic disorders in relation to severe ventricular arrhythmias and suspicion of arrhythmogenic right ventricular dysplasia (ARVD). The reference group consisted of ten patients with low probability of cardiac kinetic abnormalities. Thick tomographic slices including both ventricles have been reconstructed in the horizontal long axis orientation from a series of 32 gated projections recorded over a 360/sup 0/ rotation. Separately for each ventricle the Fourier phase histograms have been computed and characterized by their standard deviations (PSD). Normal values were significantly lower than those measured in abnormal cases. Detailed analysis of the data supports the hypothesis of a primary RV disease in ARVD, with secondary LV extension. PSD seems to be a good predictor of an organic cardiac disease underlying ventricular arrhythmias and may be used for screening the patients.

  17. Novel microfluidic chips with fourier transform infrared spectroscopic detection for reaction and separation monitoring in miniaturized analysis systems

    International Nuclear Information System (INIS)

    The first part of this work deals with the development of a micromachined mixing unit for time-resolved Fourier transform infrared (FT-IR) spectroscopy to investigate rapid chemical reactions in solution. The mixing chip is a sandwich construction of two epoxy polymer layers and a separating silver layer between two highly IR transparent CaF2 discs that allows for fast and highly reproducible diffusion based mixing. Lamination of two streamlines reduces the inter-stream distances and enables complete mixing of the reactants in the millisecond time range with low reagent consumption. The mixing device was tested using different model reactions and computational fluid dynamic simulations and was applied to study the binding of vancomycin - a glycopeptide antibiotic - to a cell wall precursor peptide. The second development presented is a microfabricated flow-through cell for on-line FT-IR spectroscopic detection in capillary electrophoresis (CE). In order to overcome the total IR absorption of fused-silica capillaries that are normally encountered in CE separations, a micromachined IR transparent flow cell was constructed. This cell consists - similar to the mixing chip - of two IR transparent CaF2 plates separated by an epoxy polymer layer and a titanium layer forming an IR detection window with a width of 150 μm, a length of 2 mm and a pathlength of 15 μm. The connections between the fused-silica capillaries and the flow cell were accomplished by a small O-ring made of epoxy polymer on the sharply cut ends of the capillary allowing for easy replacement of both the capillaries and the flow cell. The system was tested with a capillary zone electrophoresis separation and applied to separations by micellar elektrokinetic chromatography and non-aqueous CE. (author)

  18. Bayesian analysis using Fourier transforms of thallium-201 scintiscans to predict the presence of coronary artery disease

    International Nuclear Information System (INIS)

    Bayes' theorem of conditional probability was applied to the diagnosis of coronary artery disease (CAD) using thallium-201 scintigraphy as the testing procedure. Thallium-201 scintiscans were evaluated with a discriminant function previously developed using the amplitude coefficients of the Fourier transforms of the scans. The technique was applied prospectively to a population of 100 patients undergoing diagnostic coronary arteriography and thallium-201 scintigraphy, including 83 patients with CAD (70% or greater stenosis of luminal diameter) and 17 control subjects. A pretest probability of CAD was determined for each patient from the patient's age, sex and anginal symptoms. The pretest probability was combined with the patient's discriminant score to determine a post-test probability for CAD. For patients with CAD, the mean post-test probability was 0.85. Moreover, 57 of 83 patients (69%) had post-test probabilities exceeding 90%, including 40 patients (48%) with post-test probabilities exceeding 99%. For control subjects, the mean post-test probability was 0.19, with 11 of 17 (65%) having a post-test probability of less than 10%. Overall, 68 subjects had a post-test probability either less than 10% or more than 90% of which 63 were correctly classified (93%). Using a 50% post-test probability as a cutoff for classification, the technique has an 89% sensitivity, an 82% specificity and an overall accuracy of 88%. Therefore, this method objectively distinguishes patients with CAD from control subjects and provides a measure of the certainty of diagnosis. In addition, the discriminant function avoids the problem of inter- and intraobserver variability in visually interpreting thallium-201 scans

  19. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Science.gov (United States)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  20. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  1. CONVOLUTION THEOREMS FOR CLIFFORD FOURIER TRANSFORM AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2014-10-01

    Full Text Available The non-commutativity of the Clifford multiplication gives different aspects from the classical Fourier analysis.We establish main properties of convolution theorems for the Clifford Fourier transform. Some properties of these generalized convolutionsare extensions of the corresponding convolution theorems of the classical Fourier transform.

  2. Analytical method development and validation for quantification of uranium by Fourier Transform Infrared Spectroscopy (FTIR) for routine quality control analysis

    International Nuclear Information System (INIS)

    This work presents a low cost, simple and new methodology for direct determination uranium in different matrices uranium: organic phase (UO2(NO3)2.2TBP - uranyl nitrate complex) and aqueous phase (UO2(NO3)2 - NTU - uranyl nitrate), based on Fourier Transform Infrared spectroscopy (FTIR) using KBr pellets technique. The analytical validation is essential to define if a developed methodology is completely adjusted to the objectives that it is destined and is considered one of the main instruments of quality control. The parameters used in the validation process were: selectivity, linearity, limits of detection (LD) and quantitation (LQ), precision (repeatability and intermediate precision), accuracy and robustness. The method for uranium in organic phase (UO2(NO3)2.2TBP in hexane/embedded in KBr) was linear (r=0.9989) over the range of 1.0 g L-1a 14.3 g L-1, LD were 92.1 mg L-1 and LQ 113.1 mg L-1, precision (RSD < 1.6% and p-value < 0.05), accurate (recovery of 100.1% - 102.9%). The method for uranium aqueous phase (UO2(NO3)2/embedded in KBr) was linear (r=0.9964) over the range of 5.4 g L-1 a 51.2 g L-1, LD were 835 mg L-1 and LQ 958 mg L-1, precision (RSD < 1.0% and p-value < 0.05), accurate (recovery of 99.1% - 102.0%). The FTIR method is robust regarding most of the variables analyzed, as the difference between results obtained under nominal and modified conditions were lower than the critical value for all analytical parameters studied. Some process samples were analyzed in FTIR and compared with gravimetric and x ray fluorescence (XRF) analyses showing similar results in all three methods. The statistical tests (Student-t and Fischer) showed that the techniques are equivalent. (author)

  3. Analysis of the High-Resolution Fourier Spectrum of the ν6 Band of the cis-C2h2d2 Molecule

    Science.gov (United States)

    Konov, I. A.; Chertavskikh, Yu. V.; Fomchenko, A. L.; Aslapovskaya, Yu. S.; Zhdanovich, S. A.; Sydow, C.

    2016-03-01

    The spectrum of the ν6 band of the cis-ethylene-d2 molecule (cis-C2H2D2) is recorded with a Bruker IFS 125 HR Fourier spectrometer in the range 580-1210 cm-1 with resolution of 0.0021 cm-1. An analysis of the experimental spectrum allows more than 1500 transitions belonging to this band to be assigned that by more than 2.5 times greater than it has been known in the literature so far. The obtained experimental data are then used to determine the model parameters of the molecule (the effective Hamiltonian in the A-reduction and I'- representation). Strong resonance interaction with the band ν4 forbidden in absorption by the symmetry of a molecule is taken into account. 10 parameters of the Hamiltonian obtained by solving inverse spectroscopic problem reproduce 427 initial experimental energies (more than 1500 transitions) with accuracy close to the experimental uncertainty.

  4. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    Science.gov (United States)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  5. Attenuated total reflectance-Fourier transform infrared spectroscopy coupled with multivariate analysis for measurement of acesulfame-K in diet foods.

    Science.gov (United States)

    Shim, J Y; Cho, I K; Khurana, H K; Li, Q X; Jun, S

    2008-06-01

    Fourier transform infrared (FTIR) spectroscopy was investigated as a method for analysis of acesulfame-K content after a simple extraction procedure for certain commercial diet food samples. Partial least squares (PLS) models were developed for prediction of acesulfame-K using select spectral ranges on the basis of relevant IR absorption bands associated with acesulfame-K. The acesulfame-K content of test food samples was predicted accurately in the fingerprint region between 1100 and 1300 cm(-1) with a maximum prediction error of 9.82% when compared with conventional HPLC method. The PLS was found to be a consistently better predictor when both PLS and principal component regression (PCR) analyses were used for quantification of acesulfame-K. The developed procedure was further validated by comparing with HPLC results as well as recovery studies. As a quick tool, the method developed is expected to be used for routine estimation of acesulfame-K in commercial products. PMID:18576989

  6. Allometric body shape changes and morphological differentiation of Shemaya, Alburnus chalcoides (Guldenstadf, 1772, populations in the southern part of Caspian Sea using Elliptic Fourier analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Mohadasi

    2014-09-01

    Full Text Available Study of phenotypic diversity among populations can help better understanding of diversification of species within ecosystems and intraspecific diversification in fishes. A geometric morphometric study was carried out using the Elliptic Fourier analysis to demonstrate the effect of habitat type on morphological features of shemaya (Alburnus chalcoides populations. Populations were sampled from three rivers and one lagoon, from the southern part of Caspian Sea. Significant differences in body shape were found among the populations. Differences in shapes of the riverine populations were minute compared to those of lagoon one in terms of size and shape. Shemaya is an anaderemus fish and its populations have a common origin, therefore, observed differences could be as result of environmental factors. In addition, this study suggest that the amount of curvature i.e. fusiform body shape of this species could be independent form environmental condition.

  7. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA).

    Science.gov (United States)

    Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching

    2016-01-01

    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies. PMID:26925315

  8. Fourier transforms in radar and signal processing

    CERN Document Server

    Brandwood, David

    2011-01-01

    Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit

  9. Harmonic functions on groups and Fourier algebras

    CERN Document Server

    Chu, Cho-Ho

    2002-01-01

    This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.

  10. Fourier Optics on Graphene

    CERN Document Server

    Vakil, Ashkan

    2011-01-01

    Using numerical simulations, here we demonstrate that a single sheet of graphene with properly designed inhomogeneous, nonuniform conductivity distributions can act as a convex lens for focusing and collimating the transverse-magnetic (TM) surface Plasmon polariton (SPP) surface wave propagating along the graphene. Consequently, we show that the graphene can act as a platform capable of obtaining spatial Fourier transform of infra-red (IR) SPP signals. This may lead to rebirth of the field of Fourier Optics on a one-atom-thick structure.

  11. Didactic toy for teaching the Fourier principle

    Science.gov (United States)

    Medina-Villanueva, Miguel; Medina-Tamez, Victor; Medina-Tamez, Javier; Garcia-Mederez, Adrian

    2002-11-01

    The mathematical tool of Fourier analysis is used in many areas like vibrations, communications, optics, electronics, etc. The understanding of this subject sometimes causes frustration in students. The main purpose of this presentation is to propose a didactic toy that calculates the harmonic magnitudes through the discrete values of analog periodic signals. This device shows the rotative vectors in a physical way that makes the principle of Fourier understandable.

  12. Bilinear Fourier restriction theorems

    CERN Document Server

    Demeter, Ciprian

    2012-01-01

    We provide a general scheme for proving $L^p$ estimates for certain bilinear Fourier restrictions outside the locally $L^2$ setting. As an application, we show how such estimates follow for the lacunary polygon. In contrast with prior approaches, our argument avoids any use of the Rubio de Francia Littlewood--Paley inequality.

  13. Benefits of 2.94 micron infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry

    DEFF Research Database (Denmark)

    Budnik, BA; Jensen, Kenneth Bendix; Jørgensen, Thomas J. D.;

    2000-01-01

    A 2.94 microm Er:YAG laser was used together with a commercial Fourier transform mass spectrometer to study labile biomolecules. The combination has shown superior performance over conventional 337 nm ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) Fourier transform mass...

  14. Homogeneous Nature of Malaysian Marine Fish Epinephelus fuscoguttatus (Perciformes; Serranidae: Evidence Based on Molecular Markers, Morphology and Fourier Transform Infrared Analysis

    Directory of Open Access Journals (Sweden)

    A'wani Aziz Nurdalila

    2015-07-01

    Full Text Available Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance–Fourier-transform Infrared (ATR-FTIR data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.

  15. Quantitative Analysis of Curing Mechanisms of Epoxy Resin by Mid- and Near- Fourier Transform Infra Red Spectroscopy

    OpenAIRE

    Sagar T. Cholake; Mykanth R. Mada; R. K. Singh Raman; Yu Bai; Xl Zhao; Sami Rizkalla; Sri Bandyopadhyay

    2014-01-01

    This article informs the essence of major work done by a number of researchers on the analysis of two-step curing mechanism of diglycidyl ether of bisphenol A (DGEBA) epoxy resin in presence of amine curing agents using near- and mid-IR technology. Various peaks used as a marker for resin formation are discussed and their implementation is comprehensively studied. In addition to this, a wide range of information about the importance of reference peaks in both near-IR (NIR) and mid-IR (MIR) re...

  16. Computer-assisted analysis of Fourier Transform Infrared (FTIR spectra for characterization of various treated and untreated agriculture biomass

    Directory of Open Access Journals (Sweden)

    Siong Fong Sim

    2012-11-01

    Full Text Available A computational approach was used to analyze the FTIR spectra of a wide range of treated and untreated lignocellulosic biomass (coconut husk, banana trunk, sago hampas, rice husk, and empty fruit bunch. The biomass was treated with strong sulphuric acid and NaOH, respectively. A total of 87 spectra were obtained in which the absorption bands were de-convoluted automatically, generating a peak table of 87 rows and 60 columns. Square roots were taken of the peak values, with further standardization prior to Principal Component Analysis (PCA for data exploration. In a scores plot, the treated and untreated biomass were distinguishable along the two main axes, PC1 and PC2. Examining the absorption bands corresponding to lignocellulosic components indicated that the acid pretreatment had resulted in dissolution and degradation of hemicelluloses and lignin, confirmed typically by disappearance of bands. The alkali treatment however was not as rigorous as the acid treatment, as some characteristic bands of hemicelluloses and lignin were enhanced, suggesting condensation of the degraded polysaccharides. The computer-assisted analysis of the FTIR spectra allowed efficient and simultaneous comparisons of lignocellulosic compositions present in various treated and untreated biomass. This represents an improvement relative to the conventional methods, since a large dataset can be handled efficiently and individual peaks can be examined.

  17. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Akyuz, Sevim, E-mail: s.akyuz@iku.edu.tr [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Akyuz, Tanil [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba [Institute of Nuclear Physics, Uzbek Academy of Sciences, 702132, Ulugbek, Tashkent (Uzbekistan); Basaran, Sait; Cakan, Banu [Department of Restoration and Conservation of Artefacts, Letters Faculty, Istanbul University, Vezneciler, Istanbul (Turkey)

    2012-05-15

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry. - Highlights: Black-Right-Pointing-Pointer INAA was performed to determine elemental compositions of ancient glass fragments. Black-Right-Pointing-Pointer Basic, coloring/discoloring elements and impurities have been determined. Black-Right-Pointing-Pointer PCA discriminated the glasses depending on their chronological order. Black-Right-Pointing-Pointer The thermal history of the glass samples was determined by FTIR spectrometry.

  18. Quantitative Analysis Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Correlation between Mass Spectrometry Data and Sulfur Content of Crude Oils

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Liu Yingrong; Liu Zelong; Tian Songbai

    2015-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has become a powerful tool for ana-lyzing the detailed composition of petroleum samples. However, the correlation between the numerous peaks obtained by FT-ICR MS and bulk properties of petroleum samples is still a challenge. In this study, the internal standard method was applied for the quantitative analysis of four straight-run vacuum gas oils (VGO) by atmospheric pressure photoionization (APPI) FT-ICR MS. The heteroatom class distribution of these VGO samples turned to be different when the concentration changed. Linear relationship between the normalized abundance and the concentration of VGO samples was identiifed for the total aromatic compounds, aromatic hydrocarbons, S1 and N1 species. The differences of the response factors were also discussed. The sulfur contents of a series of crude oils were proved to be linear with the FT-ICR MS data calibrated by the response factor of S1 species. This study demonstrated the feasibility of the internal standard method in quantitative analysis with APPI FT-ICR MS, and the bulk properties of petroleum samples could be correlated directly with the FT-ICR MS data.

  19. Efficacy of the phase images in fourier analysis using gated cardiac POOL-SPECT for determining the indication for cardiac resynchronization therapy

    International Nuclear Information System (INIS)

    Although cardiac resynchronization therapy (CRT) improves quality of life and survival for patients with heart failure, exact methods to estimate the effect of cardiac asynchrony have not yet been defined. Initially, to examine whether the phase analysis images in the Fourier analysis using gated cardiac pool single photon emission computed tomography (POOL-SPECT) could be used to evaluate cardiac asynchrony, 19 consecutive patients with dilated cardiomyopathy were studied. Interventricular asynchrony was defined by whether the peak of the picture elements of the right ventricle in the phase histogram fitted that of the left ventricle and intraventricular asynchrony by whether the phase image was described homogenously or not. The patients with both inter- and intraventricular asynchrony had significant deterioration in both left ventricular ejection fraction (p<0.01) and New York Heart Association functional class (p<0.01). To evaluate the efficacy of these phase images for CRT setting, 7 patients were tested before and after CRT. During a 3.9±3.6 month follow-up period, all patients had an improvement in their condition, and the inter- and intraventricular asynchrony significantly improved after CRT. The degrees of the inter- and intraventricular asynchrony were related to the degree of cardiac depression pre CRT. These results have shown that the phase images from POOL-SPECT are useful for assessing the effect of CRT in patients with heart failure, which suggests that it may provide information about the indication for CRT. (author)

  20. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    International Nuclear Information System (INIS)

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)–Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry. - Highlights: ► INAA was performed to determine elemental compositions of ancient glass fragments. ► Basic, coloring/discoloring elements and impurities have been determined. ► PCA discriminated the glasses depending on their chronological order. ► The thermal history of the glass samples was determined by FTIR spectrometry.

  1. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins

    Science.gov (United States)

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-01-01

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520

  2. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS in Astrobiology-Related Research: Analysis of Meteorites and Tholins

    Directory of Open Access Journals (Sweden)

    Árpád Somogyi

    2016-03-01

    Full Text Available It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds” for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR mass spectrometers are shown and discussed in the present article, including: (i the analysis of organic matter of meteorites; (ii modeling atmospheric processes in ICR cells; and (iii the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan.

  3. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins.

    Science.gov (United States)

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-01-01

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan. PMID:27023520

  4. Quantitative Analysis of Curing Mechanisms of Epoxy Resin by Mid- and Near- Fourier Transform Infra Red Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sagar T. Cholake

    2014-05-01

    Full Text Available This article informs the essence of major work done by a number of researchers on the analysis of two-step curing mechanism of diglycidyl ether of bisphenol A (DGEBA epoxy resin in presence of amine curing agents using near- and mid-IR technology. Various peaks used as a marker for resin formation are discussed and their implementation is comprehensively studied. In addition to this, a wide range of information about the importance of reference peaks in both near-IR (NIR and mid-IR (MIR regions are congregated and their accuracy is audited. Also discrepancies observed by researchers in epoxy conversion (α in NIR and MIR regions are reviewed to highlight the comparative advantages of both regions, one over the other.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 314-321, DOI:http://dx.doi.org/10.14429/dsj.64.7326

  5. Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables.

    Science.gov (United States)

    Sravan Kumar, S; Manoj, P; Giridhar, P

    2015-12-01

    FTIR analysis for five selected green leafy vegetables (GLVs) viz., Hibiscus cannabinus L., (kenaf), H. sabdariffa L., (roselle), Basella alba L., (vine spinach), B. rubra L. (malabar spinach) and Rumex vesicarius L., (sorrel) confirmed the presence of free alcohol, intermolecular bonded alcohol, intramolecular bonded alcohol, alkane, aromatic compounds, imine or oxime or ketone or alkene, phenol and amine stretching. The chlorophyll content was higher in native leaves of B. alba (2.96 g/kg) than defatted samples (1.11 g/kg). Total phenolic content (TPC) in H. sabdariffa native methanol extractives is more (17.6 g/kg) than defatted leaves (9.67 g/kg). Native B. rubra methanol extractives exhibited highest total flavonoid content (TFC) (21.59 g/kg), while that of R. vesicarius was lowest (3.21 g/kg). In general, antioxidant activities showed a significant reduction in retention of antioxidants in both native and defatted GLVs samples of ethanol and methanol extractives. Methanol extractives showed significantly stronger antioxidant activity probably due to greater solubility of phenolics and destruction of cellular components. PMID:26604386

  6. Proximate composition, mineral contents, phytochemical constituents, antimicrobial activities and Fourier transforms infrared spectroscopy analysis of bark, stem and seed of Hippophae rhamnoides Linn

    Institute of Scientific and Technical Information of China (English)

    Javid Ali; Bashir Ahmad; Said Hassan; Muhammad Siddique; Farrah Gul; Shafaat Ullah

    2015-01-01

    Objective: To compare the proximate composition, mineral contents, antimicrobial, phytochemical and Fourier transforms infrared (FTIR) spectroscopy analysis of bark, stem and seed of Hippophae rhamnoides. Methods: Proximate composition was determined according to the described methods. Mineral analysis was carried out by atomic absorption spectroscopy and flame photometer. Antimicrobial activities were evaluated according to the agar well diffusion method. Phytochemical qualitative analysis was carried out according to the described methods and functional groups were determined by FTIR Prestige-21 Shimadzu Japan. Results:The proximate analysis showed high content of protein and fiber in stem and bark. High content of Na (900 mg/L) and K (670 mg/L) was found in bark powder, while in seed, high contents of Ca (800 mg/L), Mg (725 mg/L), Fe (250 mg/L) Zn (90 mg/L) and Mn (65 mg/L) were found compared to stem and bark. Phenols, flavonoids and tannins showed high contents in stem and bark of all extracts. The bark aqueous extract showed high zone of inhibition against Staphylococcus aureus (21 mm) and Escherichia coli (20 mm), while methanol extract of stem showed high zone of inhibition (14 mm and 13 mm) against Enterococcus faecalis and Escherichia coli respectively. The aqueous extract of bark documented high zone of inhibition against Aspergillus niger (21 mm) and Aspergillus parasiticus (20 mm). FTIR spectra revealed the presence of OH, C-O and C=O functional groups. Conclusions:The study concludes that bark, stem and seed extracts will be useful guideline for the new syntheses of feed, food supplements and herb drugs with various combination, which can be used for the treatment of many diseases at global level especially in tropical regions as well as the male nutrition problems in these areas.

  7. Proximate composition, mineral contents, phytochemical constituents, antimicrobial activities and Fourier transforms infrared spectroscopy analysis of bark, stem and seed of Hippophae rhamnoides Linn

    Directory of Open Access Journals (Sweden)

    Javid Ali

    2015-06-01

    Full Text Available Objective: To compare the proximate composition, mineral contents, antimicrobial, phytochemical and Fourier transforms infrared (FTIR spectroscopy analysis of bark, stem and seed of Hippophae rhamnoides. Methods: Proximate composition was determined according to the described methods. Mineral analysis was carried out by atomic absorption spectroscopy and flame photometer. Antimicrobial activities were evaluated according to the agar well diffusion method. Phytochemical qualitative analysis was carried out according to the described methods and functional groups were determined by FTIR Prestige-21 Shimadzu Japan. Results: The proximate analysis showed high content of protein and fiber in stem and bark. High content of Na (900 mg/L and K (670 mg/L was found in bark powder, while in seed, high contents of Ca (800 mg/L, Mg (725 mg/L, Fe (250 mg/L Zn (90 mg/L and Mn (65 mg/L were found compared to stem and bark. Phenols, flavonoids and tannins showed high contents in stem and bark of all extracts. The bark aqueous extract showed high zone of inhibition against Staphylococcus aureus (21 mm and Escherichia coli (20 mm, while methanol extract of stem showed high zone of inhibition (14 mm and 13 mm against Enterococcus faecalis and Escherichia coli respectively. The aqueous extract of bark documented high zone of inhibition against Aspergillus niger (21 mm and Aspergillus parasiticus (20 mm. FTIR spectra revealed the presence of OH, C-O and C=O functional groups. Conclusions: The study concludes that bark, stem and seed extracts will be useful guideline for the new syntheses of feed, food supplements and herb drugs with various combination, which can be used for the treatment of many diseases at global level especially in tropical regions as well as the male nutrition problems in these areas.

  8. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis.

    Science.gov (United States)

    Musingarabwi, Davirai M; Nieuwoudt, Hélène H; Young, Philip R; Eyéghè-Bickong, Hans A; Vivier, Melané A

    2016-01-01

    Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies. PMID:26212968

  9. On the Replica Fourier Transform

    OpenAIRE

    Carlucci, D. M.; De Dominicis, C.

    1997-01-01

    The Replica Fourier Transform introduced previously is related to the standard definition of Fourier transforms over a group. Its use is illustrated by block-diagonalizing the eigenvalue equation of a four-replica Parisi matrix.

  10. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  11. Fast complexified quaternion Fourier transform

    OpenAIRE

    Said, Salem; Bihan, Nicolas le; Sangwine, Stephen J.

    2006-01-01

    A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the discrete quaternion Fourier transform to the case where either or both of the signal/image and the transform kernel are complex quaternion-valued. It is shown how to compute the transform using four standard complex Fourier transforms and the properties of the transform are briefly discussed.

  12. Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations

    Science.gov (United States)

    Ushenko, Alexander G.; Dubolazov, Alexander V.; Ushenko, Vladimir A.; Novakovskaya, Olga Y.

    2016-07-01

    The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined.

  13. Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations.

    Science.gov (United States)

    Ushenko, Alexander G; Dubolazov, Alexander V; Ushenko, Vladimir A; Novakovskaya, Olga Y

    2016-07-01

    The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined. PMID:26953777

  14. TH-E-17A-08: Estimation of Image Quality of 4-Dimensional Computed Tomography (4DCT) Via Fourier Analysis of Corresponding 1D Breathing Surrogate

    International Nuclear Information System (INIS)

    Purpose: Motion artifacts are common in patient 4DCT, leading to an illdefined tumor volume with variation up to 110% or setting up a poor foundation with low imaging fidelity for tumor motion study. We developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of corresponding 1D respiratory wave-function (1DRW) surrogate used for 4DCT reconstruction. Methods: Fast Fourier Transformation (FFT) was applied to analyze 1DRW periodicity, defined as the sum of the 5 largest Fourier coefficients, ranging in 0–1. Distortional motion artifacts of cine-scan 4DCT at the junctions of adjacent couchposition scans around the diaphragm were identified in 3 categories: incomplete, overlapping and duplicate. To quantify these artifacts, the discontinuity of the diaphragm at the junctions was measured in distance and averaged along 6 directions in 3 orthogonal views. Mean and sum artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase. To make the APJ inter-patient comparable, patientspecific motion was removed from APJ by dividing patient-specific diaphragmatic velocity (displacement divided by the mean period, from FFT analysis of the 1DRW) and the normalized APJ was defined as motion artifact severity (MAS). Twenty-five patients with free-breathing 10-phase 4DCT and corresponding 1DRW surrogate datasets were studied. Results: A mild correlation of 0.56 was found between 1DRW periodicity and 4DCT artifact severity. Higher MAS tends to appear around mid inhalation and mid exhalation and the lowest MAS tends to be around full exhalation. The breathing periodicity of >0.8 possesses minimal motion artifacts. Conclusion: The 1D-4D correlation provides a fast means to estimate 4DCT image quality. Using 1DRW signal, we can retrospectively screen out high-quality 4DCT images for clinical research (periodicity>0.8) and prospectively identify poor

  15. TH-E-17A-08: Estimation of Image Quality of 4-Dimensional Computed Tomography (4DCT) Via Fourier Analysis of Corresponding 1D Breathing Surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Caraveo, M; McNamara, J; Rimner, A; Yorke, E; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States)

    2014-06-15

    Purpose: Motion artifacts are common in patient 4DCT, leading to an illdefined tumor volume with variation up to 110% or setting up a poor foundation with low imaging fidelity for tumor motion study. We developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of corresponding 1D respiratory wave-function (1DRW) surrogate used for 4DCT reconstruction. Methods: Fast Fourier Transformation (FFT) was applied to analyze 1DRW periodicity, defined as the sum of the 5 largest Fourier coefficients, ranging in 0–1. Distortional motion artifacts of cine-scan 4DCT at the junctions of adjacent couchposition scans around the diaphragm were identified in 3 categories: incomplete, overlapping and duplicate. To quantify these artifacts, the discontinuity of the diaphragm at the junctions was measured in distance and averaged along 6 directions in 3 orthogonal views. Mean and sum artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase. To make the APJ inter-patient comparable, patientspecific motion was removed from APJ by dividing patient-specific diaphragmatic velocity (displacement divided by the mean period, from FFT analysis of the 1DRW) and the normalized APJ was defined as motion artifact severity (MAS). Twenty-five patients with free-breathing 10-phase 4DCT and corresponding 1DRW surrogate datasets were studied. Results: A mild correlation of 0.56 was found between 1DRW periodicity and 4DCT artifact severity. Higher MAS tends to appear around mid inhalation and mid exhalation and the lowest MAS tends to be around full exhalation. The breathing periodicity of >0.8 possesses minimal motion artifacts. Conclusion: The 1D-4D correlation provides a fast means to estimate 4DCT image quality. Using 1DRW signal, we can retrospectively screen out high-quality 4DCT images for clinical research (periodicity>0.8) and prospectively identify poor

  16. N-Alkylpyridinium isotope quaternization for matrix-assisted laser desorption/ionization Fourier transform mass spectrometric analysis of cholesterol and fatty alcohols in human hair

    International Nuclear Information System (INIS)

    Isotope-coded reagents have been developed for labeling of amino acids, phenols and fatty acids, but not for alcohols. In this work, a simple reaction based on direct N-alkylpyridinium isotope quaternization (NAPIQ) was developed for mild derivatization of cholesterol and fatty alcohols. Different from the conventional quaternary reagents with cations on themselves, two simple and charge-neutral reagents: pyridine and d5-pyridine directly attached N-cationic tag onto the target compounds in the presence of trifluoromethanesulfonic anhydride (Tf2O) without tedious sample preparation. The derivatization completed in 5 min and achieved charge labeling of the target compounds, which significantly improved the detection limits of analytes by 103-folds in further analysis by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The use of commercially available d0/d5-pyridine pairs facilitated isotope-coded chemical derivatization and avoided the use of isotope-labeled internal standards; the excess pyridine did not affect the signals of analytes. Utility of the NAPIQ method was examined in the identification of cholesterol and fatty alcohols in small amount of human hair sample (0/d5 pairs, especially when isotope-labeled internal standards are unavailable.

  17. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Analysis of the Recombinant Human Macrophage Colony Stimulating Factor Beta and Derivatives

    International Nuclear Information System (INIS)

    The potential of electrospray ionization (ESI) Fourier transform ion cyclotron mass spectrometry (FTICR-MS) to assist in the structural characterization of monomeric and dimeric derivatives of the macrophage colony stimulating factor B (rhM-CSF B) was assessed. Mass spectrometric analysis of the 49 kDa protein required the use of sustained off-resonance irradiation (SORI) in-trap cleanup to reduce adduction. High resolution mass spectra were acquired for a fully reduced and a fully S-cyanylated monomeric derivative (∼25 kDa). Mass accuracy for monomeric derivatives was better than 5 ppm, after applying a new calibration method (i.e., DeCAL) which eliminates space charge effects upon high accuracy mass measurements. This high mass accuracy allowed the direct determination of the exact number of incorporated cyanyl groups. Collisionally induced dissociation using SORI yielded b- and y-fragment ions within the N- and C-terminal regions for the monomeric derivatives, but obtaining information on other regions required proteolytic digestion, or potentially the use of alternative dissociation methods

  18. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy

    DEFF Research Database (Denmark)

    Renfrow, MB; Mackay, CL; Chalmers, MJ;

    2007-01-01

    IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis. In IgAN, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the galactose...... deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. We have previously demonstrated the first direct localization of multiple O-glycosylation sites on a single IgA1 myeloma protein by use of activated ion-electron capture dissociation (AI-ECD) Fourier transform ion cyclotron...... resonance (FT-ICR) tandem mass spectrometry. Here, we report the analysis of IgA1 O-glycan heterogeneity by use of FT-ICR MS and liquid chromatography FT-ICR MS to obtain unbiased accurate mass profiles of IgA1 HR glycopeptides from three different IgA1 myeloma proteins. Additionally, we report the first AI...

  19. Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry (French Edition)

    International Nuclear Information System (INIS)

    For many years, the IAEA has fostered the more widespread use of stable isotope techniques to assess body composition in different population groups to address priority areas in public health nutrition in Member States. The objective is to support national and regional nutrition projects through both the IAEA's technical cooperation programme and its coordinated research projects. In particular, during the last few years, the increased access to analyses of deuterium enrichment by Fourier transform infrared (FTIR) spectrometry has increased the application of this technique in Africa, Asia and Latin America. This publication was developed by an international group of experts to provide practical, hands-on guidance in the use of this technique in settings where the analysis of deuterium enrichment in saliva samples will be made by FTIR. It is targeted at new users of this technique, for example nutritionists, analytical chemists and other professionals. More detailed information on the theoretical background and the practical application of state of the art methodologies to monitor changes in body composition can be found in an IAEA publication entitled Assessment of Body Composition and Total Energy Expenditure in Humans by Stable Isotope Techniques (IAEA Human Health Series No. 3)

  20. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  1. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive:Fourier transform infrared spectroscopy and micro-Raman studies

    Institute of Scientific and Technical Information of China (English)

    Umer Daood; Chan Swee Heng; Jennifer Neo Chiew Lian; Amr S Fawzy

    2015-01-01

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5%and 10%). Dentin surfaces were etched with 37%phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey’s for pair-wise comparison. Modification with 1%and 3%riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P,0.05). The most predominant failure mode was the mixed fracture among all specimens except 10%riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1%and 3%riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3%(m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.

  2. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  3. Profile inversion of principal diffusivities through the use of a spatially modulated heating and a Fourier analysis; Inversion des profils des diffusivites principales par l'application d'un chauffage spatialement module et une analyse dans le domaine de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Krapez, J.C.; Spagnolo, L. [Politechnique di Bari (Italy); Friess, M. [Deutsches Luft- und Raumfahrtzentrum eV (DLR), Stuttgart (Germany); Maier, H.P. [Stuttgart Univ., MPA (Germany); Neuer, G. [Institut fur Kernenergetik und Energiesysteme, Universitat Stuttgart (Germany)

    2003-07-01

    The through-thickness thermal diffusivity can be evaluated by the classical flash method. If an homogeneous and extended source is used to irradiate the surface and a thermographic camera is used to monitor the temperature evolution of the opposite side, a map of the through-thickness thermal diffusivity can be obtained in a single experiment and without any contact with the sample under inspection. In order to measure the in-plane thermal diffusivity of a plate-like sample or in one of the principal directions of its plane, a thermal gradient across the plane of the material has to be settled. The ratio of the Fourier transform of temperature at two different spatial frequencies is an exponential function of time multiplied by the diffusivity in the considered principal direction. This can be used to evaluate the diffusivity in an homogenous material. In order to maximize the signal-to-noise ratio, it is better if heat is absorbed over a series of periodic parallel strips (grid flash method). When the material presents a transverse gradient of conductivity, we propose, as a first approach, to perform the Fourier analysis over a sliding window corresponding to one period of the grid pattern. This method allowed us to quantify in situ the diffusivity decrease in a tensile composite sample due to the stress-induced density increase of transverse microcracks. We finally analysed a more rigorous method for transverse conductivity profile inversion. It is based on a perturbation method. The analytical expression of the 'transfer function' between the Fourier transform of the temperature contrast and the Fourier transform of conductivity was established. We validated the proposed inverse technique on simulated and noise-corrupted thermograms. The approach is robust and the simulated profiles are very well resolved. (authors)

  4. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

    International Nuclear Information System (INIS)

    Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both GC-MS and Fourier Transform-Ion Cyclotron Resonance mass spectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCA cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80 percent of the lactate was converted to acetate and the reactions involved are the primary route of energy production (NAD(P)H and ATP production). Independent of the TCA cycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports (the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase). These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris, and also demonstrate FT-ICR MS as a powerful tool for isotopomer analysis, overcoming problems in both GC-MS and NMR spectroscopy

  5. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds

    International Nuclear Information System (INIS)

    Highlights: • Coumarins were used as new MALDI matrices. • Coumarins were used for MALDI-FT ICR MS detection of hydrophobic compounds. • DCA had improvement in detection sensitivity, stability, selectivity and reproducibility. • DCA was applied to sterols detection in yeast cells. - Abstract: Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]+ peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H2O + H]+ and [M + H]+ peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research

  6. Fourier-transform spectroscopy and deperturbation analysis of the spin-orbit coupled A(1)Σ(+) and b(3)Π states of KRb.

    Science.gov (United States)

    Alps, K; Kruzins, A; Tamanis, M; Ferber, R; Pazyuk, E A; Stolyarov, A V

    2016-04-14

    Fourier-transform A(1)Σ(+) - b(3)Π → X(1)Σ(+) laser-induced fluorescence spectra were recorded for the natural mixture of (39,41)K(85,87)Rb isotopologues produced in a heatpipe oven. Overall 4200 rovibronic term values of the spin-orbit coupled A(1)Σ(+) and b(3)Π states were determined with an uncertainty of about 0.01 cm(-1) in the energy range [10 850, 14 200] cm(-1) covering rotational quantum numbers J' ∈ [3, 280]. Direct deperturbation analysis of the A ∼ b complex performed within the framework of the A(1)Σ(+) ∼ b(3)ΠΩ=0,1,2 coupled-channel approach reproduced experimental data with a standard deviation of 0.004 cm(-1). Initial parameters of the internuclear potentials and spin-orbit coupling functions along with the relevant transition dipole moments were obtained by performing the quasi-relativistic electronic structure calculations. The mass-invariant molecular parameters obtained from the fit were used to predict energy and radiative properties of the A ∼ b complex for low J levels of (39)K(85)Rb as well as for (41)K(87)Rb isotopologues, allowing us to identify the most reasonable candidates for the stimulated Raman transitions between the initial uppermost vibrational levels of the a(3)Σ(+) and X(1)Σ(+) states, the intermediate levels of the A ∼ b complex, and the lowest absolute ground X(1)Σ(+)(v = 0, J = 0) state. PMID:27083724

  7. Fourier-transform spectroscopy and deperturbation analysis of the spin-orbit coupled A1Σ+ and b3Π states of KRb

    Science.gov (United States)

    Alps, K.; Kruzins, A.; Tamanis, M.; Ferber, R.; Pazyuk, E. A.; Stolyarov, A. V.

    2016-04-01

    Fourier-transform A1Σ+ - b3Π → X1Σ+ laser-induced fluorescence spectra were recorded for the natural mixture of 39,41K85,87Rb isotopologues produced in a heatpipe oven. Overall 4200 rovibronic term values of the spin-orbit coupled A1Σ+ and b3Π states were determined with an uncertainty of about 0.01 cm-1 in the energy range [10 850, 14 200] cm-1 covering rotational quantum numbers J' ∈ [3, 280]. Direct deperturbation analysis of the A ˜ b complex performed within the framework of the A1Σ+ ˜ b3ΠΩ=0,1,2 coupled-channel approach reproduced experimental data with a standard deviation of 0.004 cm-1. Initial parameters of the internuclear potentials and spin-orbit coupling functions along with the relevant transition dipole moments were obtained by performing the quasi-relativistic electronic structure calculations. The mass-invariant molecular parameters obtained from the fit were used to predict energy and radiative properties of the A ˜ b complex for low J levels of 39K85Rb as well as for 41K87Rb isotopologues, allowing us to identify the most reasonable candidates for the stimulated Raman transitions between the initial uppermost vibrational levels of the a3Σ+ and X1Σ+ states, the intermediate levels of the A ˜ b complex, and the lowest absolute ground X1Σ+(v = 0, J = 0) state.

  8. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hang, E-mail: hangwang@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Dai, Bona [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Liu, Bin [Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003 (China); Lu, Han [Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 197, Rui Jin Er Road, Shanghai 200025 (China)

    2015-07-02

    Highlights: • Coumarins were used as new MALDI matrices. • Coumarins were used for MALDI-FT ICR MS detection of hydrophobic compounds. • DCA had improvement in detection sensitivity, stability, selectivity and reproducibility. • DCA was applied to sterols detection in yeast cells. - Abstract: Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]{sup +} peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H{sub 2}O + H]{sup +} and [M + H]{sup +} peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research.

  9. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of β-hydroxybutyrate and acetone in milk in combination with test-day information.

    Science.gov (United States)

    van der Drift, S G A; Jorritsma, R; Schonewille, J T; Knijn, H M; Stegeman, J A

    2012-09-01

    The objective of this study was to assess the quality of a diagnostic model for the detection of hyperketonemia in early lactation dairy cows at test days. This diagnostic model comprised acetone and β-hydroxybutyrate (BHBA) concentrations in milk, as determined by Fourier transform infrared (FTIR) spectroscopy, in addition to other available test-day information. Plasma BHBA concentration was determined at a regular test day in 1,678 cows between 5 and 60 d in milk, originating from 118 randomly selected farms in the Netherlands. The observed prevalence of hyperketonemia (defined as plasma BHBA ≥1,200 µmol/L) was 11.2%. The value of FTIR predictions of milk acetone and milk BHBA concentrations as single tests for hyperketonemia were found limited, given the relatively large number of false positive test-day results. Therefore, a multivariate logistic regression model with a random herd effect was constructed, using parity, season, milk fat-to-protein ratio, and FTIR predictions of milk acetone and milk BHBA as predictive variables. This diagnostic model had 82.4% sensitivity and 83.8% specificity at the optimal cutoff value (defined as maximum sum of sensitivity and specificity) for the detection of hyperketonemia at test days. Increasing the cutoff value of the model to obtain a specificity of 95% increased the predicted value of a positive test result to 56.5%. Confirmation of test-positive samples with wet chemistry analysis of milk acetone or milk BHBA concentrations (serial testing) improved the diagnostic performance of the test procedure. The presented model was considered not suitable for individual detection of cows with ketosis due to the length of the test-day interval and the low positive predictive values of the investigated test procedures. The diagnostic model is, in our opinion, valuable for herd-level monitoring of hyperketonemia, especially when the model is combined with wet chemistry analysis of milk acetone or milk BHBA concentrations. By

  10. Learning DNF Expressions from Fourier Spectrum

    CERN Document Server

    Feldman, Vitaly

    2012-01-01

    Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We give a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability o...

  11. Projective Fourier duality and Weyl quantization

    International Nuclear Information System (INIS)

    The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs

  12. Quadrature formulas for Fourier coefficients

    Science.gov (United States)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  13. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  14. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    Science.gov (United States)

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  15. Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography : a method with wide applicability to analysis of biomolecules

    NARCIS (Netherlands)

    Kamleh, A.; Barrett, M. P.; Wildridge, D.; Burchmore, R. J. S.; Scheltema, R. A.; Watson, D. G.

    2008-01-01

    It was shown that coupling hydrophilic interaction chromatography (HILIC) to Orbitrap Fourier transform mass spectrometery (FT-MS) provided an excellent tool for metabolic profiling, principally due to rapid elution of lipids in advance of most metabolites entering the mass spectrometer. We used in

  16. Extended Fourier-transform spectroscopy studies and deperturbation analysis of the spin-orbit coupled A1Σ+ and b3Π states in RbCs

    International Nuclear Information System (INIS)

    The article presents a study of the strongly spin-orbit coupled singlet A1Σ+ and triplet b3Π states of the RbCs molecule, which provide an efficient optical path to transfer ultracold molecules to their rovibrational ground state. Fourier-transform A1Σ+ − b3Π → X1Σ+ and (4)1Σ+ → A1Σ+ − b3Π laser-induced fluorescence (LIF) spectra were recorded for the natural mixture of the 85Rb133Cs and 87Rb133Cs isotopologues produced in a heat pipe oven. Overall 8730 rovibronic term values of A1Σ+ and b3Π states were determined with an uncertainty of 0.01 cm−1 in the energy range [9012, 14087] cm−1, covering rotational quantum numbers J ∈ [6, 324]. An energy-based deperturbation analysis performed in the framework of the four A1Σ+ − b3ΠΩ=0,1,2 coupled-channels approach reproduces 97% of the experimental term values of both isotopologues with a standard deviation of 0.0036 cm−1. The reliability of the deperturbed mass-invariant potentials and spin-orbit coupling functions of the interacting A1Σ+ and b3Π states is additionally proved by a good reproduction of the A − b → X and (4)1Σ+ → A − b relative intensity distributions. The achieved accuracy of the A − b complex description allowed us to use the latter to assign the observed (5)1Σ+ → A − b and (3)1Π → A − b transitions. As is demonstrated, LIF to the A − b complex becomes as informative as to the ground X1Σ+ state, which is confirmed by comparing the results of (4)1Σ+ state analysis based on (4)1Σ+ → A − b LIF with the data from V. Zuters et al. [Phys. Rev. A 87, 022504 (2013)] based on (4)1Σ+ → X LIF

  17. Applying Quaternion Fourier Transforms for Enhancing Color Images

    Directory of Open Access Journals (Sweden)

    M.I. Khalil

    2012-03-01

    Full Text Available The Fourier transforms play a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression. Until recently, it was common to use the conventional methods to deal with colored images. These methods are based on RGB decomposition of the colored image by separating it into three separate scalar images and computing the Fourier transforms of these images separately. The computing of the Hypercomplex 2D Fourier transform of a color image as a whole unit has only recently been realized. This paper is concerned with frequency domain noise reduction of color images using quaternion Fourier transforms. The approach is based on obtaining quaternion Fourier transform of the color image and applying the Gaussian filter to it in the frequency domain. The filtered image is then obtained by calculating the inverse quaternion Fourier transforms.

  18. Fourier-Laguerre transform, convolution and wavelets on the ball

    CERN Document Server

    McEwen, J D

    2013-01-01

    We review the Fourier-Laguerre transform, an alternative harmonic analysis on the three-dimensional ball to the usual Fourier-Bessel transform. The Fourier-Laguerre transform exhibits an exact quadrature rule and thus leads to a sampling theorem on the ball. We study the definition of convolution on the ball in this context, showing explicitly how translation on the radial line may be viewed as convolution with a shifted Dirac delta function. We review the exact Fourier-Laguerre wavelet transform on the ball, coined flaglets, and show that flaglets constitute a tight frame.

  19. Reflective Fourier ptychography

    Science.gov (United States)

    Pacheco, Shaun; Zheng, Guoan; Liang, Rongguang

    2016-02-01

    The Fourier ptychography technique in reflection mode has great potential applications in tissue imaging and optical inspection, but the current configuration either has a limitation on cut-off frequency or is not practical. By placing the imaging aperture stop outside the illumination path, the illumination numerical aperture (NA) can be greater than the imaging NA of the objective lens. Thus, the cut-off frequency achieved in the proposed optical system is greater than twice the objective's NA divided by the wavelength (2NAobj/λ), which is the diffraction limit for the cut-off frequency in an incoherent epi-illumination configuration. We experimentally demonstrated that the synthesized NA is increased by a factor of 4.5 using the proposed optical concept. The key advantage of the proposed system is that it can achieve high-resolution imaging over a large field of view with a simple objective. It will have a great potential for applications in endoscopy, biomedical imaging, surface metrology, and industrial inspection.

  20. Explicit Fourier wavefield operators

    Science.gov (United States)

    Ferguson, R. J.; Margrave, G. F.

    2006-04-01

    Explicit wavefield extrapolators are based on direct analytic mathematical formulae that express the output as an extrapolation operator acting on the input, while implicit methods usually require the calculation of the numerical inverse of a matrix to obtain the output. Typically, explicit methods are faster than implicit methods, and they often give more insight into the physics of the wave propagation, but they often suffer from instability. Four different explicit extrapolators based on Fourier theory are presented and analysed. They are: PS (ordinary phase shift), GPSPI (generalized phase shift plus interpolation), NSPS (non-stationary phase shift) and SNPS (symmetric non-stationary phase shift). A formal proof is given that NSPS in a direction orthogonal to the velocity gradient is the mathematical adjoint process to GPSPI in the opposite direction. This motivates the construction of SNPS that combines NSPS and GPSPI in a symmetric fashion. This symmetry (under interchange of input and output lateral coordinates) is required by reciprocity arguments. PS and SNPS are symmetric while NSPS and GPSPI are not. A numerical stability study using SVD (singular value decomposition) shows that all of these extrapolators can become unstable for strong lateral velocity gradients. Unstable operators allow amplitudes to grow non-physically in a recursion. Stability is enhanced by introducing a small (~3 per cent) imaginary component to the velocities. This causes a numerical attenuation that tends to stabilize the operators but does not address the cause of the instability. For the velocity model studied (a very challenging case) GPSPI and NSPS have exactly the same instability while SNPS is always more stable. Instability manifests in a complicated way as a function of extrapolation step size, frequency, velocity gradient, and strength of numerical attenuation. The SNPS operator can be stabilized over a wide range of conditions with considerably less attenuation than is

  1. Systematic Assessment of Attenuated Total Reflectance-Fourier Transforms Infrared Spectroscopy Coupled with Multivariate Analysis for Forensic Analysis of Black Ball-point Pen Inks

    International Nuclear Information System (INIS)

    This manuscript aims to provide a new and non-destructive method for systematic analysis of inks on a questioned document. Ink samples were analyzed in situ on the paper substrate by micro-ATR-FTIR spectroscopy and the data obtained was processed and evaluated by a series of multivariate chemometrics. Absorbance value from wavenumbers of 2000-675 cm-1 were first processed by cluster analysis (CA), followed by principal component analysis (PCA) to form a set of new variables. Subsequently, the variables set was used for classification, differentiation and identification of 155 sample pens that comprise nine different brands. Results show that nine black ball-point pen brands could be classified into three main groups via discriminant analysis (DA). Differentiation analyses of nine different pen brands performed using one-way ANOVA indicated only two pairs of brands cannot be differentiated at 95 % confidence interval. Finally an identification flow chart was proposed to determine the brand of unknown pen inks. As a conclusion, the proposed method for extracting and creating a new variable set from infrared spectrum was evaluated to be satisfactory for systematic analysis of inks based on their infrared spectrum. (author)

  2. Fourier phase in Fourier-domain optical coherence tomography

    OpenAIRE

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying...

  3. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space. PMID:16138556

  4. Utilização da análise de FOURIER no estudo de variáveis micrometeorológicas de uma floresta de transição do norte de Mato Grosso Use of FOURIER analysis for studying micrometeorological variables of a northern Mato Grosso transition forest

    Directory of Open Access Journals (Sweden)

    Mariele Regina Pinheiro

    2011-03-01

    Full Text Available Este trabalho foi realizado utilizando dados coletados em uma Floresta de Transição, em uma área pertencente à Fazenda Maracaí no Noroeste de Sinop, MT, com dados micrometeorológicos obtidos com o sistema de correlação de vórtices turbulentos (Eddy Covarience instalado numa torre de 40 metros. Teve como objetivo principal estudar as potencialidades da análise de Fourier aplicada a dados de fluxo de Calor Latente (LE, Calor Sensível (H e Temperatura (T. Para os cálculos foram feitas médias de 3 em 3 horas para cada mês, ao longo do período de 1999 a 2005, para as variáveis estudadas. Os períodos dominantes encontrados foram de 24; 12; 4 e 3,4 horas. Os dois primeiros são atribuíveis ao movimento de rotação da Terra, ou seja, à periodicidade dia/noite. Quanto aos dois períodos menores, há indícios que estão relacionados com a dinâmica de abertura dos estômatos. Assim sendo, os resultados deste trabalho indicam que os fatores que influenciam predominantemente as variáveis microclimatológicas durante o dia (freqüências entre 10-5 a 10-4 Hz são a radiação solar e a dinâmica de abertura dos estômatos, um resultado que destaca as potencialidades da aplicação do método de Fourier no estudo da dinâmica de microclimas em ecossistemas.In this work, we employed data collected in a transition forest, on the Maracaí farm, northwest of Sinop, MT, Brazil. The data was obtained by the eddy covariance method, using equipment installed on a 42m high tower. Its main purpose was to study the potentialities of Fourier analysis applied to data of latent (H and sensible (Le heat flux and the air temperature (T. We investigated the main frequencies presented by the data, and obtained mean values for the variables corresponding to every 3 hours, between 1999 and 2005. The main periods obtained with the Fourier method were 24; 12; 4 and 3.4 hours. The first two are attributed to the solar radiation and to the Earth rotation. The

  5. Airborne fourier infrared spectrometer system

    International Nuclear Information System (INIS)

    A commercial Fourier Transform Infrared (FTIR) spectrometer has been interfaced to a 35 cm aperture telescope and a digital data processing and display system and flown in a downward-viewing configuration on a Queen Air aircraft. Real-time spectral analysis and display software were developed to provide the means to direct aircraft flight operations based on atmospheric and/or surface features identified on 1 to 8 cm-1 resolution infrared spectra. Data are presented from ground-based tests consisting of simultaneous horizontal path measurements by the FTIR system and an infrared differential absorption lidar (DIAL) observing gas volumes generated in an open-ended chamber. Airborne FUR data are presented on the tracking of a surface-released puff of SF6 gas to a downwind distance of 45 km in a time period of 1.5 hours. The experiment demonstrated the real time tracking of a gas tracer cloud to provide atmospheric transport and diffusion information and for directing airborne in-situ sensors for optimum cloud sampling. 5 refs., 5 figs

  6. The Fourier dimension is not finitely stable

    OpenAIRE

    Ekström, Fredrik

    2014-01-01

    The Fourier dimension is not in general stable under finite unions of sets. Moreover, the stability of the Fourier dimension on particular pairs of sets is independent from the stability of the compact Fourier dimension.

  7. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples for amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  8. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    Science.gov (United States)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  9. Aplicação da análise harmônica por séries de Fourier para a previsão de produtividade da cultura do café no Estado de Minas Gerais Forecast of coffee crop productivity by harmonic analysis, using the Fourier series in Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz G. de Carvalho

    2005-12-01

    Full Text Available O objetivo deste trabalho foi obter um modelo de previsão de produtividade para a cultura do café, em sete municípios do Estado de Minas Gerais. Submeteram-se à análise harmônica por séries de Fourier, séries de produtividades representativas de cada município, das quais se extraíram os coeficientes até o sétimo harmônico, submetendo-os à regressão linear múltipla nos três primeiros componentes principais de um conjunto de 33 variáveis inerentes à produção cafeeira. Essas variáveis foram médias de 15 anos correspondentes aos mesmos anos das produtividades e subdivididos em quatro períodos trimestrais, ao longo do ciclo produtivo da cultura (julho a junho. O modelo mostrou-se inconsistente, apresentando erros das estimativas bastante discrepantes, evidenciando a complexidade de modelagem de previsão de safras para a cultura do café.The objective of this work was to obtain a forecast model of coffee crop productivity in seven municipal districts of Minas Gerais State, Brazil. The harmonic analysis in Fourier series was applied on productivity series to each location. The obtained coefficients until the harmonic seventh were submitted to multiple linear regression in the first three principal components of a group of 33 inherent variables of coffee production. These variables were averages of 15 years corresponding to the same years of productivity and subdivided in four quarterly periods during the agricultural year (July to June. The model did not prove adequate, since the results presented errors of estimatives with great discrepancies evidencing the complexity of yield forecast of coffee crop.

  10. Fourier transform resampling: Theory and application

    International Nuclear Information System (INIS)

    One of the most challenging problems in medical imaging is the development of reconstruction algorithms for nonstandard geometries. This work focuses on the application of Fourier analysis to the problem of resampling or rebinning. Conventional resampling methods utilizing some form of interpolation almost always result in a loss of resolution in the tomographic image. Fourier Transform Resampling (FTRS) offers potential improvement because the Modulation Transfer Function (MTF) of the process behaves like an ideal low pass filter. The MTF, however, is nonstationary if the coordinate transformation is nonlinear. FTRS may be viewed as a generalization of the linear coordinate transformations of standard Fourier analysis. Simulated MTF's were obtained by projecting point sources at different transverse positions in the flat fan beam detector geometry. These MTF's were compared to the closed form expression for FIRS. Excellent agreement was obtained for frequencies at or below the estimated cutoff frequency. The resulting FTRS algorithm is applied to simulations with symmetric fan beam geometry, an elliptical orbit and uniform attenuation, with a normalized root mean square error (NRME) of 0.036. Also, a Tc-99m point source study (1 cm dia., placed in air 10 cm from the COR) for a circular fan beam acquisition was reconstructed with a hybrid resampling method. The FWHM of the hybrid resampling method was 11.28 mm and compares favorably with a direct reconstruction (FWHM: 11.03 mm)

  11. The PROSAIC Laplace and Fourier Transform

    International Nuclear Information System (INIS)

    Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting

  12. Fourier transform of momentum distribution in vanadium

    International Nuclear Information System (INIS)

    Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e+-e- many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)

  13. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    Energy Technology Data Exchange (ETDEWEB)

    Manso, M. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Valadas, S. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Pessanha, S.; Guilherme, A. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' , CSIC, Sole Sabaris s/n. 08028 Barcelona (Spain); Candeias, A.E. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Carvalho, M.L., E-mail: luisa@cii.fc.ul.p [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2010-04-15

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  14. Introduction to partial differential equations from Fourier series to boundary-value problems

    CERN Document Server

    Broman, Arne

    2010-01-01

    This well-written, advanced-level text introduces students to Fourier analysis and some of its applications. The self-contained treatment covers Fourier series, orthogonal systems, Fourier and Laplace transforms, Bessel functions, and partial differential equations of the first and second orders. Over 260 exercises with solutions reinforce students' grasp of the material. 1970 edition.

  15. Fourier modal method and its applications in computational nanophotonics

    CERN Document Server

    Kim, Hwi

    2012-01-01

    Most available books on computational electrodynamics are focused on FDTD, FEM, or other specific technique developed in microwave engineering. In contrast, Fourier Modal Method and Its Applications in Computational Nanophotonics is a complete guide to the principles and detailed mathematics of the up-to-date Fourier modal method of optical analysis. It takes readers through the implementation of MATLAB(R) codes for practical modeling of well-known and promising nanophotonic structures. The authors also address the limitations of the Fourier modal method. Features Provides a comprehensive guid

  16. Field Experiment and Result Analysis of Fourier Telescopy%傅里叶望远镜外场实验与结果分析

    Institute of Scientific and Technical Information of China (English)

    董磊; 刘欣悦; 陈宝刚; 林旭东; 卫沛峰

    2011-01-01

    为了分析外场环境因素对傅里叶望远镜成像质量的影响和验证成像过程不受下行链路大气扰动影响的特点,开展了傅里叶望远镜外场实验研究.外场实验在室内实验的发射光学系统的基础上增加了主镜、次镜和会聚透镜组对目标散射光进行3次会聚仿真实际系统的成像过程,同时将目标与主镜、主镜与次镜分别拉开100 m距离验证成像系统不受下行链路大气扰动影响的特点.实验利用胶片打印的2种不同的卫星图片作为目标,获得了Strehl值分别为0.44、0.39的无大气扰动的外场重构图像和Strehl值分别为0.43、0.38的含大气扰动的外场重构图像.通过比较外场重构图像与室内重构图像的Strehl值,得出发射光学系统中光束的振动对成像有较大影响.分析发现无大气扰动外场重构图像与含大气扰动外场重构图像的Strehl值相近,从而验证傅里叶望远镜成像过程不受下行链路大气扰动的影响.%In order to study effects of outdoor factors to Fourier telescopy imaging and validate properties of imaging immune to down-link atmospheric turbulence, outdoor experiments were developed. Under the ground of lab experiments, outdoor experiments added primary mirror, secondary mirror and condense lens to simulate the real system imaging. The distance between object and primary mirror and the distance between primary mirror and secondary mirror was put away 100m, separately, to validate the property of Fourier telescopy imaging immune to atmospheric turbulence. Using 2 different satellite films as objects, the outdoor reconstructed images were gotten with the Strehl value 0. 44 and 0. 39 without turbulence, separately, and Strehl value 0. 43 and 0. 38 with turbulence, separately. Compared the reconstructed images of outdoor with lab, the conclusion was gained that libration had obvious effect on imaging. The result that the Strehl value of outdoor imaging was similar to lab

  17. Parametric Spectral Correlations of Disordered Systems in the Fourier Domain

    OpenAIRE

    Guarneri, I.; Zyczkowski, K.; Zakrzewski, J.; Molinari, L.; Casati, G.

    1995-01-01

    A Fourier analysis of parametric level dynamics for random matrices periodically depending on a phase is developed. We demonstrate both theoretically and numerically that under very general conditions the correlation $C(\\varphi )$ of level velocities is singular at $\\varphi =0$ for any symmetry class; the singularity is revealed by algebraic tails in Fourier transforms, and is milder, the stronger the level repulsion in the chosen ensemble. The singularity is strictly connected with the diver...

  18. Fourier Series and Elliptic Functions

    Science.gov (United States)

    Fay, Temple H.

    2003-01-01

    Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…

  19. Hyperfine structure analysis in the intense spectral lines of the neutral Cu atom falling in the 353-809 nm wavelength region using a Fourier transform spectrometer

    Science.gov (United States)

    Ankush, B. K.; Deo, M. N.

    2014-02-01

    Hyperfine structure analyses have been performed in the high-resolution spectrum of the neutral copper atom covering the wavelength region of 353-809 nm using Fourier transform spectroscopy. A DC discharge of natural copper produced in a liquid nitrogen cooled hollow cathode lamp used as a light source and a photomultiplier tube as well as Si photodiodes were employed as the light detectors. The hfs studies in 17 transitions of the neutral copper atom originating from 17 energy levels for 63Cu have been reported here. The present investigation has provided the magnetic dipole coupling constant A and electric quadrupole coupling constant B for the first time for the following 6 even-parity levels lying at 49,935, 49,942 cm-1, of 3d104d configuration, 52,848 cm-1 of 3d106 s configuration, 55,387, 55,391 cm-1 3d105d configuration and 71,978 cm-1 of 3d104s4d configuration. The sign convention of the previously-reported hfs A value amounting to 1920 MHz for the level at 44,963 cm-1 of 3d94s4p configuration has been revised to -1920 MHz. Measurements reported earlier of A and B hfs constants for the 11 odd-parity energy levels also have been confirmed.

  20. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    Science.gov (United States)

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair. PMID:26905862

  1. Development of a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) cell for the in situ analysis of co-electrolysis in a solid oxide cell.

    Science.gov (United States)

    Cumming, Denis J; Tumilson, Christopher; Taylor, S F Rebecca; Chansai, Sarayute; Call, Ann V; Jacquemin, Johan; Hardacre, Christopher; Elder, Rachael H

    2015-01-01

    Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of the microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450 °C to 600 °C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction, carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent. PMID:26212555

  2. An analysis of the influence of the color rendition of images reconstructed from full-color computer-generated Fourier-transform holograms

    International Nuclear Information System (INIS)

    The color rendition of an image reconstructed from a color computer-generated Fourier hologram (CCGFH) is both a basic and an important issue in the field of holography. In this study, CCGFHs are encoded with the Burch encoding algorithm and then loaded onto a spatial light modulator for optical reconstruction. The influence of the color rendition of the reconstructed images has been analyzed primarily through experiments. The experimental results show that the individual element size used in encoding the CCGFH is inversely proportional to both the size and the central location of the reconstructed images, whereas the wavelength of the monochromatic light used in optical reconstruction is proportional. Some parameters related to the spectrum, such as different transmittances, half-widths of the three primary color filters and different sensitivity levels to the three primary colors of the complementary metal–oxide–semiconductor (CMOS), affect the color rendition of the reconstructed image. A method for correcting color aberration in reconstructed images is proposed. Using this method, the influence of the wavelength can be corrected by stretching the reconstructed image to an appropriate size and the influence of the spectrum can be corrected by equalizing the spectral sensitivity levels of the CMOS. The color rendition of the reconstruction is improved significantly using the method. The proof-of-principle experiments demonstrate that the method is effective and feasible. (paper)

  3. Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source

    Science.gov (United States)

    Kumar, Dinesh; Singh, Surjan; Rai, K. N.

    2016-06-01

    In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.

  4. Problems in thin film thickness measurement resolved: improvements of the fast Fourier transform analysis and consideration of the numerical aperture of microscope headers and collimators

    Science.gov (United States)

    Quinten, M.; Houta, F.; Fries, T.

    2015-06-01

    Thin film thickness determination with a reflectometer suffers from two problems. One problem is the leakage in the Fast Fourier Transform caused by the fact that the two variables wavenumber 1/λ and optical thickness nṡd are not really independent, since the refractive index n of the film material itself depends upon the wavenumber. This causes uncertainties in the thickness determination in the order of up to 5% for highly refractive materials like semiconductors. We present a simple but effective improvement of this contribution of the leakage that reduces the uncertainty to less than 2% for highly refractive materials. Another problem that mainly affects thin films below about 2 μm arises if one uses measuring heads collimators or even microscope headers to obtain high lateral resolutions in the thickness determination. The use of a header introduces angles of incidence different from the default angle α = 0° in reflectometry. Then, the measured reflectance becomes polarization-dependent and the angle must be explicitly considered in the evaluation algorithm. For a microscope header however, all angles between 0° and the angle of aperture must be considered. We will present a solution that allows to reduce the work for each header on taking into account the polarization of the reflected light and a corresponding effective angle αeff.

  5. Hyperfine structure analysis in the intense spectral lines of the neutral Cu atom falling in the 353–809 nm wavelength region using a Fourier transform spectrometer

    International Nuclear Information System (INIS)

    Hyperfine structure analyses have been performed in the high-resolution spectrum of the neutral copper atom covering the wavelength region of 353–809 nm using Fourier transform spectroscopy. A DC discharge of natural copper produced in a liquid nitrogen cooled hollow cathode lamp used as a light source and a photomultiplier tube as well as Si photodiodes were employed as the light detectors. The hfs studies in 17 transitions of the neutral copper atom originating from 17 energy levels for 63Cu have been reported here. The present investigation has provided the magnetic dipole coupling constant A and electric quadrupole coupling constant B for the first time for the following 6 even-parity levels lying at 49,935, 49,942 cm−1, of 3d104d configuration, 52,848 cm−1 of 3d106 s configuration, 55,387, 55,391 cm−1 3d105d configuration and 71,978 cm−1 of 3d104s4d configuration. The sign convention of the previously-reported hfs A value amounting to 1920 MHz for the level at 44,963 cm−1 of 3d94s4p configuration has been revised to −1920 MHz. Measurements reported earlier of A and B hfs constants for the 11 odd-parity energy levels also have been confirmed. -- Highlights: • An improved list of ‘A’ and ‘B’ hyperfine structure constants for Cu-63 is presented. • The sign of the ‘A’ hfs constant of 44,963 cm−1 3d94s4p was changed from +1920 to −1920 MHz. • ‘A’ and ‘B’ hfs constants for the six energy levels are reported for the first time. • Over 17 spectral lines have been measured in the 353–809 nm wavelength region

  6. Fourier spectra from exoplanets with polar caps and ocean glint

    CERN Document Server

    Visser, P M

    2015-01-01

    The weak orbital-phase dependent reflection signal of an exoplanet contains information on the planet surface, such as the distribution of continents and oceans on terrestrial planets. This light curve is usually studied in the time domain, but because the signal from a stationary surface is (quasi)periodic, analysis of the Fourier series may provide an alternative, complementary approach. We study Fourier spectra from reflected light curves for geometrically simple configurations. Depending on its atmospheric properties, a rotating planet in the habitable zone could have circular polar ice caps. Tidally locked planets, on the other hand, may have symmetric circular oceans facing the star. These cases are interesting because the high-albedo contrast at the sharp edges of the ice-sheets and the glint from the host star in the ocean may produce recognizable light curves with orbital periodicity, which could also be interpreted in the Fourier domain. We derive a simple general expression for the Fourier coeffici...

  7. Diffraction theory for an achromatic Fourier transformation

    International Nuclear Information System (INIS)

    A three-lens achromatic Fourier transform system is analyzed in the contex of parazial Fresnel diffraction theory. From the analysis a general solution for the required wavelength dependence of the various lenses is found. A particular arrangement of the general system is then considered. Using first-order lens design principles, it is shown that each dispersive lens cand be fabricated using a holographic zone lens and glas element cascade. The parazial chromatic aberrations of the resulting system are calculated. It is found that this system design yields an achromatic transformation that is well corrected (parazially) over the entire visible spectrum

  8. Fourier transform infrared spectroscopy for Mars science

    Science.gov (United States)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  9. Motion-corrected Fourier ptychography

    CERN Document Server

    Bian, Liheng; Guo, Kaikai; Suo, Jinli; Yang, Changhuei; Chen, Feng; Dai, Qionghai

    2016-01-01

    Fourier ptychography (FP) is a recently proposed computational imaging technique for high space-bandwidth product imaging. In real setups such as endoscope and transmission electron microscope, the common sample motion largely degrades the FP reconstruction and limits its practicability. In this paper, we propose a novel FP reconstruction method to efficiently correct for unknown sample motion. Specifically, we adaptively update the sample's Fourier spectrum from low spatial-frequency regions towards high spatial-frequency ones, with an additional motion recovery and phase-offset compensation procedure for each sub-spectrum. Benefiting from the phase retrieval redundancy theory, the required large overlap between adjacent sub-spectra offers an accurate guide for successful motion recovery. Experimental results on both simulated data and real captured data show that the proposed method can correct for unknown sample motion with its standard deviation being up to 10% of the field-of-view scale. We have released...

  10. Slice Fourier transform and convolutions

    OpenAIRE

    Cnudde, Lander; De Bie, Hendrik

    2015-01-01

    Recently the construction of various integral transforms for slice monogenic functions has gained a lot of attention. In line with these developments, the article at hand introduces the slice Fourier transform. In the first part, the kernel function of this integral transform is constructed using the Mehler formula. An explicit expression for the integral transform is obtained and allows for the study of its properties. In the second part, two kinds of corresponding convolutions are examined:...

  11. Subharmonic Fourier domain mode locking.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2009-03-15

    We demonstrate a subharmonically Fourier domain mode-locked wavelength-swept laser source with a substantially reduced cavity fiber length. In contrast to a standard Fourier domain mode-locked configuration, light is recirculated repetitively in the delay line with the optical bandpass filter used as switch. The laser has a fundamental optical round trip frequency of 285 kHz and can be operated at integer fractions thereof (subharmonics). Sweep ranges up to 95 nm full width centred at 1317 nm are achieved at the 1/5th subharmonic. A maximum sensitivity of 116 dB and an axial resolution of 12 microm in air are measured at an average sweep power of 12 mW. A sensitivity roll-off of 11 dB over 4 mm and 25 dB over 10 mm is observed and optical coherence tomography imaging is demonstrated. Besides the advantage of a reduced fiber length, subharmonic Fourier domain mode locking (shFDML) enables simple scaling of the sweep speed by extracting light from the delay part of the resonator. A sweep rate of 570 kHz is achieved. Characteristic features of shFDML operation, such as power leakage during fly-back and cw breakthrough, are investigated. PMID:19282912

  12. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  13. Quasi-classical scattering study with Fourier analysis of the H + H2 and D + H2 reactions at E/sub rel/ = 0.65 eV. Comparison of results on two potential energy surfaces

    International Nuclear Information System (INIS)

    A quasi-classical trajectory study of the H + H2 and D + H2 reactions has been carried out at E/sub rel/ = 0.65 eV. The calculations were carried out for both the Porter-Karplus and Siegbahn-Liu-Truhlar-Horowitz potential energy surfaces. Very accurate determinations have been made of the product vibrational, rotational, and translational energy distributions using Fourier analysis. The results for the different reactions and different surfaces are compared with each other and with other work on these systems. The results indicate that there is little coupling between vibrational and translational degrees of freedom except very near the transition state. 7 figures, 4 tables

  14. Logarithm of the Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Michael Aristidou

    2007-01-01

    Full Text Available The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.

  15. Logarithm of the Discrete Fourier Transform

    OpenAIRE

    Michael Aristidou; Jason Hanson

    2007-01-01

    The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.

  16. Fourier-transform optical microsystems

    Science.gov (United States)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  17. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  18. The Formalization of Discrete Fourier Transform in HOL

    Directory of Open Access Journals (Sweden)

    Zhiping Shi

    2015-01-01

    Full Text Available Traditionally, Discrete Fourier Transform (DFT is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT and cosine frequency shift.

  19. Multivariate Analysis of Combined Fourier Transform Near-Infrared Spectrometry (FT-NIR) and Raman Datasets for Improved Discrimination of Drying Oils.

    Science.gov (United States)

    Carlesi, Serena; Ricci, Marilena; Cucci, Costanza; La Nasa, Jacopo; Lofrumento, Cristiana; Picollo, Marcello; Becucci, Maurizio

    2015-07-01

    This work explores the application of chemometric techniques to the analysis of lipidic paint binders (i.e., drying oils) by means of Raman and near-infrared spectroscopy. These binders have been widely used by artists throughout history, both individually and in mixtures. We prepared various model samples of the pure binders (linseed, poppy seed, and walnut oils) obtained from different manufacturers. These model samples were left to dry and then characterized by Raman and reflectance near-infrared spectroscopy. Multivariate analysis was performed by applying principal component analysis (PCA) on the first derivative of the corresponding Raman spectra (1800-750 cm(-1)), near-infrared spectra (6000-3900 cm(-1)), and their combination to test whether spectral differences could enable samples to be distinguished on the basis of their composition. The vibrational bands we found most useful to discriminate between the different products we studied are the fundamental ν(C=C) stretching and methylenic stretching and bending combination bands. The results of the multivariate analysis demonstrated the potential of chemometric approaches for characterizing and identifying drying oils, and also for gaining a deeper insight into the aging process. Comparison with high-performance liquid chromatography data was conducted to check the PCA results. PMID:26036244

  20. Compact Fourier transform spectrometer without moving parts

    Science.gov (United States)

    Huang, Chu-Yu; Estroff, B.; Wang, Wei-Chih

    2012-04-01

    Fourier transform spectroscopy (FTS) is a potent analytical tool for chemical and biological analysis, but is limited by system size, expense, and robustness. To make FTS technology more accessible, we present a compact, inexpensive FTS system based on a novel liquid crystal (LC) interferometer. This design is unique because the optical path difference (OPD) is controlled by voltage applied to the LC cell. The OPD is further improved by reflecting the polarized incident light through the LC several times before reaching the second polarizer and measurement. This paper presents the theoretical model and numerical simulations for the liquid crystal Fourier transform spectrometer (LCFTS), and experimental results from the prototype. Based on the experimental results, the LCFTS performs in accordance with the theoretical predictions, achieving a maximum OPD of 210μm and a resolution of 1nm at a wavelength of 630nm. The instrumental response refresh rate is just under 1 second. Absorbance measurements were conducted for single and mixed solutions of deionized water and isopropyl alcohol, demonstrating agreement with a commercial system and literature values. We also present the LCFTS transmission spectra for varying concentrations of potassium permanganate to show system sensitivity.

  1. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  2. Membrane-assisted capillary isoelectric focusing coupling with matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry for neuropeptide analysis

    OpenAIRE

    Zhang, Zichuan; Wang, Junhua; Hui, Limei; Li, Lingjun

    2011-01-01

    Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and ...

  3. Membrane-assisted capillary isoelectric focusing coupling with matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry for neuropeptide analysis.

    Science.gov (United States)

    Zhang, Zichuan; Wang, Junhua; Hui, Limei; Li, Lingjun

    2011-08-01

    Herein we report a highly efficient and reliable membrane-assisted capillary isoelectric focusing (MA-CIEF) system being coupled with MALDI-FTMS for the analysis of complex neuropeptide mixtures. The new interface consists of two membrane-coated joints made near each end of the capillary for applying high voltage, while the capillary ends were placed in the two reservoirs which were filled with anolyte (acid) and catholyte (base) to provide pH difference. Optimizations of CIEF conditions and comparison with conventional CIEF were carried out by using bovine serum albumin (BSA) tryptic peptides. It was shown that the MA-CIEF could provide more efficient, reliable and faster separation with improved sequence coverage when coupled to MALDI-FTMS. Analyses of orcokinin family neuropeptides from crabs Cancer borealis and Callinectes sapidus brain extracts have been conducted using the established MA-CIEF/MALDI-FTMS platform. Increased number of neuropeptides was observed with significantly enhanced MS signal in comparison with direct analysis by MALDI-FTMS. The results highlighted the potential of MA-CIEF as an efficient fractionation tool for coupling to MALDI MS for neuropeptide analysis. PMID:21696746

  4. Rapid analysis of taurine in energy drinks using amino acid analyzer and Fourier transform infrared (FTIR) spectroscopy as basis for toxicological evaluation.

    Science.gov (United States)

    Triebel, S; Sproll, C; Reusch, H; Godelmann, R; Lachenmeier, D W

    2007-09-01

    So-called energy drinks with very high amounts of taurine (up to 4000 mg/l are usually granted by certificates of exemption) are increasingly offered on the market. To control the currently valid maximum limits of taurine in energy drinks, a simple and rapid analytical method is required to use it routinely in food monitoring. In this article, we describe a fast and efficient analytical method (FTIR-spectroscopy) that is able to reliably characterize and quantify taurine in energy drinks. The determination of taurine in energy drinks by FTIR was compared with amino acid analyzer (ion chromatography with ninhydrin-postcolumn derivatization). During analysis of 80 energy drinks, a median concentration of 3180 mg/l was found in alcohol-free products, 314 mg/l in energy drinks with spirits, 151 mg/l in beer-containing drinks and 305 mg/l in beverages with wine. Risk analysis of these products is difficult due to the lack of valid toxicological information about taurine and its interferences with other ingredients of energy drinks (for example caffeine and alcohol). So far, the high taurine concentrations of energy drinks in comparison to the rest of the diet are scientifically doubtful, as the advertised physiological effects and the value of supplemented taurine are unproven. PMID:17051421

  5. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  6. Fourier Transforms of Finite Chirps

    Directory of Open Access Journals (Sweden)

    Fickus Matthew

    2006-01-01

    Full Text Available Chirps arise in many signal processing applications. While chirps have been extensively studied as functions over both the real line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more general than those that have been previously used. We explicitly compute the discrete Fourier transforms of these chirps, yielding results that are number-theoretic in nature. As a consequence of these results, we determine the degree to which the elements of certain finite tight frames are well distributed.

  7. Optical fourier transform image processor

    International Nuclear Information System (INIS)

    The primary objective of this project is to improve the signal to noise ratio of the X-ray shadow graphs and tomographs of human body using optical spatial filtering techniques. Helium Neon laser of 4 milli Watt has been used for the purpose. Spatial filtering of the beam has been done in the first step to eliminate the coherent noise produced by various laser modes. Conventional method of spatial filtering has been used to process simple achieved using conventional filters. Edge enhancement and improvement of signal to noise ratio of the X-ray shadow graphs has been done using lens and lens-less Fourier transform holographic filters and VanderLugt filters. VanderLugt filter has given the best edge-enhancement for the chest X-ray shadow graph. (author)

  8. Fourier transform mid-infrared spectroscopy (FT-MIR) combined with chemometrics for quantitative analysis of dextrin in Danshen (Salvia miltiorrhiza) granule.

    Science.gov (United States)

    Guo, Tao; Feng, Wei-Hong; Liu, Xiao-Qian; Gao, Hui-Min; Wang, Zhi-Min; Gao, Liang-Liang

    2016-05-10

    The granule of Chinese medicine (GCM) is prepared by water-soluble extract of single yinpian (WESY) of herbal medicine, and used as a drug ingredient for clinical formulation. The WESY content or corresponding yinpian amount is the most important parameter in evaluating the quality of GCM. Low WESY content reflects poor GCM. Classical quantitative methods, such as HPLC, cannot fully detect the adulteration by adding characteristic ingredients and less WESY production. GCM is composed of WESY and a high content of specific excipient. The WESY content in the GCM may be indirectly analyzed using mid-infrared spectroscopy (MIR). In this paper, a quantitative method to evaluate the quality of Danshen (Salvia miltiorrhiza) granule (DG) was developed using MIR combined with chemometrics. Appropriate characteristic quantitative regions (CQR) were extracted by selecting the spectral regions corresponding to altered excipient content in DG. The best model of dextrin content determination in DG with low RMSEC of 1.97, low RMSEP of 2.07, and excellent RPD of 5.03 (>5.0) was obtained using partial least-squares (PLS) regression, and validated using accepted values of precision and recovery. The results suggest that FT-MIR combined with PLS is a rapid and valuable analytical tool to determine the WESY in DG based on excipient content. The model enabling indirect calculation of WESY content in GCM represents a reference standard for rapid analysis of other WESYs in GCM industry. PMID:26859611

  9. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using gaschromatography-mass spectrometry and fourier transform-ion cyclotronresonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2006-07-11

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  10. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space

    CERN Document Server

    Zhao, Gong-Bo; Saito, Shun; Wang, Dandan; Ross, Ashley J; Beutler, Florian; Grieb, Jan Niklas; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodriguez-Torres, Sergio; Percival, Will J; Brownstein, Joel R; Cuesta, Antonio J; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; Nichol, Robert C; Olmstead, Matthew D; Prada, Francisco; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Weinberg, David H; Zhu, Fangzhou

    2016-01-01

    We perform a tomographic baryon acoustic oscillations (BAO) analysis using the monopole, quadrupole and hexadecapole of the redshift-space galaxy power spectrum measured from the pre-reconstructed combined galaxy sample of the completed Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) Data Release (DR)12 covering the redshift range of $0.20

  11. Dynamics of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Slepneva, S; Kelleher, B; O'Shaughnessy, B; Hegarty, S P; Vladimirov, A G; Huyet, G

    2013-08-12

    An analysis of the dynamical features in the output of a Fourier Domain Mode Locked laser is presented. An experimental study of the wavelength sweep-direction asymmetry in the output of such devices is undertaken. A mathematical model based on a set of delay differential equations is developed and shown to agree well with experiment. PMID:23938841

  12. An introduction to non-harmonic Fourier series

    CERN Document Server

    Young, Robert M

    2001-01-01

    An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations.

  13. Note on Redshift Distortion in Fourier Space

    Institute of Scientific and Technical Information of China (English)

    Yan-Chuan Cai; Jun Pan

    2007-01-01

    We explore features of redshift distortion in Fourier analysis of N-body simulations.The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has a probability distribution function (PDF) that is symmetric about the peak at zero shift and whose exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles triangles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation.We confirm the results of Scoccimarro that difference of power spectrum is at the level of 10%, and, in the reduced bispectrum, the difference is as small as a few percent. However, on the plane perpendicular to the line of sight of kz = 0, the difference in power spectrum between the radial and plane-parallel approximation can be more than ~ 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for configurations of tilted triangles. Non-Gaussian signals under the radial distortion on small scales are systematically biased downside than are in the plane-parallel approximation, with amplitudes depending on the opening angle of the sample point to the observer. This observation gives warning to the practice of using the power spectrum and bispectrum measured on the kz = 0 plane as estimates of the real space statistics.

  14. On Fourier Series of Fuzzy-Valued Functions

    Directory of Open Access Journals (Sweden)

    Uğur Kadak

    2014-01-01

    Full Text Available Fourier analysis is a powerful tool for many problems, and especially for solving various differential equations of interest in science and engineering. In the present paper since the utilization of Zadeh’s Extension principle is quite difficult in practice, we prefer the idea of level sets in order to construct a fuzzy-valued function on a closed interval via related membership function. We derive uniform convergence of a fuzzy-valued function sequences and series with level sets. Also we study Hukuhara differentiation and Henstock integration of a fuzzy-valued function with some necessary inclusions. Furthermore, Fourier series of periodic fuzzy-valued functions is defined and its complex form is given via sine and cosine fuzzy coefficients with an illustrative example. Finally, by using the Dirichlet kernel and its properties, we especially examine the convergence of Fourier series of fuzzy-valued functions at each point of discontinuity, where one-sided limits exist.

  15. The Table of Analytical Discrete Fourier Transforms

    OpenAIRE

    Briggs, William L.; Henson, Van Emden

    1995-01-01

    While most people rely on numerical methods (most notably the fast Fourier transform) for computing discrete Fourier transforms (DFTs), there is still an occasional need to have analytical DFTs close at hand. Such a table of analytical DFTs is provided in this paper, along with comments and observations, in the belief that it will serve as a useful resource or teaching aid for Fourier practioners.

  16. 非傅立叶热现象的理论分析和实验证实%Theoretical Analysis and Experimental Evidence of Non-Fourier Heat Conduction Behavior

    Institute of Scientific and Technical Information of China (English)

    蒋方明; 刘登瀛; 蔡睿贤

    2001-01-01

    This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and an analytical expression of its temperature distribution is obtained. According to the expression, the nonFourier heat conduction behavior that will appear in the hollow sphere is studied and some qualitative conditions that will result in distinct non-Fourier behavior in the medium is ultimately attained. (2) A novel experiment to observe non-Fourier heat conduction behavior in porous material (mainly ordinary duplicating paper) heated by a microsecond laser pulse is presented. The conditions for observing distinct non-Fourier heat conduction behavior in the experimental sample agree well with the theoretical results qualitatively.``

  17. Periodic c-axis modulation and crystallographic Fourier analysis of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals with excess Bi

    Science.gov (United States)

    Ariosa, D.; Berger, H.; Schmauder, T.; Pavuna, D.; Margaritondo, G.; Christensen, S.; Kelley, R. J.; Onellion, M.

    2001-04-01

    We report on a distortion of Bi 2Sr 2Ca nCu n+1O 6+2n+x ( n=0,1) single crystals, perpendicular to the CuO 2 planes (the c-axis), for non-stoichiometric samples containing an excess of Bi. The distortion involves two parts: (a) symmetric displacements in the SrO and CuO 2 planes along the c-axis, and (b) an antisymmetric longitudinal compressive wave. The latter is revealed by observing odd harmonics in the X-ray diffraction (XRD) data. Such odd harmonics are typically extinguished for the I4/mmm space group of the exact stoichiometric phase. The antisymmetric compressive wave is reported for both BSCCO-2201 and BSCCO-2212 Bi excess samples, as well as for La-doped BSCCO-2201 samples. We have performed XRD model calculations for all samples studied, combined with Fourier analysis of the periodic c-axis modulation. The antisymmetric compressive wave was proven by reconstructing the atomic position profile from the intensity of odd XRD peaks caused by this commensurate modulation. Our results indicate preferential ordered substitution of Bi ions on nominally Sr ion positions. We also discuss implications for oxygen mobility, reversible sample doping, and electronic properties.

  18. Fourier analysis of multi-gated cardiac blood-pool data in patients with congenital heart diseases, (2). Assessment of diseases with complex cardiac anomalies, especially tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kan; Maeda, Hisato; Yamaguchi, Nobuo; Nakamura, Kazuyoshi; Matsumura, Kaname; Nakagawa, Tsuyoshi; Sakurai, Minoru; Aoki, Kenzo

    1985-04-01

    The clinical usefulness of Fourier analysis of multi-gated cardiac blood-pool data was evaluated in 18 subjects with normal cardiac functions and 14 patients with complex cardiac anomalies (ten with tetralogy of Fallot, two with tricuspid atresia (TA), one with double-outlet right ventricle (DORV), and one with Ebstein's anomaly (EA)). Using global ventricular time-activity curves, the phase and amplitude at fundamental frequency were calculated, and emptying patterns of the left and right ventricles (LV, RV) were evaluated by phase difference (D(phase)=RV phase minus LV phase) and amplitude ratio of RV to LV (R(amp)). In patients with TOF, mean values of D (phase) and R(amp) were 25.3 +- 10.5 degrees and 13.5 +- 0.49 respectively and significantly larger than those of normal subjects. D (phase) became larger in inverse proportion to the ratio of pulmonary-to-systemic blood flow and there was an inverse linear correlation between these two variables. On visual interpretation of functional images, the dynamic property of hypoplastic ventricles could be easily estimated in patients with TA or DORV. In a case with EA, the atrialized RV was shown clearly as a hypokinetic, atrial phase area. This method is valuable for pathophysiologic investigation of diseases with complex cardiac anomalies. (author).

  19. TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation

    International Nuclear Information System (INIS)

    The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed

  20. Fourier analysis of mitochondrial distribution in oocytes

    Science.gov (United States)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  1. Vibrational analysis of Fourier transform spectrum of the $A^{3} _{0} –X^{1} \\sum^{+}$ and $B^{3} ^{1} –X^{1} \\sum^{+}$ transitions of indium monobromide

    Indian Academy of Sciences (India)

    Renu Singh; K N Uttam; M D Saksena; M N Deo

    2009-11-01

    The emission spectrum of InBr molecule has been recorded in the region 350–400 nm on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.06 cm-1 using microwave excitation technique. About 61 violet degraded and single headed bands have been recorded and are classified into two band systems, viz. $A^{3} _{0} –X^{1} \\sum^{+}$ and $B^{3} _{1} –X^{1} \\sum^{+}$. A few new bands have been observed and are fitted in the vibrational schemes of the two systems. Revised vibrational constants have been determined. The vibrational assignments have been confirmed by observing isotope effect due to InBr81 in the 30 bands of the $A^{3} _{0} –X^{1} \\sum^{+}$ system and 19 bands of the $B^{3} _{1} –X^{1} \\sum^{+}$ system. The analysis is further supported by calculating the Franck–Condon factor for InBr79 and InBr81 molecules. The following vibrational constants (in cm-1) have been determined from the analysis: $$ \\begin{array}{llll} \\text{A}^{3}_{0}-\\text{X}^{1}^{+} & \\text{system} & v_{00}=26599.1 & '_{\\text{e}} = 226.42, \\ '_{\\text{e}}x'_{\\text{e}}=1.24\\text{~cm}^{-1},\\\\ & & & ''_{\\text{e}} = 221.19, \\ ''_{\\text{e}}x''_{\\text{e}}=0.528\\text{~cm}^{-1}.\\\\ \\text{B}^{3}_{1}-\\text{X}^{1}^{+} & \\text{system} & v_{00}=27380.52 & '_{\\text{e}}=223.086, \\ '_{\\text{e}}x'_{\\text{e}}=1.446\\text{~cm}^{-1},\\\\ & & & ''_{\\text{e}}=221.19, \\ ''_{\\text{e}}x''_{\\text{e}}=0.528\\text{~cm}^{-1}. \\end{array} $$

  2. 红外光谱与聚类分析法快速鉴别白术生品与炮制品%Rapid determination of crude and processed Atractylodes macrocephala by fourier-transform infrared spectroscopy and clustering analysis

    Institute of Scientific and Technical Information of China (English)

    曹岗; 丛晓东; 蔡皓; 蔡宝昌

    2012-01-01

    Objective; To identify crude and processed Atractylodes macrocephala samples with fourier transform infrared (FTIR) spectrometry. Methods; Based on the fingerprint infrared spectrum from 1 800 to 600 cm , crude and processed Atractylodes macrocephala samples were classified and studied using the method of clustering analysis. Results: There were tiny differences between the spectra of different origins, including the crude and processed Atractylodes macrocephala samples. These samples could be successfully classified by soft independent modeling of class analogy (SIMCA). Recognition rate and rejection rate of crude and processed Atractylodes macrocephala samples were up to 95%. When testing with the blind sample that was picked out from the chosen samples by the authors, the accuracy was up to 95% . Conclusion: In combination with clustering analysis, FTIR coupled with SIMCA method provides an effective way to rapidly evaluate the crude and processed Chinese medicines%目的:应用傅里叶变换红外光谱(FTIR)法测定了白术生品和炮制品.方法:以1800~600cm-1范围内的吸收峰和吸光度为指标,以红外光谱图为对象,应用SIMCA聚类分析法对二者进行了聚类分析.结果:红外光谱结合聚类分析法对白术生品和炮制品的聚类结果较理想,识别率和拒绝率达到95%以上,盲样检测正确率可达95%以上.结论:红外光谱与聚类分析法相结合可以快速的鉴别原药材和炮制品.

  3. Matrix Fourier transform with discontinuous coefficients

    OpenAIRE

    Yaremko, O.; Zhuravleva, E.

    2013-01-01

    The explicit construction of direct and inverse Fourier's vector transform with discontinuous coefficients is presented. The technique of applying Fourier's vector transform with discontinuous coefficients for solving problems of mathematical physics.Multidimensional integral transformations with non-separated variables for problems with discontinuous coefficients are constructed in this work. The coefficient discontinuities focused on the of parallel hyperplanes. In this work explicit formul...

  4. Two modified discrete chirp Fourier transform schemes

    Institute of Scientific and Technical Information of China (English)

    樊平毅; 夏香根

    2001-01-01

    This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.

  5. Product Theorem for Quaternion Fourier Transform

    OpenAIRE

    Bahri, Mawardi

    2014-01-01

    In this paper we present the generalized convolution and correlation for the two-dim ensional discrete quaternion Fourier transform (DQFT). We provide several new properties of the generalizations. There results can be considered as the extension of correlation and convolution properties of real and complex Fourier transform to the DQFT domain.

  6. On the $q$-Bessel Fourier transform

    OpenAIRE

    Dhaouadi, Lazhar

    2013-01-01

    In this work, we are interested by the $q$-Bessel Fourier transform with a new approach. Many important results of this $q$-integral transform are proved with a new constructive demonstrations and we establish in particular the associated $q$-Fourier-Neumen expansion which involves the $q$-little Jacobi polynomials.

  7. 1-Convergence of Complex Double Fourier Series

    Indian Academy of Sciences (India)

    Kulwinder Kaur; S S Bhatia; Babu Ram

    2003-11-01

    It is proved that the complex double Fourier series of an integrable function (, ) with coefficients {} satisfying certain conditions, will converge in 1-norm. The conditions used here are the combinations of Tauberian condition of Hardy–Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series.

  8. From "Dirac combs" to Fourier-positivity

    CERN Document Server

    Giraud, Bertrand G

    2015-01-01

    Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.

  9. Central limit theorem for Fourier transform of stationary processes

    CERN Document Server

    Peligrad, Magda

    2009-01-01

    We consider asymptotic behavior of Fourier transforms of stationary ergodic sequences with finite second moments. We establish the central limit theorem (CLT) for almost all frequencies and also the annealed CLT. The theorems hold for all regular sequences. Our results shed new light on the foundation of spectral analysis and on the asymptotic distribution of periodogram, and it provides a nice blend of harmonic analysis, theory of stationary processes and theory of martingales.

  10. Utilização de filtro de transformada de fourier para a minimização de ruídos em sinais analíticos Utilization of fourier transform filter for noise minimization in analytical signals

    Directory of Open Access Journals (Sweden)

    Eduardo O. Cerqueira

    2000-10-01

    Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices

  11. Application of the least-squares inversion method: Fourier series versus waveform inversion

    Science.gov (United States)

    Min, Dong-Joo; Shin, Jungkyun; Shin, Changsoo

    2015-11-01

    We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the

  12. 利用傅里叶变换红外光谱法分析燕麦片的品质%Analysis of Oatmeal Quality by Fourier ransform Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    周旭章; 彭昕; 张慧恩; 蔡艳

    2011-01-01

    In order to establish a fast nondestructive method for analysis of oatmeal quality, qualities of eight brands of oatmeal from Ningbo supermarkets were analyzed by Fourier transform infrared spectroscopy ( FTIR). Results showed that the comparison of infrared spectrum and characteristic absorption peaks of different brands of oatmeal could determine the contents and composition of nutritional ingredients in oatmeals; second derivative spectrum which could identify overlapped peaks in conventional IR spectrum and increase resolution had been used to achieve more accurate and finer analysis. FTIR combined with two - dimensional correlation infrared spectrum was applied to study the thermal stability of oatmeal through mini - heating process. In conclusion, FTIR could provide a fast nondestructive method for analysis of oatmeal quality.%为了建立一种快速、无损的鉴定市场所销售的燕麦片的品质鉴定分析方法,对宁波市超市所销售的品牌1~品牌8的燕麦片商品进行了抽样,采取傅里叶变换红外光谱法(FTIR)进行定性分析.结果表明,通过红外光谱图和特征峰之间的比较,可以分析出燕麦中含有的营养成分及其含量高低;结合二阶导数谱能把红外图谱中重叠的峰区分开来,增大谱图的分辨率,使分析更加精细准确;利用热微扰法测定燕麦红外光谱及其二维相关红外光谱可以判断燕麦的热稳定性.因此,傅里叶变换红外光谱法是一种快速、无损的鉴定燕麦片品质的分析方法.

  13. On the positivity of Fourier transforms

    CERN Document Server

    Giraud, Bertrand G

    2014-01-01

    Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of necessary conditions for positivity of the Fourier transforms and test their ability of constraining the positivity domain. One uses analytic continuation and Jensen inequalities and the other deals with Toeplitz determinants and the Bochner theorem. Applications are discussed, including the extension to the two-dimensional Fourier-Bessel transform and the problem of positive reciprocity, i.e. positive functions with positive transforms.

  14. Fourier time spectral method for subsonic and transonic flows

    Science.gov (United States)

    Zhan, Lei; Liu, Feng; Papamoschou, Dimitri

    2016-06-01

    The time accuracy of the exponentially accurate Fourier time spectral method (TSM) is examined and compared with a conventional 2nd-order backward difference formula (BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higher-order harmonic contents to the local pressure fluctuations, a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method. The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.

  15. Rotor eddy current loss analysis of permanent magnet rotor based on double Fourier transforms%基于双重傅立叶变换的永磁转子涡流损耗分析

    Institute of Scientific and Technical Information of China (English)

    张涛; 朱熀秋; 孙晓东; 杨泽斌

    2013-01-01

    To optimize the permanent magnet rotor structure and reduce the rotor eddy current loss, the rotor eddy current loss generated by slot effect of air-gap magnetic field in surface-mounted high-speed permanent magnet synchronous motor was analyzed. The magnetization models of permanent magnets were investigated to establish the eddy current loss mathematic models of permanent rotor. The air-gap magnetic field data samples were extracted based on the air-gap magnetic field static analysis. For permanent magnets with parallel magnetization or Halbach magnetization, the air-gap magnetic field space, time harmonics and the corresponding eddy current loss caused by air-gap permeance variation were investigated by double Fourier transforms. The eddy current loss was calculated by transient finite element analysis at non-load state. The results show that the permanent magnet rotor with Halbach magnetization mode can effectively reduce the high order harmonics, and the rotor eddy-current loss is 34% of that with parallel magnetization.%为了优化永磁转子结构,降低转子涡流损耗,分析了表面贴式高速永磁同步电机气隙磁场齿槽效应产生的转子涡流损耗.研究了表面贴式永磁同步电机转子永磁体磁化模式,建立了永磁同步电机转子涡流损耗数学模型,分析了永磁同步电机静态气隙磁场,提取气隙磁场样本数据.采用双重傅里叶变换,研究和比较了四极永磁同步电机永磁体在Halbach磁化和平行磁化时,由齿槽效应引起的气隙磁场时空谐波和对应的转子涡流损耗,并采用瞬态有限元法计算了空载时的转子涡流损耗.结果表明:永磁体采用Halbach磁化模式,能够有效降低气隙磁场高次谐波,转子涡流损耗约为平行磁化时的34%.

  16. Wavelet-Fourier self-deconvolution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using a wavelet function as the filter function of Fourier self-deconvolution, a new me- thod of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.

  17. Wavelet-Fourier self-deconvolution

    Institute of Scientific and Technical Information of China (English)

    郑建斌; 张红权; 高鸿

    2000-01-01

    Using a wavelet function as the filter function of Fourier self-deconvolution, a new method of resolving overlapped peaks, wavelet-Fourier self-deconvolution, is founded. The properties of different wavelet deconvolution functions are studied. In addition, a cutoff value coefficient method of eliminating artificial peaks and wavelet method of removing shoulder peaks using the ratio of maximum peak to minimum peak is established. As a result, some problems in classical Fourier self-deconvolution are solved, such as the bad result of denoising, complicated processing, as well as usual appearance of artificial and shoulder peaks. Wavelet-Fourier self-deconvolution is applied to determination of multi-components in oscillographic chronopotentiometry. Experimental results show that the method has characteristics of simpler process and better effect of processing.

  18. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    Science.gov (United States)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  19. Content adaptive sparse illumination for Fourier ptychography

    CERN Document Server

    Bian, Liheng; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

    2014-01-01

    Fourier Ptychography (FP) is a recently proposed technique for large field of view and high resolution imaging. Specifically, FP captures a set of low resolution images under angularly varying illuminations and stitches them together in Fourier domain. One of FP's main disadvantages is its long capturing process due to the requisite large number of incident illumination angles. In this letter, utilizing the sparsity of natural images in Fourier domain, we propose a highly efficient method termed as AFP, which applies content adaptive sparse illumination for Fourier ptychography by capturing the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework with both simulations and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP by around 30%-60%.

  20. Fourier tranform in exponential rearrangement invariant spaces

    OpenAIRE

    Ostrovsky, E.; Sirota, L.

    2004-01-01

    In this article we investigate the Fourier series and transforms for the functions defined on the $ [0, 2 \\pi]^ d $ or $ R^d $ and belonging to the exponential Orlicz and some other rearrangement invariant (r.i.) spaces.

  1. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  2. Quantum transport efficiency and Fourier's law

    OpenAIRE

    Manzano, Daniel; Tiersch, Markus; Asadian, Ali; Briegel, Hans J.

    2011-01-01

    We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. Implications of these results on energy transfer in biological light ha...

  3. Holomorphic Continuation via Laplace-Fourier series

    CERN Document Server

    Kounchev, O

    2011-01-01

    Let $B_{R}$ be the ball in the euclidean space $\\mathbb{R}^{n}$ with center 0 and radius $R$ and let $f$ be a complex-valued, infinitely differentiable function on $B_{R}.$ We show that the Laplace-Fourier series of $f$ has a holomorphic extension which converges compactly in the Lie ball $\\hat {B_{R}}$ in the complex space $\\mathbb{C}^{n}$ when one assumes a natural estimate for the Laplace-Fourier coefficients.

  4. Fourier theory of linear gain media

    Science.gov (United States)

    Hâgenvik, Hans Olaf; Malema, Markus E.; Skaar, Johannes

    2015-04-01

    The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency (the monochromatic limit) and also often a single plane-wave component (plane-wave limit). For gain media, we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging field, while the other order leads to a finite field. Moreover, the plane-wave limit may be dependent on whether it is realized with a finite-support excitation or Gaussian excitation, eventually of infinite widths. We consider wave propagation in gain media by a Fourier-Laplace integral in space and time, and demonstrate how the correct monochromatic limit or plane-wave limit can be taken, by deforming the integration surface in complex frequency-complex wave-number space. We also give the most general criterion for absolute instabilities. The general theory is applied in several cases, and is used to predict media with novel properties. In particular, we show the existence of isotropic media which in principle exhibit simultaneous refraction, meaning that they refract positively and negatively at the same time.

  5. Fourier theory of linear gain media

    CERN Document Server

    Hågenvik, Hans Olaf; Skaar, Johannes

    2014-01-01

    The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency (the monochromatic limit) and also often a single plane wave component (plane wave limit), separately. For gain media, we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging field, while the other order leads to a finite field. Moreover, the plane wave limit may be dependent on whether it is realized with a rect function excitation or gaussian excitation of infinite widths. We consider wave propagation in gain media by a Fourier--Laplace integral in time and space, and demonstrate how the correct monochromatic limit or plane wave limit can be taken, by deforming the integration surface in complex frequency--complex wavenumber space. We also give the most general criterion for absolute instabilities. The general theory is applied in several cases, and is used to predict media with novel properties. In particular, we show the existence of isotrop...

  6. Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach

    International Nuclear Information System (INIS)

    We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author)

  7. Modeling the reconstructed BAO in Fourier space

    Science.gov (United States)

    Seo, Hee-Jong; Beutler, Florian; Ross, Ashley J.; Saito, Shun

    2016-08-01

    The density field reconstruction technique, which partially reverses the non-linear degradation of the Baryon acoustic oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the method as a function of various reconstruction details. To directly quantify the BAO information in non-linear density fields before and after reconstruction, we calculate the cross-correlations (i.e. propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock sample that mimics the clustering of the BOSS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major different conventions of the redshift-space density field reconstruction that have been used in literature. By estimating the BAO signal to noise for each case, we predict constraints on the angular diameter distance and Hubble parameter using the Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for different reconstruction methods based on the first- and second-order Lagrangian perturbation theory in Fourier space. Using the mock data, we show that the modified BAO fitting model can substantially improve the accuracy of the BAO position in the best fits as well as the goodness of the fits.

  8. Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model

    International Nuclear Information System (INIS)

    Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series

  9. Physics of the Blues: Music, Fourier and Wave - Particle Duality

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. Murray (ANL)

    2003-10-15

    Art and science are intimately connected. There is probably no art that reveals this more than music. Music can be used as a tool to teach physics and engineering to non-scientists, illustrating such diverse concepts as Fourier analysis and quantum mechanics. This colloquium is aimed in reverse, to explain some interesting aspects of music to physicists. Topics include: What determines the frequency of notes on a musical scale? What is harmony and why would Fourier care? Where did the blues come from? (We' re talking the 'physics of the blues', and not 'the blues of physics' - that's another colloquium). Is there a musical particle? The presentation will be accompanied by live keyboard demonstrations. The presenter will attempt to draw tenuous connections between the subject of his talk and his day job as Director of the Advanced Photon Source at Argonne National Laboratory.

  10. Multiparty Quantum Secret Sharing Using Quantum Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    HUANG Da-Zu; CHEN Zhi-Gang; GUO Ying

    2009-01-01

    A (n, n )-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform.In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert.Furthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant.Security analysis shows that our scheme is secure.Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.

  11. Clifford Fourier-Mellin transform with two real square roots of -1 in Cl(p,q), p+q=2

    OpenAIRE

    Hitzer, Eckhard

    2013-01-01

    We describe a non-commutative generalization of the complex Fourier-Mellin transform to Clifford algebra valued signal functions over the domain $\\R^{p,q}$ taking values in Cl(p,q), p+q=2. Keywords: algebra, Fourier transforms; Logic, set theory, and algebra, Fourier analysis, Integral transforms

  12. Optical scatter imaging using digital Fourier microscopy

    International Nuclear Information System (INIS)

    An approach reported recently by Alexandrov et al (2005 Int. J. Imag. Syst. Technol. 14 253-8) on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. The holographic mode of the recording of the sample optical scatter enables reconstruction of the sample image. The form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post-processing stage. As in dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present the theoretical and experimental study of DFM using a biological phantom that contains polymorphic scatterers

  13. Fast Fourier Transforms of Piecewise Constant Functions

    Science.gov (United States)

    Sorets, Eugene

    1995-02-01

    We present an algorithm for the evaluation of the Fourier transform of piecewise constant functions of two variables. The algorithm overcomes the accuracy problems associated with computing the Fourier transform of discontinuous functions; in fact, its time complexity is O (N2 logN + NP log2 (1/ε) + V log3 (1/ε)), where ε is the accuracy, N is the size of the problem, P is the perimeter of the set of discontinuities, and V is its number of vertices. The algorithm is based on the Lagrange interpolation formula and the Green's theorem, which are used to preprocess the data before applying the fast Fourier transform. It readily generalizes to higher dimensions and to piecewise smooth functions.

  14. Fourier duality as a quantization principle

    International Nuclear Information System (INIS)

    The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs

  15. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  16. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  17. Fourier transforms and convolutions for the experimentalist

    CERN Document Server

    Jennison, RC

    1961-01-01

    Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t

  18. LPA1, LPA2, Deconvolution Program Using Fourier Transform

    International Nuclear Information System (INIS)

    1 - Description of program or function: LPA1,LPA2 is a general deconvolution program suitable for application in applied mathematics, experimental physics, signal analytical system and some engineering application range, i.e. deconvolution spectrum, signal analysis and system property analysis, etc. 2 - Method of solution: It makes use of the Deconvolution Theorem and Fourier Transform algorithm (FFT). 3 - Restrictions on the complexity of the problem: The number of data points accepted is not greater than 1024 in this program. This can be increased by changing the data dimension in the program

  19. Fourier transform infrared spectral analysis of maize (Zea mays) plants under zinc deficiency stress%缺锌玉米植株的傅立叶变换红外光谱研究

    Institute of Scientific and Technical Information of China (English)

    王盛锋; 刘云霞; 高丽丽; 韩亚; 黄金生; Hilman; 刘荣乐; 汪洪

    2014-01-01

    [Objectives]Fourier transform infrared spectroscopy ( FTIR) is a structural analysis technique based on the vibrations of functional group and polar bond in chemical components. The objective of this study was to reveal the component changes in different organs of maize plants with and without zinc( Zn) application using FTIR. It would provide some physiological evidences of maize plants subjected to Zn deficiency stress.[Methods]Two maize cultivars, Nongda108 and Zhengdan958, were chosen as tested crops. Hydroponic culture experiments were conducted with 0 and 1. 0 μmol/L Zn treatments. The plant shoot and root biomass were weighted. Dry plant samples were digested with HNO3 -HClO4 ( 3:1 ) for Zn determination by atomic absorption spectrophotometer. Root samples were stored in FAA solution ( 70% alcohol:38% formaldehyde:acetic acid = 90 :5:5 parts by volume) prior to measurements. The root systems were then digitized with the EsponV700 scanner at 300 dpi resolution for further analysis. The total root length and root volume were measured with WinRHIZO root analysis software ( Regent Instruments Inc. , Canada) . Dry samples of roots, stems and leaves were ground to through 0. 2 mm sieve. A potassium bromide tablet method was used to detect spectral characteristics of different plant parts with FTIR (VERTEX 70, Bruker) and data were collected and analyzed by the OPUS 6. 5 software. [Results]The results show that Zn concentrations in maize plants without Zn application are below the critical level of 20 μg/g, and the Zn deficiency stress significantly decreases shoot dry matter weight, root surface, root volume and total root length. The shoot biomass and root length of maize cultivar, Nongda108, are less than those of Zhengdan95 under the Zn deficiency, which indicates Nongda108 might be more sensitive to Zn deficiency. Compared with the 1. 0μmol/L Zn treatment, plants with Zn deficiency show higher transmittance at peaks of 3410, 2920, 1650, 1380 and 1055 cm-1

  20. Design of high-resolution Fourier transform lens

    Science.gov (United States)

    Zhang, Lei; Zhong, Xing; Jin, Guang

    2007-12-01

    With the development of optical information processing, high-resolution Fourier transform lens has often been used in holographic data storage system, spatial filtering and observation of particles. This paper studies the optical design method of high-resolution Fourier transform optical lenses system, which could be used in particles observation and holographic data storage system. According to Fourier transform relation between object and its frequency plane and the theory of geometrical optics, the system with working wavelength 532nm and resolution 3μm was designed based on ZEMAX. A multi-configuration method was adopted to optimize the system's lenses. In the optical system, a diaphragm was placed at the system's spectrum plane and the system demanded a low vacuum to cut down the influences of atmosphere and other particles. The result of finite element analysis indicated that the influences of vacuum pumping to optics spacing and mirror surface shape very minor, and the imaging quality not being affected. This system has many advantages, such as simple structure, good image quality and a high resolution of 3μm. So it has a wide application prospect and can be used both in holographic data storage system and particles observation.

  1. Fourier Series Approximations to J2-Bounded Equatorial Orbits

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available The current paper offers a comprehensive dynamical analysis and Fourier series approximations of J2-bounded equatorial orbits. The initial conditions of heterogeneous families of J2-perturbed equatorial orbits are determined first. Then the characteristics of two types of J2-bounded orbits, namely, pseudo-elliptic orbit and critical circular orbit, are studied. Due to the ambiguity of the closed-form solutions which comprise the elliptic integrals and Jacobian elliptic functions, showing little physical insight into the problem, a new scheme, termed Fourier series expansion, is adopted for approximation herein. Based on least-squares fitting to the coefficients, the solutions are expressed with arbitrary high-order Fourier series, since the radius and the flight time vary periodically as a function of the polar angle. As a consequence, the solutions can be written in terms of elementary functions such as cosines, rather than complex mathematical functions. Simulations enhance the proposed approximation method, showing bounded and negligible deviations. The approximation results show a promising prospect in preliminary orbits design, determination, and transfers for low-altitude spacecrafts.

  2. On Equiconvergence of Expansions in Trigonometric Fourier Series and in Principal Functions of Ordinary Differential Operators

    Science.gov (United States)

    Vagabov, A. I.

    1985-06-01

    A regularity concept is given for ordinary differential pencils of a general form in a space of vector-valued functions, and this concept is subjected to analysis. Theorems are established asserting that the Fourier series of an arbitrary vector-valued function in the system of eigenelements of the pencils is equiconvergent with the usual trigonometric Fourier series of the components of this vector-valued function. Bibliography: 7 titles.

  3. Directional Uncertainty Principle for Quaternion Fourier Transform

    OpenAIRE

    Hitzer, Eckhard

    2013-01-01

    This paper derives a new directional uncertainty principle for quaternion valued functions subject to the quaternion Fourier transformation. This can be generalized to establish directional uncertainty principles in Clifford geometric algebras with quaternion subalgebras. We demonstrate this with the example of a directional spacetime algebra function uncertainty principle related to multivector wave packets.

  4. Ultrafast Fourier-transform parallel processor

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, W.L.

    1980-04-01

    A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.

  5. Fourier transforms on an amalgam type space

    CERN Document Server

    Liflyand, E

    2012-01-01

    We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.

  6. Fourier theory and C∗-algebras

    Science.gov (United States)

    Bédos, Erik; Conti, Roberto

    2016-07-01

    We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.

  7. Fourier-Bessel heat kernel estimates

    OpenAIRE

    Malecki, Jacek; Serafin, Grzegorz; Zorawik, Tomasz

    2015-01-01

    We provide sharp two-sided estimates of the Fourier-Bessel heat kernel and we give sharp two-sided estimates of the transition probability density for the Bessel process in (0,1) killed at 1 and killed or reflected at 0.

  8. Magneto-sensor circuit efficiency incremented by Fourier-transformation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-10-01

    In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.

  9. Design of exponent type space matched filter based on analysis of background noise Fourier spectrum%基于噪音谱分析的新型指数空间匹配滤波器设计

    Institute of Scientific and Technical Information of China (English)

    高鸿启; 沈学举; 甘厚吉

    2011-01-01

    In order to limit the influence of background noise on correlation spot on the output correlation plane , the Fourier spectrum of the matched filter function and the background noise were compared, and the amplitude of the matched filter was nonlinearly modulated based on the exponent function relying on the Founer spectrum of the background noise. It enables the filter to reduce the transmittance in the area of the intense noise Fourier spectrum relative to the transmittance for input image Fourier spectrum. The signal-to-noise ratio on the output correlation plane was improved and the detection of the correlation spots was realized. The results of computer simulation show that the correlation peak value reduces 2. 28 times and the signal-to-noise ratio increases 3 times when m changes into 1. 2 from 0. The results of simulation and experiment show that the anti-noise capability of exponent type space matched filter is imprved obviously.%光学相关识别过程中,为减小输入场景中背景噪音对输出相关点的影响,通过分析背景噪音和目标图像的傅里叶谱,在匹配滤波函数中引入一由背景噪音傅里叶谱确定的指数函数,通过指数函数对匹配滤波函数振幅进行非线性调制,使设计的指数型空间匹配滤波器对背景噪音谱透过率小于目标图像谱透过率,从而增加输出相关平面上的信噪比,以实现相关点的正确探测.模拟结果表明当参量m由0增加到1.2时,相关峰值下降2.28倍,信噪比增加3倍.模拟和实验结果均表明:与纯相位匹配滤波器相比其抗噪能力得到明显改善.

  10. Miniaturization of holographic Fourier-transform spectrometers.

    Science.gov (United States)

    Agladze, Nikolay I; Sievers, Albert J

    2004-12-20

    Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777

  11. Digital Backpropagation in the Nonlinear Fourier Domain

    CERN Document Server

    Wahls, Sander; Prilepsky, Jaroslaw E; Poor, H Vincent; Turitsyn, Sergei K

    2015-01-01

    Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the ...

  12. High order generalized permutational fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi

    2004-01-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  13. High order generalized permutational fractional Fourier transforms

    Science.gov (United States)

    Ran, Qi-Wen; Yuan, Lin; Tan, Li-Ying; Ma, Jing; Wang, Qi

    2004-02-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +infty, M = 4k (k is a natural number) and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  14. Fourier Transform Infrared Spectroscopic Studies in Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.

  15. An Imaging Fourier Transform Spectrometer for NGST

    CERN Document Server

    Graham, J R

    1999-01-01

    Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) four-port imaging Michelson interferometer.

  16. CONTINUOUS QUATERNION FOURIER AND WAVELET TRANSFORMS

    OpenAIRE

    Bahri, Mawardi

    2014-01-01

    A two-dimensional quaternion Fourier transform (QFT) defined with the kernel $e^{-\\frac{\\boldsymbol{i} + \\boldsymbol{j} + \\boldsymbol{k}} {\\sqrt{3}} \\boldsymbol{\\omega} \\cdot \\boldsymbol{x} }$ is proposed. Some fundamental properties, such as convolution theorem, Plancherel theorem, and vector differential, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet tra...

  17. Fourier Spectra of Binomial APN Functions

    CERN Document Server

    Bracken, Carl; Markin, Nadya; McGuire, Gary

    2008-01-01

    In this paper we compute the Fourier spectra of some recently discovered binomial APN functions. One consequence of this is the determination of the nonlinearity of the functions, which measures their resistance to linear cryptanalysis. Another consequence is that certain error-correcting codes related to these functions have the same weight distribution as the 2-error-correcting BCH code. Furthermore, for fields of odd degree, our results provide an alternative proof of the APN property of the functions.

  18. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, Paul; Wadsworth, W.; Levy, R.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  19. Quantitative phase imaging via Fourier ptychographic microscopy

    OpenAIRE

    Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei; Zheng, Guoan

    2013-01-01

    Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system performance beyond the limit defined by its optical elements. The FPM technique applies a novel phase retrieval procedure to achieve both resolution enhancement and complex image recovery. In this letter, we compare FPM data to both theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitati...

  20. Fractional Fourier Transform of Cantor Sets

    Institute of Scientific and Technical Information of China (English)

    LIAO Tian-ne; GAO Qiong

    2005-01-01

    @@ A new kind of multifractal is constructed by fractional Fourier transform of Cantor sets. The wavelet transform modulus maxima method is applied to calculate the singularity spectrum under an operational definition of multifractal. In particular, an analysing procedure to determine the spectrum is suggested for practice. Nonanalyticities of singularity spectra or phase transitions are discovered, which are interpreted as some indications on the range of Boltzmann temperature q, on which the scaling relation of partition function holds.

  1. Computation of copulas by Fourier methods

    OpenAIRE

    Antonis Papapantoleon

    2011-01-01

    We provide an integral representation for the (implied) copulas of dependent random variables in terms of their moment generating functions. The proof uses ideas from Fourier methods for option pricing. This representation can be used for a large class of models from mathematical finance, including L\\'evy and affine processes. As an application, we compute the implied copula of the NIG L\\'evy process which exhibits notable time-dependence.

  2. Matrix isolation studies with Fourier transform ir

    International Nuclear Information System (INIS)

    The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO2, UO3, PuO, PuO2, UN, or UN2, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed

  3. Turbulence on a Fractal Fourier set

    CERN Document Server

    Lanotte, Alessandra Sabina; Biferale, Luca; Malapaka, Shiva Kumar; Toschi, Federico

    2015-01-01

    The dynamical effects of mode reduction in Fourier space for three dimensional turbulent flows is studied. We present fully resolved numerical simulations of the Navier-Stokes equations with Fourier modes constrained to live on a fractal set of dimension D. The robustness of the energy cascade and vortex stretching mechanisms are tested at changing D, from the standard three dimensional case to a strongly decimated case for D = 2.5, where only about $3\\%$ of the Fourier modes interact. While the direct energy cascade persist, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the co-dimension of the fractal set, $E(k)\\sim k^{- 5/3 + 3 -D }$, explains the results. At small scales, the intermittent behaviour due to the vorticity production is strongly modified by the fractal decimation, leading to an almost Gaussian statistics already at D ~ 2.98. These effects are connected to a genuine modification in the triad-to-tri...

  4. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  5. Analogue computer using fourier series for optical spectrometry

    International Nuclear Information System (INIS)

    The object of the present report is to describe an electronic unit designed for the automatic calculation of optical spectra, a calculation carried out, by a Fourier transformation of an interferogram recorded on magnetic tape. With this, apparatus it is possible to calculate 20 points simultaneously and its theoretical resolving power is only limited by the duration of the interferogram. The practical limit due to the technique adopted is 5 x 106. Its general characteristics are the following: - Signal analysis for frequencies of between 3 and 10 Kc/s - No automatic progression of the analysis frequency 0.01 c/s - Simultaneous calculation of 5 spectra and of 4 circuits per spectrum - Compensation of the changes in the unrolling speed of the spectrum magnetic band for differences of between ± 10 per cent (response time 200 μs max.) - Choice of the origin frequency with an accuracy of 0.01 c/s This description is preceded by a description of the spectrometric method using a Fourier transformation. (authors)

  6. Verification of Fourier phase and amplitude values from simulated heart motion using a hydrodynamic cardiac model

    International Nuclear Information System (INIS)

    Using pusher-plate-type artificial hearts, changes in the degree of synchrony and stroke volume were compared to phase and amplitude calculations from the first Fourier component of individual-pixel time-activity curves generated from gated radionuclide images (RNA) of these hearts. In addition, the ability of Fourier analysis to quantify paradoxical volume shifts was tested using a ventricular aneurysm model by which the Fourier amplitude was correlated to known increments of paradoxical volume. Predetermined phase-angle differences (incremental increases in asynchrony) and the mean phase-angle difference calculated from RNAs showed an agreement of -70+-4.40 (mean +-SD). A strong correlation was noted between stroke volume and Fourier amplitude (r=0.98; P<0.0001) as well as between the paradoxical volume accepted by the 'aneurysm' and the Fourier amplitude (r=0.97; P<0.0001). The degree of asynchrony and changes in stroke volume were accurately reflected by the Fourier phase and amplitude values, respectively. In the specific case of ventricular aneurysms, the data demonstrate that using this method, the paradoxically moving areas may be localized, and the expansile volume within these regions can be quantified. (orig.)

  7. Some Applications of Fourier's Great Discovery for Beginners

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    Nearly two centuries ago, Fourier discovered that any periodic function of period T can be presented as a sum of sine waveforms of frequencies equal to an integer times the fundamental frequency [omega] = 2[pi]/T (Fourier's series). It is impossible to overestimate the importance of Fourier's discovery, and all physics or engineering students…

  8. Optical image encryption based on multifractional Fourier transforms.

    Science.gov (United States)

    Zhu, B; Liu, S; Ran, Q

    2000-08-15

    We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153

  9. Research progress on discretization of fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    TAO Ran; ZHANG Feng; WANG Yue

    2008-01-01

    As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.

  10. Analogue computer using fourier series for optical spectrometry; Calculateur analogique par serie de fourier pour spectrometrie optique

    Energy Technology Data Exchange (ETDEWEB)

    Jouy, P.; Mougel, J.F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The object of the present report is to describe an electronic unit designed for the automatic calculation of optical spectra, a calculation carried out, by a Fourier transformation of an interferogram recorded on magnetic tape. With this, apparatus it is possible to calculate 20 points simultaneously and its theoretical resolving power is only limited by the duration of the interferogram. The practical limit due to the technique adopted is 5 x 10{sup 6}. Its general characteristics are the following: - Signal analysis for frequencies of between 3 and 10 Kc/s - No automatic progression of the analysis frequency 0.01 c/s - Simultaneous calculation of 5 spectra and of 4 circuits per spectrum - Compensation of the changes in the unrolling speed of the spectrum magnetic band for differences of between {+-} 10 per cent (response time 200 {mu}s max.) - Choice of the origin frequency with an accuracy of 0.01 c/s This description is preceded by a description of the spectrometric method using a Fourier transformation. (authors) [French] L'objet du present rapport est la description d'un ensemble electronique destine au calcul automatique des spectres optiques, calcul realise par transformation de Fourier d'un interferogramme enregistre sur bande magnetique. Cet appareil permet le calcul simultane de 20 points, et son pouvoir de resolution theorique n'est limite que par la duree de l'interferogramme. La limitation pratique due a la technique adoptee est de 5.10{sup 6}. Ses caracteristiques generales sont les suivantes: - Analyse de signaux dont les frequences sont comprises entre 3 et 10 Kc/s - Pas de progression automatique de la frequence d'analyse 0,01 c/s - Calcul simultane de 5 spectres et de 4 circuits par spectre - Compensation des variations de vitesse de defilement de la bande magnetique pour des ecarts compris entre {+-} 10 pour cent (temps de reponse 200 {mu}s max.) - Choix de la frequence origine a 0,01 c/s pres Cette description est

  11. Fourier optics treatment of classical relativistic electrodynamics

    International Nuclear Information System (INIS)

    In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)

  12. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    Science.gov (United States)

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings. PMID:27059444

  13. Element analysis and characteristic identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. using microwave digestion-inductively coupled plasma atomic emission spectrometry combined with Fourier transform infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Yajing Lou

    2014-01-01

    Full Text Available Background: Sulfur-fumigation may induce chemical transformation of traditional Chinese medicines leading to harmful effects following patient ingestion. For quality control, it is urgently needed to develop a reliable and efficient method for sulfur-fumigation identification. Materials and Methods: The spectrochemical identification of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. was carried out to evaluate inorganic elements and organic components. The concentrations of 12 elements, including Zn, Mn, Cu, Fe, Li, Mg, Sr, Pb, As, Cd, Hg, and S of samples were determined by microwave digestion - inductively coupled plasma atomic emission spectrometry (ICP-AES. Meanwhile, Fourier transform infrared spectrometry (FTIR was used for the study of chemical group characteristic reactions after sulfur-fumigation. Results: The concentrations of Fe, Mg, Hg, and S elements showed significant differences between non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. The characteristic stretching vibrations of some groups in FTIR spectra, such as -OH, -S = O and -S-O, provided the identification basis for the discrimination of non-fumigated and sulfur-fumigated Fritillaria thunbergii Miq. Conclusion: The application of microwave digestion - ICP-AES was successfully used in combination with FTIR to authenticate and evaluate the quality of medicinal Fritillaria thunbergii Miq. Further applications of this technique should be explored.

  14. Time-of-flight Fourier UCN spectrometer

    CERN Document Server

    Kulin, G V; Goryunov, S V; Kustov, D V; Geltenbort, P; Jentschel, M; Lauss, B; Schmidt-Wellenburg, Ph

    2016-01-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60$\\div$200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of $10^{-10}$ eV

  15. Fourier transform infrared spectroscopy of deuterated proteins

    Science.gov (United States)

    Marcano O., A.; Markushin, Y.; Melikechi, N.; Connolly, D.

    2008-08-01

    We report on Fourier transform spectra of deuterated proteins: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor II, monoclonal antibody to ovarian cancer antigen CA125 and Osteopontin. The spectra exhibit changes in the relative amplitude and spectral width of certain peaks. New peaks not present in the non-deuterated sample are also observed. Ways for improving the deuteration of proteins by varying the temperature and dilution time are discussed. We propose the use of deuterated proteins to increase the sensitivity of immunoassays aimed for early diagnostic of diseases most notably cancer.

  16. Time-of-flight Fourier UCN spectrometer

    Science.gov (United States)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  17. Alternating multivariate trigonometric functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group An, which is a subgroup of the permutation (symmetric) group Sn. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel

  18. Alternating multivariate trigonometric functions and corresponding Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Klimyk, A U [Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14b, Kiev 03680 (Ukraine); Patera, J [Centre de Recherches Mathematiques, Universite de Montreal, C.P. 6128-Centre ville, Montreal, H3C 3J7 Quebec (Canada)], E-mail: aklimyk@bitp.kiev.ua, E-mail: patera@crm.umontreal.ca

    2008-04-11

    We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group A{sub n}, which is a subgroup of the permutation (symmetric) group S{sub n}. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel.

  19. Alternating multivariate trigonometric functions and corresponding Fourier transforms

    Science.gov (United States)

    Klimyk, A. U.; Patera, J.

    2008-04-01

    We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group An, which is a subgroup of the permutation (symmetric) group Sn. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel.

  20. Fourier Dissection of Early-Type Galaxy Bars

    CERN Document Server

    Buta, R; Salo, H; Block, D L; Knapen, J H

    2006-01-01

    This paper reports on a near-infrared survey of early-type galaxies designed to provide information on bar strengths, bulges, disks, and bar parameters in a statistically well-defined sample of S0-Sa galaxies. Early-type galaxies have the advantage that their bars are relatively free of the effects of dust, star formation, and spiral structure that complicate bar studies in later type galaxies. We describe the survey and present results on detailed analysis of the relative Fourier intensity amplitudes of bars in 26 early-type galaxies. We also evaluate the symmetry assumption of these amplitudes with radius, used recently for bar-spiral separation in later-type galaxies. The results show a wide variety of radial Fourier profiles of bars, ranging from simple symmetric profiles that can be represented in terms of a single gaussian component, to both symmetric and asymmetric profiles that can be represented by two overlapping gaussian components. More complicated profiles than these are also found, often due to ...

  1. Turbulence on a Fractal Fourier Set.

    Science.gov (United States)

    Lanotte, Alessandra S; Benzi, Roberto; Malapaka, Shiva K; Toschi, Federico; Biferale, Luca

    2015-12-31

    A novel investigation of the nature of intermittency in incompressible, homogeneous, and isotropic turbulence is performed by a numerical study of the Navier-Stokes equations constrained on a fractal Fourier set. The robustness of the energy transfer and of the vortex stretching mechanisms is tested by changing the fractal dimension D from the original three dimensional case to a strongly decimated system with D=2.5, where only about 3% of the Fourier modes interact. This is a unique methodology to probe the statistical properties of the turbulent energy cascade, without breaking any of the original symmetries of the equations. While the direct energy cascade persists, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the codimension of the fractal set E(k)∼k(-5/3+3-D) explains the results. At small scales, the intermittency of the vorticity field is observed to be quasisingular as a function of the fractal mode reduction, leading to an almost Gaussian statistics already at D∼2.98. These effects must be connected to a genuine modification in the triad-to-triad nonlinear energy transfer mechanism. PMID:26764993

  2. Online Signature Verification Using Fourier Descriptors

    Science.gov (United States)

    Yanikoglu, Berrin; Kholmatov, Alisher

    2009-12-01

    We present a novel online signature verification system based on the Fast Fourier Transform. The advantage of using the Fourier domain is the ability to compactly represent an online signature using a fixed number of coefficients. The fixed-length representation leads to fast matching algorithms and is essential in certain applications. The challenge on the other hand is to find the right preprocessing steps and matching algorithm for this representation. We report on the effectiveness of the proposed method, along with the effects of individual preprocessing and normalization steps, based on comprehensive tests over two public signature databases. We also propose to use the pen-up duration information in identifying forgeries. The best results obtained on the SUSIG-Visual subcorpus and the MCYT-100 database are 6.2% and 12.1% error rate on skilled forgeries, respectively. The fusion of the proposed system with our state-of-the-art Dynamic Time Warping (DTW) system lowers the error rate of the DTW system by up to about 25%. While the current error rates are higher than state-of-the-art results for these databases, as an approach using global features, the system possesses many advantages. Considering also the suggested improvements, the FFT system shows promise both as a stand-alone system and especially in combination with approaches that are based on local features.

  3. On localization for double Fourier series

    Science.gov (United States)

    Goffman, Casper; Waterman, Daniel

    1978-01-01

    The localization theorems for Fourier series of functions of a single variable are classical and easy to prove. The situation is different for Fourier series of functions of several variables, even if one restricts consideration to rectangular, in particular square, partial sums. We show that the answer to the problem can be obtained by considering the notion of generalized bounded variation, which we introduced. Given a nondecreasing sequence {λn} of positive numbers such that Σ 1/λn diverges, a function g defined on an interval I of R1 is said to be of Λ-bounded variation (ΛBV) if Σ|g(an) — g(bn)|/λn converges for every sequence of nonoverlapping intervals (an, bn) [unk]I. If λn = n, we say that g is of harmonic bounded variation (HBV). The definition suitably modified can be extended to functions of several variables. We show that in the case of two variables the localization principle holds for rectangular partial sums if ΛBV = HBV, and that if ΛBV is not contained in HBV, then the localization principle does not hold for ΛBV even in the case of square partial sums. PMID:16592492

  4. Resolution optimization with irregularly sampled Fourier data

    International Nuclear Information System (INIS)

    Image acquisition systems such as synthetic aperture radar (SAR) and magnetic resonance imaging often measure irregularly spaced Fourier samples of the desired image. In this paper we show the relationship between sample locations, their associated backprojection weights, and image resolution as characterized by the resulting point spread function (PSF). Two new methods for computing data weights, based on different optimization criteria, are proposed. The first method, which solves a maximal-eigenvector problem, optimizes a PSF-derived resolution metric which is shown to be equivalent to the volume of the Cramer–Rao (positional) error ellipsoid in the uniform-weight case. The second approach utilizes as its performance metric the Frobenius error between the PSF operator and the ideal delta function, and is an extension of a previously reported algorithm. Our proposed extension appropriately regularizes the weight estimates in the presence of noisy data and eliminates the superfluous issue of image discretization in the choice of data weights. The Frobenius-error approach results in a Tikhonov-regularized inverse problem whose Tikhonov weights are dependent on the locations of the Fourier data as well as the noise variance. The two new methods are compared against several state-of-the-art weighting strategies for synthetic multistatic point-scatterer data, as well as an ‘interrupted SAR’ dataset representative of in-band interference commonly encountered in very high frequency radar applications. (paper)

  5. Resolution optimization with irregularly sampled Fourier data

    Science.gov (United States)

    Ferrara, Matthew; Parker, Jason T.; Cheney, Margaret

    2013-05-01

    Image acquisition systems such as synthetic aperture radar (SAR) and magnetic resonance imaging often measure irregularly spaced Fourier samples of the desired image. In this paper we show the relationship between sample locations, their associated backprojection weights, and image resolution as characterized by the resulting point spread function (PSF). Two new methods for computing data weights, based on different optimization criteria, are proposed. The first method, which solves a maximal-eigenvector problem, optimizes a PSF-derived resolution metric which is shown to be equivalent to the volume of the Cramer-Rao (positional) error ellipsoid in the uniform-weight case. The second approach utilizes as its performance metric the Frobenius error between the PSF operator and the ideal delta function, and is an extension of a previously reported algorithm. Our proposed extension appropriately regularizes the weight estimates in the presence of noisy data and eliminates the superfluous issue of image discretization in the choice of data weights. The Frobenius-error approach results in a Tikhonov-regularized inverse problem whose Tikhonov weights are dependent on the locations of the Fourier data as well as the noise variance. The two new methods are compared against several state-of-the-art weighting strategies for synthetic multistatic point-scatterer data, as well as an ‘interrupted SAR’ dataset representative of in-band interference commonly encountered in very high frequency radar applications.

  6. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  7. Time-Frequency Signal Processing Based on Fractional Fourier Transform in Passive Sonar Classification

    Directory of Open Access Journals (Sweden)

    Vahid Bagheri

    2014-11-01

    Full Text Available This paper introduce a new data SONAR classification method based on Short-Time Fractional Fourier Transform (STFrFT analysis. The passive SONAR system receives the acoustic signals radiated by vessels and attempts to categorize them as a function of the similarities between vessels of the same class.Here, a time-frequency processing and feature extraction method is developed in order to improve the performance of a feedforwardneural network, which is used to classify five classes of vessels.Processing of time-varying signals in fractional fourier domain allows us to estimate the signal with higher concentration than conventional fourier domain, making the technique robust against additive noise, maintaining same computational complexity. With the purpose of dimension reduction and classification improvement, we use Linear Discriminant Analysis (LDA technique. The feasibility of the proposed technique (STFrFTLDA has been tested experimentally using a real database. The experimental results show the superiority of the proposed method

  8. 基于快速傅里叶方法的地震前兆振幅谱分析%Analysis on earthquake precursor amplitude spectrum based on fast fourier method

    Institute of Scientific and Technical Information of China (English)

    戴勇; 高立新; 尹战军; 查斯; 杨彦明

    2012-01-01

    In this paper, the time series of geoelectrical resistivity, geomagnetism, earth deformation and gravity are processed with fast Fourier transform method, "FFT" for short. There are three main harmonics in daily mean data of the earth resistivity, recorded at Baochang and Wujiahe seismic stations. The harmonic with a period of approximately one year, has physical meaning. Different items in same geomagnetic station or same items in different geomagnetic stations, usually contain four main harmonics whose periods are 24, 12, 8 and 6 hours. Besides there exist tidal waves, there are different harmonics in the minute values recorded by horizontal pendulum tiltometer, water tube inclinometer, and gravimeter. It can be effective measuring the periods of noise precisely using FFT. But there are still many jobs to do in future, for example improving methods, the selection of data, explaining physical meaning of harmonic, etc.%利用FFT方法,对地电、地磁、形变及重力等前兆时间序列信号进行分析,结果显示,宝昌地震台及乌加河地震台地电两测向日均值时间序列存在3个主要谐波分量,其中周期近一年的分量物理意义明确.FFT方法在精确确定前兆时间序列中的干扰信息周期时具有较好的效果.

  9. [Using Fourier transform to calculate gas concentration in DOAS].

    Science.gov (United States)

    Liu, Qian-lin; Wang, Li-shi; Huang, Xin-jian; Wu, Yan-dan; Xiao, Ming-wei

    2008-12-01

    Being an analysis tool of high sensitivity, high resolution, multicomponents, real-time and fast monitoring, the differential optical absorption spectrometry (DOAS) is becoming a new method in atmosphere pollution monitoring. In the DOAS technique, many gases spectra have periodicity evidently, such as those from SO2, NO, NH3 and NO2. Aiming at three kinds of main air-polluted gases, i.e., SO2, NO and NO2 in atmosphere, the DOAS technique is used to monitor them, and Fourier transform is used to analyse the above-mentioned absorption spectra. Under the condition of Hanning Windows, Fourier transforma is used to process various gases spectra which have periodicity. In the process, the value of the characteristic frequency has a linearity relation to the gas concentration. So a new analysis method of DOAS is proposed, which is utilizing the relation between the value of the characteristic frequency and the gas concentration to deduce a linearity formula to calculate the gas concentration. So the value of the characteristic frequency can be used to get the gas concentration. For the gases with evident spectrum periodicity, such as SO2 and NO, this method is good. But for some gases with periodicity not evident, the error in the calculated concentration is beyond the allowable value. So in this method, the important process is frequency separation. It is also the main part in the future study. In a word, this method frees itself from the basic theory in the DOAS technique, cuts down on the process of the concentration calculation and the spectral analysis, and deserves further study. PMID:19248493

  10. Fourier microscopy of single plasmonic scatterers

    CERN Document Server

    Sersic, Ivana; Koenderink, A Femius

    2011-01-01

    We report a new experimental technique for quantifying the angular distribution of light scattered by single plasmonic and metamaterial nanoscatterers, based on Fourier microscopy in a dark field confocal set up. This new set up is a necessary tool for quantifying the scattering properties of single plasmonic and meatamaterial building blocks, as well as small coupled clusters of such building blocks, which are expected to be the main ingredients of nano-antennas, light harvesting structures and transformation optics. We present a set of measurements on Au nanowires of different lengths and show how the radiation pattern of single Au nanowires evolve with wire length and as a function of driving polarization and wave vector.

  11. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  12. Compact snapshot birefringent imaging Fourier transform spectrometer

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  13. Optical correction using fourier transform heterodyne

    Science.gov (United States)

    Laubscher, Bryan E.; Nemzek, Robert J.; Cooke, Bradly J.; Olivas, Nicholas L.; Jorgensen, Anders M.; Smith, J. A.; Weisse-Bernstein, Nina R.

    2005-08-01

    In this paper we briefly present the theory of Fourier Transform Heterodyne (FTH), describe past verification experiments carried out, and discuss the experiment designed to use this new imaging technology to perform optical correction. FTH uses the scalar projection of a reference laser beam and a test laser beam onto a single element detector. The complex current in the detector yields the coefficient of the scalar projection. By projecting a complete orthonormal basis set of reference beams onto the test beam, the amplitude and phase of the test beam can be measured, allowing the reconstruction of the phasefront of the image. Experiments to determine this technique's applicability to optical correction and optical self-correction are continuing. Applications of this technique beyond optical correction include adaptive optics; interferometry; and active, high background, low signal imaging.

  14. Uncertainty relation for the discrete Fourier transform.

    Science.gov (United States)

    Massar, Serge; Spindel, Philippe

    2008-05-16

    We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation. PMID:18518426

  15. On everywhere divergence of trigonometric Fourier series

    International Nuclear Information System (INIS)

    The following theorem is established. Theorem. Let a function φ:[0,+∞)→[0,+∞) and a sequence {ψ(m)} satisfy the following condition: the function φ(u)/u is non-decreasing on (0,+∞), ψ(m)≥1 (m=1,2,...) and φ(m)ψ(m)=o(m√ln m / √ln ln m) as m→∞. Then there is a function f element of L[-π,π] such that ∫-ππφ(|f(x)|) dxm→∞Sm(f,x)/ψ(m)=∞ for all x element of [-π,π] here Sm(f) is the m-th partial sum of the trigonometric Fourier series of f

  16. Fourier transform spectrometer controller for partitioned architectures

    Science.gov (United States)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  17. Quantitative phase imaging via Fourier ptychographic microscopy

    CERN Document Server

    Ou, Xiaoze; Yang, Changhuei; Zheng, Guoan

    2013-01-01

    Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system performance beyond the limit defined by its optical elements. The FPM technique applies a novel phase retrieval procedure to achieve both resolution enhancement and complex image recovery. In this letter, we compare FPM data to both theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitative and artifact-free. We additionally explore the relationship between the achievable spatial and optical thickness resolution offered by a reconstructed FPM phase image. We conclude by demonstrating both enhanced visualization and the collection of otherwise unobservable sample information using FPM quantitative phase.

  18. Spectral/Fourier Domain Optical Coherence Tomography

    Science.gov (United States)

    de Boer, Johannes F.

    Optical coherence tomography is a low-coherence interferometric method for imaging of biological tissue [1, 2]. For more than a decade after its inception between 1988 and 1991, the dominant implementation has been time domain OCT (TD-OCT), in which the length of a reference arm is rapidly scanned. The first spectral or Fourier domain OCT (SD/FD-OCT) implementation was reported in 1995 [3]. In SD-OCT the reference arm is kept stationary, and the depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the detection arm of a Michelson interferometer. This approach has provided a significant advantage in signal-to-noise ratio (SNR), which despite reports as early as 1997 [4, 5] has taken about half a decade to be recognized fully by the OCT community in 2003 [6-8]. The first demonstration of SD-OCT for in vivo retinal imaging in 2002 [9] was followed by a full realization of the sensitivity advantage by video rate in vivo retinal imaging [10], including high-speed 3-D volumetric imaging [11], ultrahigh-resolution video rate imaging [12, 13], and Doppler blood flow determination in the human retina [14, 15]. The superior sensitivity of SD-OCT, combined with the lack of need for a fast mechanical scanning mechanism, has opened up the possibility of much faster scanning without loss of image quality and provided a paradigm shift from point sampling to volumetric mapping of biological tissue in vivo. The technology has been particularly promising for ophthalmology [16, 17]. In this chapter, the principles and system design considerations of SD-OCT will be discussed in more detail.

  19. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  20. Control Of Cryogenic Fourier Transform Spectrometer Scanning Mirrors

    Science.gov (United States)

    Tripathi, S. S.; Gowrinathan, S.

    1981-12-01

    The Perkin-Elmer Corporation has designed and built a cryogenically cooled Fourier transform spectrometer for spaceborne applications. In operation, the spectrometer requires mirrors moving at constant velocity in both forward and reverse directions. To maintain efficiency and accuracy, the time taken to reverse direction and the vibration induced due to this reversal must be kept within low limits. This paper deals with the control system design for maintaining a constant velocity during forward and reverse scans and for smooth direction reversals. The systems aspects of the problem are described, and time-domain techniques of modern control theory are applied for optimization of turn-around profile. The analysis leads to a suboptimal design easily implemented by using analog-type components. Test results of satisfactory performance are also included.

  1. Fourier Disentangling Using the Technology of Virtual Observatory

    CERN Document Server

    Skoda, P

    2010-01-01

    The Virtual Observatory is a new technology of the astronomical research allowing the seamless processing and analysis of a heterogeneous data obtained from a number of distributed data archives. It may also provide astronomical community with powerful computational and data processing on-line services replacing the custom scientific code run on user's computers. Despite its benefits the VO technology has been still little exploited in stellar spectroscopy. As an example of possible evolution in this field we present an experimental web-based service for disentangling of spectra based on code KOREL. This code developed by P. Hadrava enables Fourier disentangling and line-strength photometry, i.e. simultaneous decomposition of spectra of multiple stars and solving for orbital parameters, line-profile variability or other physical parameters of observed objects. We discuss the benefits of the service-oriented approach from the point of view of both developers and users and give examples of possible user-friendl...

  2. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    Directory of Open Access Journals (Sweden)

    F. Friedl-Vallon

    2014-03-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the Upper Troposphere/Lower Stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated in a gimbal. The assembly can be mounted in the belly pod of the German high altitude and long range research aircraft HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made predominantly in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  3. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    Directory of Open Access Journals (Sweden)

    F. Friedl-Vallon

    2014-10-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  4. Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients

    Institute of Scientific and Technical Information of China (English)

    Chujun Zheng; Peng Han; Hongsen Chang

    2006-01-01

    @@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.

  5. XFT: Extending the Digital Application of the Fourier Transform

    CERN Document Server

    Campos, Rafael G; Chávez, Edgar

    2009-01-01

    In recent years there has been a growing interest in the fractional Fourier transform driven by its great number of applications. The literature in this field follows two main routes. On the one hand the applications fields where the ordinary Fourier transform can be applied are being revisited to use this intermediate time-frequency representation of signals; and on the other hand fast algorithms for numerical computation of the fractional Fourier transform are devised. In this paper we derive a Gaussian-like quadrature of the continuous fractional Fourier transform. This quadrature is given in terms of the Hermite polynomials and their zeros. By using some asymptotic formulae we are able to solve the quadrature by a diagonal congruence transformation equivalent to a chirp-FFT-chirp transformation, yielding a fast discretization of the fractional Fourier transform and its inverse in closed form. We extend the range of the fractional Fourier transform by considering arbitrary complex values inside the unitary...

  6. Non-Fourier Heat Conduction Effects During High-Energy Beam Metalworking

    Institute of Scientific and Technical Information of China (English)

    张海泉; 张彦华; 赵海燕

    2004-01-01

    Non-Fourier heat conduction induced by ultrafast heating of metals with a high-energy density beam was analyzed. The non-Fourier effects during high heat flux heating were illustrated by comparing the transient temperature response to different heat flux and material relaxation times. Based on the hyperbolic heat conduction equation for the non-Fourier heat conduction law, the equation was solved using a hybrid method combining an analytical solution and numerical inversion of the Laplace transforms for a semi-infinite body with the heat flux boundary. Analysis of the temperature response and distribution led to a criterion for the applicability of the non-Fourier heat conduction law. The results show that at a relatively large heat flux, such as greater than 108 W/cm2, the heat-affected zone in the metal material experiences a strong thermal shock as the non-Fourier effects cause a large step increase in the surface temperature. The results provide a method for analyzing transient heat conduction problems using a high-energy density beam, such as electron beam deep penetration welding.

  7. Reduction and coding of synthetic aperture radar data with Fourier transforms

    Science.gov (United States)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  8. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  9. A comparison of Fourier phase/amplitude and factorial imaging in first-pass cardiac studies

    International Nuclear Information System (INIS)

    Factorial phase/amplitude imaging is shown to be a useful alternative to Fourier phase/amplitude imaging in the analysis of representative left ventricular cycles. It has the advantage of removing anomalies among normal patients due to asymmetric left ventricular curves while retaining and possibly enhancing abnormalities. (WU)

  10. Conservation law for the Cauchy-Navier equation of elastodynamics wave via Fourier transform

    OpenAIRE

    Van Vinh, Nguyen; Minh, Nguyen Tuan

    2012-01-01

    In this paper, we use the method of Fourier analysis to derive the formula of the total energy for the Cauchy problem of the Cauchy-Navier elastodynamics wave equation describing the motion of an isotropic elastic body. The conservation law of the total energy is obtained and consequently, the global uniqueness of the solution to the problem is implied.

  11. [Biological Process Oriented Online Fourier Transform Infrared Spectrometer].

    Science.gov (United States)

    Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates

  12. A Novel Algorithm of Network Trade Customer Classification Based on Fourier Basis Functions

    Directory of Open Access Journals (Sweden)

    Li Xinwu

    2013-11-01

    Full Text Available Learning algorithm of neural network is always an important research contents in neural network theory research and application field, learning algorithm about the feed-forward neural network has no satisfactory solution in particular for its defects in calculation speed. The paper presents a new Fourier basis functions neural network algorithm and applied it to classify network trade customer. First, 21 customer classification indicators are designed, based on characteristics and behaviors analysis of network trade customer, including customer characteristics type variables and customer behaviors type variables,; Second, Fourier basis functions is used to improve the calculation flow and algorithm structure of original BP neural network algorithm to speed up its convergence and then a new Fourier basis neural network model is constructed. Finally the experimental results show that the problem of convergence speed can been solved, and the accuracy of the customer classification are ensured when the new algorithm is used in network trade customer classification practically.

  13. α-bandlimited diffuser in fractional Fourier optics

    Science.gov (United States)

    Patiño-Vanegas, Alberto; Durand, Pierre-Emmanuel; Torres, Rafael; Pellat-Finet, Pierre

    2016-04-01

    We propose a method for calculating appropriate α-band limited diffusers using the fractional Fourier transform. In order to do this, we implement a method for performing a numerical interpolation in the fractional Fourier domain. Such diffusers with compact support in the Fresnel regime may be used in fractional Fourier optical systems where the use of diffusers produce speckles, e.g. digital holography or optical encryption. Numerical simulations are presented.

  14. A Note on Fourier and the Greenhouse Effect

    CERN Document Server

    Postma, Joseph E

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorrect. The solution to this problem is not feigned to be given here.

  15. On a General Class of Trigonometric Functions and Fourier Series

    Science.gov (United States)

    Pavao, H. Germano; Capelas de Oliveira, E.

    2008-01-01

    We discuss a general class of trigonometric functions whose corresponding Fourier series can be used to calculate several interesting numerical series. Particular cases are presented. (Contains 4 notes.)

  16. Fourier optics and near-field superlens

    Science.gov (United States)

    Sheng, Yunlong; Tremblay, Guillaume; Gravel, Yann

    2011-10-01

    Fundamental Fourier optics is applied to metallic near-field superlens, whose transfer function is computed with the transfer matrix, the Surface Plasmon Polariton (SPP) resonance and the SPP waveguide theory. However, when the object nano-structure consists of feature nano-slits and nano-holes etc, which are as the basic object elements to scatter the light, especially when the objects are metal, the electrical dipoles are induced at the nano-slits and nano-holes by the illuminating light, the space invariance condition can be not respected within the dimension of the nano-meter scale objects, so that the point spread function becomes approximate and the superlens is usually characterized by the image of a two nano-slit pattern. The superlens is designed and optimized based on the transfer function. Improvement in the transfer function can improve significantly the image quality. The real image of the near-field superlens can be computed with numerical simulation using the FDTD method.

  17. The Symmetric Group Defies Strong Fourier Sampling: Part I

    OpenAIRE

    Moore, Cristopher; Russell, Alexander; Schulman, Leonard J.

    2005-01-01

    We resolve the question of whether Fourier sampling can efficiently solve the hidden subgroup problem. Specifically, we show that the hidden subgroup problem over the symmetric group cannot be efficiently solved by strong Fourier sampling, even if one may perform an arbitrary POVM on the coset state. Our results apply to the special case relevant to the Graph Isomorphism problem.

  18. Fiber Optic Fourier Transform White-Light Interferometry

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Cai-Jie Tang

    2008-01-01

    Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.

  19. Fourier transforms of Dini-Lipschitz functions on Vilenkin groups

    Directory of Open Access Journals (Sweden)

    M. S. Younis

    1992-09-01

    Full Text Available In [4] we proved some theorems on the Fourier Transforms of functions satisfying conditions related to the Dini-Lipschitz conditions on the n-dimensional Euclidean space Rn and the torus group Tn. In this paper we extend those theorems for functions with Fourier series on Vilenkin groups.

  20. Geometric interpretations of the Discrete Fourier Transform (DFT)

    Science.gov (United States)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.