WorldWideScience

Sample records for analysis fire simulation

  1. Sensitivity Analysis of Fire Dynamics Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.;

    2007-01-01

    In case of fire dynamics simulation requirements to reliable results are most often very high due to the severe consequences of erroneous results. At the same time it is a well known fact that fire dynamics simulation constitutes rather complex physical phenomena which apart from flow and energy...... equations require solution of the issues of combustion and gas radiation to mention a few. This paper performs a sensitivity analysis of a fire dynamics simulation on a benchmark case where measurement results are available for comparison. The analysis is performed using the method of Elementary Effects...

  2. Simulation analysis of the spread of fire through the program Fire Dynamics Simulator FDS in areas of fire of nuclear power plants

    International Nuclear Information System (INIS)

    The objective of the analysis of the spread of fire through Computational Fluid Dynamics simulation with the Fire Dynamics Simulator program is to determine the identification of the affected computers and determine the livability in the areas of fire as fire postulates. The simulation with Fire Dynamics Simulator allows the evolution and spread of flame and smoke behavior in an instant in time, determining the exact moment that damage is caused by radiation or temperature to equipment and operation according to the level of toxicity and temperature of the fire area. (Author)

  3. Probabilistic fire simulator - Monte Carlo simulation tool for fire scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, S.; Keski-Rahkonen, O. [VTT Building and Transport, Espoo (Finland)

    2002-11-01

    Risk analysis tool is developed for computing of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator, combines Monte Carlo simulation and CFAST two-zone fire model. In this work, it is used to calculate failure probability of redundant cables and fire detector activation times in a cable tunnel fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. (orig.)

  4. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire

    International Nuclear Information System (INIS)

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  5. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire; Optimizacion de la inversion economica en PCI mediante la metodologia de diseo prestaional en el analisis de la propagacion de incendios con FDS (Fire Dynnamics Simulator) en areas de fuego de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salellas, J.

    2015-07-01

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  6. Simulation analysis of the spread of fire through the program Fire Dynamics Simulator FDS in areas of fire of nuclear power plants; Analisis de simulacion de la propagacion de incendios mediante el programa Fire Dynamics Simulator FDS en areas de fuego de Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salellas, J.; Zamora, I.; Fabbri, M.; Colomer, C.; Castillo, R.; Fradera, J.

    2014-07-01

    The objective of the analysis of the spread of fire through Computational Fluid Dynamics simulation with the Fire Dynamics Simulator program is to determine the identification of the affected computers and determine the livability in the areas of fire as fire postulates. The simulation with Fire Dynamics Simulator allows the evolution and spread of flame and smoke behavior in an instant in time, determining the exact moment that damage is caused by radiation or temperature to equipment and operation according to the level of toxicity and temperature of the fire area. (Author)

  7. Probabilistic simulation of fire scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo E-mail: simo.bostikka@vtt.fi; Keski-Rahkonen, Olavi

    2003-10-01

    A risk analysis tool is developed for computation of the distributions of fire model output variables. The tool, called Probabilistic Fire Simulator (PFS), combines Monte Carlo simulation and CFAST, a two-zone fire model. In this work, the tool is used to estimate the failure probability of redundant cables in a cable tunnel fire, and the failure and smoke filling probabilities in an electronics room during an electronics cabinet fire. Sensitivity of the output variables to the input variables is calculated in terms of the rank order correlations. The use of the rank order correlations allows the user to identify both modelling parameters and actual facility properties that have the most influence on the results. Various steps of the simulation process, i.e. data collection, generation of the input distributions, modelling assumptions, definition of the output variables and the actual simulation, are described.

  8. CERN Fire Brigade rescue simulation

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The CERN Fire Brigade is made up of experienced firemen from all of the 20 Member States. In these images they are seen at a 'Discovery Monday' held at the Microcosm exhibition. Here visitors learn how the Fire Brigade deal with various situations, including a simulated cave rescue performed by the Hazardous Environments Response Team.

  9. Simulating Building Fires for Movies

    Science.gov (United States)

    Rodriguez, Ricardo C.; Johnson, Randall P.

    1987-01-01

    Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.

  10. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP.

  11. Experimental validation of finite element model analysis of a steel frame in simulated post-earthquake fire environments

    Science.gov (United States)

    Huang, Ying; Bevans, W. J.; Xiao, Hai; Zhou, Zhi; Chen, Genda

    2012-04-01

    During or after an earthquake event, building system often experiences large strains due to shaking effects as observed during recent earthquakes, causing permanent inelastic deformation. In addition to the inelastic deformation induced by the earthquake effect, the post-earthquake fires associated with short fuse of electrical systems and leakage of gas devices can further strain the already damaged structures during the earthquakes, potentially leading to a progressive collapse of buildings. Under these harsh environments, measurements on the involved building by various sensors could only provide limited structural health information. Finite element model analysis, on the other hand, if validated by predesigned experiments, can provide detail structural behavior information of the entire structures. In this paper, a temperature dependent nonlinear 3-D finite element model (FEM) of a one-story steel frame is set up by ABAQUS based on the cited material property of steel from EN 1993-1.2 and AISC manuals. The FEM is validated by testing the modeled steel frame in simulated post-earthquake environments. Comparisons between the FEM analysis and the experimental results show that the FEM predicts the structural behavior of the steel frame in post-earthquake fire conditions reasonably. With experimental validations, the FEM analysis of critical structures could be continuously predicted for structures in these harsh environments for a better assistant to fire fighters in their rescue efforts and save fire victims.

  12. Computer simulation of the fire-tube boiler hydrodynamics

    Science.gov (United States)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  13. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  14. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    Energy Technology Data Exchange (ETDEWEB)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  15. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  16. Simulation and exergy analysis of a 600 MWe oxy-combustion pulverized coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jie; Zhao, Haibo; Chen, Meng; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    CO{sub 2} emission from pulverized coal-fired power plants (PC) can be efficiently controlled by adopting the oxy-combustion technology, which adds a cryogenic air separation process (ASU) and a flue gas treatment process (FGU) to the conventional combustion process. To understand the thermodynamic properties of the oxy-combustion process, a simulation study and an exergy analysis of a 600 MWe oxy-combustion PC were conducted. The commercial flowsheet software Aspen Plus was used to simulate the process and the simulation results are the basis to perform the exergy analysis. The simulation results show that the CO{sub 2} concentration in the flue gas from the oxy-combustion boiler can be more than 80 mol% and the CO{sub 2} purity from the FGU can reach 99 mol%; the net efficiency of the oxy-combustion system is 10.84% (lower heating value) lower because of the power consumptions of the ASU and FGU processes; the unit power consumption for the oxygen production in the ASU is 0.247 kWh/kg-O{sub 2}. The exergy analysis focused on the boiler models (oxy-combustion and conventional) and each of them was divided to be several parts, such as furnace, heat exchanger. The exergy analysis results show that the exergy efficiency of the oxy-combustion boiler is 0.8% higher than that of the conventional combustion boiler, the primary reason for this is the exergy efficiency of the combustion process in the oxy-combustion boiler is about 4% higher. In addition, water wall and air heater in any boiler model have very low exergy efficiencies.

  17. Theoretical analysis and numerical simulation on behaviour properties of large span cable-supported structures under fire conditions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Large span cable-supported structures have been developed rapidly in China, and they always adopt high-strength steel cables as structural members. However, the modulus of elasticity and yield strength of steel material will decrease seriously under fire conditions while fire protection is unlikely to be provided for steel cable. Several typical large span cable-supported structures such as cable truss, beam string structure and prestressed cable net are studied on their structural behaviour in this paper. Theoretical formulae are derived in terms of geometrical and material nonlinearity with high temperature effect. Finite element models are also established to simulate the structural performance under fire conditions. The calculation formulae for fire-resisting design are suggested for these three types of structures, while displacement and prestressed force variation rules are also given.

  18. Theoretical analysis and numerical simulation on behaviour properties of large span cable-supported structures under fire conditions

    Institute of Scientific and Technical Information of China (English)

    BAI Yin; SHI YongJiu; WANG YuanQing

    2009-01-01

    Large span cable-supported structures have been developed rapidly in China,and they always adopt high-strength steel cables as structural members.However,the modulus of elasticity and yield strength of steel material will decrease seriously under fire conditions while fire protection is unlikely to be provided for steel cable.Several typical large span cable-supported structures such as cable truss,beam string structure and prestressed cable net are studied on their structural behaviour in this paper.Theoretical formulae are derived in terms of geometrical and material nonlinearity with high temperature effect.Finite element models are also established to simulate the structural performance under fire conditions.The calculation formulae for fire-resisting design are suggested for these three types of structures,while displacement and prestressed force variation rules are also given.

  19. Simulation of the 2009 Harmanli fire (Bulgaria)

    CERN Document Server

    Jordanov, Georgi; Dobrinkova, Nina; Kochanski, Adam K; Mandel, Jan; Sousedík, Bedřich

    2011-01-01

    We use a coupled atmosphere-fire model to simulate a fire that occurred on August 14--17, 2009, in the Harmanli region, Bulgaria. Data was obtained from GIS and satellites imagery, and from standard atmospheric data sources. Fuel data was classified in the 13 Anderson categories. For correct fire behavior, the spatial resolution of the models needed to be fine enough to resolve the essential micrometeorological effects. The simulation results are compared to available incident data. The code runs faster than real time on a cluster. The model is available from openwfm.org and it extends WRF-Fire from WRF 3.3 release.

  20. Analysis of the large urban fire environment

    International Nuclear Information System (INIS)

    An analysis describing the high temperature and velocity environment of a large urban area fire is presented. The boundary value problem treats the burning region in detail. A novel prescription of the boundary conditions at the fire periphery allows the burning-region analysis to be uncoupled from analyses of the free-convection column and the far field. The relationship between burning rate, buoyancy, pressure gradients, and the creation of high velocity fire winds is described. Sample results simulate the burning-region environment for the 1943 Hamburg firestorm

  1. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  2. Simulation of people's evacuation in tunnel fire

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The simulation model Tunev(tunnel evacuation) was developed for people's evacuation in tunnel fire. It contains simple database of the people's behavioral reaction and structure characteristic parameters of tunnel fireproofing. The model can be used to calculate the total evacuation time in various scenes when fire occurs in the different locations of the tunnel. Combined with fire simulation soft ware CFD- POENICS3.5, Tunev model can be used to calculate the fire danger coming time; by comparing with these two kinds of time, it can be used to assess the safety of the evacuation, and the evacuation process also have a dynamic demo. The simulation results show that the Tunev model can be used to predict the reliability of safe evacuation for people in tunnel fire and provide references for people's safe escape scheme. Some relevant concepts of the model were described and an evacuation simulation of a typical tunnel case, i.e. Xuefeng Mountain Tunnel was performed by using this model. And the model's validation and actual application were also described.

  3. Simulating statistics of lightning-induced and man made fires

    Science.gov (United States)

    Krenn, R.; Hergarten, S.

    2009-04-01

    The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 1•3 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.

  4. Two typical phenomena from the numerical simulation of fire and smoke transport in a gymnasium fire

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianguo; CHEN Haixin; FU Song

    2006-01-01

    Navier-Stokes equations are solved to simulate a gymnasium fire. The equations are simplified by weakly compressible low Mach number assumption. Turbulence effect is simulated using Smagorinsky large eddy simulation (LES) model. The mixture fraction combustion model is adopted to simulate the burning process. With the analysis of computed velocity and temperature field, two important phenomena, named door effect and smoke plug-holing, are found to be responsible for the deterioration of smoke exhaust efficiency when natural ventilation or forced ventilation is present. Some explanations are made to elucidate these effects' mechanism. An improved design of smoke ventilation system is suggested.

  5. A CFD Validation of Fire Dynamics Simulator for ‎Corner Fire

    OpenAIRE

    Pavan K Sharma; Gera‎ R.K. Singh

    2010-01-01

    A computational study has been carried out for predicting the behaviour of a corner fire ‎source for a ‎reported experiment using a field model based code Fire Dynamics Simulator ‎‎(FDS). Time ‎dependent temperature is predicted along with the resulting changes in the ‎plume structure. The flux ‎falling on the wall was also observed. The analysis has been ‎carried out with the correct value of the ‎grid size based on earlier experiences and also by ‎performing a grid sensitivity study. The pr...

  6. Data Assimilation of Satellite Fire Detection in Coupled Atmosphere-Fire Simulation by WRF-SFIRE

    CERN Document Server

    Mandel, Jan; Vejmelka, Martin; Beezley, Jonathan D

    2014-01-01

    Currently available satellite active fire detection products from the VIIRS and MODIS instruments on polar-orbiting satellites produce detection squares in arbitrary locations. There is no global fire/no fire map, no detection under cloud cover, false negatives are common, and the detection squares are much coarser than the resolution of a fire behavior model. Consequently, current active fire satellite detection products should be used to improve fire modeling in a statistical sense only, rather than as a direct input. We describe a new data assimilation method for active fire detection, based on a modification of the fire arrival time to simultaneously minimize the difference from the forecast fire arrival time and maximize the likelihood of the fire detection data. This method is inspired by contour detection methods used in computer vision, and it can be cast as a Bayesian inverse problem technique, or a generalized Tikhonov regularization. After the new fire arrival time on the whole simulation domain is...

  7. A CFD Validation of Fire Dynamics Simulator for ‎Corner Fire

    Directory of Open Access Journals (Sweden)

    Pavan K. Sharma

    2010-12-01

    Full Text Available A computational study has been carried out for predicting the behaviour of a corner fire ‎source for a ‎reported experiment using a field model based code Fire Dynamics Simulator ‎‎(FDS. Time ‎dependent temperature is predicted along with the resulting changes in the ‎plume structure. The flux ‎falling on the wall was also observed. The analysis has been ‎carried out with the correct value of the ‎grid size based on earlier experiences and also by ‎performing a grid sensitivity study. The predicted ‎temperatures of the two scenarios at two ‎points by the current analysis are in very good agreement ‎with the earlier reported ‎experimental data and numerical prediction. The studies have extended the ‎utility of field ‎model based tools to model the particular separate effect phenomenon like corner for ‎one ‎such situation and validate against experimental data. The present study have several ‎‎applications in such as room fires, hydrogen transport in nuclear reactor containment, ‎natural ‎convection in building flows etc. The present approach uses the advanced Large ‎Eddy Simulation ‎‎(LES based CFD turbulence model. The paper presents brief description ‎of the code FDS, details ‎of the computational model along with the discussions on the ‎results obtained under these studies. ‎The validated CFD based procedure has been used for ‎solving various problems enclosure fire, ‎ventilated fire and open fire from nuclear industry ‎which are however not included in the present ‎paper. ‎

  8. Improvement and upgrade of mine fire simulation program MFIRE

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-hong; LUO Yi

    2011-01-01

    MFIRE,an underground mine fire simulation program developed in 1980's,is a tool that can be used to simulate the impacts of a mine fire event to a mine ventilation network.However,the lack of the abilities to simulate some of the important mine fire phenomena realistically hindered its wide applications.This research carried out to improve and upgrade the MFIRE 2.20 program to MFIRE 2.30.The new additions of MFIRE 2.30 including a time dependent fire model,smoke rollback prediction,the incorporation of a moving fire source,and a rewriting of MFIRE in Microsoft Visual C++ were interpreted.

  9. A case study on fractal simulation of forest fire spread

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper relates to the semi-empirical model based on fire field energy balance and the physical model based on land temperature,aiming to provide a practical way of describing fire spread.Fire spread is determined by the characteristics of combustible materials and the agency of meteorological factors and terrains.Combustible materials,such as surface area,have no featured scale,yet the process of forest fire spread contains the self-replicating feature,both of which contribute to the self-similarity of fire spread.Consequently,fire behavior can be described by fractal geometry.In this research,we select Wuchagou forest in Da Hinggan Mountains as the experimental site where a forest fire took place three years ago.The forest fire was detected on low-resolution NOAA-AVHRR images,and fire spread was simulated on high-resolution TM images as another attempt to merge information.Based on remote sensing and GIS,we adopted the method of limited spreading lumping (DLA) to describe growing phenomenon to simulate the dynamic process of fire spread and adjusting shape of the result of fire simulation by the scale rule.As a result,the simulated fire and the actual fire manifest the self-similarity in their spreading shapes as well as the quantitative similarity in their areas.

  10. Quantitative application of Monte Carlo simulation in Fire-PSA

    Energy Technology Data Exchange (ETDEWEB)

    Mangs, J.; Hostikka, S.; Korhonen, T. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland); Keski-Rahkonen, O.

    2007-05-15

    In a power plant a fire cell forms the basic subunit. Since the fire is initially located there, the full-scale time dependent fire simulation and estimation of target response must be performed within the fire cell. Conditional, time dependent damage probabilities in a fire cell can now be calculated for arbitrary targets (component or a subsystem) combining probabilistic (Monte Carlo) and deterministic simulation. For the latter a spectrum from simple correlations up to latest computational fluid dynamics models is available. Selection of the code is made according to the requirements form the target cell. Although calculations are numerically heavy, it is now economically possible and feasible to carry out quantitative fire-PSA for a complete plant iteratively with the main PSA. From real applications examples are shown on assessment of fire spread possibility in a relay room, and potential of fire spread on cables in a tunnel. (orig.)

  11. Computer simulation of combustion of mine fires

    Institute of Scientific and Technical Information of China (English)

    余明高; 张和平; 范维澄; 王清安

    2002-01-01

    According to control theories, mine fires can be considered as an unsteady process after the normal ventilation system is disturbed. Applied the principal of physical chemistry and thermal fluid mechanics, the parameters models of the unsteady state system have been given, such as fuel combustion rate, heat of combustion, concentration, temperature, heat losses, heat resistance, work of expansion and heat pressure difference. The results of the calculation agree approximately with the results of the test. By the computer simulation, it is shown that the main factor of producing the throttling effect is the fire rate, second is the heat resistance and the heat pressure difference. The rate of heat flow that passes through the airway wall is the maximum on the surface, and decrease with time. The heat transfer progresses only within the range of 0.5 m away from theairway wall during combustion for 2 hours. Its variable for the mass flux rate and the percentage concentration of the gas along the airway of the downstream. When the delayed time is very small, the variation can be neglected. Viscosity resistance is the main part of the heat resistance, second is the expansion resistance that is less than tens Pascal when Mach number is very small. Work of expansion is principally turned into heat losses, only a very small part is consumed by the work of the heat resistance and the inertia acceleration.

  12. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  13. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  14. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  15. Application of Computer Integration Technology for Fire Safety Analysis

    Institute of Scientific and Technical Information of China (English)

    SHI Jianyong; LI Yinqing; CHEN Huchuan

    2008-01-01

    With the development of information technology, the fire safety assessment of whole structure or region based on the computer simulation has become a hot topic. However, traditionally, the concemed studies are performed separately for different objectives and difficult to perform an overall evaluation. A new multi-dimensional integration model and methodology for fire safety assessment were presented and two newly developed integrated systems were introduced to demonstrate the function of integration simulation technology in this paper. The first one is the analysis on the fire-resistant behaviors of whole structure under real fire loads. The second one is the study on fire evaluation and emergency rescue of campus based on geography information technology (GIS). Some practical examples are presented to illuminate the advan-tages of computer integration technology on fire safety assessment and emphasize some problems in the simulation. The results show that the multi-dimensional integration model offers a new way and platform for the integrating fire safety assessment of whole structure or region, and the integrated software developed is the useful engineering tools for cost-saving and safe design.

  16. Turbulence and fire-spotting effects into wild-land fire simulators

    CERN Document Server

    Kaur, Inderpreet; Bosseur, Frédéric; Filippi, Jean-Baptiste; Pagnini, Gianni

    2016-01-01

    This paper presents a mathematical approach to model the effects and the role of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of a drifting component (obtained from an existing wildfire simulator without turbulence and fire-spotting) and a random fluctuating component. The modelling of the random effects is embodied in a probability density function accounting for the fluctuations around the fire perimeter given by the drifting component. In past, this formulation has been applied to include these random effects into a wildfire simulator based on an Eulerian moving interface method, namely the Level Set Method (LSM), but in this paper the same formulation is adapted for a wildfire simulator based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS). Simple idealised numerical experiments are used to compare the performances of the LSM...

  17. Simulation of smoke flow and longitudinal ventilation in tunnel fire

    Institute of Scientific and Technical Information of China (English)

    YANG Gao-shang; AN Yong-lin; PENG Li-min; ZHANG Jin-hua

    2006-01-01

    Understanding the characteristics of smoke flow in tunnel fire is very important for tunnel safety. The characteristics of tunnel fire were analyzed. The smoke development in different situations of an engineering example was simulated using commercial CFD software PHOENICS 3.5 by field modeling method. The spreading rules and characteristics of concentration field and temperature field of smoke flow with different longitudinal ventilation speeds were studied, which may provide the theoretical background for evacuation design in tunnel fire. The effective measures of fire rescue and crowd evacuation were also described.

  18. Validation process of the ISIS CFD software for fire simulation

    International Nuclear Information System (INIS)

    Fire codes are more and more used for safety analysis of nuclear power plants. In several OECD member countries, the accuracy of the calculated simulation with CFD code has to be demonstrated; this is the aim of the Verification and Validation process (V and V). In this context the French 'Institut de Radioprotection et de Surete Nucleaire' (IRSN) develops a computational software, named ISIS, dedicated to the simulation of buoyant fire in compartment mechanically ventilated. ISIS is based on the scientific computing development platform PELICANS and benefits of the practicalities for implementing methods. The code ISIS is a freeware, available at https://gforge.irsn.fr/gf/project/isis. The physical modelling used in ISIS is classic for industrial application in large compartments. The turbulence approach is based on the Reynolds-Averaged-Navier-Stokes equations, supplemented by a two-equation closure and the eddy viscosity model. The turbulent production term is adapted to cope with buoyancy effects. Combustion modelling relies on a single reaction equation. The classical eddy dissipation approach is used for the mean chemical reaction rate which means that it is controlled solely by the turbulent mixture. The Finite Volume method is employed to treat radiation exchanges. Both incompressible and low Mach number flows are dealt with. The originality of the ISIS code is its capacity to take into account the effect of ventilation on the pressure. The thermodynamic pressure and the mass flow rate for ventilation vents are related by the mass balances in the compartment and in the ventilation branch where an aeraulic resistance is taken into account. For numerical solution, a fractional step algorithm has been developed. The spatial discretization combines mixed finite element for the Navier-Stokes equation and finite volumes scheme for transport (advection-diffusion-reaction) equation in order to ensure the velocity stability and the conservation in physical range of

  19. Calibration of FARSITE fire area simulator in Iranian northern forests

    Directory of Open Access Journals (Sweden)

    R. Jahdi

    2014-09-01

    Full Text Available Wildfire simulators based on empirical or physical models need to be locally calibrated and validated when used under conditions that differ from those where the simulators were originally developed. This study aims to calibrate FARSITE fire spread model considering a set of recent wildfires occurred in Northern Iran forests. Site specific fuel models in the study areas were selected by sampling the main natural vegetation type complexes and assigning standard fuel models. Overall, simulated fires presented reliable outputs that accurately replicated the observed fire perimeters and behavior. Standard fuel models of Scott and Burgan (2005 afforded better accuracy in the simulated fire perimeters than the standard fuel models of Anderson (1982. The best match between observed and modeled burned areas was observed on herbaceous type fuel models. Fire modeling showed a high potential for estimating spatial variability in fire spread and behavior in the study areas. This work represents a first step in the application of fire spread modeling on Northern Iran for wildfire risk monitoring and management.

  20. A note on parallel efficiency of fire simulation on cluster

    Science.gov (United States)

    Valasek, L.; Glasa, J.

    2016-08-01

    Current HPC clusters are capable to reduce execution time of parallelized tasks significantly. The paper discusses the use of two selected strategies of cluster computational resources allocation and their impact on parallel efficiency of fire simulation. Simulation of a simple corridor fire scenario by Fire Dynamics Simulator parallelized by the MPI programming model is tested on the HPC cluster at the Institute of Informatics of Slovak Academy of Sciences in Bratislava (Slovakia). The tests confirm that parallelization has a great potential to reduce execution times achieving promising values of parallel efficiency of the simulation, however, the results also show that the use of increasing numbers of computational meshes resulting in increasing numbers of used computational cores does not necessarily decrease the execution time nor the parallel efficiency of simulation. The results obtained indicate that the simulation achieves different values of the execution time and the parallel efficiency in regard of the used strategy for cluster computational resources allocation.

  1. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  2. Combined fire confinement and fire influence framework for fire hazard analysis/design safety margin evaluation/audit for nuclear power plant and reprocessing facilities

    International Nuclear Information System (INIS)

    The Fire Hazard Analysis (FHA) is mandatory requirement to ascertain the adequacy of principal of fire safety and fire protection measures provided in the plant for safe operational/emergency states of the plant and ensure nuclear safety objective using defense-in-depth philosophy so that a fire that starts in spite of prevention programme will not prevent essential plant safety functions from being performed. The term ‘hazard analysis’ does not involve any probabilistic estimation with regard to fire in current approach. The results of Fire Probabilistic Safety Assessment (FPSA) contributed to design modifications in plant to enhance the safety and thereby reduce its contribution to Core Damage Frequency but the FHA procedure is kept independent from any probabilistic input. The FHA is carried out using the engineering judgment, a new combined fire containment approach and fire influence approach with deterministic modelling framework. Qualitative assessment based on the acts, rules, standards and codes followed in design are also suggested wherever applicable. The fire hazard analysis has been completed for 5 plant of Fast Reactor Fuel Cycle facility (FRFCF) IPHWRs. The FHA has utilised also few CFD based fire influence simulation wherever required. (author)

  3. Analysis of large urban fires

    International Nuclear Information System (INIS)

    Fires in urban areas caused by a nuclear burst are analyzed as a first step towards determining their smoke-generation chacteristics, which may have grave implications for global-scale climatic consequences. A chain of events and their component processes which would follow a nuclear attack are described. A numerical code is currently being developed to calculate ultimately the smoke production rate for a given attack scenario. Available models for most of the processes are incorporated into the code. Sample calculations of urban fire-development history performed in the code for an idealized uniform city are presented. Preliminary results indicate the importance of the wind, thermal radiation transmission, fuel distributions, and ignition thresholds on the urban fire spread characteristics. Future plans are to improve the existing models and develop new ones to characterize smoke production from large urban fires. 21 references, 18 figures

  4. A case study on fractal simulation of forest fire spread

    Institute of Scientific and Technical Information of China (English)

    朱启疆; 戎太宗; 孙睿

    2000-01-01

    This paper relates to the semi-empirical model based on fire field energy balance and the physical model based on land temperature, aiming to provide a practical way of describing fire spread. Fire spread is determined by the characteristics of combustible materials and the agency of meteorological factors and terrains. Combustible materials, such as surface area, have no featured scale, yet the process of forest fire spread contains the self-replicating feature, both of which contribute to the self-similarity of fire spread. Consequently, fire behavior can be described by fractal geometry. In this research, we select Wuchagou forest in Da Hinggan Mountains as the experimental site where a forest fire took place three years ago. The forest fire was detected on low-resolution NOAA-AVHRR images, and fire spread was simulated on high-resolution TM images as another attempt to merge information. Based on remote sensing and GIS, we adopted the method of limited spreading lumping (DLA) to describe growing phe

  5. Dynamic model of Fire Growth in Abernethy Estate and Glen Tanar using FARSITE simulator

    OpenAIRE

    Grabowiecka, Magdalena

    2008-01-01

    Most of the vegetation fires in Great Britain are of an anthropogenic nature. The possibility of a wildfire occurrence depends on the combination of human behaviour, the type and condition of the vegetation and the weather conditions. By using FARSITE – Fire Area Simulator it is easy to develop a two-dimensional output such as Fire Growth model on personal computer. The simulator incorporates existing fire behaviour models of surface fire spread, crown fire, fire acceleration, fuel moisture a...

  6. Effect Analysis of Fans Activating Time on Smoke Control Mode for Road Tunnel Fire

    OpenAIRE

    Xin Han; Beihua Cong; Xinna Li; Lili Han

    2013-01-01

    With the development of economy, more and more road tunnels have been built. Due to the relatively isolated environment of the tunnel, fire protection is the most important factor for the safe management of tunnel operation. During the fire process, many people are killed by the fire smoke. As for preventive measures of road tunnel fire, smoke exhaust system is the most effective way to control the spread of fire smoke. Based on full size tunnel fire test and simulation analysis, this study c...

  7. Simulation of a compartment fire using a zone model

    Institute of Scientific and Technical Information of China (English)

    YANG Lizhong; GUO Zaifu; JI Jingwei; FAN Weicheng

    2005-01-01

    This paper presents the zone modeling analysis of a single compartment flashover fire. Two criteria are applied in the model to judge the onset of ignition for different combustibles. By calculating the total received energy through radiation or the surface temperature of the combustible, the fire growth can be quantitatively determined. The improved zone fire model shows the influence of different combustibles upon the fire growth. This model is better than the traditional zone model because the common criteria of flashover, i.e. an upper layer temperature of 600℃ and the heat radiation intensity received by the floor of 20 kW/m2, have not been applied in it.

  8. Analysis of structures under fire conditions

    Science.gov (United States)

    Kajaste-Rudnitski, Juri

    The prospect of the application of a standard finite element method program to study the ability of a structure to withstand fire is studied. The objective of using a finite element method program for structure fire resistance evaluation is to compliment, if not to substitute, the expensive fire tests of the natural size structural elements. Besides, an existing measurement technique provides limited scope of data: the temperature and displacement at the reference points of the structure. Furthermore, the simulation of the real fire situation is rather difficult in the laboratory conditions. The numerical model of the concrete type of material with temperature dependent properties is studied. The standard finite element method program ABAQUS chosen for this purpose enables users to create their own subroutines and insert them into the main program.

  9. Fire hazards analysis of transuranic waste storage and assay facility

    Energy Technology Data Exchange (ETDEWEB)

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  10. Fully coupled numerical simulation of fire in tunnels: From fire scenario to structural response

    Directory of Open Access Journals (Sweden)

    Pesavento F.

    2013-09-01

    Full Text Available In this paper we present an efficient tool for simulation of a fire scenario in a tunnel. The strategy adopted is based on a 3D-2D coupling technique between the fluid domain and the solid one. So, the thermally driven CFD part is solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections normal to the tunnel axis, at appropriate intervals. The heat flux and temperature values, which serve as coupling terms between the fluid and the structural problem, are interpolated between the sections. Between the solid and the fluid domain an interface layer is created for the calculation of the heat flux exchange based on a “wall law”. In the analysis of the concrete structures, concrete is treated as a multiphase porous material. Some examples of application of this fully coupled tool will be shown.

  11. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    International Nuclear Information System (INIS)

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met

  12. Calculations detailed progression of fire in NPP ALMARAZ through the code computational fire dynamics SIMULATOR; Calculos detallados de progresion de incendios en C.N. Alamaraz mediante el codigo coputacional Fire Dynamics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Villar Sanchez, T.

    2012-07-01

    (FDS) is an advanced computational model of calculation of simulation of fire that numerically solves the Navier-Stokes equations in each cell of the mesh in each interval of time, having capacity to calculate accurately all those parameters of fire to NUREG-1805 has a limited capacity. The objective of the analysis is to compare the results obtained with the FDS with those obtained from spreadsheets of NUREG-1805 and deal widespread and realistic study of the propagation of a fire in different areas of NPP Almaraz.

  13. Vortical structures in pool fires: Observation, speculation, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Nicolette, V.F.; Gritzo, L.A.; Moya, J.L. [Sandia National Labs., Albuquerque, NM (United States); Holen, J.K. [SINTEF/NTH, Trondheim (Norway). Div. Thermodynamics; Murray, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1996-11-01

    While all fires are complex and involve many phenomena, this report is limited to large, turbulent liquid-hydrocarbon pool fires. Large, liquid-hydrocarbon pool fires present a risk in petrochemical storage and processing facilities and transportation systems that contain large amounts of liquid hydrocarbons. This report describes observations, speculations, and numerical simulations of vortical structures in pool fires. Vortical structures are observed in fires with length scales ranging from those that bend millimeter-thick flame zones to those that entrain air many meters from the edge of the fire to its centerline. The authors propose that baroclinic vorticity generation is primarily responsible for production of rotational motion at small scale and that amalgamation is responsible for the production of large-scale rotational structures from the myriad of small-scale structures. Numerical simulations show that vortical structures having time-mean definitions can be resolved with a Reynolds-Average Navier-Stokes (RANS) approach. However, for vortical structures without time-mean definition, RANS is inappropriate, and another technique, such as Large Eddy Simulation (LES), should be employed. 39 refs., 52 figs., 3 tabs.

  14. Quantitative analysis of forest fire extinction efficiency

    Directory of Open Access Journals (Sweden)

    Miguel E. Castillo-Soto

    2015-08-01

    Full Text Available Aim of study: Evaluate the economic extinction efficiency of forest fires, based on the study of fire combat undertaken by aerial and terrestrial means. Area of study, materials and methods: Approximately 112,000 hectares in Chile. Records of 5,876 forest fires that occurred between 1998 and 2009 were analyzed. The area further provides a validation sector for results, by incorporating databases for the years 2010 and 2012. The criteria used for measuring extinction efficiency were economic value of forestry resources, Contraction Factor analysis and definition of the extinction costs function. Main results: It is possible to establish a relationship between burnt area, extinction costs and economic losses. The method proposed may be used and adapted to other fire situations, requiring unit costs for aerial and terrestrial operations, economic value of the property to be protected and speed attributes of fire spread in free advance. Research highlights: The determination of extinction efficiency in containment works of forest fires and potential projection of losses, different types of plant fuel and local conditions favoring the spread of fire broaden the admissible ranges of a, φ and Ce considerably.

  15. Large eddy simulation based fire modeling applications for Indian nuclear power plant

    International Nuclear Information System (INIS)

    Full text of publication follows: The Nuclear Power Plants (NPPs) are always designed for the highest level of safety against postulated accidents which may be initiated due to internal or external causes. One of the external/internal causes, which may lead to accident in the reactor and its associated systems, is fire in certain vital areas of the plant. Conventionally, the fire containment approach and/or the fire confinement approach is used in designing the fire protection systems of NPPs. Indian NPPs (PHWRs) follow the combined approach to ensure plant safety and all newly designed plants are required to comply with the provisions of Atomic Energy Regulatory Board (AERB) fire safety Guide. In respect of older plants, the reassessment of adequacy of fire safety provisions in the light of current advances has becomes essential so as to decide upon the steps for retrofitting. Keeping this in mind the deterministic fire hazard analysis was carried out for the Madras Atomic Power Station (MAPS). As a part of this exercise, detailed fire consequences analysis was required to be carried out for various critical areas. The choice of CFD based code was considered appropriate for these studies. A dedicated fire hazard analysis code Fire Dynamics Simulator (FDS) from NIST was used to perform these case studies. The code has option to use advanced fire models based on Large Eddy Simulation (LES) technique/ Direct Numerical Simulation (DNS) to model the fire-generated conditions. The LES option has been extensively used in the present studies which were primarily aimed at estimating the damage time for important safety related cable. Present paper describes the salient features of the methodology and important results for one of the most critical areas i.e. cable bridge area of MAPS. The typical dimensions of the cable bridge area are (length x breadth x height) of 12 m x 6 m x 2.5 m with an opening on one side of the cable bridge area. With almost equal gap, six numbers

  16. Effect Analysis of Fans Activating Time on Smoke Control Mode for Road Tunnel Fire

    Directory of Open Access Journals (Sweden)

    Xin Han

    2013-04-01

    Full Text Available With the development of economy, more and more road tunnels have been built. Due to the relatively isolated environment of the tunnel, fire protection is the most important factor for the safe management of tunnel operation. During the fire process, many people are killed by the fire smoke. As for preventive measures of road tunnel fire, smoke exhaust system is the most effective way to control the spread of fire smoke. Based on full size tunnel fire test and simulation analysis, this study carries out effect analysis of fans activating time on smoke control mode for road tunnel fire. The corresponding results are useful to establish fire control strategy and personnel evacuation plan for tunnel management system.

  17. Fire spread simulation of a full scale cable tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Huhtanen, R. [VTT Energy, Espoo (Finland)

    1999-11-01

    A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)

  18. Validation process of ISIS CFD software for fire simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, C., E-mail: celine.lapuerta@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul-lez-Durance (France); ETIC Laboratory, IRSN-CNRS-UAM (I,II), 5 rue Enrico Fermi, 13453 Marseille Cedex 13 (France); Suard, S., E-mail: sylvain.suard@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul-lez-Durance (France); ETIC Laboratory, IRSN-CNRS-UAM (I,II), 5 rue Enrico Fermi, 13453 Marseille Cedex 13 (France); Babik, F., E-mail: fabrice.babik@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul-lez-Durance (France); Rigollet, L., E-mail: laurence.rigollet@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3, 13115 Saint Paul-lez-Durance (France); ETIC Laboratory, IRSN-CNRS-UAM (I,II), 5 rue Enrico Fermi, 13453 Marseille Cedex 13 (France)

    2012-12-15

    Fire propagation constitutes a major safety concern in nuclear facilities. In this context, IRSN is developing a CFD code, named ISIS, dedicated to fire simulations. This software is based on a coherent set of models that can be used to describe a fire in large, mechanically ventilated compartments. The system of balance equations obtained by combining these models is discretized in time using fractional step methods, including a pressure correction technique for solving hydrodynamic equations. Discretization in space combines two techniques, each proven in the relevant context: mixed finite elements for hydrodynamic equations and finite volumes for transport equations. ISIS is currently in an advanced stage of verification and validation. The results obtained for a full-scale fire test performed at IRSN are presented.

  19. Simulation and Study of Natural Fire in a Wide-Framed Multipurpose Hall with Steel Roof Trusses

    Directory of Open Access Journals (Sweden)

    D. Pada

    2009-01-01

    Full Text Available In this case study, the structural fire safety of unprotected steel roof trusses in a wide-framed multipurpose hall was evaluated according to the natural fire safety concept. The design fires were simulated with FDS in order to determine the temperature development inside the hall. The temperature of the steel was calculated based on the results from the simulation and the structural analysis was carried out in Robot. It was established that the steel roof trusses could be left unprotected under certain conditions, however, a more violent design fire resulted in failure of the truss. 

  20. Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis

    Science.gov (United States)

    Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.

    2007-01-01

    This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.

  1. Experimental determination of the shipboard fire environment for simulated radioactive material packages

    Energy Technology Data Exchange (ETDEWEB)

    Koski, J.A.; Bobbe, J.G.; Arviso, M. [and others

    1997-03-01

    A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs.

  2. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    International Nuclear Information System (INIS)

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved

  3. Simulation of evacuation behaviors in fire using spacial grid

    Institute of Scientific and Technical Information of China (English)

    YANG Lizhong; ZHAO Daoliang; LI Jian; FANG Weifeng; FAN Weicheng

    2004-01-01

    A two-dimensional Cellular Automata (CA) model to demonstrate the special phenomena of occupants evacuating from fire room is presented. A set of simple but effective models is proposed to investigate the effect of fire smoke on route choice. The concept of danger grade is introduced, and occupants select the target cell according to the value of danger grade at each time step. Some technique is introduced to substitute the human intelligence, such as premeditation. The simulation results show that human evacuation is influenced greatly by both human visual field and building exit.

  4. Numerical simulation of a full scale fire test on a loaded steel framework

    OpenAIRE

    Franssen, Jean-Marc; Cooke, C. M. E.; Latham, D. J.

    1995-01-01

    A single bay single storey steel portal frame has been tested under fire conditions. It is here simulated using hte non linear computer code CEFICOSS. The elements have composite steel-concrete sections for the thermal analysis, but only the steel part of the sections is load bearing.

  5. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on...

  6. FIRE simulations: galactic outflows and their consequences

    Science.gov (United States)

    Keres, Dusan; FIRE team

    2016-06-01

    We study gaseous outflows and their consequences in high-resolution galaxy formation simulations with explicit stellar feedback from the Feedback in Realistic Environments project. Collective, galaxy scale, effect of stellar feedback results in episodic ejections of large amount of gas and heavy elements into the circum-galactic medium. Gas ejection episodes follow strong bursts of star formation. Properties of galactic star formation and ejection episodes depend on galaxy mass and redshift and, together with gas infall and recycling, shape the evolution of the circum-galactic medium and galaxies. As a consequence, our simulated galaxies have masses, star formation histories and heavy element content in good agreement with the observed population of galaxies.

  7. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  8. Analysis of NASA JP-4 fire tests data and development of a simple fire model

    Science.gov (United States)

    Raj, P.

    1980-01-01

    The temperature, velocity and species concentration data obtained during the NASA fire tests (3m, 7.5m and 15m diameter JP-4 fires) were analyzed. Utilizing the data analysis, a sample theoretical model was formulated to predict the temperature and velocity profiles in JP-4 fires. The theoretical model, which does not take into account the detailed chemistry of combustion, is capable of predicting the extent of necking of the fire near its base.

  9. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  10. Using underground fire simulation to analyze the ventilation network at the Rymer mine

    Energy Technology Data Exchange (ETDEWEB)

    Dziurzynski, W.; Kaletka, H.

    1988-09-01

    Presents a computer program that can serve for simulation of underground fires and for determining the flow of gas in ventilation networks during mine fires. A block diagram of the calculation algorithm is presented. A formula for calculating aerodynamic resistance is presented and explained. Data on the ventilation network at the Rymer mine are given. Two examples of fire simulation in lower ripside headings are analyzed. Specifications of the headings are given. Variation of the gas flow, oxygen concentration, depression and temperature distribution are shown. Results obtained from underground fire simulation permits fire hazards to be estimated and fire fighting measures to be planned in advance. 10 refs.

  11. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  12. Fire simulation in nuclear facilities--the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabilities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  13. Fire simulation in nuclear facilities: the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabiities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  14. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2003-01-01

    for the indirectly fired gas turbine (IFGT) and for the supplementary-fired IFGT. These results show that the combination of external firing and internal firing have the potential of reducing or solving some problems associated with the use of biomass both in the recuperated and the indirectly fired gas turbine......This paper presents an analysis of the possibilities for improving the efficiency of an indi-rectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supple-mentary firing may be based on natural gas, biogas or pyrolysis gas. Intuitively, sup-plementary firing is expected...... to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case. The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process...

  15. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...... for the indirectly fired gas turbine (IFGT) and for the supplementary-fired IFGT. Both results show that the combination of external firing and internal firing have the potential of reducing or solving some problems with the use of biomass both in the recuperated and the indirectly fired gas turbine: The former...... to be independent of temperature ratio and lower than for the recuperated gas turbine....

  16. Nuclear power plant fire protection: philosophy and analysis

    International Nuclear Information System (INIS)

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method

  17. Fire risk assessment and computer simulation of fire scenario in underground mines

    OpenAIRE

    Adjiski, Vanco; Despodov, Zoran; Mirakovski, Dejan; Mijalkovski, Stojance

    2015-01-01

    Unsafe working conditions in underground mines have led to a number of accidents, loss of life, damage to property, interruption of production, etc. Safety is essential in mining industry, which in recent years mainly focuses on injury prevention in the workplace through a variety of procedures and employee training. The primary goal of this paper is to present a methodology with systematic analysis to determine the most risky places for fire occurrence in underground mines an...

  18. Fire simulation of the canister transfer and installation vehicle; Kapselin siirto- ja asennusajoneuvon palosimulointi

    Energy Technology Data Exchange (ETDEWEB)

    Peltokorpi, L. [Fortum Power and Heat Oy, Espoo (Finland)

    2012-12-15

    A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m{sup 2} was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited

  19. Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA

    Directory of Open Access Journals (Sweden)

    R. Justin DeRose

    2014-12-01

    Full Text Available Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and Fuels Extension. The wind speeds necessary for crowning (crown-to-crown fire spread and torching (surface to crown fire spread were evaluated to test the hypothesis that predicted fire behavior is influenced by the proportion of aspen in the stand. Results showed a strong effect of species composition on crowning, but only under moderate fire weather, where aspen-dominated stands were unlikely to crown or torch. Although rarely observed in actual fires, conifer-dominated stands were likely to crown but not to torch, an example of “hysteresis” in crown fire behavior. Results support the hypothesis that potential crown fire behavior varies across a gradient of aspen dominance and fire weather, where it was likely under extreme and severe fire weather, and unlikely under moderate and high fire weather. Furthermore, the “fire-proof” nature of aspen stands broke down across the gradient of aspen dominance and fire weather.

  20. Study on Evacuation Evaluation in Subway Fire Based on Pedestrian Simulation Technology

    Directory of Open Access Journals (Sweden)

    Yanyan Chen

    2015-01-01

    Full Text Available In order to improve the ability to evacuate from subway fire in subway’s planning, design, operation, and maintenance stages, a simulation model of pedestrians’ evacuation process in subway fire was established based on Legion and FDS software. It can truly reflect the dynamic effects of the fire environment on subway station evacuation. Then dynamic evaluation indicators systems were established from the point of survival index, security risk index, effectiveness index, and orderliness index. In order to help decision makers to identify the most appropriate plan, matter-element analysis (MEA was used to rate different plans. At last a case study of Songjiazhuang (SJZ station was provided to test the effectiveness and practicability of the evaluation method.

  1. Statistical analysis of fire events at US nuclear power plants

    International Nuclear Information System (INIS)

    The concern about fires as a potential agent of common cause failure in NPPs has greatly increased since the Browns Ferry NPP fire. Several regulatory actions were initiated following this incident. In investigating the chances of fire incident leading to core melt it is found that the unconditional frequency is about 1x10 incidents per reactor-year. The detailed reviews of fire events at nuclear plants are used in quantifying fire occurrence frequency required to carry out fire risk assessment. In this work the results of a statistical analysis of 354 fire incidents at US NPPs in the period from January 1965 to June 1985 are presented to quantify fire occurrence frequency. The distribution of fire incidents between the different types of NPPs (PWR, BWR or HTGR), the mode of plant operation, the probable cause of fire, the type of detectors detect the incident, who extinguished the fire, suppression equipment, suppression agent, the initiating combustible, the component or components affected by fire are all analysed for the studied 354 fire incidents. More than 50% of the incidents occurred during the construction phase, in many of them there is neither nuclear problem nor any safety problem, however these incidents delayed the startup of the units up to 2 years as happened in Indian Point unit 2 (1971). There are four major fire incidents at US NPPS in the first period of the study (1965-1978), not one of them in the last seven years (1979-1985) which clarify the development in the fire protection measures and technology. The fire events in US (NPPS) can be summarized in about 354 incidents at 33 locations due to 38 causes of fire with 0.17 fire events/plant/year

  2. CFD simulation of production of NOx in coal-fired furnaces

    OpenAIRE

    ASKAROVA ALIYA; BOLEGENOVA SALTANAT; MAXIMOV VALERY; OSPANOVA SHYNAR; BOLEGENOVA SYMBAT

    2016-01-01

    Computational fluid dynamics (CFD) has been accepted as a powerful and effective tool for control and analysis of coal-fired utility boilers. Since coal burning in a utility boilers is a very complex process that comprises high-temperature reacting turbulent flow, particles transport and radiative heat transfer a reliable numerical simulation models of coal combustion requires high accuracy and careful interpretation of its numerical results.

  3. Use of numerical simulation computer codes to fire problems in nuclear power plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Eloranta, E. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Fire Technology Lab.); Huhtanen, R. (Valtion Teknillinen Tutkimuskeskus, Helsinki (Finland). Nuclear Engineering Lab.)

    1991-03-01

    Zone and field model codes are used for fire simulations, including nuclear facilities, in Finland. Here two examples are described: (a) calculation of evaporation rate of a pool fire (8 MW) in a compartment using FIRST, and calculation of an oil spill fire (180 MW) in a turbine hall using PHOENICS. (orig.).

  4. Virtual Reality Simulation of Fire Fighting Robot Dynamic and Motion

    CERN Document Server

    Setiawan, Joga D; Budiyono, Agus

    2008-01-01

    This paper presents one approach in designing a Fire Fighting Robot which has been contested annually in a robotic student competition in many countries following the rules initiated at the Trinity College. The approach makes use of computer simulation and animation in a virtual reality environment. In the simulation, the amount of time, starting from home until the flame is destroyed, can be confirmed. The efficacy of algorithms and parameter values employed can be easily evaluated. Rather than spending time building the real robot in a trial and error fashion, now students can explore more variation of algorithm, parameter and sensor-actuator configuration in the early stage of design. Besides providing additional excitement during learning process and enhancing students understanding to the engineering aspects of the design, this approach could become a useful tool to increase the chance of winning the contest.

  5. Fire hazards analysis for W030 tank farm ventilation upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Huckfeldt, R.A.

    1996-07-17

    This Fire Hazard Analysis (FHA) was prepared according to the requirements of U.S. Department of Energy (DOE) Order 5480.7A,FIRE PROTECTION, 2-17-93. The purpose of this FHA is to ascertain whether the objectives of DOE 5480.7A are being met. This purpose is accomplished through a conservative comprehensive assessment of the risk from fire and other perils within individual fire areas of a DOE facility in relation to proposed fire protection. This FHA is based on conditions set forth within this document and is valid only under these conditions.

  6. “Use of fire extinguishers”—a new course with a new simulator

    CERN Multimedia

    HSE Unit & GS/FB

    2012-01-01

    Don’t wait, sign up! A new training course, “Handling of fire extinguishers”, is available since the beginning of March 2012. The training course is given by members of CERN’s Fire Brigade (GS-FB) and is intended for all members of personnel of CERN. Upon successful completion of the training course, you will be able to do the following: recognise a potentially combustible item and the various fire classes; choose the appropriate extinguisher for a given fire class; handle a fire extinguisher properly and efficiently; apply CERN's safety instructions. An important part of the training are the different firefighting exercises conducted using a new simulator, which makes it possible to simulate real conditions such as the following: a fire in the office; a fire in an electrical cabinet; a fire involving chemicals.        Don’t wait:  sign up for the training course directly ...

  7. 3D simulation of Industrial Hall in case of fire. Benchmark between ABAQUS, ANSYS and SAFIR

    OpenAIRE

    Vassart, Olivier; Cajot, Louis-Guy; O'Connor, Marc; Shenkai, Y.; Fraud, C.; Zhao, Bin; De la Quintana, Jesus; Martinez de Aragon, J.; Franssen, Jean-Marc; Gens, Frederic

    2004-01-01

    For simple storey buildings, the structural behaviour in case of fire is relevant only for the safety of the firemen. The protection of occupants and goods is a matter of fire spread, smoke propagation, active fire fighting measures and evacuation facilities. Brittle failure, progressive collapse and partial failure of façades elements outwards may endanger the fire fighters and have to be avoided. In order to deal with such an objective, the simulation softwares has to cover the 3D structura...

  8. 327 Building fire hazards analysis implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, C.D.

    1998-09-16

    In March 1998, the 327 Building Fire Hazards Analysis (FRA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (B and WHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. To date, actions for five of the 11 items have been completed. Exemption requests will be transmitted to DOE-RL for two of the items. Corrective actions have been identified for the remaining four items. The completed actions address combustible loading requirements associated with the operation of the cells and support areas. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. B and WHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7.

  9. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  10. Hazard Analysis on One—Room Building Fires

    Institute of Scientific and Technical Information of China (English)

    YuDeming; FengChanggen

    1998-01-01

    First,a calculation method for available safety egress time (shortly called ASET) and requirement safety egress time (Shortly called RSET) in a one-room building fire is proposed and a model for predicting the death number caused by the fire is established in this paper,Then,numerical simulations are performed,and the following laws are discovered:(1)At the beginning of the fire,the smoke layer falls slowly;as the fire develops,it falls rapidly.(2) The hypotheses on the fire source,the combustion properties of the combustibles,and the width of the exit and the person number in the room are important factors which affect the death number in the fire.

  11. Location dependent common cause analysis with an application to fires

    International Nuclear Information System (INIS)

    The purpose of the work described is to develop a methodology by which the public risk arising from localized common cause events (e.g., fires) in nuclear plants can be assessed. Attention was paid to maximizing both the completeness and efficiency of the analysis. This methodology was then applied to the analysis of fire events in the Clinch River Breeder Reactor Plant

  12. Fires

    Science.gov (United States)

    Whether a fire happens in your home or in the wild, it can be very dangerous. Fire spreads quickly. There is no time to gather ... a phone call. In just two minutes, a fire can become life-threatening. In five minutes, a ...

  13. Numerical simulation based cold tests for a tangentially fired boiler

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuhua; ZHANG Jiayuan; ZHANG Xiaohui

    2012-01-01

    Such problems as flameout and serious slagging frequently occurred in a 170 t/h tangentially fired boiler burning inferior coals and with low load.Thus,cold tests were carried out to comprehensively investigate the performance of each air tube and the size and position of the tangential circle.Therefore,the cause and area of slagging in furnace can be determined.Thus,by numerical simulation on combustion,the optimal operation parameters for the boiler burning different coals under various loads conditions can be provided.The actual application showed that,the boiler fed with present coal can be long-term operated stably at 60% load,and its heat efficiency was up to 91%.Moreover,the abnormal flameout no longer occurred,and the slagging was alleviated a lot.

  14. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    Science.gov (United States)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  15. Validation and uncertainty quantification of Fuego simulations of calorimeter heating in a wind-driven hydrocarbon pool fire.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan Paul; Figueroa, Victor G.; Romero, Vicente Jose; Glaze, David Jason; Sherman, Martin P.; Luketa-Hanlin, Anay Josephine

    2009-12-01

    The objective of this work is to perform an uncertainty quantification (UQ) and model validation analysis of simulations of tests in the cross-wind test facility (XTF) at Sandia National Laboratories. In these tests, a calorimeter was subjected to a fire and the thermal response was measured via thermocouples. The UQ and validation analysis pertains to the experimental and predicted thermal response of the calorimeter. The calculations were performed using Sierra/Fuego/Syrinx/Calore, an Advanced Simulation and Computing (ASC) code capable of predicting object thermal response to a fire environment. Based on the validation results at eight diversely representative TC locations on the calorimeter the predicted calorimeter temperatures effectively bound the experimental temperatures. This post-validates Sandia's first integrated use of fire modeling with thermal response modeling and associated uncertainty estimates in an abnormal-thermal QMU analysis.

  16. WRF fire simulation coupled with a fuel moisture model and smoke transport by WRF-Chem

    CERN Document Server

    Kochanski, Adam K; Mandel, Jan; Kim, Minjeong

    2012-01-01

    We describe two recent additions to WRF coupled with a fire spread model. Fire propagation is strongly dependent on fuel moisture, which in turn depends on the history of the atmosphere. We have implemented a equilibrium time-lag model of fuel moisture driven by WRF variables. The code allows the user to specify fuel parameters, with the defaults calibrated to the Canadian fire danger rating system for 10-hour fuel. The moisture model can run coupled with the atmosphere-fire model, or offline from WRF output to equilibrate the moisture over a period of time and to provide initial moisture conditions for a coupled atmosphere-fire-moisture simulation. The fire model also inserts smoke tracers into WRF-Chem to model the transport of fire emissions. The coupled model is available from OpenWFM.org. An earlier version of the fire model coupled with atmosphere is a part of WRF release.

  17. FIRE-BGC--A Mechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains

    OpenAIRE

    Keane, Robert E.; Morgan, Penelope; Running, Steven W.

    1996-01-01

    An ecological process model of vegetation dynamics mechanistically simulates long-term stand dynamics on coniferous landscapes of the Northern Rocky Mountains. This model is used to investigate and evaluate cumulative effects of various fire regimes, including prescribed burning and fire exclusion, on the vegetation and fuel complex of a simulation landscape composed of many stands. Detailed documentation of the model FIRE-BGC (a FIRE BioGeoChemical succession model) with complete discussion ...

  18. FIRE-BGC -- A Mechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1996-01-01

    An ecological process model of vegetation dynamics mechanistically simulates long-term stand dynamics on coniferous landscapes of the Northern Rocky Mountains. This model is used to investigate and evaluate cumulative effects of various fire regimes, including prescribed burning and fire exclusion, on the vegetation and fuel complex of a simulation landscape composed of many stands. Detailed documentation of the model FIRE-BGC (a FIRE BioGeoChemical succession model) with complete discussio...

  19. Quantitative analysis of forest fire extinction efficiency

    OpenAIRE

    Miguel E. Castillo-Soto; Francisco Rodríguez-Silva

    2015-01-01

    Aim of study: Evaluate the economic extinction efficiency of forest fires, based on the study of fire combat undertaken by aerial and terrestrial means. Area of study, materials and methods: Approximately 112,000 hectares in Chile. Records of 5,876 forest fires that occurred between 1998 and 2009 were analyzed. The area further provides a validation sector for results, by incorporating databases for the years 2010 and 2012. The criteria used for measuring extinction efficiency were econo...

  20. ExtendSim’s Simulation Analysis of Combat Efficiency of Rapid-fire Antiaircraft Guns against Supersonic Missiles%速射高炮抗击超音速导弹作战效能ExtendSim仿真分析

    Institute of Scientific and Technical Information of China (English)

    梁甲慧; 季新源; 陈希林

    2014-01-01

    利用ExtendSim仿真平台建立了速射高炮抗击超音速导弹作战效能模型,对模型进行了仿真研究,分析了速射高炮抗击超音速导弹的作战过程,所得结果为速射高炮武器装备发展及其作战运用提供了基本参考和依据。%As a visual simulation platform,the ExtendSim was built to provide a model of combat process of rapid-fire antiaircraft guns defending against supersonic missiles. And the simulation of model was ana-lyzed. The simulation results provide a basic reference for the development and combat application of the rapid-fire antiaircraft weaponry.

  1. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  2. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    Science.gov (United States)

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  3. Parametric analysis of fire model CFAST

    International Nuclear Information System (INIS)

    This paper describes the pump room fire of the nuclear power plant using CFAST fire modeling code developed by NIST. It is determined by the constrained or unconstrained fire, Lower Oxygen Limit (LOL), Radiative Fraction (RF), and the times to open doors, which are the input parameters of CAFST. According to the results, pump room fire is ventilation-controlled fire, so it is adequate that the value of LOL is 10% which is also the default value. It is appeared that the RF does not change the temperature of the upper gas layer. But the level of opening of the penetrating area and the times to opening it have an effect on the temperature of the upper layer, so it is determined that the results of it should be carefully analyzed

  4. Dynamics analysis on neural firing patterns by symbolic approach

    Institute of Scientific and Technical Information of China (English)

    Gao Zhi-Ying; Lu Qi-Shao

    2007-01-01

    Neural firing patterns are investigated by using symbolic dynamics. Bifurcation behaviour of the Hindmarsh-Rose (HR) neuronal model is simulated with the external stimuli gradually decreasing, and various firing activities with different topological structures are orderly numbered. Through constructing first-return maps of interspike intervals, all firing patterns are described and identified by symbolic expressions. On the basis of ordering rules of symbolic sequences, the corresponding relation between parameters and firing patterns is established, which will be helpful for encoding neural information. Moreover, using the operation rule of * product, generation mechanisms and intrinsic configurations of periodic patterns can be distinguished in detail. Results show that the symbolic approach is a powerful tool to study neural firing activities. In particular, such a coarse-grained way can be generalized in neural electrophysiological experiments to extract much valuable information from complicated experimental data.

  5. Nonlinear phased analysis of reinforced concrete tunnels under fire exposure

    NARCIS (Netherlands)

    Lilliu, G.; Meda, A.

    2013-01-01

    Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material degradation. Temperature increase in the tunnel is the cause of thermal expansion of the lining, which is resisted by the soil pressure.

  6. Semi-automatic analysis of fire debris

    Science.gov (United States)

    Touron; Malaquin; Gardebas; Nicolai

    2000-05-01

    Automated analysis of fire residues involves a strategy which deals with the wide variety of received criminalistic samples. Because of unknown concentration of accelerant in a sample and the wide range of flammable products, full attention from the analyst is required. Primary detection with a photoionisator resolves the first problem, determining the right method to use: the less responsive classical head-space determination or absorption on active charcoal tube, a better fitted method more adapted to low concentrations can thus be chosen. The latter method is suitable for automatic thermal desorption (ATD400), to avoid any risk of cross contamination. A PONA column (50 mx0.2 mm i.d.) allows the separation of volatile hydrocarbons from C(1) to C(15) and the update of a database. A specific second column is used for heavy hydrocarbons. Heavy products (C(13) to C(40)) were extracted from residues using a very small amount of pentane, concentrated to 1 ml at 50 degrees C and then placed on an automatic carousel. Comparison of flammables with referenced chromatograms provided expected identification, possibly using mass spectrometry. This analytical strategy belongs to the IRCGN quality program, resulting in analysis of 1500 samples per year by two technicians. PMID:10802196

  7. Dynamic Simulation of VEGA SRM Bench Firing By Using Propellant Complex Characterization

    Science.gov (United States)

    Di Trapani, C. D.; Mastrella, E.; Bartoccini, D.; Squeo, E. A.; Mastroddi, F.; Coppotelli, G.; Linari, M.

    2012-07-01

    During the VEGA launcher development, from the 2004 up to now, 8 firing tests have been performed at Salto di Quirra (Sardinia, Italy) and Kourou (Guyana, Fr) with the objective to characterize and qualify of the Zefiros and P80 Solid Rocket Motors (SRM). In fact the VEGA launcher configuration foreseen 3 solid stages based on P80, Z23 and Z9 Solid Rocket Motors respectively. One of the primary objectives of the firing test is to correctly characterize the dynamic response of the SRM in order to apply such a characterization to the predictions and simulations of the VEGA launch dynamic environment. Considering that the solid propellant is around 90% of the SRM mass, it is very important to dynamically characterize it, and to increase the confidence in the simulation of the dynamic levels transmitted to the LV upper part from the SRMs. The activity is articulated in three parts: • consolidation of an experimental method for the dynamic characterization of the complex dynamic elasticity modulus of elasticity of visco-elastic materials applicable to the SRM propellant operative conditions • introduction of the complex dynamic elasticity modulus in a numerical FEM benchmark based on MSC NASTRAN solver • analysis of the effect of the introduction of the complex dynamic elasticity modulus in the Zefiros FEM focusing on experimental firing test data reproduction with numerical approach.

  8. Analysis of weather condition influencing fire regime in Italy

    Science.gov (United States)

    Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella

    2014-05-01

    Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the

  9. Material Analysis for a Fire Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander; Nemer, Martin B.

    2014-08-01

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  10. Simulation of Intelligent Fire Detection and Alarm System for a W d p .

    Directory of Open Access Journals (Sweden)

    V. B. Pati

    1989-01-01

    Full Text Available Fire is one of the major hazards in warships. A warship being avery complex structure, with sophisticated weapons, machinery, fueland ammunition is always at risk of fire. Restrictions on movement of ship's personnel and equipment requires automation in fire detectionand control systems. This paper describes the limitations of conventional fire detection systems, followed by the features of modern fire detection and alarnr (the so-called intelligent systems and thetypes of fire detectors used in fire detection systems. The experimentalset-up used for simulating a simple system having 24 sensors connecteato the micro computer via digital input card is explained in detail withthe limitations of the experimental set-up and improvements that canbe made by incorporating serial communication in a loop, using fibre optics data links. and intelligent loop/interface units.

  11. High-resolution remote sensing and coupled fire-weather simulation modeling offer unprecedented insight to megafire behavior: The 2014 California King Megafire case study

    Science.gov (United States)

    Stavros, E. N.; Coen, J. L.; Sign, H.; Tane, Z.; McGaughey, R. J.; Kane, V. R.; Fites, J. A.; Oliva, P.; Schroeder, W.; Schimel, D.; Ramirez, C.

    2015-12-01

    Megafires, defined by their size, unanticipated fire behavior, and fire severity, are increasing across the western contiguous United States. To date, limited observations have been made during these events. However, in September 2014 the California King Fire, which gained much public attention due to its rapid spread, effects on air quality, damage to infrastructure, and impacts on the Sierra Nevada landscape, burned an area where high resolution remotely sensed data had been acquired. These data include Light Detection and Ranging (LiDAR), hyper spectral visual to shortwave infrared Airborne Visual/Infrared Imaging Spectrometer (AVIRIS), and high spatial resolution multi-band thermal infrared imaging (MASTER) technologies. These technologies were used to image the fire before, during and after the fire providing unprecedented detail describing fuel conditions and availability (AVIRIS and LiDAR), fire behavior (i.e., Land Surface Temperature and Fire Radiative Power from MASTER), and fire severity (AVIRIS). Although AVIRIS and MASTER data cover the full extent of the fire before, during, and after the burn, LiDAR data only covered ~34% of the extent. We used quadratic regression (0.53 fire LiDAR structural metrics to the full extent of the fire before burning. Using these structural data with dominant vegetation maps generated using weighted multiple endmember spectral mixture analysis (wMEMSA) from AVIRIS, we generated high-resolution fuel model maps. These were used as input to CAWFETM a high spatial and temporal resolution coupled weather-fire simulator. Although other fire models did not represent the King Fire very well, CAWFE did capture the unanticipated surge up the Rubicon Valley and features captured by MASTER resulted from fine-scale mountain airflows and periods of growth apparently driven by fire-induced winds. Results indicate remote sensing tools may be used to optimize data products for fire science and operations.

  12. Miss Distance Analysis Method of Antiaircraft Gun Firing Test Based on Simulation Deduction%基于仿真推演的高炮射击脱靶量解算方法

    Institute of Scientific and Technical Information of China (English)

    杨琳; 孟宪国; 朱元昌; 邸彦强

    2013-01-01

    In order to solve the problem of feasibility demonstration for the shooting test scheme of antiaircraft gun weapon system,the new method of miss distance analysis during the deducing is carried on. In the course of deducing,the target flight path has been produced by using the interpolation method on the measurement data,and the trajectory orbit of the antiaircraft gun weapon system has been built according to the firing table. In the virtual digital environment of the shooting range,the key processes of the test have been emulated,such as the target flight,the tracing measurement of the equipments and the firing of the weapon system. This method has guaranteed the consistency between the simulation deduction data and the actual test condition of the shooting range,and it has improved the accuracy of miss distance analysis and the credibility of the test scheme demonstration.%针对靶场高炮武器系统射击精度试验的试验方案可行性论证问题进行研究,提出了一种在仿真推演过程中进行脱靶量解算的新方法,根据靶场已有测量数据插值生成飞行目标航迹,根据射表数据得到被试高炮武器系统的弹道轨迹,在虚拟数字靶场环境中通过时间管理策略实现了对试验过程中目标靶机的飞行、参试设备的跟踪测量、被试武器系统射击等的仿真,保证了仿真推演数据与靶场实际试验条件的一致性,提高了脱靶量解算的准确性和方案论证的可信性。

  13. CFD simulation of coal and straw co-firing

    DEFF Research Database (Denmark)

    Junker, Helle; Hvid, Søren L.; Larsen, Ejvind;

    This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective...... emissions. Results are presented for a Danish full-scale boiler that is currently co-firing biomass with coal on a commercial basis....

  14. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC

    OpenAIRE

    Pimont, François; Dupuy, Jean-Luc; Linn, Rodman R.; Dupont, Sylvain

    2011-01-01

    Forest fuel management in the context of fire prevention generally induces heterogeneous spatial patterns of vegetation. However, the impact of the canopy structure on both wind flows and fire behavior is not well understood. Here, a coupled atmosphere wildfire behavior model, HIGRAD/FIRETEC, was used to investigate the effects of canopy treatment on wind field and fire behavior in a typical Mediterranean pine ecosystem. First, the treatment-induced winds were simulated with the model. We obs...

  15. Numerical simulation methods of fires in nuclear power plants; Ydinvoimalaitosten tulipalojen laskentamenetelmaet

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L. [Technical Research Centre of Finland, Espoo (Finland). Fire Technology Lab.

    1992-12-31

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au).

  16. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    CERN Document Server

    Muratov, Alexander L; Faucher-Giguere, Claude-Andre; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

    2015-01-01

    We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations provides a sample of halos where star-forming giant molecular clouds are resolved to z=0, and features an explicit stellar feedback model on small scales. In this work, we focus on quantifying the gas mass ejected out of galaxies in winds and how this material travels through the halo. We correlate these quantities to star formation in galaxies throughout cosmic history. Our simulations reveal that a significant portion of every galaxy's evolution, particularly at high redshift, is dominated by bursts of star formation, which are followed by powerful gusts of galactic outflow that sweep up a large fraction of gas in the interstellar medium and send it through the circumgalactic medium. The dynamical effect of these outflows can significantly limit the amount of star formation within the affected galaxy. At low redshift, however, su...

  17. 基于FDS的地下商城火灾分析%Analysis on the fire of underground mall based on FDS numerical simulation

    Institute of Scientific and Technical Information of China (English)

    王媛; 唐玲; 雷成宝; 黄灿

    2012-01-01

    A physical model to Wuhan underground mall was taken as example, using FDS simulation software, setting ignition spot respectively in underground mall supermarkets and mall passage, the temperature of each measuring point and smoke concentration field were analyzed by numerical simulation. The height and temperature of smoke layer. CO.. concentration distribution law were obtained, and the corresponding measures for evacuation were given.%以武汉某地下商城为研究对象,使用FDS模拟软件,在地下商城超市和商城通道分别设置着火点,通过对发生火灾时商城内各测点的温度场、烟气浓度场的分布进行数值模拟分析研究,得出两种着火位置下商城的烟气层高度、烟气层温度及CO2浓度的分布规律,并给出了相应的人员逃生措施.

  18. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    Directory of Open Access Journals (Sweden)

    Bjørn Qvale

    2003-06-01

    Full Text Available

    This paper presents an analysis of the possibilities for improving the efficiency of an indi-rectly biomass-fired gas turbine (IBFGT by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas or pyrolysis gas. Intuitively, supplementary firing is expected to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case.

    The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process could be divided into two streams, one for primary and one for supplementary firing. A preliminary analysis of the ideal, recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained for the indirectly fired gas turbine (IFGT and for the supplementary-fired IFGT. These results show that the combination of external firing and internal firing have the potential of reducing or solving some problems associated with the use of biomass both in the recuperated and the indirectly fired gas turbine: The former requires a clean, expensive fuel. The latter is limited in efficiency due to limitations in material temperature of the heat exchanger. Thus, in the case of an IBFGT, it would appear be very appropriate to use a cheap biomass or waste fuel for low temperature combustion and external firing and use natural gas at a high marginal efficiency for high temperature heating. However, it is shown that this is not the case for a simple IBFGT supplementary-fired with natural gas. The marginal efficiency of the natural gas is in this case found to be independent of temperature ratio and lower than for the recuperated gas turbine. Instead, other process changes may be considered in order to obtain a high marginal efficiency on natural gas. Two possibilities

  19. Simulation of air quality impacts from prescribed fires on an urban area.

    Science.gov (United States)

    Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G

    2008-05-15

    On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future. PMID:18546707

  20. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  1. Assessment of simulation predictions of hydrocarbon pool fire tests.

    Energy Technology Data Exchange (ETDEWEB)

    Luketa-Hanlin, Anay Josephine

    2010-04-01

    An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.

  2. Analysis and simulation on continuous fire frequency of coordinate air defense in warship formation%舰艇编队协同防空连续射击次数仿真分析

    Institute of Scientific and Technical Information of China (English)

    范英飚; 姚跃亭; 高波; 刘林密

    2011-01-01

    To calculate the fire frequency of coordinate air defense in fleet, a calculation model restrained by kill zone depth, course shortcut and interval length between ships is presented. Using the geometrical relationship between missile-target encounter point and the launch point, also with the inductive approach, models of single ship anti-air missile fire frequency to target with zero or none zero course shortcuts are brought forward. The total firing frequency of fleet air defense is divided into two parts: fires from ship under attack and covering fires from adjacent ship, and the covering kill zone depth of the latter part is inducted with constrains of maximum and mini mum ranges. Thus the covering fire frequency model is given. The fleet firing frequency sensitivities to key parameters such as velocity,course angle and interval length is studied with a simulation example, and results show that the calculation model is instructive.%为解决舰艇编队协同防空中的射击次数计算问题,提出了受杀伤区纵深,航路捷径和舰艇间隔距离约束的计算模型.利用导弹发射时刻至弹目遭遇时间内弹目之间的几何关系,经过归纳递推得到单艘舰艇零航路捷径和非零航路捷径时的舰空导弹射击次数模型.将编队协同防空的射击次数计算分解为被攻击舰和邻舰的射击次数之和,依据编队协同防空的几何关系得到邻舰掩护杀伤区纵深,得到了该纵深的远界和近界约束,进而得到邻舰的舰空导弹掩护射击次数模型.结合实例,研究了编队连续射击次数对目标速度、舷角和舰艇间隔距离等关键参数的敏感度,表明了模型的可行性和实用性.

  3. SIMULATION OF FIRE DYNAMICS WITH VARIOUS GROWTH RATE IN PREMISES WITH NATURAL VENTILATION

    OpenAIRE

    V. V. Nevdakh

    2015-01-01

    Computer simulation of the initial fire stage dynamics with various growth rate have been carried out with the help of FDS software. In case of a quick fire 1055 kW heat liberation has been reached in accordance with quadratic law within 100 seconds, averagely within 250 seconds and within 500 seconds when the fire rate is slow. Source of fire has been located on the floor and at the height of 2 m. A doorway of 0.8×2.0 m size and two 0.8×0.1 m openings have been used as ventilation holes. One...

  4. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  5. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  6. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    OpenAIRE

    Yunchun Xia

    2014-01-01

    Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5...

  7. Structural Analysis of Steel Structures under Fire Loading

    Directory of Open Access Journals (Sweden)

    C. Crosti

    2009-01-01

    Full Text Available This paper focuses on the structural analysis of a steel structure under fire loading. In this framework, the objective is to highlight the importance of the right choice of analyses to develop, and of the finite element codes able to model the resistance and stiffness reduction due to the temperature increase. In addition, the evaluation of the structural collapse under fire load of a real building is considered, paying attention to the global behavior of the structure itself. 

  8. A comparative numerical study of turbulence models for the simulation of fire incidents: Application in ventilated tunnel fires

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Stokos

    2015-12-01

    Full Text Available The objective of this paper is to compare the overall performance of two turbulence models used for the simulation of fire scenarios in ventilated tunnels. Two Reynolds Averaged Navier–Stokes turbulence models were used; the low-Re k–ω SST and the standard k–ε model with wall functions treatment. Comparison was conducted on two different fire scenarios. The varied parameters were the heat release rate and the ventilation rate. Results predicted by the two turbulence models were also compared to the results produced from the commercial package Ansys Fluent. Quite faster simulations were performed using the k–ε turbulence model with wall functions and our findings, as to the basic characteristics of smoke movement, were in good agreement with Ansys Fluent ones.

  9. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  10. Numerical simulation for recognition of coalfield fire areas by Rayleigh waves

    Institute of Scientific and Technical Information of China (English)

    Hu Mingshun; Pan Dongming; Chen Shenen; Dong Shouhua; Li Juanjuan

    2013-01-01

    Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards.Coalfield fire areas are hard to detect accurately using general geophysical methods.This paper describes simulations of shallow,buried coalfield fires based on real geological conditions.Recognizing the coalfield fire by Rayleigh wave is proposed.Four representative geological models are constructed,namely; the non-burning model,the pseudo-burning model,the real-burning model,and the hidden-burning model.Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement.These characteristics,as well as the shear wave velocity obtained by inverting the fundamental dispersion,make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area.The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.

  11. The Numerical Simulation Application for Fire-Tube Boiler Heating Surface Safety Evaluation

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2016-01-01

    Full Text Available The numerical simulation is applied for fire-tube boiler heating surface safety estimation. Thermal processes in an inflatable fire-tube furnace during its emergency operation were simulated using the finite volume method with Euler approximation and the implicit pressure based algorithm. Study results reproduce failures connected with increasing of impasse aerodynamic resistance. The method of these failures prediction is suggested. Simulation has shown that entering the amount of coolant into combustion volume results in burner fan incapability to overcome the impasse resistance of the furnace. The simulation results are visually confirmed during the inspection of emergency boilers.

  12. 一种细水雾灭火枪虚拟样机的建立及仿真分析%Establish and Simulation Analysis of the Virtual Prototype of Water Mist Fire-extinguishing Gun

    Institute of Scientific and Technical Information of China (English)

    韩星星; 韩纬华; 许历; 胡存; 苏先明

    2013-01-01

    The author has designed a brand new water mist fire-extinguishing gun.The essay has used SolidWorks software to create a virtual prototype of water mist fire-extinguishing gun,imported CAD model into the ANSYS environment for finite element analysis through the data interface of SolidWorks and ANSYS.%设计了一种全新的细水雾灭火枪,应用SolidWorks软件建立细水雾灭火枪的虚拟样机,通过SolidWorks和ANSYS的数据接口,将建好的CAD模型导入ANSYS环境中进行有限元分析.

  13. Experimental study and advanced CFD simulation of fire safety performance of building external wall insulation system

    Directory of Open Access Journals (Sweden)

    Yan Zhenghua

    2013-11-01

    Full Text Available Large scale fire tests of building external wall insulation system were conducted. In the experiment, thermal-couples were mounted to measure the insulation system surface temperature and the gas temperature inside rooms at the second and third floors. Photos were also taken during the fire tests. The measurement provides information of the ignition and fire spread of the external insulation system which consists of surface protection layer, glass fibre net, bonding thin layer, anchor and the load bearing wall. Comprehensive simulations of the fire tests were carried out using an advanced CFD fire simulation software Simtec (Simulation of Thermal Engineering Complex [1, 2], which is now released by Simtec Soft Sweden, with the turbulent flow, turbulent combustion, thermal radiation, soot formation, convective heat transfer, the fully coupled three dimensional heat transfer inside solid materials, the ‘burn-out' of the surface protection layer and the pyrolysis of the insulation layer, etc, all computed. The simulation is compared with experimental measurement for validation. The simulation well captured the burning and fire spread of the external insulation wall.

  14. Need for a probabilistic fire analysis at nuclear power plants

    International Nuclear Information System (INIS)

    Although fire protection standards for nuclear power plants cover a wide scope and are constantly being updated, the existence of certain constraints makes it difficult to precisely evaluate plant response to different postulatable fires. These constraints involve limitations such as: - Physical obstacles which impede the implementation of standards in certain cases; - Absence of general standards which cover all the situations which could arise in practice; - Possible temporary noncompliance of safety measures owing to unforeseen circumstances; - The fact that a fire protection standard cannot possibly take into account additional damages occurring simultaneously with the fire; Based on the experience of the ASCO NPP PSA developed within the framework of the joint venture, INITEC-INYPSA-EMPRESARIOS AGRUPADOS, this paper seeks to justify the need for a probabilistic analysis to overcome the limitations detected in general application of prevailing standards. (author)

  15. Modeling the Effect of Climate Change on Large Fire Size, Counts, and Intensities Using the Large Fire Simulator (FSim)

    Science.gov (United States)

    Riley, K. L.; Haas, J. R.; Finney, M.; Abatzoglou, J. T.

    2013-12-01

    Changes in climate can be expected to cause changes in wildfire activity due to a combination of shifts in weather (temperature, precipitation, relative humidity, wind speed and direction) and vegetation. Changes in vegetation could include type conversions, altered forest structure, and shifts in species composition, the effects of which could be mitigated or exacerbated by management activities. Further, changes in suppression response and effectiveness may alter potential wildfire activity, as well as the consequences of wildfire. Feedbacks among these factors are extremely complex and uncertain. The ability to anticipate changes driven by fire weather (largely outside of human control) can lead to development of fire and fuel management strategies aimed at mitigating current and future risk. Therefore, in this study we focus on isolating the effects of climate-induced changes in weather on wildfire activity. Specifically, we investigated the effect of changes in weather on fire activity in the Canadian Rockies ecoregion, which encompasses Glacier National Park and several large wilderness areas to the south. To model the ignition, growth, and containment of wildfires, we used the Large Fire Simulator (FSim), which we coupled with current and projected future climatic conditions. Weather streams were based on data from 14 downscaled Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) using the Representative Concentration Pathways (RCP) 45 and 85 for the years 2040-2060. While all GCMs indicate increases in temperature for this area, which would be expected to exacerbate fire activity, precipitation predictions for the summer wildfire season are more variable, ranging from a decrease of approximately 50 mm to an increase of approximately 50 mm. Windspeeds are generally predicted to decrease, which would reduce rates of spread and fire intensity. The net effect of these weather changes on the size, number, and intensity

  16. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  17. Feasibility Analysis of a Type of Soft Firing Technology with Pneumatic Transmission

    Institute of Scientific and Technical Information of China (English)

    YANG Jun-rong; MI Liang-chuan; ZHAO Hua

    2006-01-01

    Aimed at solving the conflict between the requirements of reducing gun recoil and increasing muzzle velocity, a new type of soft firing technology with pneumatic transmission is put forward. By mathematical model and instance simulation, the feasibility analysis of this technique is made. The result shows that the soft firing technology with pneumatic transmission can reduce the maximum pressure on the breechblock by 27 % and increase the muzzle velocity by 20 %. The proposed new approach has the significance to the compatibility of power and flexibility.

  18. Model-based analysis of a concrete building subjected to fire

    OpenAIRE

    Fletcher, Ian A.; Welch, Stephen; Alvear, Daniel; Lazaro, Mariano; Capote, Jorge A.

    2007-01-01

    A case study is presented of the Windsor Tower fire in Madrid, a mainly concrete-framed office block, which was involved in a major, multiple floor fire in February 2005. The performance of the structure is documented and examined using all available methods, including analysis of data on the fire and computer modelling of the fire and structure. Holistic structural performance during a fire is more complex than the effects of fire upon individual members which make up the structure. In ...

  19. Coupled Atmosphere-Fire Simulations of Fireflux: Impacts of Model Resolution on Model Performance

    CERN Document Server

    Kochanski, Adam K; Jenkins, M A; Mandel, J; Beezley, J D

    2011-01-01

    The ability to forecast grass fire spread could be of a great importance for agencies making decisions about prescribed burns. However, the usefulness of the models used for fire-spread predictions is limited by the time required for completing the coupled atmosphere-fire simulations. In this study we analyze the sensitivity of a coupled model with respect to the vertical resolution of the atmospheric grid and the resolution of fire mesh that both affect computational performance of the model. Based on the observations of the plume properties recorded during the FireFlux experiment (Clements et al., 2007), we try to establish the optimal model configuration that provides realistic results for the least computational expense.

  20. Numerical simulation of sodium pool fires in liquid metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In Liquid Metal-Cooled Fast Breeder Reactor (LMFBR), the leakage of sodium can result in sodium fires. Due to sodium's high chemical reactivity in contact with air and water, sodium fires will lead to an immediate increase of the air temperature and pressure in the containment. This will harm the integrity of the containment. In order to estimate and foresee the sequence of this accident, or to prevent the accident and alleviate the influence of the accident, it is necessary to develop programs to analyze such sodium fire accidents. Based on the work of predecessors, flame sheet model is produced and used to analyze sodium pool fire accidents. Combustion model and heat transfer model are included and expatiated. And the comparison between the analytical and experimental results shows the program is creditable and reasonable. This program is more realistic to simulate the sodium pool fire accidents and can be used for nuclear safety judgement. (authors)

  1. Fire Airborne Simulator Arrangement: in progress status report

    OpenAIRE

    Di Stefano, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Buongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Amici, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Romeo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Badiali, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Mari, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italia; Pippi, I.; IFAC-CNR, Firenze, Italia; Marcoionni, P.; IFAC-CNR, Firenze, Italia; Cherubini, G.; Galileo Avionica, Campi Bisenzio Italia; Lindermeier, E.; DLR, Germany

    2004-01-01

    The FASA project in collaboration with the DLR and the financing of ASI was started in order to combine bi-spectral imager and high-resolution FTIR- spectrometer (MIROR) for airborne remote sensing and gas analyis of high temperature events such as volcanoes and wild fires.

  2. Analysis of pressure safety valves for fire protection on offshore oil and gas installations

    DEFF Research Database (Denmark)

    Bjerre, Michael Skov; Eriksen, Jacob; Andreasen, Anders;

    2016-01-01

    The effectiveness of fire Pressure Safety Valves (PSV) has been investigated when offshore process equipment is exposed to a fire. Simulations of several typical offshore pressure vessels have been performed using the commercial software VessFire. The pressure vessels are exposed to a small jet f...... protection for typical offshore fire scenarios and that blowdown valves and passive fire protection should be considered as alternatives....

  3. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    Science.gov (United States)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  4. Framework for real-time forest fire animation: Simulating fire spread using the GPU

    OpenAIRE

    Kjærnet, Øystein

    2010-01-01

    In 2009 Odd Erik Gundersen and Jo Skjermo described a conceptual framework for animating physically based forest fires. This project expands on their ideas with a focus on how modern graphics hardware can be utilized to achieve real-time performance. A prototype demonstrating some of the concepts suggested for the framework have been implemented and tested, successfully achieving real-time frame rates on a simple animation of a burning tree.

  5. Numerical simulations examining the possible role of anthropogenic and volcanic emissions during the 1997 Indonesian fires.

    Science.gov (United States)

    Pfeffer, Melissa Anne; Langmann, Bärbel; Heil, Angelika; Graf, Hans-F

    2012-09-01

    The regional atmospheric chemistry and climate model REMOTE has been used to conduct numerical simulations of the atmosphere during the catastrophic Indonesian fires of 1997. These simulations represent one possible scenario of the event, utilizing the RETRO wildland fire emission database. Emissions from the fires dominate the atmospheric concentrations of O(3), CO, NO(2), and SO(2) creating many possible exceedances of the Indonesian air quality standards. The scenario described here suggests that urban anthropogenic emissions contributed to the poor air quality due primarily to the fires. The urban air pollution may have increased the total number of people exposed to exceedances of the O(3) 1-h standard by 17%. Secondary O(3) from anthropogenic emissions enhanced the conversion of SO(2) released by the fires to [Formula: see text], demonstrating that the urban pollution actively altered the atmospheric behavior and lifetime of the fire emissions. Under the conditions present during the fires, volcanic SO(2) emissions had a negligible influence on surface pollution. PMID:22942920

  6. DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests

    Directory of Open Access Journals (Sweden)

    Mark A. Gathany

    2012-07-01

    Full Text Available Biological activity and the physical environment regulate greenhouse gas fluxes (CH4, N2O and NO from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1 to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2 to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (>100%, and N2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability.

  7. 基于 ADAMS 机枪射击稳定性动力学仿真分析%Dynamic Simulation Analysis on Firing Stability of Machine Gun Based on ADAMS

    Institute of Scientific and Technical Information of China (English)

    黄晓; 金永灿; 赵东艳; 廖振强; 张茂文

    2016-01-01

    针对大口径机枪射击稳定性低的问题,提出一种利用膛内火药气体能量来减小枪口跳动的稳定控制装置;鉴于枪管在稳定力作用下会发生变形,采用一种支架装置来加强枪管的刚度;基于刚柔糅合、多柔体动力学理论,以ADAMS、Matlab 软件为平台,对改进后的机枪进行仿真,枪口跳动的最大位移值下降了46%,脚架振动的最大位移值下降了41%,射击稳定性得到明显提高。%Aiming at the problem of low firing stability of large caliber machine gun,a stability control de-vice using the energy of the propellant gas was proposed to reduce the jump of the muzzle.Considering the deformation of the barrel under the force of stability control device,a bracket device was applied to im-prove stiffness.The machine gun that has been changed was simulated to verify the firing stability of ma-chine gun by using ADAMS and Matlab software based on rigid-flexible coupling and mufti-degree flexible-body dynamics theory.The maximum displacement value of the muzzle is decreased by 46%.The maxi-mum displacement of tripod vibration is decreased by 41%,and the firing stability improves a lot.

  8. Fire-BGC: A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains. Forest Service research paper

    Energy Technology Data Exchange (ETDEWEB)

    Keane, R.E.; Morgan, P.; Running, S.W.

    1996-03-01

    An ecological process model of vegetation dynamics mechanistically simulates long-term stand dynamics on coniferous landscapes of the Northern Rocky Mountains. This model is used to investigate and evaluate cumulative effects of various fire regimes, including prescribed burning and fire exclusion, on the vegetation and fuel complex of a simulation landscape composed of many stands. Detailed documentation of the model FIRE-BGC (a FIRE BioGeoChemical succession model) with complete discussion of all model parameters is followed with results of an application of the FIRE-BGC to a whitebark pine landscape in the Bob Marshall Wilderness Complex. Simulation results of several management scenarios are contrasted to predict the fate of whitebark pine over 200 years. Model testing reveals predictions within 10 to 30 percent of observed values.

  9. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis

    Science.gov (United States)

    Balshi, M. S.; McGuire, A.D.; Zhuang, Q.; Melillo, J.; Kicklighter, D.W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, J.S.; Burnside, T.J.; McAllister, J.; Kurz, W.A.; Apps, M.; Shvidenko, A.

    2007-01-01

    Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45??N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties. Copyright 2007 by the American Geophysical Union.

  10. Experimental study and numerical simulation of spread law for fire on tunnel

    Institute of Scientific and Technical Information of China (English)

    牛会永; 乔晨露; 安敬鱼; 邓军

    2015-01-01

    In order to research spread law and distribution law of temperature nearby fire sources on roadway in mine, according to combustion theory and other basic, the theory model of temperature attenuation was determined under unsteady heat-exchange between wind and roadway wall. The full-size roadway fire simulation experiments were carried out in Chongqing Research Institute of China Coal Technology & Engineering Group Corporation. The development processes of mine fire and flow pattern of high temperature gas were analyzed. Experimental roadway is seen as physical model, and through using CFD software, the processes of mine fire have been simulated on computer. The results show that, after fire occurs, if the wind speed is less than the minimum speed which can prevent smoke from rolling back, then the smaller wind speed can cause smoke to roll back easily. Hot plume will lead to secondary disasters in upwind side. Because of roadway wall, hot plume released from roadway fire zone has caused the occurrence of the ceiling jet, and the hot plume has been forced down. Whereas, owing to the higher temperature, buoyancy effect is more obvious. Therefore, smoke rises gradually along the roadway in the flow process, and the hierarchical interface appears wavy. Oxygen-enriched combustion and fuel-enriched combustion are the two kinds of combustion states of fire. The oxygen content of downwind side of fire is maintained at around 15% for oxygen-enriched combustion, and the oxygen content of downwind side of fire is maintained at around 2% for fuel-enriched combustion. Furthermore, fuel-enriched combustion can lead to secondary disasters easily.

  11. Simulation of Forest Fire Spreading Based on Geographic Cellular Automata%林火蔓延地理元胞自动机仿真模拟

    Institute of Scientific and Technical Information of China (English)

    湛玉剑; 张帅; 张磊; 刘学军

    2013-01-01

    On the basis of geographical cellular automata, a forest fire spread simulation model which applied in the complex diversity of tree species is proposed for the complexity of the impact of forest fire spread factors in this paper. Meanwhile ,GIS technology, which is convenient to CA forest fire spread model for its ability to handle and analysis raster data and other abilities, is used to design and achieve a dynamic simulation of the spread model in this paper. Simulation results show that the model can simulate forest fire spread of different environments, and is suitable for simulation analyzing forest fire spread under the combined effects of various factors ,and also can provide technical support for prediction analysis of fire spread,estimating fire shape,burned area and the rate of spread and optimizing fire suppression decision-making.%针对林火蔓延影响因子的复杂性,在地理元胞自动机的基础上,提出一种应用于具有复杂树种多样性的林火蔓延模拟模型,同时借助GIS技术实现了蔓延模型的动态模拟.实验结果表明,模型可以模拟不同环境下的林火蔓延,适用于仿真分析多种因素综合作用下的林火蔓延,能够为预测分析火势蔓延趋势,估算火场形状、过火面积、蔓延速度以及优化灭火决策等提供技术支持.

  12. The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory.

    Science.gov (United States)

    I, Yet-Pole; Chiu, Yi-Long; Wu, Shi-Jen

    2009-04-30

    The semiconductor industry is the collection of capital-intensive firms that employ a variety of hazardous chemicals and engage in the design and fabrication of semiconductor devices. Owing to its processing characteristics, the fully confined structure of the fabrication area (fab) and the vertical airflow ventilation design restrict the applications of traditional consequence analysis techniques that are commonly used in other industries. The adverse situation also limits the advancement of a fire/explosion prevention design for the industry. In this research, a realistic model of a semiconductor factory with a fab, sub-fabrication area, supply air plenum, and return air plenum structures was constructed and the computational fluid dynamics algorithm was employed to simulate the possible fire/explosion range and its severity. The semiconductor factory has fan module units with high efficiency particulate air filters that can keep the airflow uniform within the cleanroom. This condition was modeled by 25 fans, three layers of porous ceiling, and one layer of porous floor. The obtained results predicted very well the real airflow pattern in the semiconductor factory. Different released gases, leak locations, and leak rates were applied to investigate their influence on the hazard range and severity. Common mitigation measures such as a water spray system and a pressure relief panel were also provided to study their potential effectiveness to relieve thermal radiation and overpressure hazards within a fab. The semiconductor industry can use this simulation procedure as a reference on how to implement a consequence analysis for a flammable gas release accident within an air recirculation cleanroom.

  13. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F; Palma, Miguel; Ayuso, Jesús; Álvarez, José A; Barroso, Carmelo G

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45-200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  14. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  15. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2016-05-01

    Full Text Available Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose has been developed for the analysis of Ignitable Liquid Residues (ILRs. The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA and linear discriminant analysis (LDA were applied to the MS data (45–200 m/z to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin were used to ignite different substrates (wood, cotton, cork, paper and paperboard. A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.

  16. Computer simulation of vortex combustion processes in fire-tube boilers

    Science.gov (United States)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Kudryashova, Lidiya D.; Tshelkunova, Anastasiya V.

    2015-01-01

    The article describes computer simulation of the turbulent methane-air combustion in a fire-tube boiler furnace. Computer simulations performed for variants of once-through fire-tube furnace and reversive flame furnace. Options with various twist parameters of the fuel-air jet were examined. The flame structure has been determined computationally, contours of average speed, temperature and concentrations have been acquired. The results of calculations are presented in graphical form. Dependence of construction characteristics on vortex aerodynamic parameters was estimated. Turbulent combustion of natural gas in the reverse flame of fire-tube boiler was studied by means of the ANSYS Fluent 12.1.4 engineering simulation software.

  17. Computer simulation of vortex combustion processes in fire-tube boilers

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available The article describes computer simulation of the turbulent methane-air combustion in a fire-tube boiler furnace. Computer simulations performed for variants of once-through fire-tube furnace and reversive flame furnace. Options with various twist parameters of the fuel-air jet were examined. The flame structure has been determined computationally, contours of average speed, temperature and concentrations have been acquired. The results of calculations are presented in graphical form. Dependence of construction characteristics on vortex aerodynamic parameters was estimated. Turbulent combustion of natural gas in the reverse flame of fire-tube boiler was studied by means of the ANSYS Fluent 12.1.4 engineering simulation software.

  18. Fire disturbance and vegetation dynamics : analysis and models

    Science.gov (United States)

    Thonicke, Kirsten

    2003-04-01

    Studies of the role of disturbance in vegetation or ecosystems showed that disturbances are an essential and intrinsic element of ecosystems that contribute substantially to ecosystem health, to structural diversity of ecosystems and to nutrient cycling at the local as well as global level. Fire as a grassland, bush or forest fire is a special disturbance agent, since it is caused by biotic as well abiotic environmental factors. Fire affects biogeochemical cycles and plays an important role in atmospheric chemistry by releasing climate-sensitive trace gases and aerosols, and thus in the global carbon cycle by releasing approximately 3.9 Gt C p.a. through biomass burning. A combined model to describe effects and feedbacks between fire and vegetation became relevant as changes in fire regimes due to land use and land management were observed and the global dimension of biomass burnt as an important carbon flux to the atmosphere, its influence on atmospheric chemistry and climate as well as vegetation dynamics were emphasized. The existing modelling approaches would not allow these investigations. As a consequence, an optimal set of variables that best describes fire occurrence, fire spread and its effects in ecosystems had to be defined, which can simulate observed fire regimes and help to analyse interactions between fire and vegetation dynamics as well as to allude to the reasons behind changing fire regimes. Especially, dynamic links between vegetation, climate and fire processes are required to analyse dynamic feedbacks and effects of changes of single environmental factors. This led us to the point, where new fire models had to be developed that would allow the investigations, mentioned above, and could help to improve our understanding of the role of fire in global ecology. In conclusion of the thesis, one can state that moisture conditions, its persistence over time and fuel load are the important components that describe global fire pattern. If time series of

  19. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s−1 to 8 m·s−1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  20. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  1. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  2. Pool fire-ventilation crossflow experiments in a simulated aircraft cabin interior

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1985-01-01

    An experimental facility has been built to study pool fire dynamics and flame spread behavior in a 1/3-scale simulated aircraft interior; attention is presently given to pool fire ventilation crossflow using a 'channel' pool fire subjected to crossflow velocities that replicate postcrash conditions in a wide body aircraft. Crossflow velocity is noted to have a strong effect on visible flame geometry, tilting the flame over sharply. A reverse flow ceiling jet of hot gases was also present in all tests, however, and extended far upstream of the fire, so that despite the appearance of the visible flame, the vertical momentum of the plume was strong enough to establish the reverse flow layer and spread smoke and toxic gases upstream against a significant ventilating flow.

  3. A fire hazard analysis at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    The fire hazard analysis (FHA) of the Ignalina Nuclear Power Plant (INPP) Unit no.1 was initiated during 1997 and is estimated to finalise in summer 1998. The reason for starting a FHA was a recommendation in the Safety Analysis Report and its review to prioritise a systematic FHA. Fire protection improvements had earlier been based on engineering assessments, but further improvements required a systematic FHA. It is also required by the regulator for licensing of unit no.1. In preparation of the analysis it was decided to perform a deterministic FHA to fulfil the requirements in the IAEA draft of a Safety Practice ''Preparation of Fire Hazard Analyses for Nuclear Power Plants''. As a supporting document the United States Department of Energy Reactor Core Protection Evaluation Methodology for Fires at RBMK and WWER Nuclear Power Plants (RCPEM) was agreed to be used. The assistance of the project is performed as a bilateral activity between Sweden and UK. The project management is the responsibility of the INPP. In order to transfer knowledge to the INPP project group, training activities are arranged by the western team. The project will be documented as a safety case. The project consists of parties from INPP, Sweden, UK and Russia which makes the project very dependent of good communication procedures. The most difficult problems is except from the problems with translation, the problems with different standards and lack of testing protocols of the fire protection installations and problems to set the right level of screening criteria. There is also the new dimension of making it possible to take credit for the fire brigade in the safety case, which can bring the project into difficulties. The most interesting challenges for the project are to set the most sensible safety levels in the screening phase, to handle the huge volume of rooms for survey and screening, to maintain the good exchange of fire- and nuclear safety information between all the parties involved

  4. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX

    International Nuclear Information System (INIS)

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data.

  5. Toward an integrated system for fire, smoke, and air quality simulations

    CERN Document Server

    Kochanski, Adam K; Yedinak, Kara; Mandel, Jan; Beezley, Jonathan D; Lamb, Brian

    2014-01-01

    In this study, we describe how WRF-Sfire is coupled with WRF-Chem to construct WRFSC, an integrated forecast system for wildfire and smoke prediction. The integrated forecast system has the advantage of not requiring a simple plume-rise model and assumptions about the size and heat release from the fire in order to determine fire emissions into the atmosphere. With WRF-Sfire, wildfire spread, plume and plume-top heights are predicted directly, at every WRF timestep, providing comprehensive meteorology and fire emissions to the chemical transport model WRF-Chem. Evaluation of WRFSC was based on comparisons between available observations to the results of two WRFSC simulations. The study found overall good agreement between forecasted and observed fire spread and smoke transport for the Witch-Guejito fire. Also the simulated PM2.5 (fine particulate matter) peak concentrations matched the observations. However, the NO and ozone levels were underestimated in the simulations and the peak concentrations were mistim...

  6. Hazard analysis system of urban post-earth-quake fire based on GIS

    Institute of Scientific and Technical Information of China (English)

    李杰; 江建华; 李明浩

    2001-01-01

    The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is presented. Taking Shanghai central district as background, a system for hazard analysis of the post-earthquake fire and auxili-ary decision-against fire is developed.

  7. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    Science.gov (United States)

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics.

  8. Rapid Prototyping of Simulated VIIRS Data in the SERVIR Fire Rapid Response System

    Science.gov (United States)

    Easson, G.; Kuszmaul, J. S.; Yarbrough, L. D.; Irwin, D.; Cherrington, E.

    2006-12-01

    A rapid prototyping capability experiment has been established involving the application of the SERVIR (Sistema Regional de Visualización y Monitoreo) decision support tool, which is NASA's and its partner agencies' tool to monitor groundcover and climatic conditions in Mesoamerica. As an information system, the SERVIR tool processes data products from multiple sources and the outcome is visualized through interactive digital maps, standard view map outputs or 3D real-time visualization. The focus of this research is one of the SERVIR Fire Rapid Response products known as the MODIS SERVIR Fire Extent Product, which was developed to meet the requirements of the Guatemalan Park Service. The credibility of SERVIR's monitoring tools currently depends upon NASA's MODIS data, which is nearing the end of its availability. This will make it necessary to transition to the planned replacement sensor, VIIRS. The impact of this transition on the performance of SERVIR's fire detection tools is the current focus of our investigation. A quantitative assessment of fire conditions in Guatemala is made using MODIS data and is compared to the anticipated performance using simulated data that would have been produced by a VIIRS-like sensor. Using a low-density geospatial database, the comparison is made for a number of dates from the 2003 Guatemalan fire season, where ground validation data is available. A comparative assessment is also made using the kappa statistic applied to the land classifications resulting from both the MODIS- and VIIRS- based fire detection algorithms.

  9. Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model

    Science.gov (United States)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G.; Bucholtz, Anthony; Rosenlof, Karen H.; Saide, Pablo E.; Da Silva, Arlindo; Ziemba, Luke D.; Thornhill, Kenneth L.; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P.; Perring, Anne E.; Froyd, Karl D.; Wagner, N. L.; Mills, Michael J.; Reid, Jeffrey S.

    2016-06-01

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

  10. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, David R. (INS, Inc., Lexington Park, MD); Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  11. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming;

    2014-01-01

    Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...

  12. Non-PR Majors Catch Fire in "Northville" Simulation.

    Science.gov (United States)

    Deats, Tom

    1981-01-01

    Classroom simulation can prove effective in improving the overall quality of a public relations course for nonjournalism majors by helping to blend theory with practice and by creating student interest. (HOD)

  13. Integrating Fire Behavior Models and Geospatial Analysis for Wildland Fire Risk Assessment and Fuel Management Planning

    OpenAIRE

    Alan A. Ager; Vaillant, Nicole M.; Finney, Mark A.

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals and public expectations. A number of fire behavior metrics, including fire spread, intensity, likelihood, and ecological risk m...

  14. Simulator training analysis

    International Nuclear Information System (INIS)

    This paper presents a suggestion for systematic collection of data during the normal use of training simulators, with the double purpose of supporting trainee debriefing and providing data for further theoretical studies of operator performance. The method is based on previously described models of operator performance and decision-making, and is a specific instance of the general method for analysis of operator performance data. The method combines a detailed transient-specific description of the expected performance with transient-independent tools for observation of critical activities. (author)

  15. FASA – Fire Airborne Spectral Analysis of natural disasters

    Directory of Open Access Journals (Sweden)

    F. Schrandt

    2006-06-01

    Full Text Available At present the authors are developing the system FASA, an airborne combination of a Fourier Transform Spectrometer and an imaging system. The aim is to provide a system that is usable to investigate and monitor emissions from natural disasters such as wild fires and from volcanoes. Besides temperatures and (burned areas FASA will also provide concentration profiles of the gaseous combustion products. These data are needed to improve the knowledge of the effects of such emissions on the global ecosystem. The paper presents a description of the instrumentation, the data evaluation procedure and shows first results of retrieval calculations based on simulated spectra.

  16. Fire fighting trainers' exposure to carcinogenic agents in smoke diving simulators.

    Science.gov (United States)

    Laitinen, Juha; Mäkelä, Mauri; Mikkola, Jouni; Huttu, Ismo

    2010-01-15

    It is well known that fire fighters are potentially exposed to various carcinogenic agents at a fire scene. An almost unheeded issue, however, is fire fighters' exposure to carcinogenic agents in smoke diving simulators. Biomonitoring (urinary muconic acid, 1-naphthol and 1-pyrenol), dermal (polycyclic aromatic hydrocarbons) and occupational hygiene measurements (cyanides, hydrogen cyanide, polycyclic aromatic hydrocarbons, volatile organic compounds and formaldehyde) were used to determine how the burning material, the type of simulator and protective clothing used affect fire fighting trainers' exposure. The highest excretion of 1-pyrenol (sampled 6h after end of exposure, in average 4.3-9.2nmol/L) and emissions of benzene (1.0-2.5mg/m(3)) and hydrogen cyanide (0.2-0.9mg/m(3)) were measured during the burning of conifer plywood and chipboard, and the lowest when pure pine and spruce wood (1.5nmol/L, 0.6mg/m(3), and 0.05mg/m(3)) was burned. However the safest burning material seemed to be propane (1.0nmol/L, 0.2mg/m(3), and not measured). The type of simulator used affected trainers' exposure very clearly. The highest dermal whole body exposures to polycyclic aromatic hydrocarbons were measured in the fire house simulator (in average 1200ng/cm(2)). Clearly lower exposure levels were measured in container training sessions (760ng/cm(2)), where the average dermal exposure level was 35% lower than in the fire house. The exposure levels (30ng/cm(2)) in the gas simulator in turn, were only 4% of the levels in container training sessions. The amount of polycyclic aromatic hydrocarbons decreased by 80% on trainers' hands when they used under gloves (in average 8.7ng/cm(2)) compared to those (48.4ng/cm(2)) who did not. There was not difference in protection efficiency against polycyclic aromatic hydrocarbons between tested fire suits (Brage and Bristol). PMID:19576276

  17. Mapping forest fire risk zones with spatial data and principal component analysis

    Institute of Scientific and Technical Information of China (English)

    XU Dong; Guofan Shao; DAI Limin; HAO Zhanqing; TANG Lei; WANG Hui

    2006-01-01

    By integrating forest inventory data with remotely sensed data, new data layers for factors that affect forest fire potentials were generated for Baihe Forestry Bureau in Jilin Province of China. The principle component analysis was used to sort out the relationships between forest fire potentials and environmental factors. The classifications of these factors were performed with GIS, generating three maps: a fuel-based fire risk map, a topography-based fire risk map, and an anthropogenic-factor fire risk map. These three maps were then synthesized to generate the final fire risk map. The linear regression method was used to analyze the relationship between an area-weighted value of forest fire risks and the frequency of historical forest fires at each forest farm. The results showed that the most important factor contributing to forest fire ignition was topography, followed by anthropogenic factors.

  18. Fire Research Enclosure

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Simulates submarine fires, enclosed aircraft fires, and fires in enclosures at shore facilities . DESCRIPTION: FIRE I is a pressurizable, 324 cu m(11,400...

  19. Thermodynamic analysis of a biomass-fired Kalina cycle with regenerative heater

    International Nuclear Information System (INIS)

    The biomass fuel is a renewable energy resource, which is viewed as a promising alternative to fossil energy. This paper investigates a biomass-fired Kalina cycle with a regenerative heater which is generally utilized to heat the feedwater and to increase the efficiency in coal-fired steam power plant. The mathematical model of the biomass-fired Kalina cycle with a regenerative heater is established to conduct numerical simulation. A parametric analysis is conducted to examine the effects of some key thermodynamic parameters on the system performance. Furthermore, a parametric optimization is carried out by genetic algorithm to obtain the optimum performance of system. The results demonstrate that there exists an optimum extraction pressure and its corresponding maximum fraction of flow extracted from turbine to maximize the net power output and system efficiency. In addition, a higher turbine inlet pressure or turbine inlet temperature leads to higher net power output and system efficiency. And net power output and system efficiency increases as separator temperature rises. The optimization result of the biomass-fired Kalina cycle with/without regenerative heater indicates the system is more efficient when regenerative heater is added. - Highlights: • Kalina cycle with a regenerative heater is driven by biomass boiler. • The effects of several parameters on system performance are examined. • Parametric optimization is conducted by GA to obtain optimum performance

  20. A Naval Marksmanship Training Transfer Study The Use of Indoor Simulated Marksmanship Trainers to Train for Live Fire

    OpenAIRE

    Jensen, Timothy; Woodson, John

    2012-01-01

    The use of simulation to train watchstanders in marksmanship would provide a valuable and flexible training asset to the Navy, resulting in minimal lost training opportunities due to operational commitments at sea. We hypothesized that (1) simulation-based marksmanship training would transfer to live fire better than dry fire training, and (2) the experimental (simulation) group would have a better chance of retaining their marksmanship skills than the control group after two or four weeks wi...

  1. Fire hazard analysis of Rocky Flats Building 776/777 duct systems

    Energy Technology Data Exchange (ETDEWEB)

    DiNenno, P.J.; Scheffey, J.L.; Gewain, R.G.; Shanley, J.H. Jr. [Hughes Associates, Inc., Wheaton, MD (United States)

    1988-12-01

    The objective of this analysis is to determine if ventilation ductwork in Building 776/777 will maintain their structural integrity during expected fire conditions as well as standard design fires typically used to ascertain fire resistance ratings. If the analysis shows that ductwork will not maintain structural integrity, the impact of this failure will be determined and analyzed, and alternative solutions recommended. Associated with this analysis is the development of a computer fire model which can be used as an engineering tool in analyzing the effect of fires on ductwork in other areas and buildings.

  2. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    Science.gov (United States)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2015-12-01

    We present an analysis of the galaxy-scale gaseous outflows from the Feedback in Realistic Environments (FIRE) simulations. This suite of hydrodynamic cosmological zoom simulations resolves formation of star-forming giant molecular clouds to z = 0, and features an explicit stellar feedback model on small scales. Our simulations reveal that high-redshift galaxies undergo bursts of star formation followed by powerful gusts of galactic outflows that eject much of the interstellar medium and temporarily suppress star formation. At low redshift, however, sufficiently massive galaxies corresponding to L* progenitors develop stable discs and switch into a continuous and quiescent mode of star formation that does not drive outflows far into the halo. Mass-loading factors for winds in L* progenitors are η ≈ 10 at high redshift, but decrease to η ≪ 1 at low redshift. Although lower values of η are expected as haloes grow in mass over time, we show that the strong suppression of outflows with decreasing redshift cannot be explained by mass evolution alone. Circumgalactic outflow velocities are variable and broadly distributed, but typically range between one and three times the circular velocity of the halo. Much of the ejected material builds a reservoir of enriched gas within the circumgalactic medium, some of which could be later recycled to fuel further star formation. However, a fraction of the gas that leaves the virial radius through galactic winds is never regained, causing most haloes with mass Mh ≤ 1012 M⊙ to be deficient in baryons compared to the cosmic mean by z = 0.

  3. SIMULATION OF FIRE DYNAMICS WITH VARIOUS GROWTH RATE IN PREMISES WITH NATURAL VENTILATION

    Directory of Open Access Journals (Sweden)

    V. V. Nevdakh

    2015-08-01

    Full Text Available Computer simulation of the initial fire stage dynamics with various growth rate have been carried out with the help of FDS software. In case of a quick fire 1055 kW heat liberation has been reached in accordance with quadratic law within 100 seconds, averagely within 250 seconds and within 500 seconds when the fire rate is slow. Source of fire has been located on the floor and at the height of 2 m. A doorway of 0.8×2.0 m size and two 0.8×0.1 m openings have been used as ventilation holes. One opening has been located at the bottom over the floor and the other one has been positioned under the ceiling. It has been established that in the process of their development fires change their character in the following way: at the initial stage they are controlled by inflammable materials and then the fires are controlled by oxygen. At the first stage heat liberation is changed in accordance with the same law which is used for mass rate of an inflammable material and flame combustion is observed only in the field of the fire source. At the second stage heat liberation dynamics has a form of pulsations which are irregular in amplitude and duration and the dynamics becomes dependable on ventilation conditions. At this stage flame combustion in the source zone and/or self-ignition in the smoke layer provide a corresponding contribution in fire heat liberation.It has been determined that two layers have been formed in case of a fire in the premises with ventilation in the spatial distribution of temperature and air fumigation. These top and bottom layers are practically uniform and they are characterized by irregular pulsations of the parameters which are due to smoke self-ignition occurrence. The paper shows relationship of these distributions with spatial distribution of air pressure changes in the premises during a fire. A significant dependence of heat liberation dynamics on fire source location height is observed at all fire growth rates. An increase

  4. Multivariate cluster analysis of forest fire events in Portugal

    Science.gov (United States)

    Tonini, Marj; Pereira, Mario; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Portugal is one of the major fire-prone European countries, mainly due to its favourable climatic, topographic and vegetation conditions. Compared to the other Mediterranean countries, the number of events registered here from 1980 up to nowadays is the highest one; likewise, with respect to the burnt area, Portugal is the third most affected country. Portuguese mapped burnt areas are available from the website of the Institute for the Conservation of Nature and Forests (ICNF). This official geodatabase is the result of satellite measurements starting from the year 1990. The spatial information, delivered in shapefile format, provides a detailed description of the shape and the size of area burnt by each fire, while the date/time information relate to the ignition fire is restricted to the year of occurrence. In terms of a statistical formalism wildfires can be associated to a stochastic point process, where events are analysed as a set of geographical coordinates corresponding, for example, to the centroid of each burnt area. The spatio/temporal pattern of stochastic point processes, including the cluster analysis, is a basic procedure to discover predisposing factorsas well as for prevention and forecasting purposes. These kinds of studies are primarily focused on investigating the spatial cluster behaviour of environmental data sequences and/or mapping their distribution at different times. To include both the two dimensions (space and time) a comprehensive spatio-temporal analysis is needful. In the present study authors attempt to verify if, in the case of wildfires in Portugal, space and time act independently or if, conversely, neighbouring events are also closer in time. We present an application of the spatio-temporal K-function to a long dataset (1990-2012) of mapped burnt areas. Moreover, the multivariate K-function allowed checking for an eventual different distribution between small and large fires. The final objective is to elaborate a 3D

  5. Analysis of thermal radiation in coal-fired furnaces

    Science.gov (United States)

    Miles, Jonathan J.; Hammaker, Robert G.; Madding, Robert P.; Sunderland, J. E.

    1997-04-01

    Many utilities throughout the United States have added infrared scanning to their arsenal of techniques for inspection and predictive maintenance programs. Commercial infrared scanners are not designed, however, to withstand the searing interiors of boilers, which can exceed 2500 degrees Fahrenheit. Two high-temperature lenses designed to withstand the hostile environment inside a boiler for extended periods of time were developed by the EPRI M&D Center, thus permitting real-time measurement of steam tube temperatures and subsequent analysis of tube condition, inspection of burners, and identification of hot spots. A study was conducted by Sunderland Engineering, Inc. and EPRI M&D in order to characterize the radiative interactions that affect infrared measurements made inside a commercial, coal- fired, water-tube boiler. A comprehensive literature search exploring the existing record of results pertaining to analytical and experimental determination of radiative properties of coal-combustion byproducts was performed. An experimental component intended to provide data for characterization of the optical properties of hot combustion byproducts inside a coal-fired furnace was carried out. The results of the study indicate that hot gases, carbon particles, and fly ash, which together compose the medium inside a boiler, affect to varying degrees the transport of infrared radiation across a furnace. Techniques for improved infrared measurement across a coal-fired furnace are under development.

  6. Computational Analysis of Mixing and Transport of Air and Fuel in Co-Fired Combustor

    Directory of Open Access Journals (Sweden)

    Javaid Iqbal

    2015-01-01

    Full Text Available Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier?Stokes model comparing with 3D (Three Dimensional LES (Large Eddy Simulation. To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero

  7. Research on solar aided coal-fired power generation system and performance analysis

    Institute of Scientific and Technical Information of China (English)

    YANG YongPing; CUI YingHong; HOU HongJuan; GUO XiYan; YANG ZhiPing; WANG NinLing

    2008-01-01

    Integrationg rating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha-nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a of SEGS, 0.14 S/kW. h.

  8. Integrating Fire Behavior Models and Geospatial Analysis for Wildland Fire Risk Assessment and Fuel Management Planning

    Directory of Open Access Journals (Sweden)

    Alan A. Ager

    2011-01-01

    Full Text Available Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals and public expectations. A number of fire behavior metrics, including fire spread, intensity, likelihood, and ecological risk must be analyzed for multiple treatment alternatives. The effect of treatments on wildfire impacts must be considered at multiple scales. The process is complicated by the lack of data integration among fire behavior models, and weak linkages to geographic information systems, corporate data, and desktop office software. This paper describes our efforts to build a streamlined fuel management planning and risk assessment framework, and an integrated system of tools for designing and testing fuel treatment programs on fire-prone wildlands.

  9. Computational Fluid Dynamics Modeling of a wood-burning stove-heated sauna using NIST's Fire Dynamics Simulator

    CERN Document Server

    Macqueron, Corentin

    2014-01-01

    The traditional sauna is studied from a thermal and fluid dynamics standpoint using the NIST's Fire Dynamics Simulator (FDS) software. Calculations are performed in order to determine temperature and velocity fields, heat flux, soot and steam cloud transport, etc. Results are discussed in order to assess the reliability of this new kind of utilization of the FDS fire safety engineering software.

  10. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery

    Directory of Open Access Journals (Sweden)

    Ömer Kücük

    2008-06-01

    Full Text Available Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1 creation of indices of the factors influencing fire risk and danger; (2 evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.

  11. Fiber beam model for fire response simulation of axially loaded concrete filled tubular columns

    OpenAIRE

    Ibáñez Usach, Carmen; Romero, Manuel L.; Hospitaler Pérez, Antonio

    2013-01-01

    This paper presents a fiber beam model for the fire response simulation of concrete filled tubular columns of circular section under concentric axial load. The model consists of two parallel components, one with a circular tubular steel section, and the other with a solid circular concrete section. The components interact with nonlinear longitudinal and transverse links at the end nodes. The element is formulated on a system without rigid body modes and accounts for large displacement geometr...

  12. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  13. The Ofidia Project: a Retrospective Fire Danger Forecast Analysis in Mediterranean Environment

    Science.gov (United States)

    Sirca, C.; Bacciu, V. M.; Salis, M.; Mirto, L.; Fiore, S.; Aloisio, G.; Spano, D.

    2015-12-01

    OFIDIA (Operational FIre Danger preventIon plAtform) is a two-year project started in May 2013 funded by the European Territorial Cooperation Programme Greece Italy (2007 - 2013). The project aims to improve the operational capability of forecasting, preventing, and fighting forest wildfires, and enhance the cross-border cooperation for fire danger assessment. More specifically, OFIDIA aims at developing an operational fire danger prevention platform, with the ability for near real-time fire danger forecast and fire behaviour analysis in Apulia (Italy) and Epirus (Greece) regions to help forest fires services in the effective prevention and response to forecasted danger.One of the preliminary activities of the project was the evaluation of fire danger performances by analysing the relationship between the predicted daily fire danger and observed fire activity (number of fires and area burned). To achieve this task, fire activity and danger patterns were characterised and their relationships were investigated for the period 2000-2012. The Italian Forest Service (CFS, Corpo Forestale dello Stato) provided fire statistics at NUT03 level. The data were homogenized and uncertainties corrected, and then burned area and number of fires were analysed according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution, etc). Then, three fire danger models (FFWI, FWI, and IFI) were selected and computed starting from the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) forecast.Results showed a high inter- and intra-annual variability in fire activiy, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Furthermore, fire activity showed significant correlations with the outputs obtained by the applied models. High relationships were found between

  14. Analysis of underground fires in Polish hard coal mines

    Institute of Scientific and Technical Information of China (English)

    WACHOWICZ Jan

    2008-01-01

    In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sa-tisfactory level.

  15. Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

    Science.gov (United States)

    Peris-Fajarnés, Guillermo; Defez, Beatriz; Serrano, Ricardo; Ruiz, Oscar E.

    2013-04-01

    Finding the geometry and properties of a ceramic tile after its firing using simulations, is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile. Previous works present limitations because they do not use a model characteristic of ceramics at high temperatures and they oversimplify the simulations. As a response to such shortcomings, this article presents a simulation with a three-dimensional Norton's model, which is characteristic of ceramics at high temperatures. The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body. Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic, and creep deformations is simplified and meaningful. That is achieved because our work found that curvature is the most descriptive parameter of the simulation. Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures.

  16. EVENT-DRIVEN SIMULATION OF INTEGRATE-AND-FIRE MODELS WITH SPIKE-FREQUENCY ADAPTATION

    Institute of Scientific and Technical Information of China (English)

    Lin Xianghong; Zhang Tianwen

    2009-01-01

    The evoked spike discharges of a neuron depend critically on the recent history of its electrical activity. A well-known example is the phenomenon of spike-frequency adaptation that is a commonly observed property of neurons. In this paper, using a leaky integrate-and-fire model that includes an adaptation current, we propose an event-driven strategy to simulate integrate-and-fire models with spike-frequency adaptation. Such approach is more precise than traditional clock-driven numerical integration approach because the timing of spikes is treated exactly. In experiments, using event-driven and clock-driven strategies we simulated the adaptation time course of single neuron and the random network with spike-timing dependent plasticity, the results indicate that (1) the temporal precision of spiking events impacts on neuronal dynamics of single as well as network in the different simulation strategies and (2) the simulation time scales linearly with the total number of spiking events in the event-driven simulation strategies.

  17. Laboratory Investigations of the High Temperature Corrosion of Various Materials in Simulated oxy-fuel and Conventional Coal Firing

    International Nuclear Information System (INIS)

    Laboratory exposures in horizontal tube furnaces were conducted to test various materials for corrosion resistance in simulated oxy-fuel firing and conventional coal firing environments. Two different exposures were done at 630 C for 672 hours. The reaction atmosphere, consisting of CO2, H2O, O2, N2 and SO2, was mixed to resemble that of oxy-fuel firing in the first exposure and that of conventional coal firing in the second exposure (N2 was added during the second exposure only). Four different materials were tested in the first exposure; Sanicro 63, Alloy 800HT, 304L and 304HCu. In the second exposure four different materials were tested; 304L, Alloy 800HT, Kanthal APMT and NiCrAl. Apart from cleaned sample coupons, some samples pre-exposed in a test rig under oxy-fuel conditions with lignite as fuel and some pre-exposed with bituminous coal as fuel were investigated in the first exposure. In the second exposure some samples were pre-exposed in a rig under conventional firing conditions with lignite as fuel. The corrosion attack on the investigated samples was analysed by gravimetry, x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray (EDX). The SEM/EDX analysis was made on both the sample envelope and metallographic cross sections of the samples. The results show that there is small difference in the corrosion attack between the two environments. There was also little difference in oxide morphology and composition between cleaned samples and pre-exposed samples of the same material. The austenitic chromia former 304HCu suffered the most extensive corrosion attack in the oxy-fuel environment. In the conventional air firing environment 304L showed the highest mass gain. Chromia formers with higher chromium concentrations performed better, especially the super austenitic Alloy 800HT, with its high chromium concentration, formed a thin and protective corundum type oxide. The nickel based Sanicro 63 showed very low corrosion

  18. Laboratory Investigations of the High Temperature Corrosion of Various Materials in Simulated oxy-fuel and Conventional Coal Firing

    Energy Technology Data Exchange (ETDEWEB)

    Folkeson, N.; Pettersson, J.; Svensson, J.E. [Chalmers Univ. of Technology (Sweden); Hjornhede, A. [Vattenfall Power Consultant AB (Sweden); Montgomery, M. [Vattenfall Heat Nordic/DTU Mekanik (Denmark); Bjurman, M. [Vattenfall Research and Development AB (Sweden)

    2009-07-01

    Laboratory exposures in horizontal tube furnaces were conducted to test various materials for corrosion resistance in simulated oxy-fuel firing and conventional coal firing environments. Two different exposures were done at 630 C for 672 hours. The reaction atmosphere, consisting of CO{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2} and SO{sub 2}, was mixed to resemble that of oxy-fuel firing in the first exposure and that of conventional coal firing in the second exposure (N{sub 2} was added during the second exposure only). Four different materials were tested in the first exposure; Sanicro 63, Alloy 800HT, 304L and 304HCu. In the second exposure four different materials were tested; 304L, Alloy 800HT, Kanthal APMT and NiCrAl. Apart from cleaned sample coupons, some samples pre-exposed in a test rig under oxy-fuel conditions with lignite as fuel and some pre-exposed with bituminous coal as fuel were investigated in the first exposure. In the second exposure some samples were pre-exposed in a rig under conventional firing conditions with lignite as fuel. The corrosion attack on the investigated samples was analysed by gravimetry, x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray (EDX). The SEM/EDX analysis was made on both the sample envelope and metallographic cross sections of the samples. The results show that there is small difference in the corrosion attack between the two environments. There was also little difference in oxide morphology and composition between cleaned samples and pre-exposed samples of the same material. The austenitic chromia former 304HCu suffered the most extensive corrosion attack in the oxy-fuel environment. In the conventional air firing environment 304L showed the highest mass gain. Chromia formers with higher chromium concentrations performed better, especially the super austenitic Alloy 800HT, with its high chromium concentration, formed a thin and protective corundum type oxide. The nickel based

  19. Analysis of biomass co-firing systems in Taiwan power markets using linear complementarity models

    International Nuclear Information System (INIS)

    Biomass co-firing systems in power plants generate electric power by the simultaneous combustion of biomass and fossil fuels. The co-firing process reduces investment costs by converting biomass energy into electricity in existing conventional power plants. Biomass co-firing significantly reduces carbon dioxide and sulfur dioxide emissions in power generation. To meet the increase in biomass demand, this paper has considered systematic energy crop production, which is expected to increase in the near future. Our aim is to analyze biomass co-firing systems in the Taiwanese electricity market. In this paper, we study two emerging biomass feedstocks: switchgrass and Miscanthus. We focus on the impact of energy crop co-firing on carbon dioxide and sulfur dioxide emissions for electricity generation. A Nash-Cournot competition model, which simulates potential biomass co-firing scenarios, is formulated for power markets. A case study conducted in the Taiwanese electricity market showed that biomass co-firing lowers total electricity demand and sale. Miscanthus is more economical than switchgrass in terms of the production cost and the land required to generate biopower for the same levels of biomass co-firing. - Highlights: → Biomass co-firing system in electricity market is analyzed in this paper. → The research studies the impact of two energy crops in co-firing system. → This paper conducts a case study of co-firing system in Taiwan power markets.

  20. Fire fatalities among children: an analysis across Philadelphia's census tracts.

    OpenAIRE

    Shai, Donna; Lupinacci, Paul

    2003-01-01

    OBJECTIVE: This study investigates the possible causes of high levels of residential fire deaths to children younger than 15 years of age in Philadelphia from 1989 to 2000. METHODS: The authors analyzed 246 deaths from 146 residential fires by census tract in Philadelphia using both individual level data and aggregate level data drawn from the records of the Fire Marshall's Office. Death rates by age and sex were calculated using the 1990 Census. Data on fires from official records were combi...

  1. Comparative analysis of mass forest and nuclear fires

    International Nuclear Information System (INIS)

    The massive forest fires that occurred in Siberia in 1915 are analyzed for the effects on regional and global climates in order to depict the impact of forest fires generated from war time use of nuclear weapons. The mathematical equations depict the index of danger conditions for starting forest fires and the resulting atmospheric conditions generated. 18 refs., 3 figs

  2. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  3. Wildland fire management. Volume 1: Prevention methods and analysis. [systems engineering approach to California fire problems

    Science.gov (United States)

    Weissenberger, S. (Editor)

    1973-01-01

    A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.

  4. An Information Diffusion Technique for Fire Risk Analysis

    Institute of Scientific and Technical Information of China (English)

    刘静; 黄崇福

    2004-01-01

    There are many kinds of fires occurring under different conditions. For a specific site, it is difficult to collect sufficient data for analyzing the fire risk. In this paper, we suggest an information diffusion technique to analyze fire risk with a small sample. The information distribution method is applied to change crisp observations into fuzzy sets, and then to effectively construct a fuzzy relationship between fire and surroundings. With the data of Shanghai in winter, we show how to use the technique to analyze the fire risk.

  5. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    Science.gov (United States)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse

  6. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    Directory of Open Access Journals (Sweden)

    S. Kloster

    2011-09-01

    Full Text Available Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire behavior will in turn impact climate.

    In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075–2099 fire carbon emissions by 17 and 62% compared to present day (1985–2009. The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projection. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection.

    We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM and 66% (ECHAM5/MPI-OM. The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by −5%. Changes in

  7. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    Science.gov (United States)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    characterize vegetation recovery after fire disturbanceInternational Journal of Applied Earth Observation and Geoinformation 26 441-446 Lanorte A, M Danese, R Lasaponara, B Murgante 2014 Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis International Journal of Applied Earth Observation and Geoinformation 20, 42-51 Tuia D, F Ratle, R Lasaponara, L Telesca, M Kanevski 2008 Scan statistics analysis of forest fire clusters Communications in Nonlinear Science and Numerical Simulation 13 (8), 1689-1694 Telesca L, R Lasaponara 2006 Pre and post fire behavioral trends revealed in satellite NDVI time series Geophysical Research Letters 33 (14) Lasaponara R 2005 Intercomparison of AVHRR based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy International Journal of Remote Sensing 26 (5), 853-870

  8. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Directory of Open Access Journals (Sweden)

    C. Yue

    2013-04-01

    Full Text Available Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange, leaf area index (LAI, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height. The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2. We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results

  9. Simulation of the interaction between muscle fiber conduction velocity and instantaneous firing rate.

    Science.gov (United States)

    Fortune, Emma; Lowery, Madeleine M

    2011-01-01

    In this study, the relationships between the early and late afterpotentials and velocity and amplitude recovery functions (VRF and ARF) in skeletal muscle were examined using model simulation. A mathematical model of the muscle fiber action potential, that incorporated a tubular slow potassium conductance, was developed and used to simulate muscle fiber action potentials at a range of interpulse intervals. The slow potassium conductance produced an afterhyperpolarization which resulted in supernormal action potential conduction velocity and amplitude for interpulse intervals>7 ms. Increasing the number of conditioning stimuli caused a further increase in conduction velocity and amplitude, and an additional phase of supernormality, with a peak at approximately 100 ms. Positive correlations between instantaneous firing rate and both conduction velocity and amplitude were also observed during simulation of repetitive stimulation of the muscle fiber. The relationships were eliminated when the slow potassium conductance channel was removed from the model. The results suggest that an afterhyperpolarization, possibly due to a slow tubular potassium conductance, could cause the VRF and ARF observed in muscle. They additionally suggest that the positive correlations between instantaneous firing rate, conduction velocity, and amplitude are directly related to the VRF and ARF. PMID:20848314

  10. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  11. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  12. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD) Back Analysis

    Science.gov (United States)

    Lai, Hongpeng; Wang, Shuyong; Xie, Yongli

    2016-01-01

    In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455

  13. Study on the Fire Damage Characteristics of the New Qidaoliang Highway Tunnel: Field Investigation with Computational Fluid Dynamics (CFD Back Analysis

    Directory of Open Access Journals (Sweden)

    Hongpeng Lai

    2016-10-01

    Full Text Available In the New Qidaoliang Tunnel (China, a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.

  14. Simulation of Intelligent Fire Detection and Alarm System for a W d p .

    OpenAIRE

    V. B. Pati; Joshi, S.P.; R. Sowmianarayanan; M. Vedavath; R.K. Rana

    1989-01-01

    Fire is one of the major hazards in warships. A warship being avery complex structure, with sophisticated weapons, machinery, fueland ammunition is always at risk of fire. Restrictions on movement of ship's personnel and equipment requires automation in fire detectionand control systems. This paper describes the limitations of conventional fire detection systems, followed by the features of modern fire detection and alarnr (the so-called intelligent) systems and thetypes of fire detectors use...

  15. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  16. Non-linear fire-resistance analysis of reinforced concrete beams

    OpenAIRE

    Bratina, Sebastjan; Planinc, Igor; Saje, Miran; Turk, Goran

    2003-01-01

    The non-linear structural analysis of reinforced concrete beams in fire consists of three separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (ii) the determination of the distribution of the temperature within the beam during fire; (iii) the evaluation of the mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (ii) and (iii) are dealt with in the present paper. We present a two-step computational procedure where a ...

  17. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    OpenAIRE

    Marc A. Rosen; Shoaib Mehmood; Bale V. Reddy

    2012-01-01

    The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel) and two coals (bituminous coal and lignite) are considered. Key system performance parameters are evaluated for various fuel combina...

  18. FIRE DESIGN: DIRECT COMPARISON BETWEEN FIRE CURVES. THE CASE STUDY OF A NURSERY

    Directory of Open Access Journals (Sweden)

    Mara Lombardi

    2013-01-01

    Full Text Available According to fire safety engineering, the present study analyzes fire design settings for simulation of fire in a nursery and proposes to compare simulations developed with a natural fire curve and nominal fire curve. Comparative analysis was developed according to thermo-fluid dynamic parameters that are relevant to the safety of the exposed and for the representative period of the danger flow to the exposed, which are mainly children between 0 and 3 years of age, helpless under ordinary conditions and even more so in case of emergency. Defined conditions of structure and ventilation, Two fire simulations, differentiated by fire curve, have been implemented: First simulation: the parameters have been derived from the simulation of a fire, characterized by analytic function of Heat Release Rate (HRR Second simulation: the HRR function was obtained ex post by making a simulation of natural fire in realistically furnished room by imposing a minimum effective primer. The simulated HRR curve, appropriately linearized, allows to estimate a Likely Fire Curve (LFC. The simulations have been developed for a time of about 15 min, starting from the ignition of fire whereas the flow of the danger is serious for exposed mainly in this first phase of fire. The comparison between the parameters of fire involved the Temperature-Time Curve and HRR-Time Curve of both simulations and the ISO 834 Curve, which is a consolidated benchmark in Fire Safety Engineering (FSE. The nominal curves have been introduced for the purpose of checking whether the structural strength and integrity: the adoption of these curves in the fire safety engineering was made by analogy, on the assumption that the phenomena of major intensity, that these curves represent, ensure a safe approach on the choice of the fire design. The study showed indeed that the analytical curve, adopted in order to verify the structural strength, produces fields of both temperature and toxic concentrations

  19. One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

    Directory of Open Access Journals (Sweden)

    S. Strada

    2013-02-01

    Full Text Available Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20–30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso

  20. Performance Analysis of a Coal-Fired External Combustion Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-11-01

    Full Text Available Compressed air energy storage (CAES is one of the large-scale energy storage technologies utilized to provide effective power peak load shaving. In this paper, a coal-fired external combustion CAES, which only uses coal as fuel, is proposed. Unlike the traditional CAES, the combustion chamber is substituted with an external combustion heater in which high-pressure air is heated before entering turbines to expand in the proposed system. A thermodynamic analysis of the proposed CAES is conducted on the basis of the process simulation. The overall efficiency and the efficiency of electricity storage are 48.37% and 81.50%, respectively. Furthermore, the exergy analysis is then derived and forecasted, and the exergy efficiency of the proposed system is 47.22%. The results show that the proposed CAES has more performance advantages than Huntorf CAES (the first CAES plant in the world. Techno-economic analysis of the coal-fired CAES shows that the cost of electricity (COE is $106.33/MWh, which is relatively high in the rapidly developing power market. However, CAES will be more likely to be competitive if the power grid is improved and suitable geographical conditions for storage caverns are satisfied. This research provides a new approach for developing CAES in China.

  1. 多层框架结构火灾危险性的数值分析%Numerical Simulation of Frame Structure Risk in Fire

    Institute of Scientific and Technical Information of China (English)

    余愿; 梁栋; 王海蓉; 陈清光; 袁智

    2015-01-01

    In this paper the fire temperature model and thermal- force performance model of composite beams has been establishment by a FORTRAN77 program, which is based on FDS simulation and the analysis of coupled relationship between thermal and mechanical performance. Through the program mentioned above, the temperature, cutthe shear force, bending moment, deformation and displacement of two layers of composite beams in fire was simulated. The results showed that:in the single room fire, the upper beam is generally positive fire area;maximum displacement generally appear in the middle of the structure positive fire area; for two frame structure, the risk of thermal injury prone point is in the adjacent area of the fire or diagonal regional.%采用FDS和FORTRAN77语言程序相结合的方法,通过组合梁的热-力耦合分析,建立了组合梁的受火分析和热-力性能模型,并对两层组合梁在火场中的温度场、剪切力、弯矩、变形和位移进行了模拟计算。计算结果发现:单室火灾中,梁上部一般为正面受火区域;而最大位移一般出现在正面受火结构的中部位置;对于两层框架结构,其热损伤危险点易出现在火场的邻近区域或对角区域。

  2. Exergy Analysis of Operating Lignite Fired Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    K. Murugesan

    2009-01-01

    Full Text Available The energy assessment must be made through the energy quantity as well as the quality. But the usual energy analysisevaluates the energy generally on its quantity only. However, the exergy analysis assesses the energy on quantity as well asthe quality. The aim of the exergy analysis is to identify the magnitudes and the locations of real energy losses, in order toimprove the existing systems, processes or components. The present paper deals with an exergy analysis performed on anoperating 50MWe unit of lignite fired steam power plant at Thermal Power Station-I, Neyveli Lignite Corporation Limited,Neyveli, Tamil Nadu, India. The exergy losses occurred in the various subsystems of the plant and their components havebeen calculated using the mass, energy and exergy balance equations. The distribution of the exergy losses in several plantcomponents during the real time plant running conditions has been assessed to locate the process irreversibility. The Firstlaw efficiency (energy efficiency and the Second law efficiency (exergy efficiency of the plant have also been calculated.The comparison between the energy losses and the exergy losses of the individual components of the plant shows that themaximum energy losses of 39% occur in the condenser, whereas the maximum exergy losses of 42.73% occur in the combustor.The real losses of energy which has a scope for the improvement are given as maximum exergy losses that occurredin the combustor.

  3. Effects of simulated on-fire processing conditions on the microstructure and mechanical performance of Q345R steel

    Science.gov (United States)

    Peng, Yi-chao; Xu, Hao-hao; Zhang, Mai-cang

    2016-01-01

    A series of simulated on-fire processing experiments on Q345R steel plates was conducted, and the plates' Brinell hardness, tensile strength, and impact energy were tested. Microstructure morphologies were systematically analyzed using a scanning electron microscope with the aim of investigating the effect of the steel's microstructure on its performance. All examined performance parameters exhibited a substantial decrease in the cases of samples heat-treated at temperatures near 700°C. However, although the banded structure decreased with increasing treatment temperature and holding time, it had little effect on the performance decline in fact. Further analysis revealed that pearlite degeneration near 700°C, which was induced by the interaction of both subcritical annealing and conventional spherical annealing, was the primary reason for the degradation behavior. Consequently, some nonlinear mathematical models of different mechanical performances were established to facilitate processing adjustments.

  4. Multicriteria Analysis of Fire Risk in the Split-Dalmatia County

    Directory of Open Access Journals (Sweden)

    Antonija Netolicki

    2012-06-01

    Full Text Available Considering the fact that, in the Split-Dalmatia County, forest fires occur very frequently during the tourist season, causing catastrophic damage to the environment, affecting tourism and other industries, this paper will demonstrate how the use of GIS tools can analyse existing data to assess levels of vulnerability to fire in the county. The data collected that affect the outbreak of open fire include: climate (temperature and relative humidity, topography (aspect, slope of the terrain, vegetation (CORINE Land Cover, NDVI and anthropogenic factors (e.g. roads, railways and settlements. The article shows how ArcInfo GIS software may be used in order to improve preventive measures and operative procedures. These are necessary due to the large numbers of fires that occur in this area during the summer months.Keywords: Split-Dalmatia County; open fire; reclassification of data; fire cause factors; GIS; multicriteria analysis

  5. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.

    Science.gov (United States)

    Mackay, Christopher E; Vivanco, Stephanie N; Yeboah, George; Vercellone, Jeff

    2016-09-01

    There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9μmol/cm(2) for the cotton/nylon, to 12μmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns. PMID:27325216

  6. Investigation of Bowen Basin coal mine fire gas analysis parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cliff, D.; Bell, S.; O' Beirne, T. (ACIRL Ltd., North Ryde, NSW (Australia))

    1991-12-01

    Laboratory analysis of seven currently mined Bowen Basin coals has validated the use of carbon monoxide as the best indicator of the very early states of coal heating. As a primary warning indicator, other gases are rarely appropriate as they are emitted in such small quantities to make then very difficult to detect when diluted with typical mine ventilation quantities. Once a heating is suspected or confirmed, other gases and their various relationships can now be more confidently used to indicate peak temperatures and the progress of the heating. Interestingly, the order of evolution of many gases, from the Bowen Basin coals is quite different from overseas coals (as reported in the literature) and this impacts on the usefulness of many overseas generated interpretation techniques. All of the commonly used techniques for interpreting the status of a heating have been reviewed in the light of the research. These interpretative tools have very real limitations which have now been more clearly defined. The research has also demonstrated the need for accurate definitive mine gas analysis at the mine site. A fire ladder has been developed to enable the assessment of the heating coal temperature. The practical value of this research, as indicated above, needs to be concisely disseminated to industry. This should impact on the operation of mine environmental monitoring systems, and particularly on any software used to analyse gas results.

  7. SIMULATION ANALYSIS OF WDM

    Directory of Open Access Journals (Sweden)

    Sanghmitra Yadav

    2015-10-01

    Full Text Available An optical network provides a common infrastructure over which a variety of services can be delivered. These networks are also capable of delivering bandwidth in a flexible manner, supports capacity up gradation and transient nature in data transmission. It consists of optical source (LED, LASER as transmitter and optical fiber as transmission medium with other connectors and photo detector, receiver set. But due to limitation of electronic processing speed, it’s not possible to use all the BW of an optical fiber using a single high capacity channel or wavelength. The primary problem in a WDM network design is to find the best possible path between a source-destination node pair and assign available wavelength to this path for data transmission. To determine the best path a series of measurements are performed which are known as performance matrices. From these performance matrices, the Quality of Service parameters are determined. Here we have designed four different network topologies have been studied and analyzed different number of nodes. We have simulated all these networks with different scenario to obtain the performance matrices. Then we have compared those performance matrices to suggest which network is best under the present case.

  8. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  9. Meteosat SEVIRI Fire Radiative Power (FRP products from the Land Surface Analysis Satellite Applications Facility (LSA SAF – Part 1: Algorithms, product contents and analysis

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2015-06-01

    information together with the per-pixel uncertainty metrics. Using scene simulations and analysis of real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe some of the sensor and data pre-processing characteristics influencing fire detection and FRP uncertainty. We show that the FTA algorithm is able to discriminate actively burning fires covering down to 10−4 of a pixel, and is more sensitive to fire than algorithms used within many other widely exploited active fire products. We also find that artefacts arising from the digital filtering and geometric resampling strategies used to generate level 1.5 SEVIRI data can significantly increase FRP uncertainties in the SEVIRI active fire products, and recommend that the processing chains used for the forthcoming Meteosat Third Generation attempt to minimise the impact of these types of operations. Finally, we illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity. A companion paper (Roberts et al., 2015 provides a full product performance evaluation for both products, along with examples of their use for prescribing fire smoke emissions within atmospheric modelling components of the Copernicus Atmosphere Monitoring Service (CAMS.

  10. Investigation of Lab Fire Prevention Management System of Combining Root Cause Analysis and Analytic Hierarchy Process with Event Tree Analysis

    Directory of Open Access Journals (Sweden)

    Cheng-Chan Shih

    2016-01-01

    Full Text Available This paper proposed a new approach, combining root cause analysis (RCA, analytic hierarchy process (AHP, and event tree analysis (ETA in a loop to systematically evaluate various laboratory safety prevention strategies. First, 139 fire accidents were reviewed to identify the root causes and draw out prevention strategies. Most fires were caused due to runaway reactions, operation error and equipment failure, and flammable material release. These mostly occurred in working places of no prompt fire protection. We also used AHP to evaluate the priority of these strategies and found that chemical fire prevention strategy is the most important control element, and strengthening maintenance and safety inspection intensity is the most important action. Also together with our surveys results, we proposed that equipment design is also critical for fire prevention. Therefore a technical improvement was propounded: installing fire detector, automatic sprinkler, and manual extinguisher in the lab hood as proactive fire protections. ETA was then used as a tool to evaluate laboratory fire risks. The results indicated that the total risk of a fire occurring decreases from 0.0351 to 0.0042 without/with equipment taking actions. Establishing such system can make Environment, Health and Safety (EH&S office not only analyze and prioritize fire prevention policies more practically, but also demonstrate how effective protective equipment improvement can achieve and the probabilities of the initiating event developing into a serious accident or controlled by the existing safety system.

  11. Feasibility analysis of co-fired combined-cycles using biomass-derived gas and natural gas

    International Nuclear Information System (INIS)

    This paper reports the feasibility analysis of co-fired combined cycles (biomass-derived gas + natural gas) based on the gasification of sugarcane residues (bagasse and trash). Performance results are based on simulation of co-fired combined cycles. Feasibility analysis is based on estimates of the capital costs and O and M costs for such cycles, taking into account current and middle term costs of BIG-CC technology (both considering scaling and learning effects). A deep reduction of the investments regarding the gasification island and auxiliaries is a key point to make BIG-CC competitive in the electricity market, and the required learning can be reached with co-fired BIG-CC systems. Besides alleviation of technical problems related to gas turbine operation with biomass-derived gas, co-fired BIG-CC units can operate with relative flexibility regarding the fuel mix. The construction of 10-15 short- to medium-size gasification islands would be enough to induce important cost reductions due to learning effects. As long as the investment on the gasification island is reduced, and depending on the price ratio of natural gas and biomass, pure BIG-CC plants could achieve a reasonable level of feasibility regarding other options of electricity production. In the short run there is no advantage for co-fired combined cycles regarding the costs of reduction of carbon dioxide emissions, but in the middle run both co-fired and pure BIG-CC power plants can be a better option than capture and storage of CO2

  12. Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro experiments.

    Directory of Open Access Journals (Sweden)

    Maxim Volgushev

    2015-03-01

    Full Text Available Accurately describing synaptic interactions between neurons and how interactions change over time are key challenges for systems neuroscience. Although intracellular electrophysiology is a powerful tool for studying synaptic integration and plasticity, it is limited by the small number of neurons that can be recorded simultaneously in vitro and by the technical difficulty of intracellular recording in vivo. One way around these difficulties may be to use large-scale extracellular recording of spike trains and apply statistical methods to model and infer functional connections between neurons. These techniques have the potential to reveal large-scale connectivity structure based on the spike timing alone. However, the interpretation of functional connectivity is often approximate, since only a small fraction of presynaptic inputs are typically observed. Here we use in vitro current injection in layer 2/3 pyramidal neurons to validate methods for inferring functional connectivity in a setting where input to the neuron is controlled. In experiments with partially-defined input, we inject a single simulated input with known amplitude on a background of fluctuating noise. In a fully-defined input paradigm, we then control the synaptic weights and timing of many simulated presynaptic neurons. By analyzing the firing of neurons in response to these artificial inputs, we ask 1 How does functional connectivity inferred from spikes relate to simulated synaptic input? and 2 What are the limitations of connectivity inference? We find that individual current-based synaptic inputs are detectable over a broad range of amplitudes and conditions. Detectability depends on input amplitude and output firing rate, and excitatory inputs are detected more readily than inhibitory. Moreover, as we model increasing numbers of presynaptic inputs, we are able to estimate connection strengths more accurately and detect the presence of connections more quickly. These results

  13. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis

    Institute of Scientific and Technical Information of China (English)

    Qishao Lu; Huaguang Gu; Zhuoqin Yang; Xia Shi; Lixia Duan; Yanhong Zheng

    2008-01-01

    Recent advances in the experimental and theore-tical study of dynamics of neuronal electrical firing activi-ties are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and sto-chastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deter-ministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neu-ron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electri-cal and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological func-tions of nervous systems.

  14. The Application of Numerical Simulation in Bus Fire Investigations%数值模拟在公交车火灾调查中的应用

    Institute of Scientific and Technical Information of China (English)

    祝飞; 毕昆

    2012-01-01

    对公交车火灾进行数值模拟可以给火灾调查提供证据支持。通过描述火源、公交车的结构以及可燃物的属性,重构某火灾过程。通过比较模拟结果和火灾现场的调查结果,可以很好地预测火势的发展和烟气运动,解释人员伤亡的原因,为整个火灾重构的进一步研究打下基础,同时,指出火灾模拟在实际火灾场景调查中的应用价值。%Numerical simulation in a bus fire may provide the evidence for fire investigations. may reconstruct a fire process, explain fire development, smoke movement and personal death Numerical simulation through source, the configuration of the bus and property of fuel. The simulation results, compared with the describing fire fire site recon- naissanee results, demonstrates a good prediction of fire development and smoke movement, explains the cause of death, which will lay down a good foundation for further study in fire reconstruction of the whole fire and provide application of fire simulation into actual fire scene investigation.

  15. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    2011-03-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  16. Engine System Loads Analysis Compared to Hot-Fire Data

    Science.gov (United States)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  17. Qualitative Analysis Results for Applications of a New Fire Probabilistic Safety Assessment Method to Ulchin Unit 3

    International Nuclear Information System (INIS)

    The fire PRA Implementation Guide has been used for performing a fire PSA for NPPs in Korea. Recently, US NRC and EPRI developed a new fire PSA method, NUREG/CR-6850, to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial nuclear power plant (NPP). Due to the limited budget and man powers for the development of KSRP, hybrid PSA approaches, using NUREG/CR-6850 and Fire PRA Implementation Guide, will be employed for conducting a fire PSA of Ulchin Unit 3. In this paper, the qualitative analysis results for applications of a new fire PSA method to Ulchin Unit 3 are presented. This paper introduces the qualitative analysis results for applications of a new fire PSA method to Ulchin Unit 3. Compared with the previous industry, the number of fire areas for quantification identified and the number of equipment selected has increased

  18. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results

  19. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  20. Crown Fire Potential

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Crown fire potential was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The...

  1. Accurate Assessment of RSET for Building Fire Based on Engineering Calculation and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Zhenzhen

    2016-01-01

    Full Text Available In order to obtain the Required Safety Egress Time (RSET accurately, traditional engineering calculation method of evacuation time has been optimized in this paper. Several principles and fact situations were used to optimize the method, such as detecting principle of the fire detecting system, reaction characteristics of staff being in urgent situation, evacuating queuing theory, building structure and the plugging at the porthole. Taking a three-storey KTV as an example, two methods are used to illustrate the reliability and scientific reasonability of the calculation result. The result is deduced by comparing the error (less than 2% at an allowable range between two results. One result is calculated by a modified method of engineering calculation method, and the other one is given based on a Steering model of Pathfinder evacuation simulation software. The optimized RSET has a good feasibility and Accuracy.

  2. Numerical simulation of NOx formation in a cyclone-opposed coal-fired utility boiler

    Institute of Scientific and Technical Information of China (English)

    LI Fang-qin; REN Jian-xing; WEI Dun-song

    2005-01-01

    In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-compet-ingrates as devolatjlization model, RNG k-εmodel as viscous model, and PDF model as combustion turbulent flow model. Numerical calculation of NOx formation in a 330 MW cyclone-opposed coal-fired utility boiler with 32 double air registers was done. The distribution characteristics of temperature, NOx and oxygen concentration in furnace were studied. They were symmetrically distributed in furnace. In the combustion area, temperature and NOx concentration are high, while oxygen concentration is low. Temperature and NOx concentration are declined gradually along with furnace height, while oxygen concentration is raised. The higher the temperature is and the greater the excess air coefficient is, the more NOx formation.

  3. Research on solar aided coal-fired power generation system and performance analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.

  4. The use of numerical models for the fire analysis of reinforced concrete and composite structures

    OpenAIRE

    Dotreppe, Jean-Claude; Franssen, Jean-Marc

    1985-01-01

    This paper axplains how the fibre model is used in the thermal and in the mechan ical analysis to determine the fire resistance of reinforced concrete and composite steel-concrete beam elements with the numerical software CEFICOSS Peer reviewed

  5. Identifying the location of fire refuges in wet forest ecosystems.

    Science.gov (United States)

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  6. Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2009-01-01

    This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial metam

  7. Fire analysis of steel-concrete composite beam with interlayer slip

    OpenAIRE

    Hozjan, Tomaž; Saje, Miran; Srpčič, Stanislav; Planinc, Igor

    2011-01-01

    The paper discusses the effects of slip and moisture transfer on the behaviour of a planar steel-concrete composite beam subject to fire conditions. The moisture and heat transfer is assumed to be governed by a coupled problem, while the mechanical behaviour accounting for slip between layers is described by strain-based beam finite elements. Hence the fire analysis is perfomed in two separate steps, of which the moisture and heat transfer analysis is performed first, followed by the mechanic...

  8. Safety analysis of solvent fire accidents in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    For analyzing the safety evaluation of solvent fire as DBA in an extraction process of nuclear fuel reprocessing plant, computer code named FACE was developed in JAERI under the auspices of the Science and Technology Agency of Japan. The code FACE can provide not only for calculations of temperature, pressure, flow rate and pressure drop in cells and ducts of the network in air-ventilation system by one- and two-dimensional analyses and smoke containing radioactive materials by burning solvent in the network but also for solvent fire behavior in the cell, transport of radioactive materials and its deposition in the network, integrity of HEPA filters, and release of radioactive materials to the environment. Calculations by FACE were compared with data obtained by large-scale demonstration tests in JAERI simulating solvent fire in the extraction process to verify mathematical modeling of the fire accident in the code. (author)

  9. Contribution to fire resistance analysis of statically indeterminate structures

    Directory of Open Access Journals (Sweden)

    Pavlína Matečková

    2016-03-01

    Full Text Available Structural fire resistance, as integral part of structural design, is determined by testing or by calculations. This paper is focused on statically indeterminate structures where thermal expansion is restrained and significant internal forces occur in the structure leading to possible plasticization and subsequent redistribution of internal forces. In this paper different approaches of fire resistance testing are described, together with brief description of two experiments focussed on verification of behaviour of a statically indeterminate steel frame exposed to high temperature which were carried out at VŠB-TU Ostrava. The paper is complemented with calculation of steel and concrete simple frame structure exposed to elevated temperature.

  10. Sensitivity Analysis of a Simplified Fire Dynamic Model

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2015-01-01

    the variation of a single parameter is found to have a major impact on fire safety, it may be necessary to conservatively select this parameter in order to incorporate additional safety. We compare fire scenarios in rooms surrounded by lightweight as well as heavy walls in order to investigate which...... opening, which explains 96% of the uncertainty. After thermal penetration, the energy release rate is still the most important parameter, but now only explains 49% of the variation. The second parameter is the thickness of the surface material, which explains 43%....

  11. Fire-Needle Moxibustion for the Treatment of Knee Osteoarthritis: A Meta-Analysis.

    Science.gov (United States)

    Wang, Yidan; Xie, Xiaohua; Zhu, Xiaoyue; Chu, Minjie; Lu, Yihua; Tian, Tian; Zhuang, Xun; Jiang, Liying

    2016-01-01

    Objectives. The aim of this study was to evaluate the effectiveness of fire-needle moxibustion as an intervention in the treatment of knee osteoarthritis (KOA). Methods. An updated meta-analysis of randomized controlled trials (RCTs) on fire-needle moxibustion in treating KOA was conducted by searching PubMed, Embase, the Cochrane Library, Web of Science, Wanfang database, and the Chinese Medical Database (CNKI) since their inception through March 2016. The meta-analysis was performed using RevMan 5.3. Results. Thirteen RCTs were identified in the systematic study which consisted of 1179 participants. Fire-needle moxibustion treatment group had a statistical significance on recovery rate as well as recovery and marked-improvement rate compared with control group. Subgroup analysis indicated that there was significant difference between fire-needle moxibustion group and control group. However, GRADE analysis indicated that the quality of evidence for all outcomes was relatively low. Only two of 13 studies reported adverse reactions (difficulty in movement and intolerance of cold). Conclusion. This meta-analysis suggests that fire-needle moxibustion is more effective than control group in symptom management of KOA. Further high quality trials should be conducted to evaluate the effectiveness of fire-needle moxibustion on KOA. PMID:27403195

  12. Fire-Needle Moxibustion for the Treatment of Knee Osteoarthritis: A Meta-Analysis

    Science.gov (United States)

    Wang, Yidan; Xie, Xiaohua; Zhu, Xiaoyue; Chu, Minjie; Lu, Yihua; Tian, Tian

    2016-01-01

    Objectives. The aim of this study was to evaluate the effectiveness of fire-needle moxibustion as an intervention in the treatment of knee osteoarthritis (KOA). Methods. An updated meta-analysis of randomized controlled trials (RCTs) on fire-needle moxibustion in treating KOA was conducted by searching PubMed, Embase, the Cochrane Library, Web of Science, Wanfang database, and the Chinese Medical Database (CNKI) since their inception through March 2016. The meta-analysis was performed using RevMan 5.3. Results. Thirteen RCTs were identified in the systematic study which consisted of 1179 participants. Fire-needle moxibustion treatment group had a statistical significance on recovery rate as well as recovery and marked-improvement rate compared with control group. Subgroup analysis indicated that there was significant difference between fire-needle moxibustion group and control group. However, GRADE analysis indicated that the quality of evidence for all outcomes was relatively low. Only two of 13 studies reported adverse reactions (difficulty in movement and intolerance of cold). Conclusion. This meta-analysis suggests that fire-needle moxibustion is more effective than control group in symptom management of KOA. Further high quality trials should be conducted to evaluate the effectiveness of fire-needle moxibustion on KOA. PMID:27403195

  13. 某类重特大火灾数值模拟研究%Numerical Simulation for Special-typed Big Fires

    Institute of Scientific and Technical Information of China (English)

    袁杰; 申世飞

    2011-01-01

    Causes and sites of several fires occnrred in a bar, the Dancer King Club in Shenzhen City, and the Forever-joy Latin Club in Fujian Province are similar. Heavy casualties caused by fire in the short time. Therefore, it is worthwhile to study fire prevention and controlmeasures. The advantage of the FDS software is taken to construct a fire model of the bar. The evacuation simulation parameter can be rationally set through the rational analysis involving on site situation of porsons. By seltting the appropriate fire scens according to the actual fires, the software can analyze the parameter change of the beat radiation, smoke temperature, smoke toxicity, and smoke visthifity in older to figure out the available evacuation time. Combined with CFE software to simulate the evacuation process, fire consequence analysis has been carried out in accordance with the different fuel types, fire facilities, and the number of evacuated persons. Fuel analysis results show that renvation of polyurethane foam sound-absorbing cotton weakens fire technology and is direct cause of the fire spreading speed. The materials can produce large amounts of toxic smoke and cause casualties in a short period. The simulation results of diffierent fire-fighting facilities reflect the important role played by automatic fire-fighting facilities. The quiek response sprinkler beads should be promotod for the sprinkler system in public amenities. The reason for large number of casualties is that automatic fire-fighting facilities not been installed in accordance with national standards. The quantitative analysis of the anticipated casalties in the different number of evacuated persons has proved that the fixed member of fire control manager in the public amenities has a great significant. The results can be used to analyze the cauls of fires and fire preventiou measures.%某酒吧火灾、深圳舞王俱乐部火灾和福建长乐拉丁酒吧火灾的发生场所和火灾原因类似,且短时间

  14. Fire Analysis of Reinforced Concrete Beams with 2-D Plane Stress Concrete Model

    Directory of Open Access Journals (Sweden)

    Yousef Zandi

    2013-01-01

    Full Text Available The main purpose of this study is to investigate the nonlinear response of reinforced concrete beams under standard fire conditions. With this purpose, the 2-D nonlinear structural analysis of a chosen reinforced concrete simple beam is carried out. This beam is exposed to fire form three sides and fixed distributed loads on top of it. In these structural analyses the changes of material properties of concrete and reinforcements according to increasing temperatures are taken into account. Results drawn from these analyses are compared with the results from some simplified methods and put forward some conclusions and recommendations concerning the fire design of reinforced concrete beams.

  15. Dynamic analysis and pattern visualization of forest fires.

    Directory of Open Access Journals (Sweden)

    António M Lopes

    Full Text Available This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

  16. Analysis of marine stratocumulus clearing events during FIRE

    Science.gov (United States)

    Kloesel, Kevin A.

    1990-01-01

    During FIRE, three major stratocumulus clearing events took place over the project region. These clearing events are analyzed using synoptic variables to determine if these clearing events can be predicted by current modeling techniques. A preliminary statistical evaluation of the correlation between satellite cloud brightness parameters and NMC global model parameters is available in Wylie, et al., 1989.

  17. Technology for analysis of sodium pool fire characteristics

    International Nuclear Information System (INIS)

    Basic and detail design for medium sodium fire test facility was carried out and medium sodium fire test facility was constructed. Design data is as follows. - Test cell material : Concrete with high strength - Test cell dimension ; 48m3 (3x4x4m) - Design temp. ; 700 deg C - Operation temp. ; 530 deg C - Design pressure ; 1 bar (max.) - Dimension(Inside) : 3 x 4 x 4(m) - Test cell thickness ; 45cm - Liner plate with (Thickness : 3mm) In this study, sodium fire characteristics was analyzed and data for validation of computer code was produced. Oxygen and sodium filled in pool pan didn't burns instantly, but pool fire occurred through pre-ignition. Distribution of temperature in test cell was divided by two parts, and temperature at upper position appeared to be higher than temperature at lower position. The temperature in test cell increased with the feed of sodium. The pressure in test cell increased with the feed of sodium. When the feed of sodium was 8kg, peak pressure was 0.075 bar. Peak temperature in sodium pool appeared to be 854 deg C regardless of the feed of sodium. Decrease of 1% in oxygen concentration showed the rise of 0.036bar in pressure

  18. Analysis of In Mine Acoustic Recordings for Single Fired Explosions

    Science.gov (United States)

    McKenna, S.; Hayward, C.; Stump, B.

    2003-12-01

    In August of 2003, a series of single fired test shots were executed at a copper mine in Arizona. The ten shots, fired on August 18 and 19, 2003, ranged in size from 1700 lbs to 13600 lbs in simultaneously detonated patterns ranging from a single hole to eight holes. All were located within the same pit and within 100 m of each other. Both free face and bench shots were included. Southern Methodist University had previously deployed a set of acoustic gauges ringing the active production areas of the mine. The five Validyne DP250 sensors recorded not only the ten test shots, but also seven delay fired production shots over the four day period from August 18 to 21, 2003. Each recorded blast arrival was analyzed for peak amplitude and spectrum. Signals were then compared for the variability between shots and sensors as well as a comparison between fully contained and poorly contained shots. Blast yield, scale depth, and centroid depth were compared to the above measured quantities for each of the single-fired and production shots.

  19. A trend analysis of global fire activity. Is it land use or climate the main driver?

    Science.gov (United States)

    Bistinas, Ioannis; Oom, Duarte; Silva, Joao M. N.; Lopez-Saldaña, Gerardo; Pereira, Jose M. C.

    2016-04-01

    We perform a global trend analysis of active fire counts at 0.5o spatial resolution, using 156 months (January 2001 - December 2013) of MODIS Climate Modelling Grid data (TERRA). We use the Contextual Mann-Kendall (CMK) test to assess the statistical significance at cell level and found that 13% of the global land area displays statistically significant active fire count trends, with a slight predominance of negative trends (50.63% of the total significant cells). We perform the same trend analysis with the unexplained variability (residuals) between active fires and the Fire Weather Index (FWI) that is used as a proxy for climate. There is agreement between the main patterns from the trend analysis coming from the residuals and the active fire trends, implying that the main contemporary fire trends are not climate driven. Spatially coherent patches with significant trends were found in all continents (with the obvious exception of Antarctica). The majority of significant trends occur in areas of high fire incidence, and both increasing and decreasing trends appear to be associated with land use change processes. The analysis reveals large negative trends at the Sahel and between Russia and Kazakhstan, whereas a massive and coherent positive trend appears in southeastern Asia. Smaller patches of positive trends appear in southeastern United States and in Mexico, as well as in Brazil and between Argentina and Paraguay, and in Asia in India. There are also negative trends in Brazil, Argentina and in Australia. The study highlights the land use activities as the main driver of these trends, but also the need for data driven analyses and longer time series for future studies in order to gain better knowledge on fire occurrence.

  20. Fire Analysis of Reinforced Concrete Beams with 2-D Plane Stress Concrete Model

    OpenAIRE

    Yousef Zandi; Oğuz Burnaz; Ahmet Durmuş

    2013-01-01

    The main purpose of this study is to investigate the nonlinear response of reinforced concrete beams under standard fire conditions. With this purpose, the 2-D nonlinear structural analysis of a chosen reinforced concrete simple beam is carried out. This beam is exposed to fire form three sides and fixed distributed loads on top of it. In these structural analyses the changes of material properties of concrete and reinforcements according to increasing temperatures are taken into account. Res...

  1. Numerical field model simulation of fire and heat transfer in a rectangular compartment

    OpenAIRE

    Thorkildsen, Kenneth J.

    1992-01-01

    Approved for public release; distribution is unlimited Shipboard fires have been the bane of mariners since man's earliest attempts to sail the sea. Understanding the behavior of fire in an enclosed space such as those found on today's modern seagoing vessels will greatly enhance the mariner's ability to combat or prevent them. In a joint effort between the Naval Postgraduate School and the University of Notre Dame a computer code has been developed to model a full scale fire in a closed...

  2. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    International Nuclear Information System (INIS)

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  3. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    OpenAIRE

    Cheng Liu; Li-Min Yang; Jia-Hua Zhang; Feng-Mei Yao; Vijendra K. Boken

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for ...

  4. Fire analysis of timber composite beams with interlayer slip

    OpenAIRE

    Schnabl, Simon; Planinc, Igor; Turk, Goran; Srpčič, Stanislav

    2009-01-01

    The purpose of this paper is to model the behaviour of timber composite beams with interlayer slip, when simultaneously exposed to static loading and fire. A transient moisture-thermal state of a timber beam is analysed by the Luikov equations, and mechanical behaviour of timber composite beam is modelled by Reissner's kinematic equations. The model can handle layers of different materials. Material properties are functions of temperature. The thermal model is validated against the experiment...

  5. FASA – Fire Airborne Spectral Analysis of natural disasters

    OpenAIRE

    F. Schrandt; D. Oertel; Amici, S.; Distefano, G.; Buongiorno, M. F.; P. Haschberger; V. Tank; Kick, H.; E. Lindermeir; W. Skrbek

    2006-01-01

    At present the authors are developing the system FASA, an airborne combination of a Fourier Transform Spectrometer and an imaging system. The aim is to provide a system that is usable to investigate and monitor emissions from natural disasters such as wild fires and from volcanoes. Besides temperatures and (burned) areas FASA will also provide concentration profiles of the gaseous combustion products. These data are needed to improve the knowledge of the effects of such emissions on the globa...

  6. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    Directory of Open Access Journals (Sweden)

    Mikhail Ovchinnikov

    2011-06-01

    Full Text Available An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE. Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel

  7. Risk analysis of the LHC underground area fire risk due to faulty electrical equipment

    CERN Document Server

    Harrison, A

    2007-01-01

    The European Organisation for Nuclear Research (CERN) in Geneva, Switzerland, is currently building the latest generation of particle accelerators, the LHC (Large Hadron Collider). The machine is housed in a circular tunnel of 27 km of circumference and is situated approximately 100 metres beneath the surface astride the Franco-Swiss border. Electrically induced fires in the LHC are a major concern, since an incident could present a threat to CERN personnel as well as the public. Moreover, the loss of equipment would result in significant costs and downtime. However, the amount of electrical equipment in the underground area required for operation, supervision and control of the machine is essential. Thus the present thesis is assessing the risk of fire due to faulty electrical equipment in both a qualitative as well as quantitative way. The recommendations following the qualitative analysis suggest the introduction of fire protection zones for the areas with the highest risk of fire due to a combination of p...

  8. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Institute of Scientific and Technical Information of China (English)

    Luc Leroy Ngueyep. Mambou; Joseph Ndop; Jean-Marie Bienvenu Ndjaka

    2015-01-01

    The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton’s second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me-chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ?C to 500 ?C, the internal stress and internal strain are weak; whereas above 500 ?C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  9. The Cosmic Baryon Cycle and Galaxy Mass Assembly in the FIRE Simulations

    CERN Document Server

    Anglés-Alcázar, Daniel; Kereš, Dušan; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

    2016-01-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range $M_{\\rm halo} \\sim 10^{10} - 10^{13} M_{\\odot}$. By tracing cosmic inflows, galactic outflows, gas recycling, and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fueled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously under-appreciated growth mode. By $z=0$, wind transfer, i.e. the exchange of gas b...

  10. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    CERN Document Server

    Oklopcic, Antonija; Feldmann, Robert; Keres, Dusan; Faucher-Giguere, Claude-Andre; Murray, Norman

    2016-01-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ~10^8-10^9 Msun and size ~100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project that implement explicit treatments of stellar feedback and ISM physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (stellar mass ~10^10.8 Msun at z=1), discy, gas-rich galaxy from redshift z>2 to z=1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ~2...

  11. Thermal radiation of di-tert-butyl peroxide pool fires-Experimental investigation and CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Hyunjoo [Umicore Korea Limited, 410 Chaam-dong, Cheonan-city, Chungnam, 330-200 (Korea, Republic of); Wehrstedt, Klaus-Dieter [Federal Institute for Materials Research and Testing (BAM), Working Group ' Explosive Substances of Chemical Industries' , Unter den Eichen 87, D-12205 Berlin (Germany); Vela, Iris [University of Duisburg-Essen, Institute for Chemical Engineering I, Universitaetsstrasse 5, D-45141 Essen (Germany); Schoenbucher, Axel, E-mail: axel.schoenbucher@uni-due.de [University of Duisburg-Essen, Institute for Chemical Engineering I, Universitaetsstrasse 5, D-45141 Essen (Germany)

    2009-08-15

    Instantaneous and time averaged flame temperatures T-bar, surface emissive power SEP-bar and time averaged irradiances E-bar of di-tert-butyl peroxide (DTBP) pool fires with d = 1.12 and 3.4 m are investigated experimentally and by CFD simulation. Predicted centerline temperature profiles for d = 1.12 m are in good agreement with the experimental emission temperature profiles for x/d > 0.9. For d = 3.4 m the CFD predicted maximum centerline temperature at x/d = 1.4 is 1440 K whereas the emission temperature experimentally determined from thermograms at x/d {approx} 1.3 is 1560 K. The predicted surface emissive power for d = 1.12 m is 115 kW/m{sup 2} in comparison to the measured surface emissive power of 130 kW/m{sup 2} whereas for d = 3.4 m these values are 180 and 250 kW/m{sup 2}. The predicted distance dependent irradiances agree well with the measured irradiances.

  12. Thermal radiation of di-tert-butyl peroxide pool fires-Experimental investigation and CFD simulation.

    Science.gov (United States)

    Chun, Hyunjoo; Wehrstedt, Klaus-Dieter; Vela, Iris; Schönbucher, Axel

    2009-08-15

    Instantaneous and time averaged flame temperatures T , surface emissive power SEP and time averaged irradiances E of di-tert-butyl peroxide (DTBP) pool fires with d=1.12 and 3.4m are investigated experimentally and by CFD simulation. Predicted centerline temperature profiles for d=1.12m are in good agreement with the experimental emission temperature profiles for x/d>0.9. For d=3.4m the CFD predicted maximum centerline temperature at x/d=1.4 is 1440 K whereas the emission temperature experimentally determined from thermograms at x/d approximately 1.3 is 1560 K. The predicted surface emissive power for d=1.12m is 115 kW/m(2) in comparison to the measured surface emissive power of 130 kW/m(2) whereas for d=3.4m these values are 180 and 250 kW/m(2). The predicted distance dependent irradiances agree well with the measured irradiances. PMID:19185989

  13. Analytical tools for the analysis of fire debris. A review: 2008-2015.

    Science.gov (United States)

    Martín-Alberca, Carlos; Ortega-Ojeda, Fernando Ernesto; García-Ruiz, Carmen

    2016-07-20

    The analysis of fire debris evidence might offer crucial information to a forensic investigation, when for instance, there is suspicion of the intentional use of ignitable liquids to initiate a fire. Although the evidence analysis in the laboratory is mainly conducted by a handful of well-established methodologies, during the last eight years several authors proposed noteworthy improvements on these methodologies, suggesting new interesting approaches. This review critically outlines the most up-to-date and suitable tools for the analysis and interpretation of fire debris evidence. The survey about analytical tools covers works published in the 2008-2015 period. It includes sources of consensus-classified reference samples, current standard procedures, new proposals for sample extraction and analysis, and the most novel statistical tools. In addition, this review provides relevant knowledge on the distortion effects of the ignitable liquid chemical fingerprints, which have to be considered during interpretation of results. PMID:27251852

  14. Analysis of pressurization of plutonium oxide storage vials during a postulated fire

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Kesterson, M.; Hensel, S.

    2015-02-10

    The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporation of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.

  15. Physics-Based Simulator for NEO Exploration Analysis & Simulation

    Science.gov (United States)

    Balaram, J.; Cameron, J.; Jain, A.; Kline, H.; Lim, C.; Mazhar, H.; Myint, S.; Nayar, H.; Patton, R.; Pomerantz, M.; Quadrelli, M.; Shakkotai, P.; Tso, K.

    2011-01-01

    As part of the Space Exploration Analysis and Simulation (SEAS) task, the National Aeronautics and Space Administration (NASA) is using physics-based simulations at NASA's Jet Propulsion Laboratory (JPL) to explore potential surface and near-surface mission operations at Near Earth Objects (NEOs). The simulator is under development at JPL and can be used to provide detailed analysis of various surface and near-surface NEO robotic and human exploration concepts. In this paper we describe the SEAS simulator and provide examples of recent mission systems and operations concepts investigated using the simulation. We also present related analysis work and tools developed for both the SEAS task as well as general modeling, analysis and simulation capabilites for asteroid/small-body objects.

  16. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  17. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Science.gov (United States)

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system.

  18. Validation analysis of pool fire experiment (Run-F7) using SPHINCS code

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akira [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Tajima, Yuji

    1998-04-01

    SPHINCS (Sodium Fire Phenomenology IN multi-Cell System) code has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The main features of the SPHINCS code with respect to the sodium pool fire phenomena are multi-dimensional modeling of the thermal behavior in sodium pool and steel liner, modeling of the extension of sodium pool area based on the sodium mass conservation, and equilibrium model for the chemical reaction of pool fire on the flame sheet at the surface of sodium pool during. Therefore, the SPHINCS code is capable of temperature evaluation of the steel liner in detail during the small and/or medium scale sodium leakage accidents. In this study, Run-F7 experiment in which the sodium leakage rate is 11.8 kg/hour has been analyzed. In the experiment the diameter of the sodium pool is approximately 60 cm and the maximum steel liner temperature was 616 degree C. The analytical results tell us the agreement between the SPHINCS analysis and the experiment is excellent with respect to the time history and spatial distribution of the liner temperature, sodium pool extension behavior, as well as atmosphere gas temperature. It is concluded that the pool fire modeling of the SPHINCS code has been validated for this experiment. The SPHINCS code is currently applicable to the sodium pool fire phenomena and the temperature evaluation of the steel liner. The experiment series are continued to check some parameters, i.e., sodium leakage rate and the height of sodium leakage. Thus, the author will analyze the subsequent experiments to check the influence of the parameters and applies SPHINCS to the sodium fire consequence analysis of fast reactor. (author)

  19. Using Distributed, Integrated Hydrological Models to Simulate Water Balance Changes at the Hillslope and Catchment Scale Due to Fire Disturbances

    Science.gov (United States)

    Atchley, A. L.; Coon, E.; Trader, L.; Middleton, R. S.; Painter, S. L.; Kikinzon, E.

    2015-12-01

    Catastrophic wildfires have increased worldwide due in part to previous fire suppression efforts, but also climate change. These wildfires dramatically alter ecosystem structure resulting in lasting changes to hydrological characteristics including surface runoff and subsurface water storage. Most notably fire results in the removal of forest ground cover as well as much, if not all, of the forest vegetation that is responsible for precipitation interception and transpiration from the soil. The presence of ground cover is associated with high porosity, surface roughness and infiltration rates, which can contribute to greater soil water recharge. Modeling the hydrological changes due to fire requires representation of the vegetation changes along with near surface soil characteristics, particularly ground cover. Moreover, the coupled nature of surface and subsurface flow necessitates an integrated representation of variably saturated subsurface flow and overland flow to capture infiltration-limited runoff. Here pre- and post-catastrophic fire data collected from Bandelier National Monument is used to characterize ground cover and vegetation conditions used in coupled surface subsurface hydrologic models. This data is also used to develop appropriate representations of litter layers in the models. Changes in hydrologic regimes at the hillslope and catchment scale are simulated in response to measured precipitation events. Differences in both runoff generation and soil water storage are then described along a continuum of burn severity.

  20. Numerical simulation of fire development in a single compartment based on cone calorimeter experiments

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The burning characteristics of several kinds of wood and polyurethane materials have been studied using cone calorimeter (CONE2A). A new and simple ignition criterion, heat release rate model and mass loss rate model are proposed based on experiments. Combined with these models, the zone-model of fire can be used to predict fire development in a single compartment according to the species of combustibles, their quantities and distribution. Calculated results show that this method is simple and feasible.

  1. An analysis of the chemical processes in the smoke plume from a savanna fire

    Science.gov (United States)

    Trentmann, JöRg; Yokelson, Robert J.; Hobbs, Peter V.; Winterrath, Tanja; Christian, Theodore J.; Andreae, Meinrat O.; Mason, Sherri A.

    2005-06-01

    Photochemistry in young plumes from vegetation fires significantly transforms the initial fire emissions within the first hour after the emissions are injected into the atmosphere. Here we present an investigation of field measurements obtained in a smoke plume from a prescribed savanna fire during the SAFARI 2000 field experiment using a detailed photochemical box-dilution model. The dilution used in the model simulations was constrained by measurements of chemically passive tracers (e.g., CO) near and downwind of the fire. The emissions of the dominant carbonaceous compounds, including oxygenated ones, were taken into account. The field measurements revealed significant production of ozone and acetic acid in the gas phase. The photochemical model simulations also predict ozone production, but significantly less than the measurements. The underestimation of the ozone production in the model simulations is likely caused by shortcomings of our current understanding of ozone photochemistry under the polluted conditions in this young smoke plume. Several potential reasons for this discrepancy are discussed. One possible cause could be the neglect of unmeasured emissions or surface reactions of NO2 with methanol or other hydrocarbons. In contrast to the field measurements, no significant production of acetic acid was simulated by the model. We know of no gas-phase reactions that cause the production of acetic acid on the timescale considered here. Though many processes were well-simulated by the model, there is a need for further research on some key photochemical processes within young plumes from biomass burning and the potential interactions between gas and the particulate phases. These fundamental photochemical processes may also be of importance in other polluted environments.

  2. FDS软件对LNG储罐泄漏火灾后果的模拟%FDS software simulation for fire consequences of LNG storage tank leaks

    Institute of Scientific and Technical Information of China (English)

    狄建华; 陈方兼

    2013-01-01

    采用FDS火灾模型软件分析了在设定的LNG火灾场景下火焰的发展规律,以广州某燃气公司3个LNG储罐中的中间储罐为研究对象,设定火灾场景,建立LNG储罐区细化模型,对火势总体情况、温度场测量点、云图动画、等值面动画、热辐射以及烟气危险区域进行模拟分析.结果表明:火灾发生时,罐区总控室附近的温度远高于危险判断值,火灾发生30 s、110 s时的危险区域范围变化较大,烟气层温度高于180℃及烟气危险等区域均出现在储罐与总控室之间的有限范围内,在人员疏散过程中应远离面向火源侧的建筑墙面.%FDS fire modeling software has been used to analyze development law of the flame in the LNG fire scenarios set. The middle one of 3 LNG storage tanks of a gas company in Guangzhou was taken as a study object to set up fire scenarios and build a refined model for LNG storage tankfarms, so as to carry out simulation analysis on overall fire situation, temperature field measuring point, cloud picture animation, isosurface animation, thermal radiation and hazardous flue gas areas. The results display that when a fire breaks out, the temperature in the vicinity of the tankfarm control room will be much higher than the danger judgement value, scope of hazardous area will follow a large change after 30 s and 110 s and the areas for smoke layer temperature higher than 180℃ and flue gas hazard will be within the limited range between the storage tank and control room. Therefore, the wall of a building facing the side of the fire source shall be kept away in the process of evacuation.

  3. Using thermal analysis to evaluate the fire effects on organic matter content of Andisols

    Directory of Open Access Journals (Sweden)

    J. Neris

    2013-09-01

    Full Text Available Soil organic compounds play a relevant role in aggregate stability and thus, in the susceptibility of soils to erosion. Thermal analysis (N2 and air and chemical oxidation techniques (dichromate and permanganate oxidation were used to evaluate the effects of a forest fire on the organic matter of Andisols. Both thermal analysis and chemical methods showed a decrease in the organic matter content and an increase in the recalcitrance of the remaining organic compounds in the burned zones. Thermal analysis indicated an increase in the thermal stability of the organic compounds of fire-affected soils and a lower content of both labile and recalcitrant pools as a consequence of the fire. However, this decrease was relatively higher in the labile pool and lower in the recalcitrant one, indicative of an increase in the recalcitrance of the remaining organic compounds. Apparently, black carbon did not burn under our experimental conditions. Under N2, the results showed a lower labile and a higher recalcitrant and refractory contents in burned and some unburned soils, possibly due to the lower decomposition rate under N2 flux. Thermal analysis using O2 and the chemical techniques showed a positive relation, but noticeable differences in the total amount of the labile pool. Thermal analysis methods provide direct quantitative information useful to characterize the soil organic matter quality and to evaluate the effects of fire on soils.

  4. Fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J. [VTT Building Technology, Espoo (Finland); Huhtanen, R. [VTT Energy, Espoo (Finland); Palmen, H.; Salminen, A.; Turtola, A. [VTT Automation, Espoo (Finland)

    1998-07-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  5. A simulation study on the effects of dendritic morphology on layer V PFC pyramidal cell firing behavior

    Directory of Open Access Journals (Sweden)

    Maria Psarrou

    2014-03-01

    Full Text Available The majority of neuronal cells found in the cerebral cortex are pyramidal neurons. Their function has been associated with higher cognitive and emotional functions. Pyramidal neurons have a characteristic structure, consisting of a triangular shaped soma whereon descend two extended and complex dendritic trees, and a long bifurcated axon. All the morphological components of the pyramidal neurons exhibit significant variability across different brain areas and layers. Pyramidal cells receive numerous synaptic inputs along their structure, integration of which in space and in time generates local dendritic spikes that shape their firing pattern. In addition, synaptic integration is influenced by voltage-gated and ion channels, which are expressed in a large repertoire by pyramidal neurons. Electrophysiological categories of pyramidal cells can be established, based on the action potential frequency, generated from a fixed somatic stimulus: (1 cells that fire repetitive action potentials (Regular Spiking – RS, (2 cells that fire clusters of 2 – 5 action potentials with short ISIs (Intrinsic Bursting – IB, and (3 cells that fire in repetitive clusters of 2 – 5 action potentials with short ISIs (Repetitive Oscillatory Bursts – ROB. In vitro and in silico scientific studies, correlate the firing patterns of the pyramidal neurons to their morphological features. This study provides a quantitatively analysis via compartmental neuronal modelling of the effects of dendritic morphology and distribution and concentration of ionic mechanisms, along the basal and/or apical dendrites on the firing behavior of a 112-set of layer V rat PFC pyramidal cells. We focus on how particular morphological and passive features of the dendritic trees shape the neuronal firing patterns. Our results suggest that specific morphological parameters (such as total length, volume and branch number can discriminate the cells as RS or IB, regardless of what is the

  6. Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio

    2016-04-01

    Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015

  7. ANSYS Simulation for Fire-Structure Coupling of Thin-Walled U-Section Steel-Concrete Beam%薄壁U型钢混凝土梁火灾-结构耦合的ANSYS分析

    Institute of Scientific and Technical Information of China (English)

    高轩能; 黄文欢; 张惠华

    2011-01-01

    To research the fire-resistant behavior of the composite beam in fire, an ANSYS model for fire-structure coupling analysis was established, by the method combining finite element method in space and finite difference method in time, and the temperature fields and the deflection-time curves of the composite beams under ISO 834 fire were numerically simulated and analyzed with the thermal-analysis ANSYS program and the nonlinear whole process analysis ANSYS program. The numerical results show: under ISO standard fire, the temperature of measuring point in tested beam is highly consistent with the ANSYS simulation result, and the curve between mid-span deflection and exposed-to-fire time of the tested beam is in good agreement with the theoretical result.%采用在空间上运用有限单元法与在时间上运用有限差分法相结合的方法,建立组合梁的火-结构耦合ANSYS分析模型;编制组合梁ANSYS热分析程序和全过程受火非线性分析程序,对组合梁在国际标准ISO834规定的标准火灾的温度场和挠度-时间曲线进行分析和计算.数值计算结果表明:在国际标准ISO834规定的标准火灾下,试验梁测点的温度与ANSYS理论计算结果高度吻合,试验梁位移-受火时间曲线与理论计算结果符合良好.

  8. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Gaschott, L.J.

    1995-06-16

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

  9. Finite element analysis of various methods for protection of concrete structures against spalling during fire

    Science.gov (United States)

    Witek, A.; Gawin, D.; Pesavento, F.; Schrefler, B. A.

    2007-02-01

    A mathematical model of hygro-thermo-mechanical phenomena in heated concrete, treated as multiphase porous material is briefly presented. Some modifications necessary to analyse high-temperature performance of a concrete containing the PP-fibres have been introduced, experimentally validated and applied for analysis of performance of a concrete tunnel lining during a 10-MW fire and the ISO standard fire. Three methods for protecting concrete structures against excessive degradation in fire conditions have been numerically analysed by means of the computer model. The analysed protection methods are based either upon application on a structure surface of a reflective layer, or covering it with a protective layer made of a very porous concrete or an addition of the PP fibres to the concrete mix. Efficiency of these methods has been numerically analysed in thermal conditions corresponding to the ISO-834 standard fire. The results obtained show that even relatively simple methods, like application a protective layer or increasing the surface reflectance, can retard to some extent concrete degradation during a fire.

  10. Study on the scenario of the fire incident and related analysis

    International Nuclear Information System (INIS)

    On March 11,1997, Bituminization Demonstration Facility (BDF) of PNC Tokai Works made fire and explosion incident. As soon as the Incident Investigation Committee was established and began its activity just after the incident, we PNC also began our investigation of the damage, operational records, and everything considered useful to study cause of the incident to contribute to the committee. The cause is not yet completely clarified, but it is now believed that the fire occurred as a result of several unfavorable operational condition changes and that the cause is so complicated. Such operational condition changes are slower feed rate of waste solution, higher extruder torque, higher extruder temperature, introduction of precipitation from the bottom of waste solution vessel, and so on. Based on the investigation and study of much data, an assumable scenario has been developed. This report describes PNC 's view, as of middle October 1997, on the scenario of the fire incident and result of related analysis. (authors)

  11. State-of-the-art review of sodium fire analysis and current notions for improvements

    International Nuclear Information System (INIS)

    Sodium releases from postulated pipe ruptures, as well as failures of sodium handling equipment in liquid metal fast breeder reactors, may lead to substantial pressure-temperature transients in the sodium system cells, as well as in the reactor containment building. Sodium fire analyses are currently performed with analytical tools, such as the SPRAY, SOMIX, SPOOL-FIRE and SOFIRE-II codes. A review and evaluation of the state-of-the-art in sodium fire analysis is presented, and suggestions for further improvements are made. This work is based, in part, on studies made at Brookhaven National Laboratory during the past several years in the areas of model development and improvement associated with the accident analyses of LMFBRs

  12. Analysis of human reliability in the APS of fire. Application of NUREG-1921; Analisis de Fiabilidad Humana en el APS de Incendios. Aplicacion del NUREG-1921

    Energy Technology Data Exchange (ETDEWEB)

    Perez Torres, J. L.; Celaya Meler, M. A.

    2014-07-01

    An analysis of human reliability in a probabilistic safety analysis (APS) of fire aims to identify, describe, analyze and quantify, in a manner traceable, human actions that can affect the mitigation of an initiating event produced by a fire. (Author)

  13. Numerical simulation and disaster prevention for catastrophic fire airflow of main air-intake belt roadway in coal mine-A case study

    Institute of Scientific and Technical Information of China (English)

    周刚; 程卫民; 张睿; 沈宝堂; 聂文; 张磊; 王昊

    2015-01-01

    Coal mine belt fire develops very rapidly and is difficult to control. If not suppressed quickly, a belt fire could easily lead to airflow disorder and undermine the ventilation system. However, belt fire can be prevented effectively by establishing fire airflow control system. In this work, the 5th belt roadway of Kongzhuang coal mine was taken as the object of investigation, where geometrical models of this roadway were established firstly. Then, based on mathematical model of fire smoke flow, the CO volume fraction, smoke density distribution, air temperature and pollutant velocity vector in the roadway before and after taking airflow control measures were simulated by using Fluent software. It can be known from the simulation that with the normal ventilation status in 5th belt roadway, the countercurrent of smoke does not happen when a fire occurs; the roadway’s section is almost filled with CO at 10 m downstream from the fire source, and with air velocity getting stable gradually, the CO concentration reaches about 15 %. After taking airflow control measures, the effect range of temperature field which are harmful to the miners decreases from 69 m to 30 m; and the distance of the roadway fully filled with CO is 5 m farther than that before taking measures. Finally, according to the numerical simulation results and the actual condition of the belt roadway, the warning and automatic remote airflow control system with short-circuit method for the 5th belt roadway was designed to guarantee the safety production.

  14. Testing of one-inch UF{sub 6} cylinder valves under simulated fire conditions

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Accurate computational models which predict the behavior of UF{sub 6} cylinders exposed to fires are required to validate existing firefighting and emergency response procedures. Since the cylinder valve is a factor in the containment provided by the UF{sub 6} cylinder, its behavior under fire conditions has been a necessary assumption in the development of such models. Consequently, test data is needed to substantiate these assumptions. Several studies cited in this document provide data related to the behavior of a 1-inch UF{sub 6} cylinder valve in fire situations. To acquire additional data, a series of tests were conducted at the Paducah Gaseous Diffusion Plant (PGDP) under a unique set of test conditions. This document describes this testing and the resulting data.

  15. A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Daliri

    2012-02-01

    Full Text Available A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010 which captures qualitative firing features of a detailed physiological model (Kanold & Manis, 2000.For our development we benefit from transient potassium currents properties i.e.fast activation and slow inactivation to generate long latency before start of firing.We compare our minimal model outputs in response to a hyperpolarizing stimulus fallowed by a depolarizing one with the data of KM-LIF model.The results conform well to the KM-LIF model with lower complexity.

  16. Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio

    2016-04-01

    Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015

  17. Urban Fire Risk Clustering Method Based on Fire Statistics

    Institute of Scientific and Technical Information of China (English)

    WU Lizhi; REN Aizhu

    2008-01-01

    Fire statistics and fire analysis have become important ways for us to understand the law of fire,prevent the occurrence of fire, and improve the ability to control fire. According to existing fire statistics, the weighted fire risk calculating method characterized by the number of fire occurrence, direct economic losses,and fire casualties was put forward. On the basis of this method, meanwhile having improved K-mean clus-tering arithmetic, this paper established fire dsk K-mean clustering model, which could better resolve the automatic classifying problems towards fire risk. Fire risk cluster should be classified by the absolute dis-tance of the target instead of the relative distance in the traditional cluster arithmetic. Finally, for applying the established model, this paper carded out fire risk clustering on fire statistics from January 2000 to December 2004 of Shenyang in China. This research would provide technical support for urban fire management.

  18. Energy release from pit fires for producing a fire model. Natural-scale analysis of energy release from pit fires for the purpose of establishing a fire model. Final report; Energiefreisetzung von Grubenbraenden zur Erstellung eines Brandmodell. Untersuchung ueber die Energiefreisetzung von Grubenbraenden im natuerlichen Massstab zur Erstellung eines Brandmodells. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Holke, K.; Michelis, J.

    1996-12-31

    In the context of the research project, measurements were made regarding the energy release in pit fires. The heat flow in fires with standard wood fire objects and in fires on conveyor belts in underground fire sections of the DMT Tremonia experimental pit was measured for this purpose. It was found that the distribution of the mean total heat flow in the roadway crossection depended on the geometric arrangement of the fire object. The belt fire tests carried out have shown that the heat flow depended on the burning behaviour of the belts and with increasing flame propagation on the conveyor belt, the mean heat flow increased. Further, the temperature effects after wood and conveyor belt fires were simulated with the modified `MFIRE` simulation program and were compared with the corresponding experimental results. (orig./MSK) [Deutsch] Im Rahmen des Untersuchungsvorhabens wurden Messungen bezueglich der Energiefreisetzung bei Grubenbraenden durchgefuehrt. Hierzu wurde der Waermefluss bei Braenden mit Standardholzbrandobjekten und bei Foerdergurtbraenden in den untertaegigen Brandstrecken der DMT-Versuchsgrube Tremonia gemessen. Es zeigte sich, dass die Verteilung des mittleren Gesamtwaermeflusses im Streckenquerschnitt von der geometrischen Anordnung des Brandobjektes abhing. Die durchgefuehrten Gurtbrandversuche haben ergeben, dass der Waermefluss vom Brandverhalten der Gurte abhing und mit zunehmender Flammenausbreitung am Foerdergurt der mittlere Waermefluss zunahm. Weiterhin wurden mit dem modifizierten Simulationsprogramm `MFIRE` die Temperaturauswirkungen hinter Holz- und Foerdergurtbraenden simuliert und mit den entsprechenden experimentellen Ergebnissen verglichen. (orig./MSK)

  19. A coupled thermo-hygro-chemo-mechanical model for the simulation of spalling of concrete subjected to fire loading

    Directory of Open Access Journals (Sweden)

    Zeiml M.

    2013-09-01

    Full Text Available The presented research work contributes to the realistic simulation of the stress state within fire-loaded concrete in order to attain insight into the development and occurrence of the critical state right before and during the event of spalling. A coupled thermo-hygro-chemo-mechanical code simulating the stress state as a consequence of both thermo-hygral and thermo-mechanical processes is presented together with an embedded strong-discontinuity model which is capable of capturing and tracking the propagation of a crack evolving in concrete as a quasi-brittle material. Combination of the two mentioned models is currently under way. With the resulting coupled model, it will be possible to take into account all major couplings, allowing to realistically simulate the spalling process.

  20. Accuracy analysis of distributed simulation systems

    Science.gov (United States)

    Lin, Qi; Guo, Jing

    2010-08-01

    Existed simulation works always emphasize on procedural verification, which put too much focus on the simulation models instead of simulation itself. As a result, researches on improving simulation accuracy are always limited in individual aspects. As accuracy is the key in simulation credibility assessment and fidelity study, it is important to give an all-round discussion of the accuracy of distributed simulation systems themselves. First, the major elements of distributed simulation systems are summarized, which can be used as the specific basis of definition, classification and description of accuracy of distributed simulation systems. In Part 2, the framework of accuracy of distributed simulation systems is presented in a comprehensive way, which makes it more sensible to analyze and assess the uncertainty of distributed simulation systems. The concept of accuracy of distributed simulation systems is divided into 4 other factors and analyzed respectively further more in Part 3. In Part 4, based on the formalized description of framework of accuracy analysis in distributed simulation systems, the practical approach are put forward, which can be applied to study unexpected or inaccurate simulation results. Following this, a real distributed simulation system based on HLA is taken as an example to verify the usefulness of the approach proposed. The results show that the method works well and is applicable in accuracy analysis of distributed simulation systems.

  1. Application of fire PSA in enhancing NPP safety: a case study with Indian PHWRS

    International Nuclear Information System (INIS)

    Fire PSA (Probabilistic Safety Assessment) is the probabilistic analysis of fire events and their potential impact on the safety of a Nuclear Power Plant (NPP). Using probabilistic models, the fire PSA takes into account the possibility of a fire at specific plant locations and its propagation, detection and suppression of the fire; and also helps to assess the effect of the fire on safety related cables and equipment. Typically, Fire PSA involves five stages of analysis: Screening Analysis, Fire Hazard Analysis, Fire Frequency Analysis, Fire Propagation Analysis and System analysis. The probabilistic criteria used in fire PSA are based on the risk concept. Core damage frequency is a typical criterion used for PSA Level 1. Fire PSA relies on the plant response model developed for the internal initiating events. The availability of a plant model that logically examines the contributions to core damage is a prerequisite for a fire PSA. It should be pointed out that extending an internal event PSA to a fire PSA requires a considerable amount of plant specific data, such as the location of cable routes in plant compartments, fire barriers etc. The detailed fire PSA analyses was carried out for a typical Indian Nuclear Power Plant. Fire fighting system for the NPP under consideration was designed based on the prevailing standards for fire safety design. These provisions were critically analysed (after appropriate screening of fire critical areas) by using codes such as COMPBRN IIIe and Fire Dynamics Simulator (FDS). Based on the results of these studies, activities such as installation of fire barriers at critical locations, re-routing of redundant safety related cables, etc. were carried out for reducing the fire contribution to CDF. Also, suitable provisions were identified to prevent occurrence of possible core damage scenario as pointed in Fire PSA study. After retrofitting, fire PSA was re-done to quantify and ensure the reduction in the contribution of the CDF

  2. Does Suspected Sleep Disordered Breathing Impact on the Sleep and Performance of Firefighting Volunteers during a Simulated Fire Ground Campaign?

    Directory of Open Access Journals (Sweden)

    Sarah M. Jay

    2016-01-01

    Full Text Available Adequate sleep is fundamental to workplace performance. For volunteer firefighters who work in safety critical roles, poor performance at work can be life threatening. Extended shifts and sleeping conditions negatively impact sleep during multi-day fire suppression campaigns. Having sleep disordered breathing (SDB could contribute further to sleep deficits. Our aim was to investigate whether those with suspected SDB slept and performed more poorly during a fire ground simulation involving sleep restriction. Participants, n = 20 participated in a 3-day-4-night fire ground simulation. Based on oximetry desaturation index data collected during their participation, participants were retrospectively allocated to either a SDB (n = 8 or a non-SDB group (n = 12. The simulation began with an 8 h Baseline sleep (BL followed by two nights of restricted (4 h sleep and an 8 h recovery sleep (R. All sleeps were recorded using a standard electroencephalography (EEG montage as well as oxygen saturation. During the day, participants completed neurobehavioral (response time, lapses and subjective fatigue tasks. Mixed effects ANOVA were used to compare differences in sleep and wake variables. Analyses revealed a main effect of group for Total sleep (TST, REM , wake after sleep onset (WASO and Arousals/h with the SDB group obtaining less TST and REM and greater WASO and Arousals/h. The group × night interaction was significant for N3 with the SDB group obtaining 42 min less during BL. There was a significant main effect of day for RRT, lapses and subjective fatigue and a significant day × group interaction for RRT. Overall, the SDB group slept less, experienced more disturbed sleep and had poorer response time performance, which was exacerbated by the second night of sleep restriction. This could present a safety concern, particularly during longer campaigns and is worthy of further investigation. In addition, we would recommend promotion of awareness of SDB, its

  3. Thermal Performance and Economic Analysis of 210 MWe Coal-Fired Power Plant

    OpenAIRE

    Ravinder Kumar; Avdhesh Kr. Sharma; P C Tewari

    2014-01-01

    This paper presents the thermal and economic performance of a 210 MWe coal-fired power plant situated in North India. Analysis is used to predict coal consumption rate, overall thermal efficiency, mass flow rate of steam through boiler, and Net present value (NPV) of plant for given load. Thermodynamic analysis was carried out using mass and energy equations followed by empirical correlations. Predicted mass flow rate of steam, coal consumption rate, and thermal efficiency give fair agreement...

  4. Using thermal analysis to evaluate the fire effects on organic matter content of Andisols

    OpenAIRE

    J. Neris; Hernández-Moreno, J. M.; C Jiménez; M. Tejedor

    2013-01-01

    Soil organic compounds play a relevant role in aggregate stability and thus, in the susceptibility of soils to erosion. Thermal analysis (N2 and air) and chemical oxidation techniques (dichromate and permanganate oxidation) were used to evaluate the effects of a forest fire on the organic matter of Andisols. Both thermal analysis and chemical methods showed a decrease in the organic matter content and an increase in the recalcitrance of the remaining organic compounds in the burned zones. The...

  5. Advanced concept for damage control : A framework to simulate fire propagation and damage control effects

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.

    2003-01-01

    Current damage control procedures are developed on the basis of a long-standing experience. However there are reasons to believe that these procedures do not account for major weapon-induced calamities. Fire fighting after substantial blast and fragmentation damage, due to a weaponhit, is quite beyo

  6. Fire and simulated herbivory have antagonistic effects on resistance of savanna grasslands to alien shrub invasion

    NARCIS (Netherlands)

    te Beest, Mariska; Mpandza, Nokukhanya J.; Olff, Han

    2015-01-01

    Question Resistance of the native community has been identified as an important factor limiting invasion success and invader impact. However, to what extent resistance interacts with disturbance to control invasion success remains unclear. We studied the interaction between biotic resistance, fire a

  7. Smoke simulation for fire engineering using a multigrid method on graphics hardware

    DEFF Research Database (Denmark)

    Glimberg, Stefan; Erleben, Kenny; Bennetsen, Jens

    2009-01-01

    We present a GPU-based Computational Fluid Dynamics solver for the purpose of fire engineering. We apply a multigrid method to the Jacobi solver when solving the Poisson pressure equation, supporting internal boundaries. Boundaries are handled on the coarse levels, ensuring that boundaries will n...

  8. Directional excitation of Rg due to ripple-fired explosions: 2-Dimensional finite-difference simulations

    International Nuclear Information System (INIS)

    A major issue for the Non-Proliferation Treaty is the discrimination of large chemical explosions from possible clandestine or small nuclear tests. Unless discrimination is possible, the numerous mining blasts could give ample opportunity for concealing clandestine tests. Ripple-fired explosions are commonly used to fragment rocks during quarry and open-pit mining. The periodicity inherent in the ripple firing could produce a seismic reinforcement at the frequency of the delay between shots or rows. It has been suggested that the convolution of a single explosion with a comb function of variable spacing and variable amplitude can be used to model the distinctive signature of ripple firing. Baumgardt and Ziegler (1988) delicately demonstrated that the incoherent array-stack spectra can be used to identify some multiple shots recorded at NORSAR. By superpositioning the waveform due to a single shot with proper time delay, they were able to model the source multiplicity under the assumption that the spatial spreading of the shots is negligible with respect to the distance to the receiver. The work by Stump et al. successfully characterized the major features of the wavefield due to ripple firings at near-source ranges

  9. Forest fire propagation simulations for a risk assessment methodology development for a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Yasushi Okano

    2015-10-01

    Given that this study shows that the maximum height of a flame on a canopy top is close to the range of power line height, a loss of offsite power is recognized as a possible subsequent event during a forest fire.

  10. Portable light source unit for simulating fires having an adjustable aperture

    Science.gov (United States)

    Youngquist, Robert C. (Inventor); Moerk, John S. (Inventor); Strobel, James P. (Inventor)

    1997-01-01

    A portable, hand held light source unit is employed to check operation of fire detectors, such as hydrogen fire detectors. The unit emits radiation in a narrow band of wavelengths which are generated by the type of fire to be tested, but not by other light sources such as the sun or incandescent lamps. The unit can test fire detectors at different distances, and of different sensitivities. The intensity of the radiation emitted by the unit is adjustable for this purpose by means of a rotatable disk having a plurality of different sized apertures for selective placement between the light source and an output lens. The disk can also be rotated to a calibration position which causes a microprocessor circuit in the unit to initiate a calibration procedure. During this procedure, the lamp intensity is measured by a photodetector contained within the unit, and the microprocessor adjusts the lamp current to insure that its intensity remains within a preset range of values. A green and a red LED are mounted on the unit which indicate to an operator whether the calibration is successful, as well as the condition of the unit's battery power supply.

  11. Fire simulation in large compartments with a fire model 'FDS'. Part 3. Accuracy evaluation of pyrolysis rate of liquid combustible and wall heat transfer

    International Nuclear Information System (INIS)

    The accuracy of a fire model, FDS, were evaluated for a fire plume developed from combustible liquid and a natural convection from a high-temperature vertical wall, focusing on pyrolysis rate of combustibles and heat transfer coefficient of walls, both of which greatly affect the accuracy of air temperature in compartment fires. For a fire plume, numerical results with the submodel 'Liquid' predicting pyrolysis of combustible liquid largely depend on grid spacing and have a margin of error of approximately twenty percent at minimum in heat release rate (HRR). Thus, the submodel 'Specified HRR' prescribing the pyrolysis should be more effective when HRR is known in postulated fires. Concerning grid spacing for accurately predicting a fire plume, the condition of Δ < D*/20 (D*: characteristic fire size, Δ: grid spacing) for a combustible-gas fire plume could be applied to a combustible-liquid fire plume. For a natural convection from a wall, an empirical submodel of heat transfer coefficient was nearly independent of grid spacing, and gave the good predictions for turbulent heat transfer. Unsteady flows near walls were also predicted on the grid-spacing condition of Δη < approximately 0.6 (η: similarity variable for laminar boundary layer), although their accuracy was much lower than that of the heat transfer coefficient. (author)

  12. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    CERN Document Server

    Singh, G

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

  13. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  14. 氢气喷射火的大涡模拟%Large Eddy Simulation of Hydrogen Jet Fire

    Institute of Scientific and Technical Information of China (English)

    付佳佳; 王昌建; 秦俊; 李建

    2013-01-01

    基于OpenFOAM平台,嵌入基于大涡模拟思想的涡耗散概念燃烧模型改进的fvDOM辐射计算模型,采用氢单步化学反应模型来计算细结构的反应速率。对不同喷射速度和喷口直径的低速氢喷射火进行模拟。结果表明,采用该计算模型获得的火焰高度与理论预测值基本一致;随着氢喷射速度的增大,火焰高度增加,喷射火最高温度降低,但最高温度点的位置上升;随着氢喷口直径增大,火焰高度增加,最高温度点的位置上移,但火焰最高温度基本维持不变。%Within OpenFOAM toolbox,eddy dissipation concept in LES framework and modified fvDOM radiation model were taken into account,in conjunction with hydrogen-air single-step chemistry model for approaching reac-tion rate in the fine structure. Then the jet fires were simulated with varying inlet velocity and nozzle diameters. The results show that the calculated fire heights agree well those theoretically predicted. With the increase of hydrogen jet velocity,fire height increases,with the peak temperature decreases with its location elevated. With the increase of nozzle diameter,fire height increases,the peak temperature location is elevated,but the peak temperature remains almost unchangeable.

  15. Agent-Based Evacuation Model Incorporating Fire Scene and Building Geometry

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; REN Aizhu

    2008-01-01

    A comprehensive description of the key factors affecting evacuations at fire scones is necessary for accurate simulations.An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response.The building entities are generated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building.The influence of the fire is based on a hazard assessment of the combustion products.The agent behavior and decisions are affected by environmental features and the fire field.A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors including occupants,building geometry,and fire disaster during the evacuation.The results can be used for the assessments of building designs regarding fire safety.

  16. Smoke injection heights from fires in North America: analysis of 5 years of satellite observations

    Directory of Open Access Journals (Sweden)

    M. Val Martin

    2009-09-01

    Full Text Available We analyze a multi-year record of aerosol smoke plume heights derived from observations over North America made by the Multi-angle Imaging SpectroRadiometer (MISR instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time. The largest plumes are found over the boreal region (median values of ∼850 m height, 24 km length and 940 m thickness, whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ∼530 m height, 12 km length and 550–640 m thickness. The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12% of plumes from fires are injected above the boundary layer (BL, consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83% are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS fire radiative power (FRP thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT exhibit larger FRP values (1620–1640 MW than those remaining within the BL (174–465 MW. Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 thickness. The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June

  17. Assessing evidentiary value in fire debris analysis by chemometric and likelihood ratio approaches.

    Science.gov (United States)

    Sigman, Michael E; Williams, Mary R

    2016-07-01

    Results are presented from support vector machine (SVM), linear and quadratic discriminant analysis (LDA and QDA) and k-nearest neighbors (kNN) methods of binary classification of fire debris samples as positive or negative for ignitable liquid residue. Training samples were prepared by computationally mixing data from ignitable liquid and substrate pyrolysis databases. Validation was performed on an unseen set of computationally mixed (in silico) data and on fire debris from large-scale research burns. The probabilities of class membership were calculated using an uninformative (equal) prior and a likelihood ratio was calculated from the resulting class membership probabilities. The SVM method demonstrated a high discrimination, low error rate and good calibration for the in silico validation data; however, the performance decreased significantly for the fire debris validation data, as indicated by a significant increase in the error rate and decrease in the calibration. The QDA and kNN methods showed similar performance trends. The LDA method gave poorer discrimination, higher error rates and slightly poorer calibration for the in silico validation data; however the performance did not deteriorate for the fire debris validation data. PMID:27081767

  18. Numerical Analysis of Heat Transfer in Fire-Protective Coatings Deformable upon Heating

    Science.gov (United States)

    Rudzinsky, V. P.; Garashchenko, A. N.

    2016-02-01

    Numerical studies of heat transfer in fire-protective coatings deformable (intumescent) upon heating have been conducted. The optimum combination of the computation-scheme parameters providing stability, convergence and satisfactory accuracy of solutions has been determined. An effect of basic characteristics of materials in real range of their change that made it possible to estimate the degree of influence of properties on the fire-protective efficiency of coatings and the level of warm-up (flame resistance) of structures to be protected with them has been studied. The possibility of using developed models and techniques to estimate and provide the required level of fire safety of polymer-based materials (in particular, elastomers and structures and products on their basis) is considered. The results of estimating the mass rate of evolving gaseous thermal-decomposition products that determine, in a considerable extent, the material combustibility have been presented. The numerical analysis results have demonstrated the potentiality of reducing the combustibility of such materials and increasing limits of their fire resistance at the expense of organizing the intumescence of a material upon heating by means of modification of their initial formulations as well as with the aid of an additional layer made of the intumescent coating compatible with an elastomer.

  19. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Directory of Open Access Journals (Sweden)

    Luc Leroy Ngueyep. Mambou

    2015-02-01

    Full Text Available The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the mechanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 °C to 500 °C, the internal stress and internal strain are weak; whereas above 500 °C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  20. The Impact of Baryonic Physics on the Structure of Dark Matter Halos: the View from the FIRE Cosmological Simulations

    CERN Document Server

    Chan, T K; Oñorbe, J; Hopkins, P F; Muratov, A L; Faucher-Giguère, C -A; Quataert, E

    2015-01-01

    We study the distribution of cold dark matter (CDM) in cosmological zoom-in simulations from the Feedback in Realistic Environments (FIRE) project, for a range of halo mass (10^9-10^12 Msun) and stellar mass (10^4-10^11 Msun). The FIRE simulations incorporate explicit stellar feedback within the multi-phase ISM. We find that stellar feedback, without any "fine-tuned" parameters, can greatly alleviate small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile "alpha" shows a strong mass dependence: profiles are shallow at M_h ~ 10^10-10^11 Msun and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of "alpha," and relatively late growth of cores. Because the star formation efficiency is strongly halo mass dependent, a rapid change in the centr...

  1. Fire and simulated herbivory have antagonistic effects on resistance of savanna grasslands to alien shrub invasion

    OpenAIRE

    te Beest, Mariska; Mpandza, Nokukhanya J.; Olff, Han

    2015-01-01

    Question Resistance of the native community has been identified as an important factor limiting invasion success and invader impact. However, to what extent resistance interacts with disturbance to control invasion success remains unclear. We studied the interaction between biotic resistance, fire and small-scale disturbances mimicking those of large mammalian herbivores (hoof action and grazing) on invasion success of the alien shrub Chromolaena odorata. Location Hluhluwe-iMfolozi Park, Sout...

  2. Fire exposure testing of encapsulated simulant radioactive wastes. Task 3 characterization of radioactive waste forms a series of final reports (1985-89) no. 13

    International Nuclear Information System (INIS)

    There are no regulations in the UK or elsewhere in the EC that deal specifically with storage fire accident criteria for ILWs. In order to establish such criteria and develop test methods it is pertinent to provide data on the behaviour of typical waste packages in severe fire accidents. This programme seeks to provide information on the performance of a range of waste types using full-scale non-radioactive simulated packaged wasteforms. The initial objective is to identify the test conditions for packages, which will allow interpolation of results rather than extrapolation, for fires in which drums of waste are directly exposed to a hydrocarbon pool fire, and those in which packages are in their transport overpacks leading to significantly lower heat fluxes. These conditions provide the experimental parameters for the execution of thermal tests to measure the performance of full-scale packages. This testwork can be split into two distinct categories: (a) Furnace test, representing a transport fire. In transport, drums are placed within an overpack that performs the function of a thermal barrier protecting the drums during a fire. (b) Pool fire test, which simulates the fire conditions which bare drums could be subjected to in storage. A theoretical model already exists in rough form which predicts wasteform temperature profiles and steam release rates from immobilized waste, the results from this programme of work will enable the modellers at Harwell to develop and validate this model and consequently predict both the gaseous and particulate, transport and release mechanisms from the waste matrix which may be encountered in fire accident conditions. This programme is being conducted in parallel and in close liaison with small-scale fully active studies at AERE Harwell under the CEC contract. 45 figs.; 5 tabs

  3. The effects of simulated fire events on the creation and destruction of soil water repellency using vegetation and soil samples from a desert shrub grassland

    Science.gov (United States)

    Over, T. M.; Pratte, S.; Frost, B.; Blitz, J.

    2010-12-01

    Fire-induced soil water repellency has been shown to interact with aeolian processes to enhance the heterogeneity of arid landscapes. To investigate aspects of these processes, vegetation (black grama grass and creosote bush) and soil samples from a field site in the northern Chihuahuan desert of central New Mexico were prepared and heated to temperatures ranging from 100 to 600 degrees Celsius in a tube furnace for one minute to simulate fire events. The vegetation samples were prepared by drying, grinding, and mixing with a clean sand in different concentrations, and the soil samples were passed through a 2 mm sieve. The samples were tested before and after heating using the molarity of ethanol (MED) drop test to determine the effect of heating to different temperatures on soil water repellency. The results show that some heating enhances repellency but higher temperatures destroy it. Gas chromatography - mass spectrometric analysis of soil extracts was also used to investigate the presence of some molecules that may be associated with soil water repellency before and after the heating experiments.

  4. Three-dimensional rail cooling analysis for a repetitively fired railgun

    International Nuclear Information System (INIS)

    This paper reports on a three-dimensional (3-D) rail cooling analysis for fabrication and demonstration of a stand-alone repetitive fire compulsator driven 9 MJ gun system which has been performed to assure the entire rail can be maintained below its thermal limit for multiple shots. The 3-D rail thermal model can predict the temperature, pressure, and convective heat transfer coefficient variations of the coolant along the 10 m long copper rail. The 9-MJ projectiles will be fired every 20 s for 3 min. Water cooling was used in the model for its high cooling capacity. Single liquid phase heat transfer was assumed in the cooling analysis. For multiple shots, the temperature difference between the rail and the water was enhanced due to accumulated heat in the rail. As a result, the heat removal by water increased from shot-to-shot. The rail temperature initially increased and finally stabilized after a number of shots

  5. Project Flambeau experimental fire measurements

    International Nuclear Information System (INIS)

    This preliminary analysis and model formulation of the Project Flambeau fires taken together with other information, seems to indicate that mass fires and conflagrations are three-dimensional and oscillatory in nature. Large areas fires seem to naturally fall into a strong fire generated vortices. The vortices oscillated with a period of about 50 seconds in these fires

  6. A qualitative analysis of future air combat with 'fire and forget' missiles

    Science.gov (United States)

    Shinar, J.; Davidovitz, A.

    1987-01-01

    A set of previous examples have demonstrated that the two-target game formulation is adequate for modeling air-to-air combat between two aggressively motivated fighter aircraft. The present paper describes such an engagement between two aircraft of different speed but equipped with the same 'fire and forget' type guided missiles. The results of the analysis suggest a new concept of air combat tactics for future scenarios.

  7. Proteome analysis of the liver in the Chinese fire-bellied newt Cynops orientalis.

    Science.gov (United States)

    Zang, X Y; Guo, J L; Geng, X F; Li, P F; Sun, J Y; Wang, Q W; Xu, C S

    2016-01-01

    The Chinese fire-bellied newt, Cynops orientalis, belonging to Amphibia, Caudata, Salamandridae is a species endemic to China. The liver, which is an important digestive gland and the largest amphibian organ, has various functions, including detoxification, glycogen storage, protein synthesis, and hormone production. However, the newt liver has rarely been studied at the molecular level. We performed histomorphology and high-throughput proteomic analysis of the Chinese fire-bellied newt liver, using hematoxylin and eosin (H&E) staining and two-dimensional electrophoresis coupled with mass spectrometry. The H&E staining showed that the newt liver nuclei are large and round, are located in the lateral cytoplasm, and contain a large quantity of lipid droplets. Melanins were abundantly present throughout the hepatic parenchyma. The proteome analysis showed a total of 545 proteins detected in the newt liver. Furthermore, a gene ontology analysis suggested that these proteins were associated with metabolism, immune response, cellular homeostasis, etc. Among these, proteins with metabolic functions were found to be the most abundant and highly expressed. This supports the role of the liver as the metabolic center. The proteomic results provide new insights into the aspects of the liver proteomes of the Chinese fire-bellied newt. The identification of a more global liver proteome in the newt may provide a basis for characterizing and comparing the liver proteomes from other amphibian species. PMID:27525932

  8. Simulation on the Thermodynamic System of a 300 MW Coal-fired Power Plant%300MW燃煤电厂热力系统仿真研究

    Institute of Scientific and Technical Information of China (English)

    张超; 赵海波; 金波; 郑楚光

    2012-01-01

    基于过程系统工程的建模和仿真原则,针对某电厂300MW燃煤机组开发了一套稳态热力学仿真系统,并详细阐述了模型建立的基本思路和方法,通过改变输入参数、负荷和环境条件,仿真电厂在不同工况下的运行特性.结果表明:系统仿真所获得的结果与实际电厂的性能测试数据相比误差不超过2%;通过仿真可获得主要物流、能流的热力学参数(包括质量流量、温度、压力、比焓、比熵等)和主要设备的运行参数(包括汽轮机和泵的等熵效率、加热器端差、热传导系数等),为燃煤电厂的实际运行优化、炯分析、热经济学分析等提供基础数据.%Based on the modeling and simulating principles of process systems engineering, a steady-state thermodynamic system has been developed for simulation of a 300 MW pulverized coal-fired power plant, of which the basic principles and modeling approaches are described in detail. By varying the input parameters, loads and environmental conditions, operation performance of the power plant is simulated under different working conditions. Results show that the relative error of performance data between simulation and performance test is less than 2%. The thermodynamic parameters of mass and energy flow (including mass flow rate, temperature, pressure, specific enthalpy, specific entropy, etc. ) and the main equipment running parameters (including isentropic efficiency of steam turbine and pump, terminal temperature difference of heater, heat conduction coefficient, etc. ), which are obtained during simulation, may serve as a reference for actual operation and optimization, exergy analysis and thermo-economic analysis of coal-fired power plants.

  9. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2011-07-01

    Full Text Available Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction,have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR and near infrared (NIR channels of satellite sensors have been employed for detecting live fuel moisture content (FMC, and the Normalized Difference Water Index (NDWI was used for evaluating the forest vegetation condition and its moisture status.

  10. New training simulators of state-of-the-art coal fired power plants at KRAFTWERKSSCHULE E.V.; Neue Schulungssimulatoren moderner Kohlekraftwerke bei der KRAFTWERKSSCHULE E.V.

    Energy Technology Data Exchange (ETDEWEB)

    Kroeck, Martin; Fehse, Klaus; Nacke, Heinrich [Kraftwerksschule e.V., Essen (Germany)

    2008-07-01

    For more than 20 years, KRAFTWERKSSCHULE E.V. (KWS - PowerTech Training Center) operates training simulators for fossil-fired power plants at its Essen headquarters. In the course of the construction of the new 800 MW and 1100 MW high-efficiency power plants with hypercritical steam generators, a growing demand for - even multilingual - training of operator personnel from such plants at simulators is arising. Thus, new training simulators are being erected. (orig.)

  11. Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis

    International Nuclear Information System (INIS)

    In contrast to EU, U.S. electric utilities are not employing the bioenergy technology of co-firing wood pellets with coal. This difference in employment patterns is explored within a real options analysis (ROA) for possible U.S. utilization of wood pellets, considering fuel-price series from 2009 to 2014. For analysis, these series are divided into two sub-periods based on different market conditions: Infancy (2009–2011) and Substitution (2012–2014). ROA indicates co-firing wood pellets with coal is feasible considering adoption during wood pellets' infancy, under low discount rates, and long power-plant lifespans. A portfolio effect of employing multiple fuels underlies this result. However, co-firing is not currently economically feasible. The different adoption decisions are likely a consequence of recent cheap and abundant U.S. natural gas. For co-fired wood pellets to be feasible, government incentives and/or a market increase in natural gas prices appear necessary. -- Highlights: •Real options analysis indicates co-firing is not currently economically feasible within the U.S. •The recent U.S. natural-gas boom is likely hindering the adoption of co-firing. •For co-fired adoption, government incentives or an increase in natural-gas prices are necessary

  12. Identifying past fire regimes throughout the Holocene in Ireland using new and established methods of charcoal analysis

    Science.gov (United States)

    Hawthorne, Donna; Mitchell, Fraser J. G.

    2016-04-01

    Globally, in recent years there has been an increase in the scale, intensity and level of destruction caused by wildfires. This can be seen in Ireland where significant changes in vegetation, land use, agriculture and policy, have promoted an increase in fires in the Irish landscape. This study looks at wildfire throughout the Holocene and draws on lacustrine charcoal records from seven study sites spread across Ireland, to reconstruct the past fire regimes recorded at each site. This work utilises new and accepted methods of fire history reconstruction to provide a recommended analytical procedure for statistical charcoal analysis. Digital charcoal counting was used and fire regime reconstructions carried out via the CharAnalysis programme. To verify this record new techniques are employed; an Ensemble-Member strategy to remove the objectivity associated with parameter selection, a Signal to Noise Index to determine if the charcoal record is appropriate for peak detection, and a charcoal peak screening procedure to validate the identified fire events based on bootstrapped samples. This analysis represents the first study of its kind in Ireland, examining the past record of fire on a multi-site and paleoecological timescale, and will provide a baseline level of data which can be built on in the future when the frequency and intensity of fire is predicted to increase.

  13. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  14. Anti-aircraft Gun Fire Control Algorithm and Simulation Based on Ballistic%基于外弹道的高炮火控算法与仿真

    Institute of Scientific and Technical Information of China (English)

    李强; 欧阳攀

    2014-01-01

    In order to adapt to the improved target speed and maneuverability in modern warfare, and enhance the capability of anti-aircraft gun to attack air moving target,it has to give full play to the trajectory based on fire control computation precision advantages and accelerate the calculating speed. Through the integration of the external ballistic real-time calculating with calculate iterative algorithm and initial choice,a completely based on the ballistic calculating rapid fire control decoding algorithm system is received. The simulation results verified the external trajectory real-time calculating accuracy when compared with the firing table data. The solving hit problem of uniform linear motion and acceleration linear motion is analyzed with the usage of GDI + graphics functions and C# language. Analysis results show that the algorithm is feasible and provides a reference for fire-control system.%为适应现代战争中目标速度与机动性的提高,增强高炮打击空中运动目标能力,需要充分发挥基于外弹道火控解算精度高的优点,并提高解算速度。通过整合外弹道实时解算和解命中迭代算法与初值选择,得到了一种完全基于外弹道解算的快速火控解算算法体系。经过仿真计算,并将仿真结果与射表数据对比,验证了外弹道实时解算的准确性。利用GDI+图形功能基于C#语言仿真分析了匀速与匀加速直线运动目标的解命中问题,验证了算法的可行性,为火控系统的研制提供了参考。

  15. Trouble Shooting in Vertical Fire Hydrant Pump by Vibration Analysis - A Case Study

    Directory of Open Access Journals (Sweden)

    V. G . Arajpure

    2012-08-01

    Full Text Available The vertically mounted fire fighting pump used in pump house generally subjected to mechanical, structural and hydraulic problems. This generates dynamic load and produces vibrations of high frequencies and stresses which affects the pump performance and increases the maintenance cost. These problems leading to failure and damage of the costly components of pump houses. In this regard vibration analysis is necessary, to detect and diagnose faults of the fire fighting pumping house, to avoid any failure and efficient operation of pump system. This paper presents, the vibration analysis of different components of pump by actual measurement and performance testing at test rig. The vibrations are measured at no load as well as at full load condition. The defects in different components are identified and balanced. The balancing of the unbalanced motor fan enhances dynamic performance greatly due to decreased vibrations. The two different case studies of old as well as new pump are discussed here. The study becomes the benchmark for erection, commissioning and provides guidelines for fault diagnose of fire fighting pumps.

  16. NACOM code for analysis of postulated sodium spray fires in LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.S.

    1980-03-01

    An analysis of potential sodium spills and fires in liquid metal fast breeder reactors has been made to assess the maximum equipment cell loading conditions. A computer code called NACOM (sodium combustion) has been developed at Brookhaven National Laobratory (BNL) to analyze sodium spray fires. This report contains a detailed description of physical models used in this code as well as programming aspects. The single droplet combustion model and the model describing the droplets' motion are verified. Comparisons between NACOM predictions and SPRAY-3A predictions of the Atomics International (AI) LTV Jet Tests are made. Good agreement is found between the NACOM predictions and the experimental data. NACOM predictions of the pressure rise are more accurate than SPRAY-3A predictions for most of the cases studied. The code has been verified for oxygen concentrations ranging from 0 to 21%. NACOM utilizes more realistic single droplet and spray combustion models than SPRAY-3A. Moreover, NACOM does not utilize adjustable parameters for the burning rate equations, contrary to the approach taken with SPRAY-3A. Thus, the NACOM code is a more reliable code for use in the analysis of large-scale sodium spray fires in LMFBR containment cells. 24 refs., 32 figs.

  17. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  18. Three-dimensional computer simulation for combustion and NO{sub x} emission in a grate fired boiler at Baeckhamars, Sweden. Technical report[(Baeckhammars Bruk)

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-05-01

    This report describes the fundament of mathematical modeling for the grate fired boilers in Part A, and presents the results from the numerical simulations for the flow pattern, combustion and NO{sub x} emission in the Baeckhammars grate fired boiler in Part B. The simulated boiler is equipped with a new secondary air supply system called Ecotube. The objective of this project is to develop and experimentally verify tools for computer simulations of solid biomass fuel combustion processes in a grate fired boiler. The work focuses on the numerical simulation using CFD technique and development of a NO{sub x} post processor. The unstructured mesh technique also has been used to discretize the boiler. An unstructured grid with total 284399 tetrahedral cells describes the three dimensional geometry and is used for flow field and combustion simulations. In order to simulate the combustion process in the boiler, a simplified grate bed model -- black-box bed model is used, which is based on the balance analysis of mass and energy on the grate bed and needless to consider any detailed and very difficult dynamic processes which have not been valuable by mathematical modeling on the grate bed yet. Therefore, it is quite convenient for industrial applications. In this work, both the cyanide route and the ammonia route for modeling the fuel containing nitrogen NO{sub x} are developed, and the former has been used to predict the NO generation in Baeckhammars bark boiler. Two 3D cases corresponding to 15 MW and 11 MW output thermal power respectively are simulated in detail. Results show that a new air supply system called Ecotube gives a considerably more uniform velocity, temperature and concentration distribution from the secondary air tubes to the upper part of the furnace. The upper furnace works almost as a 'plug flow reactor' which gives sufficient residence time for CO conversion and low NO{sub x} emission. The calculations of flow and mixing patterns in the

  19. Improving analytic hierarchy process applied to fire risk analysis of public building

    Institute of Scientific and Technical Information of China (English)

    SHI Long; ZHANG RuiFang; XIE QiYuan; FU LiHua

    2009-01-01

    The structure importance in Fault Tree Analysis (FTA) reflects how important Basic Events are to Top Event.Attribute at alternative level in Analytic Hierarchy Process (AHP) also reflect its importance to general goal.Based on the coherence of these two methods,an improved AHP is put forward.Using this improved method,how important the attribute is to the fire safety of public building can be ana-lyzed more credibly because of the reduction of subjective judgment.Olympic venues are very impor-tant public buildings in China.The fire safety evaluation of them will be a big issue to engineers.Im-proved AHP is a useful tool to the safety evaluation to these Olympic venues,and it will guide the evaluation in other areas.

  20. Integrating software architectures for distributed simulations and simulation analysis communities.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael; Moore, Patrick Curtis; Sa, Timothy J.; Hawley, Marilyn F.

    2005-10-01

    The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context of the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.

  1. Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation

    Science.gov (United States)

    Veraverbeke, S.; Somers, B.; Gitas, I.; Katagis, T.; Polychronaki, A.; Goossens, R.

    2012-02-01

    Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to assess the post-fire vegetation recovery 3 years after the large 2007 Peloponnese (Greece) wildfires. Post-fire recovery landscapes typically are mixed vegetation-substrate environments which makes spectral mixture analysis (SMA) a very effective tool to derive fractional vegetation cover maps. Using a combination of field and simulation techniques this study aimed to account for the impact of background brightness variability on SMA model performance. The field data consisted out of a spectral library of in situ measured reflectance signals of vegetation and substrate and 78 line transect plots. In addition, a Landsat Thematic Mapper (TM) scene was employed in the study. A simple SMA, in which each constituting terrain feature is represented by its mean spectral signature, a multiple endmember SMA (MESMA) and a segmented SMA, which accounts for soil brightness variations by forcing the substrate endmember choice based on ancillary data (lithological map), were applied. In the study area two main spectrally different lithological units were present: relatively bright limestone and relatively dark flysch (sand-siltstone). Although the simple SMA model resulted in reasonable regression fits for the flysch and limestones subsets separately (coefficient of determination R2 of respectively 0.67 and 0.72 between field and TM data), the performance of the regression model on the pooled dataset was considerably weaker ( R2 = 0.65). Moreover, the regression lines significantly diverged among the different subsets leading to systematic over-or underestimations of the vegetative fraction depending on the substrate type. MESMA did not solve the endmember variability issue. The MESMA model did not manage to select the proper substrate spectrum on a reliable basis due to the lack of shape differences between the flysch and limestone spectra,. The segmented SMA model which accounts for

  2. Simulation and analysis of a main steam line transient with isolation valves closure and subsequent pipe break

    International Nuclear Information System (INIS)

    Simulation and analysis of a real main steam line break transient at the coal fired 300 MW Drmno Thermal Power Plant have been performed by the computer code TEA-01. The methods and procedures used could be applied to a nuclear power plant. 9 refs., 6 figs

  3. High performance single step co-fired solid oxide fuel cells (SOFC): Polarization measurements and analysis

    Science.gov (United States)

    Yoon, Kyung Joong

    At present, one of the major obstacles for the commercialization of solid oxide fuel cell (SOFC) power systems is their high manufacturing costs expressed in terms of SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated by a cost-competitive single step co-firing process. The cells were comprised of a porous Ni + yittria-stabilized zirconia (YSZ) anode support, a porous-fine-grained Ni + YSZ anode active layer for some experiments, a dense YSZ electrolyte, a porous-fine-grained Ca-doped LaMnO3 (LCM) + YSZ cathode active layer, and a porous LCM cathode current collector layer. The fabrication process involved tape casting or high shear compaction (HSC) of the anode support followed by screen printing of the remaining component layers. The cells were then co-fired at 1300˜1340°C for 2 hours. The performance of the cell fabricated with the tape casting anode was improved by minimizing various polarization losses through experimental and theoretical modeling approaches, and the maximum power density of 1.5 W/cm 2 was obtained at 800°C with humidified hydrogen (3% H2O) and air. The cells were also tested with various compositions of humidified hydrogen (3˜70% H2O) to simulate the effect of practical fuel utilization on the cell performance. Based on these measurements, an analytical model describing anodic reactions was developed to understand reaction kinetics and rate limiting steps. The cell performance at high fuel utilization was significantly improved by increasing the number of the reaction sites near the anode-electrolyte interface. For anode substrate fabrication, the HSC process offers many advantages such as low fabrication costs, high production throughput, and good control of shrinkage and thickness over the conventional tape casting process. HSC process was successfully employed in single step co-firing process, and SOFCs fabricated with HSC anodes showed adequate performance both at low and high fuel

  4. Analysis of factors influencing deployment of fire suppression resources in Spain using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Costafreda-Aumedes S

    2016-02-01

    Full Text Available In Spain, the established fire control policy states that all fires must be controlled and put out as soon as possible. Though budgets have not restricted operations until recently, we still experience large fires and we often face multiple-fire situations. Furthermore, fire conditions are expected to worsen in the future and budgets are expected to drop. To optimize the deployment of firefighting resources, we must gain insights into the factors affecting how it is conducted. We analyzed the national data base of historical fire records in Spain for patterns of deployment of fire suppression resources for large fires. We used artificial neural networks to model the relationships between the daily fire load, fire duration, fire type, fire size and response time, and the personnel and terrestrial and aerial units deployed for each fire in the period 1998-2008. Most of the models highlighted the positive correlation of burned area and fire duration with the number of resources assigned to each fire and some highlighted the negative influence of daily fire load. We found evidence suggesting that firefighting resources in Spain may already be under duress in their compliance with Spain’s current full suppression policy.

  5. Advanced numerical modelling of a fire. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, L.; Keski-Rahkonen, O. [VTT Building Technology, Espoo (Finland)

    1996-03-01

    Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem `Prediction of effects caused by a cable fire experiment within the HDR-facility`. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.).

  6. One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

    OpenAIRE

    S. Strada; S. R. Freitas; Mari, C.; Longo, K. M.; Paugam, R.

    2013-01-01

    Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is sti...

  7. Assessing Wildfire Risk in Cultural Heritage Properties Using High Spatial and Temporal Resolution Satellite Imagery and Spatially Explicit Fire Simulations: The Case of Holy Mount Athos, Greece

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2016-02-01

    Full Text Available Fire management implications and the design of conservation strategies on fire prone landscapes within the UNESCO World Heritage Properties require the application of wildfire risk assessment at landscape level. The objective of this study was to analyze the spatial variation of wildfire risk on Holy Mount Athos in Greece. Mt. Athos includes 20 monasteries and other structures that are threatened by increasing frequency of wildfires. Site-specific fuel models were created by measuring in the field several fuel parameters in representative natural fuel complexes, while the spatial extent of the fuel types was determined using a synergy of high-resolution imagery and high temporal information from medium spatial resolution imagery classified through object-based analysis and a machine learning classifier. The Minimum Travel Time (MTT algorithm, as it is embedded in FlamMap software, was applied in order to evaluate Burn Probability (BP, Conditional Flame Length (CFL, Fire Size (FS, and Source-Sink Ratio (SSR. The results revealed low burn probabilities for the monasteries; however, nine out of the 20 monasteries have high fire potential in terms of fire intensity, which means that if an ignition occurs, an intense fire is expected. The outputs of this study may be used for decision-making for short-term predictions of wildfire risk at an operational level, contributing to fire suppression and management of UNESCO World Heritage Properties.

  8. Analysis of forest fires causes and their motivations in northern Algeria: the Delphi method

    OpenAIRE

    Meddour-Sahar O; Meddour R; Leone V; Lovreglio R; Derridj A

    2013-01-01

    Forest fires in Algeria are mostly human-caused and result from local social behavior, whether voluntary (arson) or involuntary (negligence). Understanding the reasons why fires start is, therefore, a crucial factor in preventing or reducing their incidence, developing significant prevention efforts and designing specific fire prevention campaigns. The Delphi method is a promising tool for improving knowledge about how fire starts and why, and above all helps reduce the number of fires starte...

  9. An operational manpower analysis of the RQ-8 Fire Scout Vertical Take-Off Unmanned Aerial Vehicle (VTUAV)

    OpenAIRE

    Stracker, Matthew C.

    2007-01-01

    In August of 2001 the Secretary of the Navy announced the Navy would expand the work and experimentation in unmanned vehicle systems. After the events of September 11 this was accelerated with the increased urgency to combat terrorism and asymmetric threats. The U.S. Navy is currently undergoing testing and evaluation of the Fire Scout Vertical Take-Off Unmanned Aerial Vehicle (VTUAV) and its integration into the fleet. An in depth analysis of the Fire Scout's manpower requirements is necessa...

  10. Development of an Optimizing Control Concept for Fossil-Fired Boilers using a Simulation Model

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Commisso, M.B.;

    1997-01-01

    An optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms...... of implementation and commissioning. The optimizing control system takes into account the multivariable and nonlinear characteristics of the boiler process as a gain-scheduled LQG-controller is utilized. For the purpose of facilitating the control concept development a dynamic simulation model of the boiler process...... and the existing control system has been developed and validated. The optimizing control system has been developed and tested by extensive use of the simulation model. Simulation results indicate that a reduction of steam temperature deviations of about 75% can be obtained. The advantages of using a simulation...

  11. Fire Perimeters

    Data.gov (United States)

    California Department of Resources — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  12. Fire History

    Data.gov (United States)

    California Department of Resources — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  13. Fire testing and analysis of TRUPACT-I Thermal Test Article

    International Nuclear Information System (INIS)

    This report documents the fabrication and thermal test of a full-scale prototype of the revised TRUPACT-I design. The fire test demonstrated that the response of the Test Article to a jet-fueled pool fire, subsequent to the impact and puncture tests, meets the impact, puncture, and thermal performance requirements of the regulations governing transport of radioactive materials. The Test Article was a replica of the front half (closure end) of the revised TRUPACT-I design. To simulate the cumulative effect of the regulatory hypothetical accident sequence, the Test Article included the structural damage found in TRUPACT-I, Unit 0 after regulatory drop and puncture testing. The Test Article was totally engulfed in a pool fire fueled by JP-4 jet fuel for 46 minutes. The maximum temperature reached at the inner door seals was 149/degree/C (300/degree/F) and the maximum temperature at the inner door filters was 171/degree/C (340/degree/F). Both temperatures are within the normal working range for these components. Post-test leak rate measurements of 0.0041 atm-cm3/s (ANSI standard air) between the innermost pair of door seals and 0.0046 atm-cm3/s (ANSI standard air) between the outermost pair of door seals verified that the performance of the silicone seals met the design requirements. Since no detectable leakage was measured to a sensitivity of 1.0E-7 atm-cm3/s for the filter installation seal or quick-connect valve seal post-test, the total leak rate for the containment system was less than the maximum allowable 0.01 atm-cm3/s (ANSI standard air). 10 refs., 52 figs., 5 tabs

  14. Process Simulation Analysis of HF Stripping

    OpenAIRE

    Thaer A. Abdulla

    2013-01-01

       HYSYS process simulator is used for the analysis of existing HF stripping column in LAB plant (Arab Detergent Company, Baiji-Iraq). Simulated column performance and profiles curves are constructed. The variables considered are the thermodynamic model option, bottom temperature, feed temperature, and column profiles for the temperature, vapor flow rate, liquid flow rate and composition. The five thermodynamic models options used (Margules, UNIQUAC, van laar, Antoine, and Zudkevitch-Joffee),...

  15. Simulation data analysis by virtual reality system

    International Nuclear Information System (INIS)

    We introduce new software for analysis of time-varying simulation data and new approach for contribution of simulation to experiment by virtual reality (VR) technology. In the new software, the objects of time-varying field are visualized in VR space and the particle trajectories in the time-varying electromagnetic field are also traced. In the new approach, both simulation results and experimental device data are simultaneously visualized in VR space. These developments enhance the study of the phenomena in plasma physics and fusion plasmas. (author)

  16. Analysis of forest fires causes and their motivations in northern Algeria: the Delphi method

    Directory of Open Access Journals (Sweden)

    Meddour-Sahar O

    2013-06-01

    Full Text Available Forest fires in Algeria are mostly human-caused and result from local social behavior, whether voluntary (arson or involuntary (negligence. Understanding the reasons why fires start is, therefore, a crucial factor in preventing or reducing their incidence, developing significant prevention efforts and designing specific fire prevention campaigns. The Delphi method is a promising tool for improving knowledge about how fire starts and why, and above all helps reduce the number of fires started by unknown causes, the majority type in Algeria. The Delphi method uses a set of procedures for eliciting and refining the opinions of a panel of experts on a particular subject of interest. This method was used in three case studies, in coastal or inner wilayas (provinces selected from a highly fire-prone area in north-central Algeria. Results showed the traditional use of fire in agriculture and forestry, in situations related to land use changes and in interpersonal conflicts are the major causes of voluntary fires. For involuntary events (negligence, experts unanimously identified the importance of the restart of fire, caused by fire crews who do not ensure the mopping up of controlled fires (91.49% and the negligent use of agricultural fires, particularly stubble burning (80.14%. For voluntary fires (arson, results highlight the importance of fires set for land use changes (77.30%, pyromania (67.38% and honey gathering (62.41%. Illegal dumping and burning of garbage was also mentioned by responders in all study-areas.

  17. 火控雷达抗压制性干扰性能仿真及测试研究%Research on the anti-blanket jamming performance simulation and testing of the fire-control radar

    Institute of Scientific and Technical Information of China (English)

    张美星; 何强; 韩壮志

    2012-01-01

    Focusing on the testing of the anti-blanket jamming performance about the fire-control radar,this paper selected relative self-screening range as an indicator, then made some theoretical analysis andresearch from simulation, it also discussed on the testing standar adapted to the fire-control radar andmade a reasonable testing program, after all, an objective testing result was got.%针对火控雷达抗压制性干扰性能的测试,选取了相对自卫距离这一指标,对其进行了理论分析及仿真研究,讨论了适用于火控雷达的测试准则,并制定了合理的测试方案,最终得到了客观的测试结果.

  18. Cold Galaxies on FIRE: Modeling the Most Luminous Starbursts in the Universe with Cosmological Zoom Simulations

    Science.gov (United States)

    Narayanan, Desika

    2014-10-01

    As the most luminous, heavily star-forming galaxies in the Universe, Submillimeter Galaxies at z 2-4 are key players in galaxy evolution. Since their discovery, SMGs have received significant attention from HST in characterizing their physical morphology, stellar masses, and star formation histories. Unfortunately, these physical constraints have been difficult for theorists to reconcile with galaxy formation simulations. Previous generations of simulations have all either {a} neglected baryons; {b} neglected radiative transfer {and connecting to observations}; or {c} neglected cosmological conditions. Here, we propose to conduct the first ever cosmological hydrodynamic simulations of Submillimeter Galaxy formation that couple with bona fide 3D dust radiative transfer calculations. These ultra-high resolution simulations {parsec-scale} will be the first to resolve the sites of dust obscuration, the cosmic growth history of SMGs, and their evolutionary destiny. Our proposal has two principle goals: {1} Develop the first ever model for SMG formation from cosmological simulations that include both baryons and dust radiative transfer; {2} Capitalize on our parsec-scale resolution to understand the connection between the physical properties of star-forming regions in high-z starbursts, and recent IMF constraints from present-epoch massive galaxies.

  19. Thermo-Mechanical Analysis of Water-Cooled Gun Barrel During Burst Firing

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; HU Zhi-gang; ZHAO Jian-bo

    2006-01-01

    The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha-nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo-mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.

  20. Study on the external wall insulation system for fire prevention based on numerical simulation%基于数值模拟的外墙保温体系防火问题研究

    Institute of Scientific and Technical Information of China (English)

    赵平; 季经纬; 武爽

    2011-01-01

    针对国内现有的外墙外保温系统的防火性较差的现状,通过分析上海公寓楼外墙保温层的火灾,得到外墙外保温防火的三种重要因素(粘结或固定方式、防火隔离带的构造、防火保护面层).鉴于现在流行的保温材料为膨胀聚苯板(EPS),因而选用EPS作为模拟材料,利用数值模拟计算得出以下结论:认为火灾时有空腔的保温层比无空腔的保温层更危险;设置防火隔离带能有效得阻隔火灾的蔓延,较宽的隔离带效果更好.除此之外,外保温层防火设计中还应考虑以下三方面的问题,即遴选适当的保温材料、建议保温层也使用类似于防火分区的防火措施和保证保温效果的同时增加防火隔离带的宽度.研究结论和建议对于解决外墙保温体系防火问题具有重要的参考价值和现实意义.%Aiming at the status that the domestic existing exterior insulation system had poor fire resistance, through the analysis of apartment fire by exterior wall thermal insulation layer in Shanghai, three important factors exterior insulation fireproof were obtained induding binding or fixed mode, fire belt construction, fire protection layer. In view of the popular heat preservation material like EPS, it was selected to be the simulated material, and the following conclusions were obtained by numerical simulation: it was thought that in fire cavity insulation layer is more dangerous than no free cavity insulation; Setting fire belt can effectively block the spread of fire zone, and broader insulation belt has better effect. In addition, the design of insulation layer fire still should consider the following three problems, namely selecting proper insulation materials, suggesting insulation layer also use similar fire prevention measures liking fire compartment and increasing the midth of five bele at the same time of guaranteeing the thermal insulation. Research conclusions and recommendations for solving the

  1. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations

    Science.gov (United States)

    Chan, T. K.; Kereš, D.; Oñorbe, J.; Hopkins, P. F.; Muratov, A. L.; Faucher-Giguère, C.-A.; Quataert, E.

    2015-12-01

    We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M* ˜ 104-11 M⊙ galaxies in Mh ˜ 109-12 M⊙ haloes. FIRE incorporates explicit stellar feedback in the multiphase interstellar medium, with energetics from stellar population models. We find that stellar feedback, without `fine-tuned' parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at Mh ˜ 1010-1011 M⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of α, and relatively late growth of cores. Because the star formation efficiency M*/Mh is strongly halo mass dependent, a rapid change in α occurs around Mh ˜ 1010 M⊙ (M* ˜ 106-107 M⊙), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of haloes because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid build-up has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the `Too Big To Fail' problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass haloes produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.

  2. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-fen; ZHOU Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pcfired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the fumacs temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  3. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    Science.gov (United States)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-07-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  4. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    Science.gov (United States)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  5. Fault Tree Analysis of Fire and Explosion Accidents for Dual Fuel (Diesel/Natural Gas) Ship Engine Rooms

    Institute of Scientific and Technical Information of China (English)

    Yifeng Guan; Jie Zhao; Tengfei Shiand Peipei Zhu

    2016-01-01

    In recent years, China’s increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship;in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis.The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events.According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  6. Analysis of factors influencing fire damage to concrete using nonlinear resonance vibration method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gang Kyu; Park, Sun Jong; Kwak, Hyo Gyoung [Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, KAIST, Daejeon (Korea, Republic of); Yim, Hong Jae [Dept. of Construction and Disaster Prevention Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2015-04-15

    In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

  7. Thermal Performance and Economic Analysis of 210 MWe Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2014-01-01

    Full Text Available This paper presents the thermal and economic performance of a 210 MWe coal-fired power plant situated in North India. Analysis is used to predict coal consumption rate, overall thermal efficiency, mass flow rate of steam through boiler, and Net present value (NPV of plant for given load. Thermodynamic analysis was carried out using mass and energy equations followed by empirical correlations. Predicted mass flow rate of steam, coal consumption rate, and thermal efficiency give fair agreement with plant operating data. The economic analysis includes operational activities such as equipment cost, fuel cost, operations and maintenance cost, revenue, and plant net present value. From economic point of view, the effect of condensate extraction pump redundancy on net present value is observed to be sensitive than boiler feed pump redundancy.

  8. Computer aided seismic and fire retrofitting analysis of existing high rise reinforced concrete buildings

    CERN Document Server

    Hussain, Raja Rizwan; Hasan, Saeed

    2016-01-01

    This book details the analysis and design of high rise buildings for gravity and seismic analysis. It provides the knowledge structural engineers need to retrofit existing structures in order to meet safety requirements and better prevent potential damage from such disasters as earthquakes and fires. Coverage includes actual case studies of existing buildings, reviews of current knowledge for damages and their mitigation, protective design technologies, and analytical and computational techniques. This monograph also provides an experimental investigation on the properties of fiber reinforced concrete that consists of natural fibres like coconut coir and also steel fibres that are used for comparison in both Normal Strength Concrete (NSC) and High Strength Concrete (HSC). In addition, the authors examine the use of various repair techniques for damaged high rise buildings. The book will help upcoming structural design engineers learn the computer aided analysis and design of real existing high rise buildings ...

  9. Improved Modelling and Assessment of the Performance of Firefighting Means in the Frame of a Fire PSA

    OpenAIRE

    Martina Kloos; Joerg Peschke

    2015-01-01

    An integrated deterministic and probabilistic safety analysis (IDPSA) was carried out to assess the performances of the firefighting means to be applied in a nuclear power plant. The tools used in the analysis are the code FDS (Fire Dynamics Simulator) for fire simulation and the tool MCDET (Monte Carlo Dynamic Event Tree) for handling epistemic and aleatory uncertainties. The combination of both tools allowed for an improved modelling of a fire interacting with firefighting means while epist...

  10. Analysis of the behaviour of biofuel-fired gas turbine power plants

    Directory of Open Access Journals (Sweden)

    Escudero Marcos

    2012-01-01

    Full Text Available The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to a significant reduction of CO2 emissions using an existing combustion technology, although considerable changes appear to be required and further technological development is necessary. The goal of this work is to conduct energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas, compared with natural gas. The global energy transformation process (i.e., from biomass to electricity also has been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, after considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish this work. The results suggest a high interest in, and the technical viability of, the use of Biomass Integrated Gasification Combined Cycle (BioIGCC systems for large scale power generation.

  11. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO2. • Others important factors are the investment costs and operation and maintenance costs

  12. Cellular automata-based tunnel fire simulation%基于元胞自动机的井巷火灾仿真

    Institute of Scientific and Technical Information of China (English)

    李翠平; 胡磊; 侯定勇; 张佳

    2013-01-01

    提出了一种基于元胞自动机的井巷火灾可视化仿真方法。在矿井巷道可视化的基础上,通过对火灾元胞进行表征,综合考虑可燃物类型与投放密度、井巷通风、井巷坡度等因素对井巷火源引燃效果的影响及双扩散作用、井巷通风、浮力作用和节流作用等因素对火灾烟气蔓延效果的影响,采用概率函数进行元胞自动机建模,构建了表达元胞温度的井巷火源燃烧模型和表达元胞浓度的井巷火灾烟气蔓延模型。基于火源元胞燃烧演化规则和烟气元胞蔓延演化规则,通过可视化手段展示了井巷火灾火源燃烧和有害气体浓度的时空发展变化。同时以矿山实际数据进行检验,说明了基于元胞自动机的井巷火灾仿真的可行性与有效性。%This article introduces a mine fire visualization simulation method based on cellular automata. On the basis of mine tunnel visualization, a tunnel fire combustion model for expressing cellular temperature and a tunnel fire smoke spread model for expressing cellular concentration were built by fire cell characterization. In these models the influence of fuel type and input density, ventilation and roadway slope on mine fire ignition and the effect of double diffusion, ventilation, buoyancy and throttling on fire smoke spread were taken into account, and a probability function was used for cellular automata modelling. Then according to the fire cellular combustion evolution rules and smoke cellular spreading evolution rules, the spatial changes of tunnel fire burning and harmful gas concentration were demonstrated through visualization means. Actual data from a mine proves the feasibility and effectiveness of tunnel fire simulation based on cellular automata.

  13. New divisional fire strategy of RoboCup rescue simulation%新的RoboCup救援仿真分区消防策略

    Institute of Scientific and Technical Information of China (English)

    吴云标; 杨宜民

    2011-01-01

    In the fire strategy of RoboCup rescue simulation, controlling the spread of fire plays an important role in rescue effect. Most teams use single-objective selection method based on various indicators of the single building. It is difficult for this method to control the fire effectively when more buildings are in fire or the fire spreads quickly. This paper proposed a new partitioning method based on density cluster. In this method, all the buildings were clustered and seperated into different regions according to the fire spread speed, the target region and buildings extinguishing the fire were selected by the weight considering both the fire spread speed and the building attribute, thus the fire could be controlled even completely extinguished. Finally, the validity of this method has been confirmed through simulation test and competition.%在RoboCup救援仿真的消防策略中,火势蔓延的控制对救援的效果有着重要的作用.大多数队伍采用基于单个建筑的各种指标的单目标选择法,该方法在着火建筑较多或者火势蔓延快时难以对火势进行有效控制.提出一种新的基于密度聚类的分区方法,根据火势蔓延速度将所有建筑进行聚类分析形成建筑簇并分开成为不同的区域,然后综合建筑的属性作为权值选择目标区域和灭火建筑,从而有效地控制火灾的蔓延甚至将火灾完全扑灭.最后通过仿真实验和比赛验证了该方法的有效性.

  14. Simulation of boreal forest carbon dynamics after stand-replacing fire disturbance: validation and model evaluation of a global vegetation model

    Science.gov (United States)

    Yue, C.; Cadule, P.; Ciais, P.; Viovy, N.; Bellassen, V.; Luyssaert, S.

    2012-04-01

    This study simulates boreal forest carbon dynamics after stand-replacing fire disturbance, using a process-based vegetation model called ORCHIDEE. The aim is to calibrate the forest stand structure, and carbon flux and carbon pools after fire disturbance. To achieve this aim, we used a new "forestry" module in ORCHIDEE which can explicitly represent forest structure and the process of self-thinning. Observations in three post-fire forest chronosequences in North America (Detla Junction in Alaska, Thompson in Manitoba, Canada and Albert in Saskathewan, Canada) were used as validation data. The validation variables include: stand density and mean diameter at breast height (DBH), annual GPP, NPP, NEP and ecosystem respiration, total biomass carbon (or above-ground biomass carbon), forest floor carbon, coarse woody debris (CWD) carbon, and mineral soil carbon. We chose a fire return interval of 160 years in the simulation. The model results generally compare well with the observation. Following a stand-replacing fire, (1) GPP and NPP increase steadily during forest regrowth until 30-40 years when the increase either stops or slows down. Slight decrease in GPP in the later growth stage occurs and NPP decreases more significantly. The heterotrophic respiration undergoes a surge immediately after burning and then remains relatively stable during the forest regrowth. Consequently, the net ecosystem production remains negative (the ecosystem being a CO2 source for the atmosphere) for 20-30 years after fire, after which the forest begins to function as a CO2 sink. This CO2 sink peaks in the intermediate stage, and it is followed by a decrease again in later stages before the next disturbance event. Over the whole fire return interval, the net carbon exchange is mainly controlled by forest NPP. (2) The biomass carbon stock increases steadily after disturbance and then more slowly in later succession stages. Forest floor carbon (i.e. aboveground litter or soil organic carbon

  15. GEOMETRIC AND MATERIAL NONLINEAR ANALYSIS OF REINFORCED CONCRETE SLABS AT FIRE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ayad A. Abdul -Razzak

    2013-05-01

    Full Text Available In the present study a nonlinear finite element analysis is presented  to predict the fire resistance of reinforced concrete slabs at fire environment. An eight node layered degenerated shell element utilizing Mindlin/Reissner thick plate theory is employed. The proposed model considered cracking, crushing and yielding of concrete and steel at elevated temperatures. The layered approach is used to represent the steel reinforcement and discretize the concrete slab through the thickness. The reinforcement steel is represented as a smeared layer of equivalent thickness with uniaxial strength and rigidity properties.Geometric nonlinear analysis may play an important role in the behavior of reinforced concrete slabs at high temperature. Geometrical nonlinearity in the layered approach is considered in the mathematical model, which is based on the total Lagrangian approach taking into account Von Karman assumptions.Finally two examples for which experimental results are available are analyzed, using the proposed model .The comparison showed good agreement with experimental results. 

  16. 309 Building fire protection analysis and justification for deactivation of sprinkler system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Conner, R.P.

    1997-06-25

    Provide a `graded approach` fire evaluation in preparation for turnover to Environmental Restoration Contractor for D&D. Scope includes revising 309 Building book value and evaluating fire hazards, radiological and toxicological releases, and life safety issues.

  17. Dynamic and Coupled Simulation of the 700 °C Coal-Fired Power Plant

    OpenAIRE

    2014-01-01

    Im Rahmen dieser Dissertation werden für eine steinkohlegefeuertes Dampfkraftwerk der nächsten Generation mit 705C Frischdampftemperatur und 365 bar Druck sowohl dynamische, als auch detailliert gekoppelte Simulationen durchgeführt. Als Software für die dynamische Simulation wird APROS herangezogen. Das erzeugte Gesamtmodell beinhaltet neben dem Dampferzeuger, der Turbine, dem Kondensator und den Vorwärmgruppen auch ein Mühlenmodell sowie die nötigen Regelungen für Temperatur, ...

  18. Structural analysis and modeling for command decisions during fire on board ship

    OpenAIRE

    Nikitin, Yevgeniy

    1999-01-01

    Approved for public release; distribution is unlimited This thesis examine opportunities for the application of information technology through mathematical modeling and design of a new method of a ship's space monitoring for the support of command decisions during a fire aboard. Thesis analyzes peculiarities of a fire and difficulties inherent in gathering data, particularly the lack of objective information about a fire scale, fire dynamics, and timing of functioning the ship's equipment ...

  19. Numerical-simulation research on building-facade geometry and its effect on fire propagation in wooden facades

    OpenAIRE

    Lacasta Palacio, Ana María; Giraldo, Pilar; Avellaneda Diaz-Grande, Jaime; Burgos Leiva, Camila

    2014-01-01

    Fire protection is a very important requirement in the facade of a building. When there is a fire in a building, the facade can be one of the quickest spreading pathways, regardless of the material of which it is constructed. Therefore, in terms of safety, the study of mechanisms controlling the spread of fire through the facade is an issue that needs to be addressed, especially when it involves combustible material claddings such as wood. In several European countries the building regulation...

  20. Analysis of Original Causes of Reed Fires in Zhalong Nature Wetland Reserve in Heilongjiang Province

    Institute of Scientific and Technical Information of China (English)

    WANG Mingyu; SHU Lifu; TIAN Xiaorui; WANG Zhicheng

    2006-01-01

    In recent years, serious reed fires occurred in Zhalong Nature Reserve in Heilongjiang Province in China. From 19th to 28th of March 2005, 12 fires occurred in Zhalong Nature Reserve, and the fires spread to Qiqihaer City, Duerberte Mongolian Autonomous County, Lindian County and Daqing City. The burned area was about 18 666 ha. Meteorological factor was the leading factor of its fire environment in Zhalong Nature Reserve, which came into being for a long time. Long-term drought and shortage of rain made the reed and meadow withered and yellow and thus greatly reduced the water content of withered fallen leaves and humus. Much fuel was accumulated and became dry, thus forming the fire environment. Fires in Zhalong Nature Reserve were mainly strong surface fires accompanied by the spread of underground fire. It was extremely easy for reed to burn and spread very quickly. Once a fire broke out, it could spread rapidly to a scene of large fire area, and sometimes it could burn for a long time. Due to lack of correct understanding of the wetland fire and inconvenient wetland traffic, it was unable to find and put out wetland fire in time to save life and property early.

  1. All fired up

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Members of the Directorate and their support staff took part in a fire-fighting course organised by the CERN Fire Brigade just before the end-of-year break.  The Bulletin takes a look at the fire-fighting training on offer at CERN.   At CERN the risk of fire can never be under-estimated. In order to train personnel in the use of fire extinguishers, CERN's fire training centre in Prévessin acquired a fire-simulation platform in 2012. On the morning of 17 December 2012, ten members of the CERN directorate and their support staff tried out the platform, following in the footsteps of 400 other members of the CERN community who had already attended the course. The participants were welcomed to the training centre by Gilles Colin, a fire-fighter and instructor, who gave them a 30-minute introduction to general safety and the different types of fire and fire extinguishers, followed by an hour of practical instruction in the simulation facility. There they were able to pract...

  2. 火灾情景下的人员可靠性分析%Human Reliability Analysis Under Fire Condition

    Institute of Scientific and Technical Information of China (English)

    何建东; 卓钰铖; 何劼

    2013-01-01

    国内外各核电厂火灾概率安全评价(PSA)表明,人员操作对火灾情景下的电厂风险有重要影响,因此,有必要采用系统的人员可靠性分析(HRA)方法来评价火灾情景下的人员失误概率.本文阐述了HCR/ORE和CBDTM模型的基本理论和在火灾情景下的特殊考虑.将HCR/ORE和CBDTM方法与THERP方法相结合应用于火灾情景下的人员可靠性分析,并进行了实例分析.为建立更符合工程实际的火灾PSA模型奠定了基础.%It is identified in the fire probabilistic safety assessment (PSA) of nuclear power plants that human action has important effect on the risk of plant under fire condition. So it's necessary to assess human error probability under fire condition by the systemic methodology. The HCR/ORE and CBDTM models and specific considerations under fire condition were described in this paper. The combination of HCR/ORE, CBDTM and THERP was applied to human reliability analysis (HRA) under fire condition with an example given for demonstration. The basement of setting up the more practical fire PSA models for engineering is established.

  3. Methods for Prediction of Steel Temperature Curve in the Whole Process of a Localized Fire in Large Spaces

    Directory of Open Access Journals (Sweden)

    Zhang Guowei

    2014-01-01

    Full Text Available Based on a full-scale bookcase fire experiment, a fire development model is proposed for the whole process of localized fires in large-space buildings. We found that for localized fires in large-space buildings full of wooden combustible materials the fire growing phases can be simplified into a t2 fire with a 0.0346 kW/s2 fire growth coefficient. FDS technology is applied to study the smoke temperature curve for a 2 MW to 25 MW fire occurring within a large space with a height of 6 m to 12 m and a building area of 1 500 m2 to 10 000 m2 based on the proposed fire development model. Through the analysis of smoke temperature in various fire scenarios, a new approach is proposed to predict the smoke temperature curve. Meanwhile, a modified model of steel temperature development in localized fire is built. In the modified model, the localized fire source is treated as a point fire source to evaluate the flame net heat flux to steel. The steel temperature curve in the whole process of a localized fire could be accurately predicted by the above findings. These conclusions obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  4. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    Science.gov (United States)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.

  5. How wild is your model fire? Constraining WRF-Chem wildfire smoke simulations with satellite observations

    Science.gov (United States)

    Fischer, E. V.; Ford, B.; Lassman, W.; Pierce, J. R.; Pfister, G.; Volckens, J.; Magzamen, S.; Gan, R.

    2015-12-01

    Exposure to high concentrations of particulate matter (PM) present during acute pollution events is associated with adverse health effects. While many anthropogenic pollution sources are regulated in the United States, emissions from wildfires are difficult to characterize and control. With wildfire frequency and intensity in the western U.S. projected to increase, it is important to more precisely determine the effect that wildfire emissions have on human health, and whether improved forecasts of these air pollution events can mitigate the health risks associated with wildfires. One of the challenges associated with determining health risks associated with wildfire emissions is that the low spatial resolution of surface monitors means that surface measurements may not be representative of a population's exposure, due to steep concentration gradients. To obtain better estimates of ambient exposure levels for health studies, a chemical transport model (CTM) can be used to simulate the evolution of a wildfire plume as it travels over populated regions downwind. Improving the performance of a CTM would allow the development of a new forecasting framework that could better help decision makers estimate and potentially mitigate future health impacts. We use the Weather Research and Forecasting model with online chemistry (WRF-Chem) to simulate wildfire plume evolution. By varying the model resolution, meteorology reanalysis initial conditions, and biomass burning inventories, we are able to explore the sensitivity of model simulations to these various parameters. Satellite observations are used first to evaluate model skill, and then to constrain the model results. These data are then used to estimate population-level exposure, with the aim of better characterizing the effects that wildfire emissions have on human health.

  6. Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Materials

    Directory of Open Access Journals (Sweden)

    Salvi Gauri Sanjay

    2014-07-01

    Full Text Available Chassis is the foremost component of an automobile that acts as the frame to support the vehicle body. Hence the frame ought to be very rigid and robust enough to resist shocks vibrations and stresses acting on a moving vehicle. Steel in its numerous forms is commonly used material for producing chassis and overtime alumimium has acquired its use. However, in this study traditional materials are replaced with ultra light weight carbon fiber materials. High strength and low weight of carbon fibers makes it ideal for manufacturing automotive chassis. This paper depicts the modal and static structural analysis of TATA 407 fire truck chassis frame for steel as well as carbon fibers. From the analyzed results, stress, strain and total deformation values were compared for both the materials. Since it is easy to analyze structural systems by finite element method, the chassis is modified using PRO-E and the Finite Element Analysis is performed on ANSYS workbench.

  7. Fire behavior potential in central Saskatchewan under predicted climate change : summary document

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, M.; Hirsch, K.; Todd, B.; Flannigan, M. [Canadian Forest Service, Edmonton, AB (Canada); Kafka, V. [Parks Canada, Ottawa, ON (Canada); Flynn, N. [Alberta Univ., Edmonton, AB (Canada)

    2005-07-01

    This study assesses fire danger and fire behaviour potential in central Saskatchewan using simulated climate scenarios produced by the Canadian Regional Climate Model (CRCM), including scenario analysis of base, double and triple level carbon dioxide in the atmosphere and uses available forest fuels to develop an absolute measure of fire behaviour. For each of these climate scenarios, the CRCM-generated weather was used as input variables into the Canadian Forest Fire Behavior Prediction (FBP) System. Fire behavior potential was quantified using head fire intensity, a measure of the fire's energy output because it can be related to fire behavior characteristics, suppression effectiveness, and fire effects. The report discusses the implications of fire behavior potential changes for fire and forest management. Preliminary results suggest a large increase in area burned in the study area by the end of the twenty-first century. Some of the possible fire management activities for long-term prediction include: pre-positioning of resources, preparedness planning, prioritization of fire and forest management activities and fire threat evaluation. 16 refs., 1 tab, 7 figs.

  8. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. PMID:26141885

  9. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments.

  10. Simulating an infection growth model in certain healthy metabolic pathways of Homo sapiens for highlighting their role in Type I Diabetes mellitus using fire-spread strategy, feedbacks and sensitivities.

    Directory of Open Access Journals (Sweden)

    Somnath Tagore

    Full Text Available Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The theory suggests that when fire erupts in a forest, it spreads, and the surrounding trees also catch fire. Similarly, when we consider a metabolic network, the infection caused in the metabolites of the network spreads like a fire. We have constructed a simulation model which is used to study the infection caused in the metabolic networks from the start of infection, to spread and ultimately combating it. For implementation, we have used two approaches, first, based on quantitative strategies using ordinary differential equations and second, using graph-theory based properties. Furthermore, we are using certain probabilistic scores to complete this task and for interpreting the harm caused in the network, given by a 'critical value' to check whether the infection can be cured or not. We have tested our simulation model on metabolic pathways involved in Type I Diabetes mellitus in Homo sapiens. For validating our results biologically, we have used sensitivity analysis, both local and global, as well as for identifying the role of feedbacks in spreading infection in metabolic pathways. Moreover, information in literature has also been used to validate the results. The metabolic network datasets have been collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG.

  11. Performance Analysis Based on Timing Simulation

    DEFF Research Database (Denmark)

    Nielsen, Christian Dalsgaard; Kishinevsky, Michael

    1994-01-01

    Determining the cycle time and a critical cycle is a fundamental problem in the analysis of concurrent systems. We solve this problemusing timing simulation of an underlying Signal Graph (an extension of Marked Graphs). For a Signal Graph with n vertices and m arcs our algorithm has the polynomia...... time complexity O(b2m), where b is the number of vertices with initially marked in-arcs (typically b≪n). The algorithm has a clear semantic and a low descriptive complexity. We illustrate the use of the algorithm by applying it to performance analysis of asynchronous circuits.......Determining the cycle time and a critical cycle is a fundamental problem in the analysis of concurrent systems. We solve this problemusing timing simulation of an underlying Signal Graph (an extension of Marked Graphs). For a Signal Graph with n vertices and m arcs our algorithm has the polynomial...

  12. Response of steel structures to fire actions

    OpenAIRE

    Čermelj, Blaž

    2008-01-01

    The degree represents procedure of fire analysis of steel buildings with advanced methods regarding Eurocode standards. Beside fire analyse of steel construction analyse of composite plate is also introduced. Introduction consists of basiscs, procedures and idea of fire analysis of buildings. Because entire work is based on advanced fire analysis, advanced fire models and advanced calculation models were used. Fire analysis of buildings with advanced methods describes behaviour of structure i...

  13. Failure analysis of austenitic stainless steel tubes in a gas fired steam heater

    International Nuclear Information System (INIS)

    Highlights: ► 304H stainless steel is more susceptible to caustic SCC compared to SA335 alloy steel. ► Caustic attacks the protective layer of stainless steel superheater tubes. ► Sigma phase formation at the weld zone causes crack initiation in fired heater tubes. -- Abstract: Carryover of caustic soda (NaOH) in the steam path caused catastrophic failure of superheater 304H stainless steel tubes in a gas fired heater and led to an unexpected shutdown after just 5 months of continuous service following the start of production. The cause of the failure was studied, with a focus on the effect of caustic embrittlement on stress corrosion cracking (SCC). The cracks were examined at the seam weld, heat affected zone (HAZ), and U-bend areas. Hardness was measured for the base metal, HAZ, and weld metal, and microstructures were examined using optical microscopy and scanning electron microscopy (SEM). Crack initiation is attributed to gouging on the precipitated carbide at the HAZ and also the formation of sigma phase in the weld metal, as shown by energy dispersive X-ray (EDX) analysis. In addition, cracking was propagated by caustic embrittlement because of residual stresses and hammering. Finally, the characteristic feature of fracture was illustrated by SEM fractography, and consists mostly of intergranular SCC and some quasi-cleavage transgranular.

  14. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  15. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    Science.gov (United States)

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  16. The Impact of Baryonic Physics on the Structure of Dark Matter Halos: the View from the FIRE Cosmological Simulations

    Science.gov (United States)

    Keung Chan, Tsang; Keres, Dusan; Oñorbe, Jose; Hopkins, Philip F.; Muratov, Alexander; Faucher-Giguere, Claude-Andre; Quataert, Eliot

    2016-06-01

    We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, which incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without ``fine-tuned'' parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at Mh ∼ 1010-1011 M⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. Because the star formation efficiency, Ms/Mh is strongly halo mass dependent, a rapid change in α occurs around Mh ∼1010M⊙, (Ms∼106-107M⊙) as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the ``Too Big To Fail'' problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.

  17. Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation

    Energy Technology Data Exchange (ETDEWEB)

    David Tucker; Eric Liese; Randall Gemmen

    2009-02-10

    The operating range of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid with bypass control of cathode airflow was determined using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Three methods of cathode airflow management using bypass valves in a hybrid power system were evaluated over the maximum range of operation. The cathode air flow was varied independently over the full range of operation of each bypass valve. Each operating point was taken at a steady state condition and was matched to the thermal, pressure and flow output of a corresponding fuel cell operation condition. Turbine electric load was also varied so that the maximum range of fuel cell operation could be studied, and a preliminary operating map could be made. Results are presented to show operating envelopes in terms of cathode air flow, fuel cell and turbine load, and compressor surge margin to be substantial.

  18. Stochastic analysis for finance with simulations

    CERN Document Server

    Choe, Geon Ho

    2016-01-01

    This book is an introduction to stochastic analysis and quantitative finance; it includes both theoretical and computational methods. Topics covered are stochastic calculus, option pricing, optimal portfolio investment, and interest rate models. Also included are simulations of stochastic phenomena, numerical solutions of the Black–Scholes–Merton equation, Monte Carlo methods, and time series. Basic measure theory is used as a tool to describe probabilistic phenomena. The level of familiarity with computer programming is kept to a minimum. To make the book accessible to a wider audience, some background mathematical facts are included in the first part of the book and also in the appendices. This work attempts to bridge the gap between mathematics and finance by using diagrams, graphs and simulations in addition to rigorous theoretical exposition. Simulations are not only used as the computational method in quantitative finance, but they can also facilitate an intuitive and deeper understanding of theoret...

  19. Observationally-Motivated Analysis of Simulated Galaxies

    CERN Document Server

    Miranda, M S; Gibson, B K

    2015-01-01

    The spatial and temporal relationships between stellar age, kinematics, and chemistry are a fundamental tool for uncovering the physics driving galaxy formation and evolution. Observationally, these trends are derived using carefully selected samples isolated via the application of appropriate magnitude, colour, and gravity selection functions of individual stars; conversely, the analysis of chemodynamical simulations of galaxies has traditionally been restricted to the age, metallicity, and kinematics of `composite' stellar particles comprised of open cluster-mass simple stellar populations. As we enter the Gaia era, it is crucial that this approach changes, with simulations confronting data in a manner which better mimics the methodology employed by observers. Here, we use the \\textsc{SynCMD} synthetic stellar populations tool to analyse the metallicity distribution function of a Milky Way-like simulated galaxy, employing an apparent magnitude plus gravity selection function similar to that employed by the ...

  20. Wetland fire scar monitoring and analysis using archival Landsat data for the Everglades

    Science.gov (United States)

    Jones, John W.; Hall, Annette E.; Foster, Ann M.; Smith, Thomas J.

    2013-01-01

    The ability to document the frequency, extent, and severity of fires in wetlands, as well as the dynamics of post-fire wetland land cover, informs fire and wetland science, resource management, and ecosystem protection. Available information on Everglades burn history has been based on field data collection methods that evolved through time and differ by land management unit. Our objectives were to (1) design and test broadly applicable and repeatable metrics of not only fire scar delineation but also post-fire land cover dynamics through exhaustive use of the Landsat satellite data archives, and then (2) explore how those metrics relate to various hydrologic and anthropogenic factors that may influence post-fire land cover dynamics. Visual interpretation of every Landsat scene collected over the study region during the study time frame produced a new, detailed database of burn scars greater than 1.6 ha in size in the Water Conservation Areas and post-fire land cover dynamics for Everglades National Park fires greater than 1.6 ha in area. Median burn areas were compared across several landscape units of the Greater Everglades and found to differ as a function of administrative unit and fire history. Some burned areas transitioned to open water, exhibiting water depths and dynamics that support transition mechanisms proposed in the literature. Classification tree techniques showed that time to green-up and return to pre-burn character were largely explained by fire management practices and hydrology. Broadly applicable as they use data from the global, nearly 30-year-old Landsat archive, these methods for documenting wetland burn extent and post-fire land cover change enable cost-effective collection of new data on wetland fire ecology and independent assessment of fire management practice effectiveness.

  1. Mathematical Analysis and Simulation of Crop Micrometeorology

    OpenAIRE

    Chen, J.

    1984-01-01

    In crop micrometeorology the transfer of radiation, momentum, heat and mass to or from a crop canopy is studied. Simulation models for these processes do exist but are not easy to handle because of their complexity and the long computing time they need. Moreover, up to now such models can only be run on mainframe computers. This study aims at developing a more elegant mathematical analysis that both deepens the understanding of the processes involved, and enables the writing of more efficient...

  2. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  3. National Infrastructure Simulation and Analysis Center Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berscheid, Alan P. [Los Alamos National Laboratory

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  4. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  5. Learning to Control Forest Fires

    NARCIS (Netherlands)

    Wiering, M.A.; Dorigo, M.

    1998-01-01

    Forest fires are an important environmental problem. This paper describes a methodology for constructing an intelligent system which aims to support the human expert's decision making in fire control. The idea is based on first implementing a fire spread simulator and on searching for good decision

  6. Shape analysis of simulated breast anatomical structures

    Science.gov (United States)

    Contijoch, Francisco; Lynch, Jennifer M.; Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-03-01

    Recent advances in high-resolution 3D breast imaging, namely, digital breast tomosynthesis and dedicated breast CT, have enabled detailed analysis of the shape and distribution of anatomical structures in the breast. Such analysis is critically important, since the projections of breast anatomical structures make up the parenchymal pattern in clinical images which can mask the existing abnormalities or introduce false alarms; the parenchymal pattern is also correlated with the risk of cancer. As a first step towards the shape analysis of anatomical structures in the breast, we have analyzed an anthropomorphic software breast phantom. The phantom generation is based upon the recursive splitting of the phantom volume using octrees, which produces irregularly shaped tissue compartments, qualitatively mimicking the breast anatomy. The shape analysis was performed by fitting ellipsoids to the simulated tissue compartments. The ellipsoidal semi-axes were calculated by matching the moments of inertia of each individual compartment and of an ellipsoid. The distribution of Dice coefficients, measuring volumetric overlap between the compartment and the corresponding ellipsoid, as well as the distribution of aspect ratios, measuring relative orientations of the ellipsoids, were used to characterize various classes of phantoms with qualitatively distinctive appearance. A comparison between input parameters for phantom generation and the properties of fitted ellipsoids indicated the high level of user control in the design of software breast phantoms. The proposed shape analysis could be extended to clinical breast images, and used to inform the selection of simulation parameters for improved realism.

  7. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  8. Gaston Bachelard's poetics of fire psychoanalysis : the analysis of Bian Zhilin poetry's fire imagery = Jiasidong Bashenla huo de jing shen shi xue li lun : Bian Zhilin xin shi huo yi xiang yun yong tan xi

    OpenAIRE

    Cheung, Hang-hang; 張恆恆

    2015-01-01

    The dissertation is the analysis of famous modern poet Bian Zhilin’s fire imagery in his poems. Dividing Bian Zhilin’s poems into five periods according to the year sequence, it is found that there is high proportion of fire imagery in each period according to the statistical data of the dissertation. As imagery contains poet’s subconsciousness , studying the fire imagery with connect to the history background, helps us reveal the changes of poet’s spirit. The dissertation mainly uses Gas...

  9. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Nitrogen oxides (NOx) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NOx emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NOx formation mechanism and control were studied, and SCR deNOx technology was used to control NOx emissions from coal-fired boilers. Analyzed the relationship between deNOx efficiency and characteristics of SCR DeNOx catalyst. Through analysis, affecting SCR DeNOx catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  10. Computer-simulation study on fire behaviour in the ventilated cavity of ventilated façade systems

    OpenAIRE

    Giraldo María P.; Lacasta Ana; Avellaneda Jaume; Burgos Camila

    2013-01-01

    Fire spread through the façades is widely recognized as one of the fastest pathways of fire spreading in the buildings. Fire may spread through the façade in different ways depending on the type of façade system and on the elements and materials from which it is constructed. Ventilated façades are multilayer systems whose main feature is the creation of an air chamber of circulating air between the original building wall and the external cladding. The “chimney effect” in the air c...

  11. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  12. Biomass integrated gasification combined cycle power generation with supplementary biomass firing: Energy and exergy based performance analysis

    International Nuclear Information System (INIS)

    A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances in a proposed configuration. Combustion of supplementary biomass fuel is considered using the oxygen available in the gas turbine (GT) exhaust. The effects of pressure and temperature ratios of the GT system and the amount of fuel burned in the supplementary firing chamber on the thermal and exergetic efficiencies of the plant have been investigated. The plant efficiencies increase with the increase in both pressure and temperature ratios; however, the latter has a stronger influence than the former. Supplementary firing of biomass increases the plant efficiencies of a BIGCC plant till an optimum level of degree of firing. The other technical issues related to supplementary firing, like ash fusion in the furnace and exhaust heat loss maintaining a minimum pinch point temperature difference are accounted and finally a set of optimum plant operating parameters have been identified. The performance of a 50 MWe plant has been analyzed with the optimum operating parameters to find out equipment rating and biomass feed rates. Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic irreversibilities in the plant. -- Highlights: → A thermodynamic analysis of a Biomass Integrated Gasification Combined Cycle (BIGCC) plant has been performed based on energy and exergy balances across various plant components in a proposed configuration in order to optimize the operating parameters. → The effect of supplementary biomass firing in the BIGCC plant has been analyzed in detail to find out the optimum degree of firing for the best plant performance. → The equipment ratings and fuel feed rates are evaluated and the technical feasibility of the plant configuration has been analyzed. → Exergetic efficiencies of different plant equipments are evaluated to localize the major thermodynamic

  13. Isentropic Analysis of a Simulated Hurricane

    Science.gov (United States)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  14. Cost analysis of a coal-fired power plant using the NPV method

    Science.gov (United States)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-06-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  15. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  16. 2D and 3D Eulerian Simulations of the Dynamics and Gas and Aerosol Chemistry of a Young Biomass Burning Smoke Plume from a Savannah Fire

    Science.gov (United States)

    Alvarado, M. J.; Prinn, R. G.

    2007-12-01

    The growth of aerosol particles and production of ozone in young smoke plumes is the result of a complex interaction between the mean flow in the smoke plume, turbulent diffusion, gas-phase oxidation, coagulation, and mass transfer between phases. Models allow us to separate the effects of these processes and predict their impact on the global environment. We present the results of two and three-dimensional Eulerian simulations of the dynamics and chemistry of the smoke plume formed by the Timbavati savannah fire studied during SAFARI 2000 (Hobbs et al., 2003, JGR, doi:10.1029/2002JD002352). The dynamical model is an extension of an Eulerian cloud-resolving model that has previously been used to study the role of deep convective clouds on tropospheric chemistry (Wang and Prinn, 2000, JGR, 105(D17) 22,269-22,297). The model includes a source of sensible heat, gases, and particles at the surface to simulate the savannah fire. The new gas and aerosol chemistry model includes heterogeneous chemistry, kinetic mass transfer, coagulation and the formation of secondary organic and inorganic aerosol. Photolysis rates are calculated based on the solution of the radiative transfer equation within the plume, including the scattering and absorption of radiation by the smoke aerosols. Our preliminary 2D Eulerian results using standard chemistry and UV fluxes show that the model can simulate the lower but not the higher levels of O3 observed. Also, the simulated 2D O3 field shows a wave-like pattern in the downwind direction, even though the emissions from the fire are held constant. This suggests that plume heterogeneity in the downwind direction may account for some of the observed variability in O3. We will present results of runs incorporating higher resolution calculation of photolysis rates, heterogeneous HONO formation, and gas phase reactions involving the uncharacterized organic compounds observed in the gas phase of the Timbavati plume in order to better simulate these

  17. Sample Analysis at Mars Instrument Simulator

    Science.gov (United States)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes

  18. Reliability analysis of the fire protection lining in the high speed train tunnel 'Groene Hart'

    NARCIS (Netherlands)

    Krom, A.H.M.; Wit, S. de

    2006-01-01

    Sprayed fire protection linings in bored. high speed train tunnels are a new lield ol application. Questions çere raised on lhe failure probability of the lining during the sen,ice life of the Groene Hart tunnel. The fire protection Iining is reinforced with a wire mcsh fixed to the tunnel lining, A

  19. Laser heating: a minimally invasive technique for studying fire-generated heating in building stone

    OpenAIRE

    Ocaña, José Luis; Molpeceres, Carlos; Morcillo, Miguel; Fort, Rafael; Gómez-Heras, Miguel

    2008-01-01

    Due to the irreparable damage it can cause, fire is one of the major risks to buildings. Recent studies on the effects of fire tend to focus on micro-scale analysis, addressing questions such as micro-cracking or mineralogical or chemical changes that are particularly relevant to listed buildings.The fire simulation techniques employed to date (convection heating laboratory furnaces and real flame tests) are subject to a series of limitations including non-repeatability, the lack of combustio...

  20. How knowledge influences a MCDM analysis: WOCAT Portuguese experience on prevention of forest fires

    Science.gov (United States)

    Carreiras, M.; Ferreira, A. J. D.; Moreira, J.; Esteves, T. C. J.; Valente, S.; Soares, J.; Coelho, C. O. A.; Schwilch, G.; Bachmann, F.

    2012-04-01

    degradation processes. Affecting large areas every year, they also have serious human, socio-economic and psychological impacts. Under the DESIRE project two Portuguese study sites were selected - Góis e Mação. Both study sites are located in Central Portugal and are frequently affected by forest fires. Nowadays different types of solutions applied at the local level are related with the prevention, combat and mitigation of forest fires. At a higher level of analysis the main solution is related with the diversification of the soil uses, mainly by the mixture of cropland, pastures and forest areas. But the selection of the technique isn't so far an open, participative and effective process, and the interests of land users are not represented most of the time. This paper aims to present WOCAT approach and results to forest fire prevention in Portugal considering stakeholder's perspectives and policy recommendations and it's evolution based on an increased of knowledge.

  1. The assessment of design fire cases on offshore installations using process analysis method

    International Nuclear Information System (INIS)

    The inquiry into the Piper Alpha disaster chaired by Lord Cullen, highlighted the short-comings of a prescriptive approach to safety and in particular, those of fire protection. This paper describes a method of critically analyzing the process sections and areas to determine the worst fire conditions which could occur following a hydrocarbon release. The results of the analyses would be used as the basis for fire protection design on a new platform or for assessing the adequacy of the protection on an existing installation thus allowing designers to adopt the goal setting approach advocated in the Inquiry, ie, designing systems to suit the fire hazards rather than to suit the regulations. It will also enable process engineers to appreciate the scale of fire hazards which might arise from poor design

  2. Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide.

    Science.gov (United States)

    Oatts, Thomas J; Hicks, Cheryl E; Adams, Amy R; Brisson, Michael J; Youmans-McDonald, Linda D; Hoover, Mark D; Ashley, Kevin

    2012-02-01

    Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(®) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed

  3. Mechanical Analysis of an SM 2 Blk IV restrained firing within a concentric canister launcher test unit

    Energy Technology Data Exchange (ETDEWEB)

    Kassner, M C; Kennedy, T C; Puttapitukporn, T; Rosen, R S

    1999-03-01

    The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop a new Vertical Launching System (VLS) for future generation ships, such as the DD-21 Destroyer. The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry and universities to develop one such launcher design, the Concentric Canister Launcher (CCL). The basic CCL design consists of a tube made of two concentric cylinders; one end is open, the other is sealed with a hemispherical end cap. During firing, the missile exhaust gas is turned 180 degrees by the hemispherical end cap and flows through the annular space between inner and outer cylinders. Depending on the missile utilized and the particular service environment of the CCL, maximum temperatures within the cylinder material have been calculated to exceed 2000 F. In an earlier study [1], the authors determined the high temperature mechanical properties of several candidate alloys being considered for fabrication of the CCL. This study [1] found that, of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless steel at temperatures up to about 1000 F; above 1500 F, the yield stress of 316L stainless steel is comparable to those of the titanium alloys. The 316L stainless steel was found to strain harden (increase its flow stress with increasing strain) at temperatures up to about 1800 F. The ability of the 316L stainless steel to strain harden at high temperatures may provide an added margin of safety for engineering design of the CCL. The objective of the current study was to perform a computer simulation of the structural response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to exit the canister. A finite element model of the inner cylinder, outer cylinder, end rings (mounting brackets), and lateral restraints in the uptake was constructed. An elastic

  4. Mechanical Analysis of an SM 2 Blk IV restrained firing within a concentric canister launcher test unit; TOPICAL

    International Nuclear Information System (INIS)

    The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop a new Vertical Launching System (VLS) for future generation ships, such as the DD-21 Destroyer. The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry and universities to develop one such launcher design, the Concentric Canister Launcher (CCL). The basic CCL design consists of a tube made of two concentric cylinders; one end is open, the other is sealed with a hemispherical end cap. During firing, the missile exhaust gas is turned 180 degrees by the hemispherical end cap and flows through the annular space between inner and outer cylinders. Depending on the missile utilized and the particular service environment of the CCL, maximum temperatures within the cylinder material have been calculated to exceed 2000 F. In an earlier study[1], the authors determined the high temperature mechanical properties of several candidate alloys being considered for fabrication of the CCL. This study[1] found that, of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless steel at temperatures up to about 1000 F; above 1500 F, the yield stress of 316L stainless steel is comparable to those of the titanium alloys. The 316L stainless steel was found to strain harden (increase its flow stress with increasing strain) at temperatures up to about 1800 F. The ability of the 316L stainless steel to strain harden at high temperatures may provide an added margin of safety for engineering design of the CCL. The objective of the current study was to perform a computer simulation of the structural response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to exit the canister. A finite element model of the inner cylinder, outer cylinder, end rings (mounting brackets), and lateral restraints in the uptake was constructed. An elastic

  5. 基于Pathfinder和FDS的火场下人员疏散研究%Study on evacuation simulation of fire ground based on pathfinder and FDS

    Institute of Scientific and Technical Information of China (English)

    徐艳秋; 王振东

    2012-01-01

    为了探究高层建筑发生火灾时人员行为对疏散的影响,以上海静安区失火大楼为背景,运用试用版灾难逃生软件Pathfinder,对人员行为进行模拟.实验得到了人员在不同行为模式下逃生时所用的时间和楼梯间内拥挤情况,并探究家庭成员的行为对逃生的影响.利用Pathfinder进行SFPE模式和指导模式模拟以确定哪种模式中的行为属于安全的疏散行为.以《建筑防火规范》规定的允许疏散时间为标准计算出规定时间内的疏散的人数,从而确定处于危险状态下的人员数量和时间.建立了一个简化的高层建筑模型,采用FDS模拟软件对高层建筑火灾进行了火灾模拟,得出了烟气蔓延速度、温度、CO浓度以及能见度的变化规律,为高层建筑火灾烟气的有效控制、人员疏散、火灾扑救提供了一定的理论依据.%In order to explore the influence of peopled acts on evacuation when a high-rise building is on fire, taking the burning building in Shanghai Jing an District as the background, applying the trail version of disaster escape software-Pathfinder, the personnel behaviors were simulated . The personnel evacuation time and the crowded circumstance in the staircases in different behavior mode to escape from the fire were obtained, and the influence of family members'behavior on their escaping was explored. The simulations on SFPE mode and instruction model were applied by pathfonder to determine the behavior in which model was the safety evacuation. With the evacuation time standard allowed by the construction of the code for fire protection provisions, the number of the evacuation in the stipulated time was calculated, so as to determine the personnel quantity and time in danger . Performing simulations by Pathfinder, the safe evacuation behavior were determined. And a simplified high-rise building model was established, adopting the FDS (Fire Dynamics Simulator)simulation software of high

  6. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  7. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  8. Modelling and Simulation of Ship Fire Control System%舰载火控系统的建模与仿真

    Institute of Scientific and Technical Information of China (English)

    顾浩

    2000-01-01

    This paper discusses the role of modelling and simulation technology in the development ofnew weapon system. It also introduces the integrative WISE modelling /simulation developmentenvironment and simulation software of JARI in China, and describes modelling and digital sumulationmethod for the ship fire control system. A technical way to support new fire control system effectivenessevaluation by using Distributed Interactive Simulation (DIS) is given%探讨了建模与仿真技术在新型武器系统研制中的作用地位;介绍了WISE一体化建模/仿真开发环境及仿真软件,描述了新型舰载火控系统的建模与数字仿真方法,给出了采用分布交互式仿真(DIS)技术支持新型舰载火控系统进行效能评估的技术途径

  9. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  10. Ecological Impacts of the Cerro Grande Fire: Predicting Elk Movement and Distribution Patterns in Response to Vegetative Recovery through Simulation Modeling October 2005

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, Susan P. [Texas Tech Univ., Lubbock, TX (United States)

    2005-10-01

    In May 2000, the Cerro Grande Fire burned approximately 17,200 ha in north-central New Mexico as the result of an escaped prescribed burn initiated by Bandelier National Monument. The interaction of large-scale fires, vegetation, and elk is an important management issue, but few studies have addressed the ecological implications of vegetative succession and landscape heterogeneity on ungulate populations following large-scale disturbance events. Primary objectives of this research were to identify elk movement pathways on local and landscape scales, to determine environmental factors that influence elk movement, and to evaluate movement and distribution patterns in relation to spatial and temporal aspects of the Cerro Grande Fire. Data collection and assimilation reflect the collaborative efforts of National Park Service, U.S. Forest Service, and Department of Energy (Los Alamos National Laboratory) personnel. Geographic positioning system (GPS) collars were used to track 54 elk over a period of 3+ years and locational data were incorporated into a multi-layered geographic information system (GIS) for analysis. Preliminary tests of GPS collar accuracy indicated a strong effect of 2D fixes on position acquisition rates (PARs) depending on time of day and season of year. Slope, aspect, elevation, and land cover type affected dilution of precision (DOP) values for both 2D and 3D fixes, although significant relationships varied from positive to negative making it difficult to delineate the mechanism behind significant responses. Two-dimensional fixes accounted for 34% of all successfully acquired locations and may affect results in which those data were used. Overall position acquisition rate was 93.3% and mean DOP values were consistently in the range of 4.0 to 6.0 leading to the conclusion collar accuracy was acceptable for modeling purposes. SAVANNA, a spatially explicit, process-oriented ecosystem model, was used to simulate successional dynamics. Inputs to the

  11. Contamination smoke: a simulation of heavy metal containing aerosols from fires in plutonium glove boxes: part II

    International Nuclear Information System (INIS)

    The study of the dispersion of plutonium bearing aerosols during glove box fires on a laboratory scale has been, in part I of this work, focussed on fires of polymethylmethacrylate (PMMA - the major glove box construction material) whose surfaces were contaminated with cerium-europium oxide powder as a substitute for plutonium-uranium oxide. The present part II completes the study with comparative fire experiments involving contaminated samples of various glove box materials burning in or exposed to the flames of the standardized 0.6 MW fire source previously developed. Beyond spreading of the Ce-Eu-oxide powder as mentioned above, the other important surface contamination process is used, i.e. deposition and subsequent drying of droplets from acid cerium-europium solutions. It is shown that, among the tested materials, and with the exception of synthetic glove rubber, burning PMMA spreads the most radioactive contamination. On the other hand, this potential risk is much lower for fires involving materials contaminated from solution deposition than from powder or pellets. Attempts to measure the airborne contaminant particle sizes did not yield conclusive results. They suggest, however, that contamination from solutions leads to smaller heavy-metal containing aerosol particles than contamination with powder

  12. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  13. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  14. Modeling the performance of coated LPG tanks engulfes in fires

    OpenAIRE

    2009-01-01

    The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining sp...

  15. Analysis of the personnel casualty reasons and evacuating behavior in the fire%火灾中人员伤亡原因及疏散行为

    Institute of Scientific and Technical Information of China (English)

    庞建军

    2012-01-01

    根据火灾调查取得的有关参数,使用FDS火灾模拟软件对火灾过程进行了模拟,取得了楼梯间内一氧化碳、二氧化碳、氧气含量及能见度等模拟数据.燃烧产物毒害性、高温烟气、烟气减光性是火灾中致人伤亡的原因.针对火灾中人员的疏散行为,分析了火灾事故教训,提出了预防伤亡的措施.%The paper uses the software of Fire Dynamics Simulator to simulate the course of fire by the parameter from the investigation the fire. FDS calculates the concentration of COi CO2 > O2 and the visibility in the course of fire. It is the poison from the products of combustion. the smoke and gas with high temperature and the strong smoke that make people die and injured in the fire. It analyzes the lessons of the fire accidents, puts forward the prevention measures of personnel casualty in the fire by analyzing of evacuating behavior.

  16. Macrocharcoal analysis of a 4200 year old lake sediment profile from Northern Romania - fire regimes and climate implications

    Directory of Open Access Journals (Sweden)

    Anca GEANTĂ

    2014-11-01

    Full Text Available Macroscopic charcoal particles, magnetic susceptibility and AMS C14 dates were performed on a sediment sequence from a small subalpine lake (Buhaescu Mare, Rodnei Mts. in order to reconstruct fire regimes in the area.  Specifically we aim to distinguish between natural fire activity and human driven fires. Buhaescu Mare lake, also known as Rebra lake (0.4 ha; 1920 m a.s.l., is today surrounded by mire vegetation, Ericaceae, Carex and Pinus mugo patches further away, being situated just above the current tree line. The sedimentary profile, with a total length of 98 cm is composed of clayey silt (98-80 cm and gyttja (80-0 cm. Magnetic susceptibility was used to support the charcoal results, this parameter being expected to rise during episodes of intense fire and subsequent erosive events.The results from the charcoal record indicate periods of high charcoal activity at about 4200 cal. BP, 3000 cal. BP, 2700 cal BP, 2000 cal BP and 1350 cal BP. and point to a succession of warm/dry and cold/wet periods. The increase in charcoal particles over the last 2000 years was probably related to human impact, but this remains to be documented through the analysis of pollen and coprophilous fungi record.

  17. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  18. Assessment of sealed fire states by fire characteristic

    Institute of Scientific and Technical Information of China (English)

    YUAN Shu-jie; SZLAZAK Nikodem; OBRACAJ Dariusz

    2006-01-01

    The paper presented assessment of sealed fire states in underground coal mines by so-called "fire characteristic", which graphically described tendencies of fire gas components - oxygen, nitrogen, carbon dioxide, carbon monoxide and hydrocarbons - in time. In order to mark gas components tendencies in time the authors applied the time series analysis. The case studied confirmed, that analysis of fire gas components tendencies in time and their correlation allow to elicit proper conclusions about fire state assessment. Assessment of fire states based on single value of fire indexes without considering their trends in time and correlation between trends of gas components would give wrong results. The suggested method can appropriately indicate fire states in a sealed area.

  19. Analysis and simulation of straw fuel logistics

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1998-12-31

    Straw is a renewable biomass that has a considerable potential to be used as fuel in rural districts. This bulky fuel is, however, produced over large areas and must be collected during a limited amount of days and taken to the storages before being ultimately transported to heating plants. Thus, a well thought-out and cost-effective harvesting and handling system is necessary to provide a satisfactory fuel at competitive costs. Moreover, high-quality non-renewable fuels are used in these operations. To be sustainable, the energy content of these fuels should not exceed the energy extracted from the straw. The objective of this study is to analyze straw as fuel in district heating plants with respect to environmental and energy aspects, and to improve the performance and reduce the costs of straw handling. Energy, exergy and emergy analyses were used to assess straw as fuel from an energy point of view. The energy analysis showed that the energy balance is 12:1 when direct and indirect energy requirements are considered. The exergy analysis demonstrated that the conversion step is ineffective, whereas the emergy analysis indicated that large amounts of energy have been used in the past to form the straw fuel (the net emergy yield ratio is 1.1). A dynamic simulation model, called SHAM (Straw HAndling Model), has also been developed to investigate handling of straw from the fields to the plant. The primary aim is to analyze the performance of various machinery chains and management strategies in order to reduce the handling costs and energy needs. The model, which is based on discrete event simulation, takes both weather and geographical conditions into account. The model has been applied to three regions in Sweden (Svaloev, Vara and Enkoeping) in order to investigate the prerequisites for straw harvest at these locations. The simulations showed that straw has the best chances to become a competitive fuel in south Sweden. It was also demonstrated that costs can be

  20. Value analysis of district heating system with gas-fired peak load boiler in secondary network

    Institute of Scientific and Technical Information of China (English)

    郑雪晶; 穆振英

    2009-01-01

    In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77.

  1. Treatment and Analysis of a Paint Chip from "Water Lilies": A Fire Damaged Monet

    Science.gov (United States)

    Miller, Sharon K. R.; Banks, Bruce A.; Tollis, Greg

    2001-01-01

    A museum fire in 1958 severely damaged a Monet 'Water Lilies' (1916-1926) painting that was on display. The surface of the painting is very dark with areas of blistering and charring. Over the years, traditional techniques have been found to be ineffective at removal of the soot and char from the surface. The painting, which is now in the care of the New York University (NYU) Conservation Center of the Institute of Fine Arts, was the subject of a study to determine if atomic oxygen treatment could remove the soot and char without damaging the fragile painting underneath. For test purposes, a small chip of paint was removed from the edge of the painting by a conservator at NYU and supplied to NASA Glenn Research Center for atomic oxygen treatment and analysis. The diffuse spectral reflectance, at three locations on the paint chip, was monitored at intervals during the atomic oxygen treatment process. Photo documentation of the chip during treatment was also performed. The color contrast was calculated from the spectral reflectance data as a function of treatment duration. Results of the testing indicated that the contrast improved as a result of the treatment, and the differentiation of colors on the surface was significantly improved. Soot and char could be removed without visibly affecting the gross surface features such as impasto areas. These results indicate the feasibility for the treatment of the 'Water Lilies' painting.

  2. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    . Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.

  3. Performance and results of a fire probability safety analysis for the Grafenrheinfeld nuclear power plant

    International Nuclear Information System (INIS)

    The Full-Power PSA for the Grafenrheinfeld 1300 MWe pressurized water reactor covering the recommended initiating events of the German PSA Procedure Guide published in October 1990 was followed up by a Fire PSA meeting the requirements of the December 1996 edition of the PSA Procedure Guide. In the meantime the Fire PSA has been reviewed by the Authorized Expert, TUeV Bayern. The experts agreed with the methods used and the results obtained; they also suggested some improvements to be made in case of a revision, but these do not affect the overall results of the study. Comparing the core damage frequency caused by the initiating events of the Full-Power PSA (approx. 2.5 E-6/a) with the results of the Fire PSA (approx. 3.5 E-7/a), fire contributes approx. 12% to the overall core damage frequency. (orig.)

  4. Hazard Analysis for Post-Fire Debris-Flow Potential in Arizona

    Science.gov (United States)

    Youberg, A.; Koestner, K. A.; Schiefer, E.; Neary, D. G.

    2011-12-01

    Several large, devastating wildfires occurred in Arizona during the past 2 years, after a 4-year period without any large wildfires. In June, 2010, the human-caused Schultz Fire near Flagstaff burned 6,100 ha of mostly steep terrain. Subsequent rains from the 4th wettest monsoon on record produced numerous debris flows, significant erosion, and substantial flooding of the downslope residential areas. In May and June of 2011, 3 very large human-caused wildfires (Wallow, Horseshoe 2, and Monument Fires) burned over 320,000 ha, posing serious threats to communities below burned slopes. The Burned Area Emergency Response (BAER) teams, in need of a rapid method to assess the potential for post-fire debris flows, turned to models developed by the USGS for this purpose [Cannon and others, 2010, GSA Bull, 122(1-2), 127-144]. These models, while providing quick results, have not been evaluated for use in Arizona's varied physiographic provinces. Here we use data from the Schultz Fire to compare basin responses with those predicted by the USGS post-fire debris-flow models. Data from the Schultz Fire includes detailed field documentation of debris-flow occurrence and runout distances, 1:12,000 stereo aerial photographs, high-resolution digital elevation models (DEMs) and tipping-bucket rainfall data. These data document debris-flow producing storms, basin response, and the extent of debris-flow runout, and provide estimates of debris-flow volumes. The hydrologic responses from 30 small, steep, upper basins burned by the Schultz Fire were assessed for debris or flood flow occurrences. Nineteen basins produced debris flows during a July 20th storm that had a peak 10-minute intensity of 24 mm. A second storm on August 16th, with a peak 10-minute intensity of 15 mm, produced additional debris flows in several of the same basins. Of the 30 basins assessed, 19 were completely burned; four at high severity and 12 at moderate to high severity. The basin with the smallest burned area

  5. Numerical Simulation of Firing Sequence of Bridge-wire EED%桥丝式电火工品发火过程的数值仿真

    Institute of Scientific and Technical Information of China (English)

    龙兵; 常新龙; 张磊; 余堰峰; 张有宏; 胡宽

    2009-01-01

    应用有限元分析软件ANSYS,建立了桥丝式电火工品的有限元仿真模型,对桥丝式电火工品的直流发火过程和电容放电发火过程进行了有限元分析,得出了两种情况下火工品的温度分布云图、径向温度分布曲线和桥丝与药剂交界面的温度变化曲线,并对仿真结果进行了分析讨论.%Using ANSYS engineering analysis software,the finite element analysis model for the bridge-wire EED was set up in this paper. The finite element analysis is carried out for firing sequence on direct current firing and capacitor discharge firing condition. Radial temperature,radial temperature distribution and temperature curve at the interface of bridge-wire and ignition powder were procured and the results were discussed.

  6. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  7. Three-dimensional analysis of reinforced concrete beam-column structures in fire

    OpenAIRE

    Z. Huang; Burgess, IW; Plank, RJ

    2009-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Published version copyright @ 2009 ASCE. In this paper a robust nonlinear finite-element procedure is developed for three-dimensional modeling of reinforced concrete beam-column structures in fire conditions. Because of the changes in material properties and the large deflections experienced in fire, both geometric and material nonlinearities are taken into account in this formulation. T...

  8. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    International Nuclear Information System (INIS)

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  9. Socio-economic impact analysis: Centralia mine fire abatement alternatives. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-07

    The overall purpose of information contained in the following text is to document the likely social and economic impacts upon the Borough of Centralia through implementation of various mine fire abatement alternatives. Much of the data presented herein and utilized in preparing conclusions and recommendations have been derived from those individuals whose lives are now, or may eventually be, impacted by the underground mine fire.

  10. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    Science.gov (United States)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue

  11. Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance

    Science.gov (United States)

    Lanorte, Antonio; Lasaponara, Rosa; Lovallo, Michele; Telesca, Luciano

    2014-02-01

    The time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers.

  12. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    Science.gov (United States)

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-01

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. PMID:26802486

  13. Analysis and simulation of XPM intensity modulation

    Institute of Scientific and Technical Information of China (English)

    Jing Huang; Jianquan Yao

    2005-01-01

    Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.

  14. Hoof, teeth and fire: the effects of different simulated forms of disturbance on wind erosion in a desert scrub grassland

    Science.gov (United States)

    Disturbance to and removal of vegetation is a major cause of increased aeolian erodibility for many natural surfaces. This study in the extreme northern Chihuahuan Desert used a portable wind tunnel to examine the impact of grazing, trampling and fire on dust emission from grassland in the Sevilleta...

  15. Analysis on Remote Control of Fire Hydrant Pump%消火栓泵远程控制分析

    Institute of Scientific and Technical Information of China (English)

    鞠永健

    2014-01-01

    分析多幢建筑物合用消火栓泵房的原因和存在的问题,结合工程案例分析计算多幢建筑远程控制消火栓泵的线路压降和消防控制室启停、信号反馈等问题,对现有标准图集中的控制电路图进行修改以解决线路安全和线路压降的矛盾,并对修改后的控制电路图使用注意事项进行说明。%Control circuit diagrams given in the current standard collective drawings are modified to solve the contradictions of line safety and line drop. In addition, precautions for utilization of the modified control circuit diagrams are also given. Modification of the current standard collective drawings is based on the analysis of reasons and problems of shared fire hydrant pump rooms of multiple buildings, on the analysis and calculations via incorporating engineering cases of line drop due to remote control of fire hydrant pumps of multiple buildings , and on the analysis of such issues of start / stop and signal feedback of fire fighting control room.

  16. A data envelopment analysis for energy efficiency of coal-fired power units in China

    International Nuclear Information System (INIS)

    Highlights: • Two kinds of energy efficiency (EE) indices are analyzed and compared. • The influence degrees of different uncontrollable factors on EE are compared. • The influence of load factor on special EE is 82.6% larger than capacity factor. • The influence of cooling method on special EE is 90.32% larger than steam pressure. • The generalized EE indicator is more recommended by the authors. - Abstract: In this article, the non-parametric data envelopment analysis method (DEA) is employed to evaluate energy efficiency (EE) of 34 coal-fired power units in China. Input-oriented CCR (Charnes, Cooper and Rhodes) model is used for EE analysis. Two efficiency indices, generalized EE and special EE are defined and analyzed. The generalized EE is calculated based on four input parameters: coal consumption, oil consumption, water consumption and auxiliary power consumption by power units. The special EE is only based on two input parameters: coal consumption and auxiliary power consumption. Relations between these two EE indices and non-comparable factors including quality of coal, load factor, capacity factor, parameters of main steam and cooling method are studied. Comparison between EE evaluation results of the two indices is conducted. Results show that these two kinds of EE are more sensitive to the load factor than the capacity factor. The influence of the cooling method on EE is larger than that of main steam parameter. The influence of non-comparable factors on the special EE is stronger than that on the generalized EE

  17. Using small-scale rainfall simulation to assess temporal changes in pre- and post-fire soil hydrology and erosion: the value of fixed-position plots

    Science.gov (United States)

    Ferreira, Carla S. S.; Shakesby, Rick A.; Bento, Célia P. M.; Walsh, Rory P. D.; Ferreira, António J. D.

    2013-04-01

    In recent decades, wildfire has become both frequent and severe in southern Europe leading to widespread research into its impacts on soil erosion, soil and water quality. Rainfall simulation has become established as a popular technique to assess these impacts, as it can be conducted under controlled conditions (notably, with respect to rainfall) and is a very cost-effective and rapid way to compare overland flow and suspended sediment generation within burned and unburned sites. Particular advantages are that: (1) results can be obtained before the first post-fire rainfall events; and (2) experiments can reproduce controlled storm events, with similar characteristics to natural rain. Although plot sizes vary (0.09-30m2), most researchers have used < 1m2 plots because of logistical difficulties of setting up larger plots especially in burned areas that may lack good access and local water supplies. Disadvantages with using small plots, however, particularly on burned terrain, include: (1) the difficulty of installing the plots without disturbing the soil; (2) the strong influence of plot boundaries on overland flow and sediment production. Significant replication is generally considered necessary to take account of high variability in results that are due in part to these effects. One response to these problems is a 'fixed plot' approach in which bounded plots are left in place for re-use throughout the study. A problem here, however, would be progressive sediment exhaustion due to the 'island' effect of the plots caused by their isolation from upslope sediment transfer. This paper assesses the usefulness of a repeat-simulation plot approach in assessing temporal change in overland flow and erosion in post-fire situations that minimizes the island effect by partial removal of plot boundaries between surveys. This approach was tested over a 2.5-year period in a small (9 ha) catchment in central Portugal subjected to an experimental fire in 2009. Five rainfall

  18. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  19. Chaos dynamic characteristics during mine fires

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mine fires break out and continue in confmed scopes, studying mine fire dynamics characteristics is very usefulto prevent and control fire. The judgement index of fire chaos characteristics was introduced, chaos analysis of mine Fireprocess was described, and the reconstruction of phase space was also presented. An example of mine fire was calculated.The computations show that it is feasible to analyze mine fire dynamic characteristics with chaos theory, and indicate thatfire preoeas is a catastrophe, that is to say, the fire system changes from one state to another during mine fire

  20. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.

    Science.gov (United States)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority. PMID:21298266

  1. Analysis of Forest Fires by means of Pseudo Phase Plane and Multidimensional Scaling Methods

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2014-01-01

    Full Text Available Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.

  2. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    Science.gov (United States)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  3. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Hao Long [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Wencui Road 62, Shenyang 110016 (China); Zhang Sixun [College of Material and Metallurgy, Northeastern University, Wenhua Road 3, Shenyang 110004 (China); Technical Centre of Laiwu Steel Group, Ltd., Changsheng Road 23, Laiwu 271104 (China); Dong Junhua, E-mail: jhdong@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Wencui Road 62, Shenyang 110016 (China); Ke Wei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Wencui Road 62, Shenyang 110016 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The rusting evolution of a Mo-Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated. Black-Right-Pointing-Pointer The rusting evolution of the steel is related to the rust composition, structure, and electrochemical characteristics. Black-Right-Pointing-Pointer Increased content of {alpha}-FeOOH and decreased {gamma}-FeOOH and Fe{sub 3}O{sub 4} indicate the enhanced resistance of the rust. Black-Right-Pointing-Pointer Mo and Cu are involved in the formation of molybdate and Cu(I)-bearing compounds in the rust. - Abstract: The corrosion evolution of a Mo-Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated by corrosion weight gain, XRD, EPMA, XPS, and polarization curves. The results indicate that the corrosion kinetics is closely related to the rust composition and electrochemical properties. As the corrosion proceeds, the relative content of {gamma}-FeOOH and Fe{sub 3}O{sub 4} decreases and {alpha}-FeOOH increases, and the rust layer becomes compact and adherent to steel substrate. Molybdenum and copper enrich in the inner rust layer, especially at the bottom of the corrosion nest, forming non-soluble molybdate and Cu(I)-bearing compounds responsible for enhanced corrosion resistance of the rust layer.

  4. A study of the evolution of rust on Mo–Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion

    International Nuclear Information System (INIS)

    Highlights: ► The rusting evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated. ► The rusting evolution of the steel is related to the rust composition, structure, and electrochemical characteristics. ► Increased content of α-FeOOH and decreased γ-FeOOH and Fe3O4 indicate the enhanced resistance of the rust. ► Mo and Cu are involved in the formation of molybdate and Cu(I)-bearing compounds in the rust. - Abstract: The corrosion evolution of a Mo–Cu-bearing fire-resistant steel in a simulated industrial atmosphere was investigated by corrosion weight gain, XRD, EPMA, XPS, and polarization curves. The results indicate that the corrosion kinetics is closely related to the rust composition and electrochemical properties. As the corrosion proceeds, the relative content of γ-FeOOH and Fe3O4 decreases and α-FeOOH increases, and the rust layer becomes compact and adherent to steel substrate. Molybdenum and copper enrich in the inner rust layer, especially at the bottom of the corrosion nest, forming non-soluble molybdate and Cu(I)-bearing compounds responsible for enhanced corrosion resistance of the rust layer.

  5. ADAMS Based Dynamic Simulation of Assault Gun Firing%基于ADAMS的某突击炮发射动力学仿真

    Institute of Scientific and Technical Information of China (English)

    申江森; 高跃飞; 徐凤军

    2015-01-01

    在对突击炮结构特点研究的基础上,根据设计参数要求,应用 ADAMS进行了突击炮虚拟样机模型建立和动力学相应计算。轮胎选用U A模型,基于脚本程序控制的方法,对突击炮在方向角0°、射角30°工况下的动力学响应进行了仿真分析,得到了满意的结果。%In order to understand the dynamic behavior of assault gun during gun fire ,a virtual prototype of the assault gun was set up using the ADAMS software package ,and its dynamic responses were analyzed .In the prototype ,UA model was used to tire ,and the script with simulation method was used to analyze the response of the assault gun during direction angle at zero degree and angle of fire at 30 degree .Finally ,the dynamic responses of this assault gun were simulated using the prototype .

  6. Developing a probabilistic fire risk model and its application to fire danger systems

    Science.gov (United States)

    Penman, T.; Bradstock, R.; Caccamo, G.; Price, O.

    2012-04-01

    Wildfires can result in significant economic losses where they encounter human assets. Management agencies have large budgets devoted to both prevention and suppression of fires, but little is known about the extent to which they alter the probability of asset loss. Prediction of the risk of asset loss as a result of wildfire requires an understanding of a number of complex processes from ignition, fire growth and impact on assets. These processes need to account for the additive or multiplicative effects of management, weather and the natural environment. Traditional analytical methods can only examine only a small subset of these. Bayesian Belief Networks (BBNs) provide a methodology to examine complex environmental problems. Outcomes of a BBN are represented as likelihoods, which can then form the basis for risk analysis and management. Here we combine a range of data sources, including simulation models, empirical statistical analyses and expert opinion to form a fire management BBN. Various management actions have been incorporated into the model including landscape and interface prescribed burning, initial attack and fire suppression. Performance of the model has been tested against fire history datasets with strong correlations being found. Adapting the BBN presented here we are capable of developing a spatial and temporal fire danger rating system. Currently Australian fire danger rating systems are based on the weather. Our model accounts for existing fires, as well as the risk of new ignitions combined with probabilistic weather forecasts to identify those areas which are most at risk of asset loss. Fire growth is modelled with consideration given to management prevention efforts, as well as suppression resources that are available in each geographic locality. At a 10km resolution the model will provide a probability of asset loss which represents a significant step forward in the level of information that can be provided to the general public.

  7. US Fire Administration Fire Statistics

    Data.gov (United States)

    Department of Homeland Security — The U.S. Fire Administration collects data from a variety of sources to provide information and analyses on the status and scope of the fire problem in the United...

  8. Goal-oriented training affects decision-making processes in virtual and simulated fire and rescue environments.

    Science.gov (United States)

    Cohen-Hatton, Sabrina R; Honey, R C

    2015-12-01

    Decisions made by operational commanders at emergency incidents have been characterized as involving a period of information gathering followed by courses of action that are often generated without explicit plan formulation. We examined the efficacy of goal-oriented training in engendering explicit planning that would enable better communication at emergency incidents. While standard training mirrored current operational guidance, goal-oriented training incorporated "decision controls" that highlighted the importance of evaluating goals, anticipated consequences, and risk/benefit analyses once a potential course of action has been identified. In Experiment 1, 3 scenarios (a house fire, road traffic collision, and skip fire) were presented in a virtual environment, and in Experiment 2 they were recreated on the fireground. In Experiment 3, the house fire was recreated as a "live burn," and incident commanders and their crews responded to this scenario as an emergency incident. In all experiments, groups given standard training showed the reported tendency to move directly from information gathering to action, whereas those given goal-oriented training were more likely to develop explicit plans and show anticipatory situational awareness. These results indicate that training can be readily modified to promote explicit plan formulation that could facilitate plan sharing between incident commanders and their teams. PMID:26523338

  9. Laboratory simulation of temperature changes by insolation and fire and their influence on physical properties of travertines

    Directory of Open Access Journals (Sweden)

    Zuzana Kompaníková

    2012-06-01

    Full Text Available The influence of insolation and fire represents important factor for study of historical object destruction. The results have shown that temperature changes by insolation (60°C and fire (200, 400, 600, and 800°C significantly contributed to the change of physical properties of Slovak travertine from Spišské Podhradie and Ludrová. Research was oriented not only on a visual change of rocks (colour change, brightness and surface roughness, but also on the quantitative and qualitative analyses of mineral composition, connected with structural changes as well as study of selected physical properties. The micropetrographic study indicated that increasing of temperature was followed by expand of fractures as reflected even change of true and specific bulk density. Significant increase of microcracks was determined at 600°C by optical microscopy. The macroscopic observation of microcracks was visible at 800°C subsequently followed by destruction of samples. By spectrophotometry was visible colour change by increasing of temperature. The brightness of travertine samples was decreasing till 600°C, but after 600°C it became markedly increasing. With increasing of temperature travertine surface samples had also change from a few hundred nanometres to several microns. The investigation of thermal decay by insolation and fire may lead to an improved assessment of natural building stones that have been used as building and decorative stone on ancient monument.

  10. A case-crossover analysis of forest fire haze events and mortality in Malaysia

    Science.gov (United States)

    Sahani, Mazrura; Zainon, Nurul Ashikin; Wan Mahiyuddin, Wan Rozita; Latif, Mohd Talib; Hod, Rozita; Khan, Md Firoz; Tahir, Norhayati Mohd; Chan, Chang-Chuan

    2014-10-01

    The Southeast Asian (SEA) haze events due to forest fires are recurrent and affect Malaysia, particularly the Klang Valley region. The aim of this study is to examine the risk of haze days due to biomass burning in Southeast Asia on daily mortality in the Klang Valley region between 2000 and 2007. We used a case-crossover study design to model the effect of haze based on PM10 concentration to the daily mortality. The time-stratified control sampling approach was used, adjusted for particulate matter (PM10) concentrations, time trends and meteorological influences. Based on time series analysis of PM10 and backward trajectory analysis, haze days were defined when daily PM10 concentration exceeded 100 μg/m3. The results showed a total of 88 haze days were identified in the Klang Valley region during the study period. A total of 126,822 cases of death were recorded for natural mortality where respiratory mortality represented 8.56% (N = 10,854). Haze events were found to be significantly associated with natural and respiratory mortality at various lags. For natural mortality, haze events at lagged 2 showed significant association with children less than 14 years old (Odd Ratio (OR) = 1.41; 95% Confidence Interval (CI) = 1.01-1.99). Respiratory mortality was significantly associated with haze events for all ages at lagged 0 (OR = 1.19; 95% CI = 1.02-1.40). Age-and-gender-specific analysis showed an incremental risk of respiratory mortality among all males and elderly males above 60 years old at lagged 0 (OR = 1.34; 95% CI = 1.09-1.64 and OR = 1.41; 95% CI = 1.09-1.84 respectively). Adult females aged 15-59 years old were found to be at highest risk of respiratory mortality at lagged 5 (OR = 1.66; 95% CI = 1.03-1.99). This study clearly indicates that exposure to haze events showed immediate and delayed effects on mortality.

  11. Assessment of post-fire changes of hydrological regime of watersheds based on the analysis of remote sensing data and standard hydrometeorological observations

    Science.gov (United States)

    Semenova, Olga; Mikheeva, Anna; Nesterova, Natalia; Lebedeva, Luidmila

    2016-04-01

    Forest fires are regular at large territories of Siberia. Fire occurrence is expected to increase in the future due to climate change and anthropogenic influence. Though there are many studies on vegetation and landscapes transformation after fire the analysis of associated hydrological and geomorphologic changes in permafrost environments in Russia are rare. Broadening our previous study on fire impact on hydrology in remote area of the Baikal region (Semenova et al., 2015a, b; Lebedeva et al., 2014) the following objectives for this study were set up: i) describe changes in streamflow after extensive 2003 forest fire in several middle-size river basins in Siberian permafrost zone ii) assess change in sediment flux after the fire in the same catchments iii) attribute found responses to dominating landscapes and the level of vegetation disturbance and other factors, iv) analyze the mechanisms of those changes using the analysis of ground and remote sensing data. Following severe drought 2002-2003 extensive fires occurred in spring and summer of 2003 in the southeast part of Russia when more than 20 million ha were affected by disaster. Vast remote regions in Transbaikal region lack any special observations on fire impact of 2003 on hydrological regime of disturbed areas. Therefore hydrological data on water and suspended sediment flow from standard network of Russian Hydrometeorological Service was used combined with remote sensing data analysis to assess post-fire changes. Six watersheds in the upstreams of the Vitim River located at the Vitim Plateau are chosen for this study. In our analysis we used daily river discharge data for 6 gauges and 10-days average suspended sediment discharge for 3 gauges. Semenova et al. (2015a, b) detected short-term impact of fire on runoff manifested in significant increase (up to 40-50 %) of summer flow after the fire. The analysis of suspended sediment data revealed that the impact of fire on sediment flow regime can be traced

  12. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal fire events for Plant Operational State 5 during a refueling outage. Volume 3

    International Nuclear Information System (INIS)

    This report, Volume 3, presents the details of the analysis of core damage frequency due to fire during shutdown Plant Operational State 5 at the Grand Gulf Nuclear Station. Insights from previous fire analyses (Peach Bottom, Surry, LaSalle) were used to the greatest extent possible in this analysis. The fire analysis was fully integrated utilizing the same event trees and fault trees that were used in the internal events analysis. In assessing shutdown risk due to fire at Grand Gulf, a detailed screening was performed which included the following elements: (a) Computer-aided vital area analysis; (b) Plant inspections; (c) Credit for automatic fire protection systems; (d) Recovery of random failures; (e) Detailed fire propagation modeling. This screening process revealed that all plant areas had a negligible (<1.0E-8 per year) contribution to fire-induced core damage frequency

  13. Fire Management Problem Analysis of Key Unit of Fire Safety%消防安全重点单位消防管理问题分析

    Institute of Scientific and Technical Information of China (English)

    王慧萍

    2013-01-01

    消防安全重点单位一般都是对单位当地或者是国民经济发展有着较大的促进作用,它们也是消防部门的工作需要予以较多关注的对象。本文主要从这些重点单位的消防安全着手,简要的分析这些单位在消防安全方面所做的工作,并指出其存在的缺陷和不足,及时的为其安全管理部门提供相应的解决对策,帮助这些消防安全重点单位综合有效的做好消防的管理和监督工作。%Key unit of fire safety is usually important for the promotion of the local national economic development, so more attention from the fire department should be paid to them. This article mainly starts from the fire safety of these key units, briefly analyzes the fire safety work of these units and points out the defects and deficiencies, offering countermeasures for the safety management department to help these key units of fire safety to go a good job in fire safety management and monitoring comprehensively and effectively.

  14. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia

    OpenAIRE

    Janković M.M.; Todorović D.J.; Nikolić J.D.

    2011-01-01

    The radioactivity monitoring in the “Nikola Tesla”, “Kolubara”, “Morava” and “Kostolac” coal-fired power plants was performed by the Radiation and Environmental Protection Laboratory, Vinča Institute of nuclear sciences in the period 2003-2010. Monitoring included the analysis of soil, water, flying ash, slag, coal and plants. This paper presents the results of the radioactivity analysis of coal, ash and slag samples. Naturally occurring radionuclides 226Ra, 232Th, 40K, 235U, 238U, and ...

  15. The tariff for fire and theft car insurance: analysis with a Cox model

    Directory of Open Access Journals (Sweden)

    Bruno Scarpa

    2013-05-01

    Full Text Available In this paper we analyze the problem of identification of a tariff for a Fire & Theft Car policy for Insurance Companies. Usually companies obtain this tariff by empirical estimate of the pure rate by evaluating the impact of some personalization variables. In this paper we propose the usage of a semi-parametric Cox model, where the response variable is not the waiting time until an event, but the degree of damage because of theft or fire of a car. The proposed model allows to easily tackle typical problems in data available to the companies, like the presence of franchises, which are treated as censored data.

  16. Parametric analysis of fire-resistant behavior of cold-formed thin-walled channel steel concrete beam%冷弯薄壁槽钢-混凝土组合梁抗火性能参数分析

    Institute of Scientific and Technical Information of China (English)

    高轩能; 黄文欢; 朱皓明

    2012-01-01

    Based on the thermal ANSYS analysis, a numerical model for fire-structure coupling analysis of the cold- formed thin-walled channel steel concrete beam under the standard fire is established. The fire-resistant behavior of the composite beam in different influence factors, including the static loading level, the concrete strength, the channel steel section geometry, the fire protection coating thickness, the loading location and the loading pattern, were numerically simulated and analyzed. The numerical results show that the effects of the fire protection coating thickness and the loading level on the fire-resistant of composite beam are significant. The influence of the height and the thickness of channel steel web also should be considered. The concrete strength, the loading location and the loading pattern have little effect on the fire-resistance of the composite beam and can be neglected. The results also show that the fire-resistance of the composite beam will be reduced with the loading level increases for a certain fire protection coating thickness and it will nonlinearly increase with the fire protection coating thickness increases for a certain loading level. The filled concrete can effectively reduce the temperature of the steel beam section and result in temperature elevation delay effect. In the early stage of temperature elevation, the temperatures of the cold-formed thin-walled channel steel concrete beam are lower than those of unfilled channel steel beam, and the temperature reduction may reach 15% - 60%. In the ISO-834 fire the mid-span deflection 8 = 1/25 can be used as the criterion to determine the fire resistance of the composite beam.%基于ANSYS热分析结果,建立冷弯薄壁槽钢-混凝土组合梁在标准火灾作用下的热-结构耦合有限元计算模型,对荷载水平、混凝土强度、槽钢截面几何尺寸、防火涂层厚度、加载位置和加载方式等不同影响因素下的组合梁抗火性能进行有限元分

  17. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    Science.gov (United States)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  18. Simulation optimization and test of fire extinguisher funnel based on CFD-DEM coupling method%基于CFD-DEM耦合法的灭火机风筒优化与试验

    Institute of Scientific and Technical Information of China (English)

    蒋梅胜; 李恒; 李林书; 彭凯; 王顺喜

    2015-01-01

    -DEM coupling model was adopted to simulate the working process of ejecting pneumatic fire extinguisher, and the type of 6MF-30 pneumatic extinguisher was used to test the reliability of the coupling model. The funnel throat angle X1, the adding position of fire extinguishing agent X2, and the funnel length X3 were selected as the influencing factors, and total 23 experiments were conducted by the simulation model under the quadratic orthogonal rotation design. The virtual tunnel was designed according to the tunnel equipped to 6MF-30 pneumatic extinguisher. The virtual fire extinguishing agent pellets were found on the EDEM interface, coupled to the original CFD by Lagrangian model. The pretest results showed that this model had strong convergence which was proved by its stable airflow performance when running at the time of 0.2-0.25 s, and stable pellet number when running at 0.34 s. The air velocity at exit calculated by the CFD-DEM coupling model was similar to the theoretical value. It could be found that the number of aggregating virtual pellets detained in the region between the air tunnel and the fire extinguishing agent’s channel was consistent with the result of research by other scholars. The simulating experiment data were exported for analyzing. The average velocity in axial direction on each point at funnel exit was read by Fluent, and after subtracting the average value 197.550, the deviation data of the 23 experiments were got and selected as the outlet wind velocity (index Y1). The max virtual pellet velocities in axial direction monitored by EDEM within 0-0.4 s of all experiments were selected as the spouting velocity (index Y2). The vertical coordinates of every virtual pellet at 0.37, 0.38, 0.39, 0.4 s in all experiments were read by EDEM, and‘countif’ function was used to calculate the number of virtual pellet located in the tunnel (as assessment index Y3) when working. After the significant test and the variance analysis, the regression equation

  19. Fire in Earth System Models

    Science.gov (United States)

    Kloster, S.; Lasslop, G.

    2015-12-01

    Fire is the most important disturbance process for vegetation impacting the land carbon cycle. Only recently fire models have been developed that are able to represent the important role of fire for vegetation dynamics and land carbon cycling at global scale. Here, we investigate how fire is represented in Earth System Models (ESMs) that participated in the 5th Climate Model Intercomparison Project (CMIP5) and present more recent advances in global fire modeling for upcoming CMIPs. Burned area and carbon emissions from fire are among the variables reported in CMIP5. ESMs from CMIP5 use common simulation and output protocols, enabling direct comparisons between models. For this study ESMs were selected from the CMIP5 repository based on the availability of burned area and/or carbon emissions from fires for the historical and the rcp2.6/4.5/8.5 simulations. All ESMs analyzed show a comparable global total burned area of about 150 to 200 Mha burned per year for the present day period, which is lower than satellite based observations (e.g. GFEDv3 ~370 Mha/year). Most models show over the historical period (1850 - 2005) only a weak change in global fire activity and for the future (2006 - 2100) strong increases in fire activity for rcp4.5 and rcp8.5, but only moderate changes for the rcp2.6 projection. Regionally the response differs strongly between the models, which is partly related to different climate projections. We further analysed the simulated changes in fire activity with respect to simulated changes in temperature and precipitation from which no general pattern of the sensitivity of fire carbon emissions towards changes in climate emerged. We will end the presentation with more recent results from the JSBACH-SPITFIRE model to give some insights into the capability of global fire models that will take part in upcoming CMIPs.

  20. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  1. Socio-geographic analysis of wild land fires: causes of the 2006's wildfires in Galicia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Balsa-Barreiro, J.; Hermosilla, T.

    2013-07-01

    Aim of study: To propose a methodology to establish motivations underlying wildland fire episodes by analyzing both the socioeconomics of the affected territory and the geographical distribution of the wildfire. Area of study: The wildfires occurred during 2006 in Galicia, in the NW of Spain, were analyzed and compared regard to the previous years. Material and methods: The proposed methodology in this study is divided into four steps: (a) definition of the forest context, (b) fire episode and socioeconomic data collection, (c) geospatial representation through map production, and (d) joint analysis and data interpretation. A combined analysis of the spatial and temporal coincidence of wildfire and the socioeconomic activities is performed. Main results: A combined analysis of the spatial and temporal coincidence of wildfire dynamics and the socioeconomic activities allow us to assess and to interpret wildfire causes and motivations of socioeconomic groups. In our area study, a broad analysis indicates that wildfire recurrence within this region is related to an accelerated rural flight process which exacerbates the conflict between rural and urban models. Research highlights: The socio-geographical analysis of a territory's wildfire dynamics enables us to establish possible causes and motivations of their origins. Providing the specific contextual and socioeconomic information, this methodology has potential applicability across varied study locations. (Author)

  2. Fire protection for high speed line tunnels; Risk analysis and exceptional robotic application results

    NARCIS (Netherlands)

    Linde, F.W.J. van de; Gijsbers, F.B.J.; Klok, G.J.

    2006-01-01

    The Green Hart Tunnel in The Netherlands is a 7 km long high speed railway tunnel with an exterior diameter of 14.5 metres. A separation wall devides the tunnel into two single tubes. High speed trains will pass the tunnel at speeds of more than 300 kph. Inside the tunnel 200,000 m2 fire resistant p

  3. Analysis of Moisture Evaporation from Underwear Designed for Fire-Fighters

    Directory of Open Access Journals (Sweden)

    Elena Onofrei

    2015-03-01

    Full Text Available In this study we analysed the effect of moisture on the thermal protective performance of fire-fighter clothing in case of routine fire-fighting conditions. In the first stage of this research we investigated simultaneous heat and moisture transfer through a single-layer fabric, used as underwear for fire-fighters, at different moisture conditions. In the second stage of the study, the underwear in dry and wet state was tested together with protective clothing systems for fire-fighter consisting of three or four layers. It was found that during the evaporation of the moisture, a temperature plateau appeared during which temperatures hardly rose. The energy consumption used for the phase change of moisture located in the assembly dominated the heat transfer process as long as there was moisture present. As soon as all water had evaporated, the temperatures approached the temperatures measured for dry samples. The moisture within the clothing assembly did not lead to increased temperatures compared with the measurements with dry samples. This research has confirmed that moisture can positively affect the thermal protection of a clothing system.

  4. STUDY ON FOREST FIRE DANGER MODEL WITHREMOTE SENSING BASED ON GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real-time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire dsnger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.

  5. Wild Fire Risk Map in the Eastern Steppe of Mongolia Using Spatial Multi-Criteria Analysis

    Science.gov (United States)

    Nasanbat, Elbegjargal; Lkhamjav, Ochirkhuyag

    2016-06-01

    Grassland fire is a cause of major disturbance to ecosystems and economies throughout the world. This paper investigated to identify risk zone of wildfire distributions on the Eastern Steppe of Mongolia. The study selected variables for wildfire risk assessment using a combination of data collection, including Social Economic, Climate, Geographic Information Systems, Remotely sensed imagery, and statistical yearbook information. Moreover, an evaluation of the result is used field validation data and assessment. The data evaluation resulted divided by main three group factors Environmental, Social Economic factor, Climate factor and Fire information factor into eleven input variables, which were classified into five categories by risk levels important criteria and ranks. All of the explanatory variables were integrated into spatial a model and used to estimate the wildfire risk index. Within the index, five categories were created, based on spatial statistics, to adequately assess respective fire risk: very high risk, high risk, moderate risk, low and very low. Approximately more than half, 68 percent of the study area was predicted accuracy to good within the very high, high risk and moderate risk zones. The percentages of actual fires in each fire risk zone were as follows: very high risk, 42 percent; high risk, 26 percent; moderate risk, 13 percent; low risk, 8 percent; and very low risk, 11 percent. The main overall accuracy to correct prediction from the model was 62 percent. The model and results could be support in spatial decision making support system processes and in preventative wildfire management strategies. Also it could be help to improve ecological and biodiversity conservation management.

  6. Dietary Response of Sympatric Deer to Fire Using Stable Isotope Analysis of Liver Tissue

    Directory of Open Access Journals (Sweden)

    David M. Leslie, Jr.

    2009-12-01

    Full Text Available Carbon (δ13C and nitrogen (δ15N isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4 of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, δ13C and δ15N in their tissue can index ingested and assimilated diets through time. We assessed δ13C and δ15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus and white-tailed deer (O. virginianus to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2–3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter differences in forage type. Liver δ13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver δ15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated δ13C and δ15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire.

  7. Atmospheric emissions from vegetation fires in Portugal (1990–2008: estimates, uncertainty analysis, and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    J. M. C. Pereira

    2010-09-01

    Full Text Available Atmospheric emissions from wildfires in Portugal were estimated yearly over the period 1990–2008 using Landsat-based burnt area maps and land cover maps, national forest inventory data, biometric models, and literature review data. Emissions were calculated as the product of area burnt, biomass loading per unit area, combustion factor, and emission factor, using land cover specific values for all variables. Uncertainty associated with each input variable was quantified with a probability density function or a standard deviation value. Uncertainty and sensitivity analysis of estimates were performed with Monte Carlo and variance decomposition techniques. Area burnt varied almost 50-fold during the study period, from about 9000 ha in 2008 to 440 000 ha in 2003. Emissions reach maximum and minimum in the same years, with CO2eq values of 159 and 5655 Gg for 2008 and 2003, respectively. Emission factors, and the combustion factor for shrubs were identified as the variables with higher impact on model output variance. There is a very strong correlation between area burnt and emissions, allowing for accurate emissions estimates once area burnt is quantified. Pyrogenic emissions were compared against those from various economy sectors and found to represent 1% to 9% of the total.

  8. Post-fire overland flow generation and inter-rill erosion under simulated rainfall in two eucalypt stands in north-central Portugal.

    Science.gov (United States)

    Malvar, M C; Prats, S A; Nunes, J P; Keizer, J J

    2011-02-01

    The aim of this study was to improve the existing knowledge of the runoff and inter-rill erosion response of forest stands following wildfire, focusing on commercial eucalypt plantations and employing field rainfall simulation experiments (RSE's). Repeated RSE's were carried out in two adjacent but contrasting eucalypt stands on steep hill slopes in north-central Portugal that suffered a moderate severity fire in July 2005. This was done at six occasions ranging from 3 to 24 months after the fire and using a paired-plot experimental design that comprised two pairs of RSE's at each site and occasion. Of the 46 RSE's: (i) 24 and 22 RSE's involved application rates of 45-50 and 80-85 mm h(-1), respectively; (ii) 22 took place in a stand that had been ploughed in down slope direction several years before the wildfire and 24 in an unploughed stand. The results showed a clear tendency for extreme-intensity RSE's to produce higher runoff amounts and greater soil and organic matter losses than the simultaneous high-intensity RSE's on the neighbouring plots. However, there existed marked exceptions, both in space (for one of the plot pairs) and time (under intermediate soil water repellency conditions). Also, overland flow generation and erosion varied significantly between the various field campaigns. This temporal pattern markedly differed from a straightforward decline with time-after-fire and rather suggested a seasonal component, reflecting broad variations in topsoil water repellency. The ploughed site produced less runoff and erosion than the unploughed site, contrary to what would be expected if the down slope ploughing had occurred after the wildfire instead of several years before it. Finally, sediment losses at both study sites were noticeably lower than those reported by other studies involving repeat RSE's, i.e. in Australia and western Spain. This possibly reflected a history of intensive land use in the study region, including in more recent times after the

  9. Analysis and simulation of Wiseman hypocycloid engine

    Directory of Open Access Journals (Sweden)

    Priyesh Ray

    2014-12-01

    Full Text Available This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston and connecting rod to move in a straight line creating a perfect sinusoidal motion, without any side loads. In this work, the Wiseman hypocycloid engine was modeled in a commercial engine simulation software and compared to slider-crank engine of the same size. The engine’s performance was studied, while operating on diesel, ethanol, and gasoline fuel. Furthermore, a scaling analysis on the Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement. It was found that the existing 30cc Wiseman engine produced about 7% less power at peak speeds than the slider-crank engine of the same size. These results were concurrent with the dynamometer tests performed in the past. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. The four-stroke diesel variant of the same Wiseman engine performed better than the two-stroke gasoline version. The Wiseman engine with a contra piston (that allowed to vary the compression ratio showed poor fuel efficiency but produced higher torque when operating on E85 fuel. It also produced about 1.4% more power than while running on gasoline. While analyzing effects of the engine size on the Wiseman hypocycloid engine prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency, and cylinder brake mean effective pressure as the displacement increased. The 30 horsepower (HP conceptual Wiseman prototype, while operating on E85, produced the most optimum results in all aspects, and the diesel test for the same engine proved to be the most fuel efficient.

  10. The Difficulty Getting High Escape Fractions of Ionizing Photons from High-redshift Galaxies: a View from the FIRE Cosmological Simulations

    CERN Document Server

    Ma, Xiangcheng; Hopkins, Philip F; Faucher-Giguere, Claude-Andre; Quataert, Eliot; Keres, Dusan; Murray, Norman

    2015-01-01

    We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitude Muv = -9 to -19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0-6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (fesc) of hydrogen ionizing photons. We find that the instantaneous fesc has large time variability (0.01%-20%), while the time-averaged fesc over long time-scales generally remains ~5%, considerably lower than the estimate in many reionization models. We find no strong dependence of fesc on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mo...

  11. Review report Ringhals-1 PSA concerning flooding analysis, steam line rupture analysis, level 2 analysis, fire analysis

    International Nuclear Information System (INIS)

    The Swedish Nuclear Power Inspectorate (SKI) has performed a critical review of four partial analyses in the Ringhals-1 Probabilistic Safety Analysis. The over-all impression of the analyses is positive. Methods, conditions and data are well chosen and described in the studies. The studies fulfil their objectives to identify the relative weaknesses of the plant, and to compute the accident frequency of core damages. However, SKI has some comments that should be considered in future analyses. Some of the important general comments follow: The documentation should be improved in order to demonstrate that all possible events have been considered. A comparison with the other PSA studies should be given in each study, to facilitate a general picture of risks for the plant. Only the Level 2 study has a description of the uncertainties in the initial conditions and the data and how they affect the result. The reviewed studies are so called full-effect studies. Data for low-effect and revision periods should be included in future studies. Data on experiences (or lack of experiences) at the plant should be included in the documentation

  12. Development of fire severity factors to be used in fire PSA for Japanese LWRs

    International Nuclear Information System (INIS)

    Institute of Nuclear Safety (INS/NUPEC) has developed a fire PSA methodology since 1992 sponsored by Ministry of International Trade and Industries (MITI). This methodology originally employed the fire severity factors that were developed based on the fire experiences of US-LWRs. The trial application of this methodology to a typical Japanese PWR suggested that the fire severity factors based on the fire experiences in US-LWRs seemed to be too conservative for Japanese LWRs and it is necessary to develop the fire severity factors for Japanese LWRs. However, Japanese LWRs have too few fire experiences to develop fire severity factors based on their fire experiences. Based on the above, INS/NUPEC has developed the fire severity factors for Japanese LWRs analytically with fire simulation codes. (author)

  13. Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation

    International Nuclear Information System (INIS)

    Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (β). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at β=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently. - Highlights: ► Combined heating systems comply with the energy structure reformation in China. ► We consider the current state of the art of cogeneration systems in China. ► Combined heating systems can be economically more feasible and sustainable. ► The net heating cost of a combined heating system is more sensitive to coal price. ► The optimal basic heat load ratio is more easily influenced by gas price.

  14. FDTD simulation tools for UWB antenna analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  15. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  16. Numerical Modelling by FLAC on Coal Fires in North China

    Science.gov (United States)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    coal mine with the backfill. A smaller fires can also be handled by taking out burning coal by bulldozing techniques described above are applicable to small fires, but they do not work well in extinction of large coal fires. References [1] http://www.coalfire.caf.dlr.de [2] Schalke, H.J.W.G.; Rosema, A.; Van Genderen, J.L. (1993): Environmental monitoring of coal fires in North China. Project Identification Mission Report. Report Remote Sensing Programme Board, Derft, the Netherlands. [3] Zhang, X.; Kroonenberg, S. B.; De Boer, C. B. (2004): Dating of coal fires in Xinjiang, north-west China. Terra Nova. Band 16, No 2, S. 68-74. DOI: 10.1111/j.1365-3121.2004.00532.x [4] Deng Jun, Hou Shuang, Li Huirong, e.t.c (2006): Oxidation Mechanism at Initial Stage of a Simulated Coal Molecule with -CH2O-[J]. Journal of Changchun University of Science and Technology, 29(2), P. 84-87. [5] Deng, Jun (2008): Presentation. Chinese Researches and Practical Experiences on Controlling Underground Coal Fires. The 2nd Australia-China Symposium on Science, Technology and Education. 15-18 October 2008, Courtyard Marriott, Surfers Paradise Beach, Gold Coast, Queensland, Australia. [6] Itasca (2003): FLAC, Fast Lagrangian Analysis of Continua. Itasca Consultants Group, Inc., Minneapolis.

  17. Detection, Analysis and Risk Assessment of Coal Fires in Northern China

    Science.gov (United States)

    Fischer, Christian; Li, Jing; Wu, Jianjun; Erhler, Christoph; Jiang, Weiguo; Guo, Shan; Yang, Bo

    2013-01-01

    Uncontrolled combustion of coal is a serious problem on a global scale. Since coal can easily be oxidized and often has a prominent “self-heating” capacity, many coal types have a tendency to combust spontaneously once sufficient oxygen is available and natural cooling is prevented. The rapid expansion of uncontrolled small-scale coal mining activities during the last 30-40 years and the increasing amount of not adequate closed down and now abandoned coal mine sites are supposed to have led to an increase of human-induced coal fires. Thus, coalfield fires need to be not only inventoried at regional scales through rapid and cost effective methods, but also assessed, monitored and secured, wherever appropriate. This leads to major research and technological development objectives: Easy-to-use, routine remote and in-situ monitoring techniques, based on airborne and space borne imagery, to become part in an integrated long-term monitoring framework.

  18. Influence analysis of flow rule in mine fire during injecting inert gases

    Institute of Scientific and Technical Information of China (English)

    NIU Hui-yong; WANG Hai-qiao

    2011-01-01

    According to the action law of gas flow during injecting inert gases as the research main line,and hydromechanics and thermodynamics theories,the characteristic of gas delamination that was caused by injecting inert gases to closed fire zone was analyzed.The criterion was brought forward,which could scale disappearing probability of turbulent state.Formation mechanism of gas layer in turbulent state was discussed primarily.Simultaneously,the condition was pointed out,which could make the gas in turbulent state by injecting different gases.The mathematical model about dynamic changes of oxygen and methane concentration in the process of injecting gases was erected.The mixture mechanism about injecting different flow inert gases and flammable gas layer in closed fire zone was revealed.

  19. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Directory of Open Access Journals (Sweden)

    Świta P.

    2016-05-01

    Full Text Available The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  20. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Science.gov (United States)

    Świta, P.; Kamiński, M.

    2016-05-01

    The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.