Tensor analysis and elementary differential geometry for physicists and engineers
Nguyen-Schäfer, Hung
2017-01-01
This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...
Global Differential Geometry and Global Analysis
Pinkall, Ulrich; Simon, Udo; Wegner, Berd
1991-01-01
All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stabl...
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Tensor analysis and elementary differential geometry for physicists and engineers
Nguyen-Schäfer, Hung
2014-01-01
Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics, and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis, and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists, and practicing engineers.
Stoker, J J
2011-01-01
This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Tensor and vector analysis with applications to differential geometry
Springer, C E
2012-01-01
Concise and user-friendly, this college-level text assumes only a knowledge of basic calculus in its elementary and gradual development of tensor theory. The introductory approach bridges the gap between mere manipulation and a genuine understanding of an important aspect of both pure and applied mathematics.Beginning with a consideration of coordinate transformations and mappings, the treatment examines loci in three-space, transformation of coordinates in space and differentiation, tensor algebra and analysis, and vector analysis and algebra. Additional topics include differentiation of vect
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
Differential geometry and symmetric spaces
Helgason, Sigurdur
2001-01-01
Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there
Differential geometry curves, surfaces, manifolds
Kühnel, Wolfgang
2015-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so
Symposium on Differential Geometry and Differential Equations
Berger, Marcel; Bryant, Robert
1987-01-01
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Modern differential geometry for physicists
Isham, C J
1989-01-01
These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
Foundations of arithmetic differential geometry
Buium, Alexandru
2017-01-01
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Elementary differential geometry from a generalized standpoint
International Nuclear Information System (INIS)
Weinberg, S.
1986-01-01
The authors describe the essential ingredients of differential geometry-vielbeins, connections, curvatures and isometries-on a level somewhat more general than is commonly found in the literature of physics and mathematics. Most often, one finds differential geometry discussed in terms either of a metric (especially in the older textbooks), or equivalently in terms of a vielbein together with a principle of invariance under independent rotations or Lorentz transformations at each point, as well as invariance under general coordinate transformations. They adopt the same general framework, but keep an open mind as to whether the local invariance group is a rotation or Lorentz group or something quite different. Differential geometry based on a metric or on local rotational or Lorentz invariance is called Riemannian geometry; the more general quasi-Riemannian geometry described here is known in the mathematical literature as the theory of G-structures
Introduction to differential geometry for engineers
Doolin, Brian F
2013-01-01
This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Chiral anomalies and differential geometry
Energy Technology Data Exchange (ETDEWEB)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Differential geometry and topology of curves
Animov, Yu
2001-01-01
Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.
Projective differential geometry of submanifolds
Akivis, M A
1993-01-01
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are s
Energy Technology Data Exchange (ETDEWEB)
Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)
2016-08-15
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original
Recent topics in differential and analytic geometry
Ochiai, T
1990-01-01
Advanced Studies in Pure Mathematics, Volume 18-I: Recent Topics in Differential and Analytic Geometry presents the developments in the field of analytical and differential geometry. This book provides some generalities about bounded symmetric domains.Organized into two parts encompassing 12 chapters, this volume begins with an overview of harmonic mappings and holomorphic foliations. This text then discusses the global structures of a compact Kähler manifold that is locally decomposable as an isometric product of Ricci-positive, Ricci-negative, and Ricci-flat parts. Other chapters con
Advances in differential geometry and topology
Institute for Scientific Interchange. Turin
1990-01-01
The aim of this volume is to offer a set of high quality contributions on recent advances in Differential Geometry and Topology, with some emphasis on their application in physics.A broad range of themes is covered, including convex sets, Kaehler manifolds and moment map, combinatorial Morse theory and 3-manifolds, knot theory and statistical mechanics.
Applications of Differential Geometry to Cartography
Benitez, Julio; Thome, Nestor
2004-01-01
This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…
Differential Geometry and Lie Groups for Physicists
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Differential geometry connections, curvature, and characteristic classes
Tu, Loring W
2017-01-01
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...
Synthetic differential geometry within homotopy type theory I
Nishimura, Hirokazu
2016-01-01
Both syntheticc differential geometry and homotopy type theory pre-fer synthetic arguments to analytical ones. This paper gives a first steptowards developing synthetic differential geometry within homotopy typetheory. Model theory of this approach will be discussed in a subsequentpaper.
Pseudo-differential operators groups, geometry and applications
Zhu, Hongmei
2017-01-01
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.
Differential geometry of curves and surfaces
Tapp, Kristopher
2016-01-01
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to carto...
Differential geometry of curves and surfaces
Banchoff, Thomas F
2010-01-01
Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.
Differential geometry of groups in string theory
International Nuclear Information System (INIS)
Schmidke, W.B. Jr.
1990-09-01
Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs
Gravitation, gauge theories and differential geometry
International Nuclear Information System (INIS)
Eguchi, T.; Chicago Univ., IL; Chicago Univ., IL; Gilkey, P.B.; California Univ., Los Angeles; Hanson, A.J.
1980-01-01
The purpose of this article is to outline various mathematical ideas, methods, and results, primarily from differential geometry and topology, and to show where they can be applied to Yang-Mills gauge theories and Einstein's theory of gravitation.We have several goals in mind. The first is to convey to physicists the bases for many mathematical concepts by using intuitive arguments while avoiding the detailed formality of most textbooks. Although a variety of mathematical theorems will be stated, we will generally give simple examples motivating the results instead of presenting abstract proofs. Another goal is to list a wide variety of mathematical terminology and results in a format which allows easy reference. The reader then has the option of supplementing the descriptions given here by consulting standard mathematical references and articles such as those listed in the bibliography. Finally, we intend this article to serve the dual purpose of acquainting mathematicians with some basic physical concepts which have mathematical ramifications; physical problems have often stimuladed new directions in mathematical thought. (orig./WL)
Nonlinear partial differential equations: Integrability, geometry and related topics
Krasil'shchik, Joseph; Rubtsov, Volodya
2017-03-01
Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.
Differential and complex geometry origins, abstractions and embeddings
Wells, Jr , Raymond O
2017-01-01
Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.
ICMS Workshop on Differential Geometry and Continuum Mechanics
Grinfeld, Michael; Knops, R
2015-01-01
This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...
Differential geometry, Palatini gravity and reduction
International Nuclear Information System (INIS)
Capriotti, S.
2014-01-01
The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Differential geometry on Hopf algebras and quantum groups
International Nuclear Information System (INIS)
Watts, P.
1994-01-01
The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Cartan for beginners differential geometry via moving frames and exterior differential systems
Ivey, Thomas A
2016-01-01
Two central aspects of Cartan's approach to differential geometry are the theory of exterior differential systems (EDS) and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems in geometry. It begins with the classical differential geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics. One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. As well, the book features an introduction to G-structures and a treatment of the theory of connections. The techniques of EDS are also applied to obtain explici...
Complex differential geometry and supermanifolds in strings and fields. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bongaarts, P.J.M. (Univ. of Leiden, Lorentz Inst. (Netherlands)); Martini, R. (Univ. of Twente, Faculty of Applied Mathematics, Enschede (Netherlands)) (eds.)
1988-01-01
This conference is the seventh in a series of meetings that started in 1973. All of these meetings have been centered around a few main topics of related interest and have been partly instructional in character, in order to stimulate further research. The last three conferences were devoted to aspects of differential geometry in mathematical physics, and this trend was continued in the present meeting. More specifically, the emphasis was this time on complex differential geometry (Kaehler manifolds), super and graded manifolds, and their applications to supersymmetry, strings and field theory. (orig.).
Differential geometry the mathematical works of J. H. C. Whitehead
James, I M
1962-01-01
The Mathematical Works of J. H. C. Whitehead, Volume 1: Differential Geometry contains all of Whitehead's published work on differential geometry, along with some papers on algebras. Most of these were written in the period 1929-1937, but a few later articles are included. The book begins with a list of Whitehead's works, in chronological order of writing as well as a biographical note by M. H. A. Newman and Barbara Whitehead, and a mathematical appreciation by John Milnor. This is followed by separate chapters on topics such as linear connections; a method of obtaining normal representations
Differential geometry based solvation model II: Lagrangian formulation.
Chen, Zhan; Baker, Nathan A; Wei, G W
2011-12-01
Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of
Nonassociative differential geometry and gravity with non-geometric fluxes
Aschieri, Paolo; Ćirić, Marija Dimitrijević; Szabo, Richard J.
2018-02-01
We systematically develop the metric aspects of nonassociative differential geometry tailored to the parabolic phase space model of constant locally non-geometric closed string vacua, and use it to construct preliminary steps towards a nonassociative theory of gravity on spacetime. We obtain explicit expressions for the torsion, curvature, Ricci tensor and Levi-Civita connection in nonassociative Riemannian geometry on phase space, and write down Einstein field equations. We apply this formalism to construct R-flux corrections to the Ricci tensor on spacetime, and comment on the potential implications of these structures in non-geometric string theory and double field theory.
Introduction to Dubois-Violette's non-commutative differential geometry
International Nuclear Information System (INIS)
Djemai, A.E.F.
1994-07-01
In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs
Number Theory, Analysis and Geometry
Goldfeld, Dorian; Jones, Peter
2012-01-01
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th
Lie groups, differential equations, and geometry advances and surveys
2017-01-01
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Fluid lipid membranes: from differential geometry to curvature stresses.
Deserno, Markus
2015-01-01
A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length through any curve drawn on the membrane's surface. In the absence of external forces or torques the surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying Euler-Lagrange equation for the membrane's shape. This review provides a comprehensive introduction into these concepts without assuming the reader's familiarity with differential geometry, which instead will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to reason with both tensors is then illustrated with a number of simple examples, after which this review concludes with four more sophisticated applications: boundary conditions for adhering membranes, corrections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated interactions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An application of differential geometry to SSC magnet end winding
International Nuclear Information System (INIS)
Cook, J.M.
1990-04-01
It is expected that a large fraction of the total cost of the proposed Superconducting Supercollider will be spent on magnets, and, as Leon Lederman has remarked, ''most of the cost of making a magnet is in the ends.'' Among the mechanical problems to be solved there is the construction of an end-configuration for the superconducting cables which will minimize their strain energy. The purpose of this paper is to promote the use of differential geometry in this minimization. The use will be illustrated by a specific application to the winding of dipole ends. The cables are assumed to be clamped so firmly that their strain is not altered by Lorentz stresses. 15 refs
Painlevé equations in the differential geometry of surfaces
Eitner, Ulrich
2000-01-01
This book brings together two different branches of mathematics: the theory of Painlevé and the theory of surfaces. Self-contained introductions to both these fields are presented. It is shown how some classical problems in surface theory can be solved using the modern theory of Painlevé equations. In particular, an essential part of the book is devoted to Bonnet surfaces, i.e. to surfaces possessing families of isometries preserving the mean curvature function. A global classification of Bonnet surfaces is given using both ingredients of the theory of Painlevé equations: the theory of isomonodromic deformation and the Painlevé property. The book is illustrated by plots of surfaces. It is intended to be used by mathematicians and graduate students interested in differential geometry and Painlevé equations. Researchers working in one of these areas can become familiar with another relevant branch of mathematics.
Open problems in the geometry and analysis of Banach spaces
Guirao, Antonio J; Zizler, Václav
2016-01-01
This is a collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help convince young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems presented herein are longstanding open problems, some are recent, some are more important and some are only "local" problems. Some would ...
Modern Differential Geometry For Physicists. 2nd Edn
International Nuclear Information System (INIS)
Chrusciel, P T
2006-01-01
Most of us sometimes have to face a student asking: 'What do I need to get started on this'. (In my case 'this' would typically be a topic in general relativity.) After thinking about it for quite a while, and consulting candidate texts again and again, a few days later I usually end up saying: read this chapter in book I (but without going too much detail), then that chapter in book II (but ignore all those comments), then the first few sections of this review paper (but do not try to work out equations NN to NNN), and then come back to see me. In the unlikely event that the student comes back without changing the topic, there follows quite a bit of explaining on a blackboard over the following weeks. From now on I will say: get acquainted with the material covered by this book. As far as Isham's book is concerned, 'this' in the student's question above can stand for any topic in theoretical physics which touches upon differential geometry (and I can only think of very few which do not). Said plainly: this book contains most of the introductory material necessary to get started in general relativity, or those branches of mathematical physics which require differential geometry. A student who has mastered the notions presented in the book will have a solid basis to continue into specialized topics. I am not aware of any other book which would be as useful as this one in terms of the spectrum of topics covered, stopping at the right place to get sufficient introductory insight. According to the publisher, these lecture notes are the content of an introductory course on differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course 'Quantum Fields and Fundamental Forces' at Imperial College, London. The volume is divided into six chapters: - An Introduction to Topology; - Differential Manifolds; - Vector Fields and n-Forms; - Lie Groups; - Fibre Bundles; - Connections in a Bundle. It is a sad
An introduction to complex analysis and geometry
D'Angelo, John P
2010-01-01
An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Vargas, José G
2014-01-01
This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas
Geometry and analysis on manifolds in memory of professor Shoshichi Kobayashi
Mabuchi, Toshiki; Maeda, Yoshiaki; Noguchi, Junjiro; Weinstein, Alan
2015-01-01
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables ...
Sensitivity analysis of the Two Geometry Method
International Nuclear Information System (INIS)
Wichers, V.A.
1993-09-01
The Two Geometry Method (TGM) was designed specifically for the verification of the uranium enrichment of low enriched UF 6 gas in the presence of uranium deposits on the pipe walls. Complications can arise if the TGM is applied under extreme conditions, such as deposits larger than several times the gas activity, small pipe diameters less than 40 mm and low pressures less than 150 Pa. This report presents a comprehensive sensitivity analysis of the TGM. The impact of the various sources of uncertainty on the performance of the method is discussed. The application to a practical case is based on worst case conditions with regards to the measurement conditions, and on realistic conditions with respect to the false alarm probability and the non detection probability. Monte Carlo calculations were used to evaluate the sensitivity for sources of uncertainty which are experimentally inaccessible. (orig.)
Thermal analysis on motorcycle disc brake geometry
W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.
2017-08-01
Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Differential geometry of viscoelastic models with fractional-order derivatives
International Nuclear Information System (INIS)
Yajima, Takahiro; Nagahama, Hiroyuki
2010-01-01
Viscoelastic materials with memory effect are studied based on the fractional rheonomic geometry. The geometric objects are regarded as basic quantities of fractional viscoelastic models, i.e. the metric tensor and torsion tensor are interpreted as the strain and the fractional strain rate, respectively. The generalized viscoelastic equations are expressed by the geometric objects. Especially, the basic constitutive equations such as Voigt and Maxwell models can be derived geometrically from the generalized equation. This leads to the fact that various viscoelastic models can be unified into one geometric expression.
The differential geometry of higher order jets and tangent bundles
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)
Projective geometry of systems of second-order differential equations
International Nuclear Information System (INIS)
Aminova, A V; Aminov, N A
2006-01-01
It is proved that every projective connection on an n-dimensional manifold M is locally defined by a system S of n-1 second-order ordinary differential equations resolved with respect to the second derivatives and with right-hand sides cubic in the first derivatives, and that every differential system S defines a projective connection on M. The notion of equivalent differential systems is introduced and necessary and sufficient conditions are found for a system S to be reducible by a change of variables to a system whose integral curves are straight lines. It is proved that the symmetry group of a differential system S is a group of projective transformations in n-dimensional space with the associated projective connection and has dimension ≤n 2 +2n. Necessary and sufficient conditions are found for a system to admit the maximal symmetry group; basis vector fields and structure equations of the maximal symmetry Lie algebra are produced. As an application a classification is given of the systems S of two second-order differential equations admitting three-dimensional soluble symmetry groups.
Tensors and Riemannian geometry with applications to differential equations
Ibragimov, Nail H
2015-01-01
This graduate textbook begins by introducing Tensors and Riemannian Spaces, and then elaborates their application in solving second-order differential equations, and ends with introducing theory of relativity and de Sitter space. Based on 40 years of teaching experience, the author compiles a well-developed collection of examples and exercises to facilitate the reader’s learning.
Integrable structures of dispersionless systems and differential geometry
Odesskii, A. V.
2017-05-01
We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons-Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.
Differential geometry and topology with a view to dynamical systems
Burns, Keith
2005-01-01
MANIFOLDSIntroductionReview of topological conceptsSmooth manifoldsSmooth mapsTangent vectors and the tangent bundleTangent vectors as derivationsThe derivative of a smooth mapOrientationImmersions, embeddings and submersionsRegular and critical points and valuesManifolds with boundarySard's theoremTransversalityStabilityExercisesVECTOR FIELDS AND DYNAMICAL SYSTEMSIntroductionVector fieldsSmooth dynamical systemsLie derivative, Lie bracketDiscrete dynamical systemsHyperbolic fixed points and periodic orbitsExercisesRIEMANNIAN METRICSIntroductionRiemannian metricsStandard geometries on surfacesExercisesRIEMANNIAN CONNECTIONS AND GEODESICSIntroductionAffine connectionsRiemannian connectionsGeodesicsThe exponential mapMinimizing properties of geodesicsThe Riemannian distanceExercisesCURVATUREIntroductionThe curvature tensorThe second fundamental formSectional and Ricci curvaturesJacobi fieldsManifolds of constant curvatureConjugate pointsHorizontal and vertical sub-bundlesThe geodesic flowExercisesTENSORS AND DI...
Quantum groups, non-commutative differential geometry and applications
Energy Technology Data Exchange (ETDEWEB)
Schupp, Peter [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Physics
1993-12-09
The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ``quantum geometric`` construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of {Delta}(U). It provides invariant maps A {yields} U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ``reflection`` matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity.
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....
A Computational Differential Geometry Approach to Grid Generation
Liseikin, Vladimir D
2007-01-01
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. This monograph gives a detailed treatment of applications of geometric methods to advanced grid technology. It focuses on and describes a comprehensive approach based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces. In this second edition the author takes a more detailed and practice-oriented approach towards explaining how to implement the method by: Employing geometric and numerical analyses of monitor metrics as the basis for developing efficient tools for controlling grid properties. Describing new grid generation codes based on finite differences for generating both structured and unstructured surface and domain grids. Providing examples of applications of the codes to the genera...
On Texture and Geometry in Image Analysis
DEFF Research Database (Denmark)
Gustafsson, David Karl John
2009-01-01
-out of the captured scene will also change. At large viewing distances, the sky occupies a large region in the image and buildings, trees and lawns appear as uniformly colored regions. The following questions are addressed: How much of the visual appearance in terms of geometry and texture of an image can...
Energy Technology Data Exchange (ETDEWEB)
Okumura, Y. [Dept. of Physics, Boston Univ., MA (United States); Kase, H. [Dept. of Physics, Daido Inst. of Technology, Nagoya (Japan); Morita, K. [Dept. of Physics, Nagoya Univ. (Japan)
2001-04-01
The standard model is reconstructed in a generalized differential geometry (GDG) based on the idea of a real structure as proposed by Coquereaux et al. and Connes. The GDG considered in this article is a kind of non-commutative geometry (NCG) on the discrete space that successfully reproduces the Higgs mechanism of the spontaneously broken gauge theory. Here, a GDG is a direct generalization of the differential geometry on an ordinary continuous manifold to the product space of this manifold with a discrete manifold. In a GDG, a one-form basis {chi} on the discrete space is incorporated in addition to the one-form basis dx{sup {mu}} on Minkowski space, rather than {gamma}{sup 5} as in Connes's original work. Although the Lagrangians obtained in this way are the same as those obtained in our previous formulation of GDG, the basic formalism becomes very simply and clear. (orig.)
Bikic, Naida; Maricic, Sanja M.; Pikula, Milenko
2016-01-01
The aim of the study was to examine the effects of problem-based learning which was established on differentiation of content at three levels of complexity in the processing of the content of Analytical geometry in the plane. In this context, an experimental research was conducted, on a sample of secondary school students (N = 165) in order to…
Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers
Directory of Open Access Journals (Sweden)
Satoshi Fujita
2012-01-01
Full Text Available Effective differentiation of mesenchymal stem cells (MSCs is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.
Topics in differential geometry associated with position vector fields on Euclidean submanifolds
Directory of Open Access Journals (Sweden)
Bang-Yen Chen
2017-01-01
Full Text Available The position vector field is the most elementary and natural geometric object on a Euclidean submanifold. The purpose of this article is to survey six research topics in differential geometry in which the position vector field plays very important roles. In this article we also explain the relationship between position vector fields and mechanics, dynamics, and D’Arcy Thompson’s law of natural growth in biology.
The Abel symposium 2008 on differential equations: geometry, symmetries and integrability
Lychagin, Valentin; Straume, Eldar; Abel symposium 2008; Differential equations; Geometry, symmetries and integrability
2008-01-01
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry
Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.
2014-01-01
Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.
Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces
Energy Technology Data Exchange (ETDEWEB)
Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)
2007-06-15
Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.
Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces
International Nuclear Information System (INIS)
Hemmen, J. Leo van; Leibold, Christian
2007-01-01
Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level
Differential geometry in the large and compactification of higher-dimensional gravity
Muzinich, I. J.
1986-05-01
Some well-known results from differential geometry are applied to some of the major issues of compactification of higher-dimensional gravity. The results apply both to the theories generally known as Kaluza-Klein and the recently more promising super string theories. These results are primarily due to Yano [K. Yano, Integral Formulas in Differential Geometry (Marcel Dekker, New York, 1970); Differential Geometry on Complex and Almost Complex Manifolds (Macmillian, New York, 1965)] and have profound implications for the Kaluza-Klein scenario with respect to the cosmological constant problem and the massless sector of the theory. While the results are well known in the mathematical literature, the present author has only seen a fragmentary account presented by a few physicists. The necessary introduction to complex manifolds is also provided including Kähler manifolds and their possible relevance to the problem of compactification. The Ricci tensor provides the central role in the discussion of metric isometries, holomorphy, and holonomy. The incumbent role of Calabi-Yau manifolds with Ricci flat curvature and SU(n) holonomy, which have been recently conjectured in regard to super string compactification, is also mentioned.
Stable isogeometric analysis of trimmed geometries
Marussig, Benjamin; Zechner, Jürgen; Beer, Gernot; Fries, Thomas-Peter
2017-04-01
We explore extended B-splines as a stable basis for isogeometric analysis with trimmed parameter spaces. The stabilization is accomplished by an appropriate substitution of B-splines that may lead to ill-conditioned system matrices. The construction for non-uniform knot vectors is presented. The properties of extended B-splines are examined in the context of interpolation, potential, and linear elasticity problems and excellent results are attained. The analysis is performed by an isogeometric boundary element formulation using collocation. It is argued that extended B-splines provide a flexible and simple stabilization scheme which ideally suits the isogeometric paradigm.
Jumarie, Guy
2013-04-01
By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.
Hand geometry field application data analysis
Energy Technology Data Exchange (ETDEWEB)
Ruehle, M.; Ahrens, J. [Sandia National Labs., Albuquerque, NM (United States). Entry Control/Systems Engineering Dept.
1997-03-01
Over the last fifteen years, Sandia National Laboratories Security Systems and Technology Center, Department 5800, has been involved in several laboratory tests of various biometric identification devices. These laboratory tests were conducted to verify the manufacturer`s performance claims, to determine strengths and weaknesses of particular devices, and to evaluate which devices meet the US Department of Energy`s unique needs for high-security devices. However, during a recent field installation of one of these devices, significantly different performance was observed than had been predicted by these laboratory tests. This report documents the data analysis performed in the search for an explanation of these differences.
Hand geometry field application data analysis
International Nuclear Information System (INIS)
Ruehle, M.; Ahrens, J.
1997-03-01
Over the last fifteen years, Sandia National Laboratories Security Systems and Technology Center, Department 5800, has been involved in several laboratory tests of various biometric identification devices. These laboratory tests were conducted to verify the manufacturer's performance claims, to determine strengths and weaknesses of particular devices, and to evaluate which devices meet the US Department of Energy's unique needs for high-security devices. However, during a recent field installation of one of these devices, significantly different performance was observed than had been predicted by these laboratory tests. This report documents the data analysis performed in the search for an explanation of these differences
Modeling, analysis and control of a variable geometry actuator
Evers, W.J.; Knaap, A. van der; Besselink, I.J.M.; Nijmeijer, H.
2008-01-01
A new design of variable geometry force actuator is presented in this paper. Based upon this design, a model is derived which is used for steady-state analysis, as well as controller design in the presence of friction. The controlled actuator model is finally used to evaluate the power consumption
Local differential geometry of null curves in conformally flat space-time
International Nuclear Information System (INIS)
Urbantke, H.
1989-01-01
The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: firstly, sometimes the description is easier in twistor terms, sometimes in six-vector terms, which leads to a mutual enlightenment of both; and secondly, the case of null curves in timelike pseudospheres or 2+1 Minkowski space we were only able to treat twistorially, making use of an invariant differential found by Fubini and Cech. The result is the expected one: apart from stated exceptional cases there is a conformally invariant parameter and two conformally invariant curvatures which, when specified in terms of this parameter, serve to characterize the curve up to conformal transformations. 12 refs. (Author)
Peng, C A; Palsson, B Ø
1996-06-05
Tissue function is comprised of a complex interplay between biological and physicochemical rate processes. The design of bioreactors for tissue engineering must account for these processes simultaneously in order to obtain a bioreactor that provides a uniform environment for tissue growth and development. In the present study we consider the effects of fluid flow and mass transfer on the growth of a tissue in a parallel-plate bioreactor configuration. The parenchymal cells grow on a preformed stromal (feeder) layer that secretes a growth factor that stimulates parenchymal stem cell replication and differentiation. The biological dynamics are described by a unilineage model that describes the replication and differentiation of the tissue stem cell. The physicochemical rates are described by the Navier-Stokes and convective-diffusion equations. The model equations are solved by a finite element method. Two dimensionless groups govern the behavior of the solution. One is the Graetz number (Gz) that describes the relative rates of convection and diffusion, and the other a new dimensionless ratio (designated by P) that describes the interplay of the growth factor production, diffusion, and stimulation. Four geometries (slab, gondola, diamond, and radial shapes) for the parallel-plate bioreactor are analyzed. The uniformity of cell growth is measured by a two-dimensional coefficient of variance. The concentration distribution of the stroma-derived growth factor was computed first based on fluid flow and bioreactor geometry. Then the concomitant cell density distribution was obtained by integrating the calculated growth factor concentration with the parenchymal cell growth and unilineage differentiation process. The spatiotemporal cell growth patterns in four different bioreactor configurations were investigated under a variety of combinations of Gz (10(-1), 10(0), and 10(1)) and P(10(-2), 10(-1), 10(0), 10(1), and 10(2)). The results indicate high cell density and
Extreme ultraviolet multilayer defect analysis and geometry reconstruction
Xu, Dongbo; Evanschitzky, Peter; Erdmann, Andreas
2016-01-01
This paper proposes a method for the characterization of multilayer defects from extreme ultraviolet (EUV) projection images at different focus positions. The transport-of-intensity equation is applied to retrieve the phase distribution of the reflected light in the vicinity of the defect. The defect-induced intensity and phase modifications and their dependency from defect geometry parameters are analyzed by several selected optical properties of multilayer defect. To reconstruct the defect geometry parameters from the intensity and phase of a defect, a principal component analysis (PCA) is employed to parameterize the intensity and phase distributions into principal component coefficients. In order to construct the base functions of the PCA, a combination of a reference multilayer defect and appropriate pupil filters is introduced to obtain the designed sets of intensity and phase distributions. Finally, an artificial neural network is applied to correlate the principal component coefficients of the intensity and the phase of the defect with the defect geometry parameters and to reconstruct the unknown defect geometry parameters. The performance of the proposed approach is evaluated both for mask blank defects and for defects in the vicinity of an absorber pattern.
Intercept Algorithm for Maneuvering Targets Based on Differential Geometry and Lyapunov Theory
Directory of Open Access Journals (Sweden)
Yunes Sh. ALQUDSI
2018-03-01
Full Text Available Nowadays, the homing guidance is utilized in the existed and under development air defense systems (ADS to effectively intercept the targets. The targets became smarter and capable to fly and maneuver professionally and the tendency to design missile with a small warhead became greater, then there is a pressure to produce a more precise and accurate missile guidance system based on intelligent algorithms to ensure effective interception of highly maneuverable targets. The aim of this paper is to present an intelligent guidance algorithm that effectively and precisely intercept the maneuverable and smart targets by virtue of the differential geometry (DG concepts. The intercept geometry and engagement kinematics, in addition to the direct intercept condition are developed and expressed in DG terms. The guidance algorithm is then developed by virtue of DG and Lyapunov theory. The study terminates with 2D engagement simulation with illustrative examples, to demonstrate that, the derived DG guidance algorithm is a generalized guidance approach and the well-known proportional navigation (PN guidance law is a subset of this approach.
Group analysis of differential equations
Ovsiannikov, L V
1982-01-01
Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations.This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the g
Analysis and Prediction of Micromilling Stability with Variable Tool Geometry
Directory of Open Access Journals (Sweden)
Ziyang Cao
2014-11-01
Full Text Available Micromilling can fabricate miniaturized components using micro-end mill at high rotational speeds. The analysis of machining stability in micromilling plays an important role in characterizing the cutting process, estimating the tool life, and optimizing the process. A numerical analysis and experimental method are presented to investigate the chatter stability in micro-end milling process with variable milling tool geometry. The schematic model of micromilling process is constructed and the calculation formula to predict cutting force and displacements is derived. This is followed by a detailed numerical analysis on micromilling forces between helical ball and square end mills through time domain and frequency domain method and the results are compared. Furthermore, a detailed time domain simulation for micro end milling with straight teeth and helical teeth end mill is conducted based on the machine-tool system frequency response function obtained through modal experiment. The forces and displacements are predicted and the simulation result between variable cutter geometry is deeply compared. The simulation results have important significance for the actual milling process.
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
Analysis of the effect of pore geometry in the physical properties of rocks
Directory of Open Access Journals (Sweden)
Luiz Alberto Oliveira Lima Roque
2012-12-01
Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.
Hip geometry and femoral neck fractures: A meta-analysis.
Fajar, Jonny Karunia; Taufan, Taufan; Syarif, Muhammad; Azharuddin, Azharuddin
2018-04-01
Several studies have reported hip geometry to predict the femoral neck fractures. However, they showed inconsistency. To determine the association between hip geometry and femoral neck fractures. Published literature from PubMed and Embase databases (until May 25 th , 2017) was searched for eligible publications. The information related to (1) name of first author; (2) year of publication; (3) country of origin; (4) sample size of cases and controls and (5) mean and standard deviation of cases and controls were extracted. The pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association between hip geometry and femoral neck fractures were assessed using random or fixed effect model. A Comprehensive Meta-analysis software, version 2.0, was used to analyse the data. A total of 11 studies were included in this study. Our results showed that increase in hip axis length (OR 95% CI = 1.53 [1.06-2.21], p = 0.025), femoral neck angle (OR 95% CI = 1.47 [1.01-2.15], p = 0.044) and neck width (OR 95% CI = 2.68 [1.84-3.91], p < 0.001) was associated with the risk of femoral neck fractures, whereas we could not find the correlation between femoral neck axis length and the risk of femoral neck fractures. There is strong evidence that elevated hip axis length, femoral neck angle and neck width are the risk factor for femoral neck fractures. The Translational Potential of this Article : Determining the hip axis length, femoral neck angle and neck width that are most highly associated with femoral neck fracture may allow clinicians to more accurately predict which individuals are likely to experience femoral neck fractures in the future.
Stability analysis of lower dimensional gravastars in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2016-11-15
The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)
Hansen, Ulrich; Maas, Christian
2017-04-01
About 4.5 billion years ago the early Earth experienced several giant impacts that lead to one or more deep terrestrial magma oceans of global extent. The crystallization of these vigorously convecting magma oceans is of key importance for the chemical structure of the Earth, the subsequent mantle evolution as well as for the initial conditions for the onset of plate tectonics. Due to the fast planetary rotation of the early Earth and the small magma viscosity, rotation probably had a profound effect on early differentiation processes and could for example influence the presence and distribution of chemical heterogeneities in the Earth's mantle [e.g. Matyska et al., 1994, Garnero and McNamara, 2008]. Previous work in Cartesian geometry revealed a strong influence of rotation as well as of latitude on the crystal settling in a terrestrial magma ocean [Maas and Hansen, 2015]. Based on the preceding study we developed a spherical shell model that allows to study crystal settling in-between pole and equator as well as the migration of crystals between these regions. Further we included centrifugal forces on the crystals, which significantly affect the lateral and radial distribution of the crystals. Depending on the strength of rotation the particles accumulate at mid-latitude or at the equator. At high rotation rates the dynamics of fluid and particles are dominated by jet-like motions in longitudinal direction that have different directions on northern and southern hemisphere. All in all the first numerical experiments in spherical geometry agree with Maas and Hansen [2015] that the crystal distribution crucially depends on latitude, rotational strength and crystal density. References E. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle. Science, 320(5876):626-628, 2008. C. Maas and U. Hansen. Eff ects of earth's rotation on the early di erentiation of a terrestrial magma ocean. Journal of Geophysical Research: Solid Earth, 120
Analysis meets geometry the Mikael Passare memorial volume
Boman, Jan; Kiselman, Christer; Kurasov, Pavel; Sigurdsson, Ragnar
2017-01-01
This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael’s life as well as his contributions to mathematics, written by friends of Mikael’s who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael’s ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael’s impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.
Kampinga, W.R.; Wijnant, Ysbrand H.; de Boer, Andries
Acoustic waves can usually be described by the wave equation (or the Helmholtz equation). This allowed for the development of flexible numerical analysis tools, such as the finite element method and the boundary element method, in which various acoustical problems with complicated geometries can be
Comparative analysis of linear motor geometries for Stirling coolers
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Applied analysis and differential equations
Cârj, Ovidiu
2007-01-01
This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.
Multidimensional real analysis I differentiation
Duistermaat, J J; van Braam Houckgeest, J P
2004-01-01
Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains man
Analysis of students geometry skills viewed from spatial intelligence
Riastuti, Nova; Mardiyana, Pramudya, Ikrar
2017-12-01
Geometry is one of the difficult materials for students because students must have the ability to visualize, describe the picture, draw a figure, and know the kinds of figures. This study aimisto describe the students geometry skills in resolving geometry problems viewed from spatial intelligence. This research uses a descriptive qualitative method has aim to identify students geometry skills by 6 students in eight grade of Ngawi regency, Indonesia. The subjects were 2 students with high spatial intelligence, 2 students with medium spatial intelligence, and 2 students with low spatial intelligence. Datas were collected based on written test and interview. The result of this research showed that the students geometry skills viewed from spatial intelligence includes. The results of this study indicate that there was a correlation between students' spatial intelligence with geometric skills. Students had different geometric skills in each category of spatial intelligence, although there were similarities in some geometry skill indicators. Students with low spatial intelligence had less geometry skills, thus requiring special attention from teachers. Mathematics teachers are expected to provide more practice questions that reinforce students' geometry skills including visual skills, descriptive skills, drawing skills, logical skills, applied skills.
Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.
2015-01-01
Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01 mm−1 and μs′=1.0 mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
International Nuclear Information System (INIS)
Zika, M.; Downar, T.
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory
Hydraulic Geometry Analysis of the Lower Mississippi River
National Research Council Canada - National Science Library
Soar, Philip J; Thorne, Colin R; Harmar, Oliver P
2005-01-01
The hydraulic geometry of the Lower Mississippi River is primarily the product of the action of natural flows acting on the floodplain materials over centuries and millennia to form an alluvial forming a channel...
Analysis and Geometry : MIMS-GGTM, in Honour of Mohammed Salah Baouendi
Kacimi, Aziz; Kallel, Sadok; Mir, Nordine
2015-01-01
This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
Intelligent Patching of Conceptual Geometry for CFD Analysis
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect
ORIGAMI -- The Oak Ridge Geometry Analysis and Modeling Interface
International Nuclear Information System (INIS)
Burns, T.J.
1996-01-01
A revised ''ray-tracing'' package which is a superset of the geometry specifications of the radiation transport codes MORSE, MASH (GIFT Versions 4 and 5), HETC, and TORT has been developed by ORNL. Two additional CAD-based formats are also included as part of the superset: the native format of the BRL-CAD system--MGED, and the solid constructive geometry subset of the IGES specification. As part of this upgrade effort, ORNL has designed an Xwindows-based utility (ORIGAMI) to facilitate the construction, manipulation, and display of the geometric models required by the MASH code. Since the primary design criterion for this effort was that the utility ''see'' the geometric model exactly as the radiation transport code does, ORIGAMI is designed to utilize the same ''ray-tracing'' package as the revised version of MASH. ORIGAMI incorporates the functionality of two previously developed graphical utilities, CGVIEW and ORGBUG, into a single consistent interface
International Nuclear Information System (INIS)
Thierry-Mieg, Jean
2006-01-01
In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space
Design and analysis of an intelligent controller for active geometry suspension systems
Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim
2011-02-01
An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.
Empirical fractal geometry analysis of some speculative financial bubbles
Redelico, Francisco O.; Proto, Araceli N.
2012-11-01
Empirical evidence of a multifractal signature during increasing of a financial bubble leading to a crash is presented. The April 2000 crash in the NASDAQ composite index and a time series from the discrete Chakrabarti-Stinchcombe model for earthquakes are analyzed using a geometric approach and some common patterns are identified. These patterns can be related the geometry of the rising period of a financial bubbles with the non-concave entropy problem.
Peccati, Giovanni
2016-01-01
Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolvi...
Differential analysis of matrix convex functions II
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2009-01-01
We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...
Selected papers on analysis and differential equations
Society, American Mathematical
2010-01-01
This volume contains translations of papers that originally appeared in the Japanese journal Sūgaku. These papers range over a variety of topics in ordinary and partial differential equations, and in analysis. Many of them are survey papers presenting new results obtained in the last few years. This volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.
Leo, Marco; Cazzato, Dario; De Marco, Tommaso; Distante, Cosimo
2014-01-01
's shape that is obtained through a differential analysis of image intensities and the subsequent combination with the local variability of the appearance represented by self-similarity coefficients. The experimental evidence of the effectiveness of the method was demonstrated on challenging databases containing facial images. Moreover, its capabilities to accurately detect the centers of the eyes were also favourably compared with those of the leading state-of-the-art methods.
Directory of Open Access Journals (Sweden)
Marco Leo
representation of the eye's shape that is obtained through a differential analysis of image intensities and the subsequent combination with the local variability of the appearance represented by self-similarity coefficients. The experimental evidence of the effectiveness of the method was demonstrated on challenging databases containing facial images. Moreover, its capabilities to accurately detect the centers of the eyes were also favourably compared with those of the leading state-of-the-art methods.
Stability analysis of underground mining openings with complex geometry
Directory of Open Access Journals (Sweden)
Cała Marek
2016-03-01
Full Text Available Stability of mining openings requires consideration of a number of factors, such as: geological structure, the geometry of the underground mining workings, mechanical properties of the rock mass, changes in stress caused by the influence of neighbouring workings. Long-term prediction and estimation of workings state can be analysed with the use of numerical methods. Application of 3D numerical modelling in stability estimation of workings with complex geometry was described with the example of Crystal Caves in Wieliczka Salt Mine. Preservation of the Crystal Caves reserve is particularly important in view of their unique character and the protection of adjacent galleries which are a part of tourist attraction included in UNESCO list. A detailed 3D model of Crystal Caves and neighbouring workings was built. Application of FLAC3D modelling techniques enabled indication of the areas which are in danger of stability loss. Moreover, the area in which protective actions should be taken as well as recommendations concerning the convergence monitoring were proposed.
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Mechanics, analysis and geometry 200 years after Lagrange
1991-01-01
Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analytical mechanics.
Muratore-Ginanneschi, Paolo
2013-07-01
We discuss the relevance of geometric concepts in the theory of stochastic differential equations for applications to the theory of non-equilibrium thermodynamics of small systems. In particular, we show how the Eells-Elworthy-Malliavin covariant construction of the Wiener process on a Riemann manifold provides a physically transparent formulation of optimal control problems of finite-time thermodynamic transitions. Based on this formulation, we turn to an evaluative discussion of recent results on optimal thermodynamic control and their interpretation.
3D geometry analysis of the medial meniscus--a statistical shape modeling approach.
Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N
2014-10-01
The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence
International Nuclear Information System (INIS)
Novkovic, D.; Tomasevic, M.; Subotic, K.
1998-01-01
A system of reduced differential equations generally valid for plane-parallel, cylindrical and spherical ionization chambers, which is appropriate for numerical solution, has been derived. The system has been solved numerically for plane-parallel and spherical ionization chambers filled with air. The comparison of the calculated results of Armstrong and Tate, for plane-parallel ionization chambers, and Sprinkle and Tate, for spherical ionization chambers, with the present calculations has shown a good agreement. The calculated values for ionization chambers filled with CO 2 were also in good agreement with the experimental data of Moriuchi et al. (author)
Analysis of Anther Cell Differentiation
Energy Technology Data Exchange (ETDEWEB)
Ma, Hong [Pennsylvania State Univ., University Park, PA (United States)
2015-01-19
This grant supports research on genes that regulate Arabidopsis anther development. The proposed research largely concerns that functions of two key regulatory genes: SPL and DYT1, which encode two putative transcription factors, as well as genes that interact with these genes. Last year, we reported progress in preparation for ChIP analysis with SPL and DYT1, in dyt1 and ams microarray experiments and initial data analysis, in functional analysis of one of the DYT1 target gene, MYB35.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Projective differential geometry of higher reductions of the two-dimensional Dirac equation
Bogdanov, L. V.; Ferapontov, E. V.
2004-11-01
We investigate reductions of the two-dimensional Dirac equation imposed by the requirement of the existence of a differential operator Dn of order n mapping its eigenfunctions to adjoint eigenfunctions. For first order operators these reductions (and multicomponent analogs thereof) lead to the Lame equations descriptive of orthogonal coordinate systems. Our main observation is that nth order reductions coincide with the projective-geometric 'Gauss-Codazzi' equations governing special classes of line congruences in the projective space P2 n-1 , which is the projectivised kernel of Dn. In the second order case this leads to the theory of W-congruences in P3 which belong to a linear complex, while the third order case corresponds to isotropic congruences in P5. Higher reductions are compatible with odd order flows of the Davey-Stewartson hierarchy. All these flows preserve the kernel Dn, thus defining nontrivial geometric evolutions of line congruences. Multicomponent generalizations are also discussed. The correspondence between geometric picture and the theory of integrable systems is established; the definition of the class of reductions and all geometric objects in terms of the multicomponent KP hierarchy is presented. Generating forms for reductions of arbitrary order are constructed.
Multivariate analysis of microarray data: differential expression and differential connection.
Kiiveri, Harri T
2011-02-01
Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.
Multivariate analysis of microarray data: differential expression and differential connection
Directory of Open Access Journals (Sweden)
Kiiveri Harri T
2011-02-01
Full Text Available Abstract Background Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. Results We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. Conclusion The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.
Litvin, Faydor L.; Fuentes, Alfonso; Hawkins, J. M.; Handschuh, Robert F.
2001-01-01
A new type of face gear drive for application in transmissions, particularly in helicopters, has been developed. The new geometry differs from the existing geometry by application of asymmetric profiles and double-crowned pinion of the face gear mesh. The paper describes the computerized design, simulation of meshing and contact, and stress analysis by finite element method. Special purpose computer codes have been developed to conduct the analysis. The analysis of this new type of face gear is illustrated with a numerical example.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Geometry of finite deformations and time-incremental analysis
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2016-01-01
Roč. 81, May (2016), s. 230-244 ISSN 0020-7462 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * time-incremental analysis * Lagrangian system * evolution equation of Lie type Subject RIV: BE - Theoretical Physics Impact factor: 2.074, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020746216000330
EEG Differentiation Analysis and Stimulus Set Meaningfulness
Directory of Open Access Journals (Sweden)
Armand Mensen
2017-10-01
Full Text Available A set of images can be considered as meaningfully different for an observer if they can be distinguished phenomenally from one another. Each phenomenal difference must be supported by some neurophysiological differences. Differentiation analysis aims to quantify neurophysiological differentiation evoked by a given set of stimuli to assess its meaningfulness to the individual observer. As a proof of concept using high-density EEG, we show increased neurophysiological differentiation for a set of natural, meaningfully different images in contrast to another set of artificially generated, meaninglessly different images in nine participants. Stimulus-evoked neurophysiological differentiation (over 257 channels, 800 ms was systematically greater for meaningful vs. meaningless stimulus categories both at the group level and for individual subjects. Spatial breakdown showed a central-posterior peak of differentiation, consistent with the visual nature of the stimulus sets. Temporal breakdown revealed an early peak of differentiation around 110 ms, prominent in the central-posterior region; and a later, longer-lasting peak at 300–500 ms that was spatially more distributed. The early peak of differentiation was not accompanied by changes in mean ERP amplitude, whereas the later peak was associated with a higher amplitude ERP for meaningful images. An ERP component similar to visual-awareness-negativity occurred during the nadir of differentiation across all image types. Control stimulus sets and further analysis indicate that changes in neurophysiological differentiation between meaningful and meaningless stimulus sets could not be accounted for by spatial properties of the stimuli or by stimulus novelty and predictability.
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Morphological analysis of carbon steels using fractal geometry
Prada, D. A.; González, C. P.; Vera, P. E.; Álvarez, M. A.
2016-02-01
In this paper we present the preliminary results of morphological analysis of Fe59Mn36.5Al3.10C3.56Cu0.237%Wt alloy. This alloy was prepared by mechanical alloying with various milling times, then hot compacted at various pressures and finally underwent presented a sintering process. The samples were characterized structurally by experimental techniques such as: X-ray diffraction and scanning electron microscopy. Each micrograph was analysed by fractal dimension using the Box Counting method in 2D; this type of tool allows you to assign a numerical value to the region which has been applied the technic. This numerical value is associated with the properties obtained by experimental techniques such as microhardness.
Nielsen, Jens C. O.; Li, Xin
2018-01-01
An iterative procedure for numerical prediction of long-term degradation of railway track geometry (longitudinal level) due to accumulated differential settlement of ballast/subgrade is presented. The procedure is based on a time-domain model of dynamic vehicle-track interaction to calculate the contact loads between sleepers and ballast in the short-term, which are then used in an empirical model to determine the settlement of ballast/subgrade below each sleeper in the long-term. The number of load cycles (wheel passages) accounted for in each iteration step is determined by an adaptive step length given by a maximum settlement increment. To reduce the computational effort for the simulations of dynamic vehicle-track interaction, complex-valued modal synthesis with a truncated modal set is applied for the linear subset of the discretely supported track model with non-proportional spatial distribution of viscous damping. Gravity loads and state-dependent vehicle, track and wheel-rail contact conditions are accounted for as external loads on the modal model, including situations involving loss of (and recovered) wheel-rail contact, impact between hanging sleeper and ballast, and/or a prescribed variation of non-linear track support stiffness properties along the track model. The procedure is demonstrated by calculating the degradation of longitudinal level over time as initiated by a prescribed initial local rail irregularity (dipped welded rail joint).
Shipping cask criticality analysis utilizing combinatorial geometry with KENO-IV
International Nuclear Information System (INIS)
West, J.T.; Petrie, L.M.
1978-01-01
KENO-IV/CG represents an important step forward in geometric modeling capability for criticality analysis. With the merging of KENO geometry's repeating cell feature and combinatorial geometry's detailed modeling ability and simplified input specifications, many geometric approximations required for previous criticality calculations are no longer necessary. Also, many of the features in KENO-IV/CG lend themselves to further development. Therefore, it represents a step forward in the state-of-the-art for Monte Carlo criticality analysis. All of the problems analyzed with KENO-IV/CG at ORNL have agreed well with experimental data where results are available. KENO-IV/CG provides industry with a very powerful tool for accurately modeling very complex geometries
Directory of Open Access Journals (Sweden)
Kakoma Luneta
2015-06-01
Full Text Available The role geometry plays in real life makes it a core component of mathematics that students must understand and master. Conceptual knowledge of geometric concepts goes beyond the development of skills required to manipulate geometric shapes. This study is focused on errors students made when solving coordinate geometry problems in the final Grade 12 examination in South Africa. An analysis of 1000 scripts from the 2008 Mathematics examination was conducted. This entailed a detailed analysis of one Grade 12 geometry examination question. Van Hiele levels of geometrical thought were used as a lens to understand students’ knowledge of geometry. Studies show that Van Hiele levels are a good descriptor of current and future performance in geometry. This study revealed that whilst students in Grade 12 are expected to operate at level 3 and level 4, the majority were operating at level 2 of Van Hiele’s hierarchy. The majority of students did not understand most of the basic concepts in Euclidian transformation. Most of the errors were conceptual and suggested that students did not understand the questions and did not know what to do as a result. It is also noted that when students lack conceptual knowledge the consequences are so severe that they hardly respond to the questions in the examination.
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Genomics analysis of genes expressed reveals differential ...
African Journals Online (AJOL)
Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...
Viscoelastic Plate Analysis Based on Gâteaux Differential
Directory of Open Access Journals (Sweden)
Kadıoğlu Fethi
2016-01-01
Full Text Available In this study, it is aimed to analyze the quasi-static response of viscoelastic Kirchhoff plates with mixed finite element formulation based on the Gâteaux differential. Although the static response of elastic plate, beam and shell structures is a widely studied topic, there are few studies that exist in the literature pertaining to the analysis of the viscoelastic structural elements especially with complex geometries, loading conditions and constitutive relations. The developed mixed finite element model in transformed Laplace-Carson space has four unknowns as displacement, bending and twisting moments in addition to the dynamic and geometric boundary condition terms. Four-parameter solid model is employed for modelling the viscoelastic behaviour. For transformation of the solutions obtained in the Laplace-Carson domain to the time domain, different numerical inverse transform techniques are employed. The developed solution technique is applied to several quasi-static example problems for the verification of the suggested numerical procedure.
Geometry of surfaces a practical guide for mechanical engineers
Radzevich, Stephen P
2012-01-01
Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...
Differential network analysis in human cancer research.
Gill, Ryan; Datta, Somnath; Datta, Susmita
2014-01-01
A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.
International Nuclear Information System (INIS)
Choi, Sung Hoon; Kwark, Min Su; Shim, Hyung Jin
2012-01-01
As The Monte Carlo (MC) particle transport analysis for a complex system such as research reactor, accelerator, and fusion facility may require accurate modeling of the complicated geometry. Its manual modeling by using the text interface of a MC code to define the geometrical objects is tedious, lengthy and error-prone. This problem can be overcome by taking advantage of modeling capability of the computer aided design (CAD) system. There have been two kinds of approaches to develop MC code systems utilizing the CAD data: the external format conversion and the CAD kernel imbedded MC simulation. The first approach includes several interfacing programs such as McCAD, MCAM, GEOMIT etc. which were developed to automatically convert the CAD data into the MCNP geometry input data. This approach makes the most of the existing MC codes without any modifications, but implies latent data inconsistency due to the difference of the geometry modeling system. In the second approach, a MC code utilizes the CAD data for the direct particle tracking or the conversion to an internal data structure of the constructive solid geometry (CSG) and/or boundary representation (B-rep) modeling with help of a CAD kernel. MCNP-BRL and OiNC have demonstrated their capabilities of the CAD-based MC simulations. Recently we have developed a CAD-based geometry processing module for the MC particle simulation by using the OpenCASCADE (OCC) library. In the developed module, CAD data can be used for the particle tracking through primitive CAD surfaces (hereafter the CAD-based tracking) or the internal conversion to the CSG data structure. In this paper, the performances of the text-based model, the CAD-based tracking, and the internal CSG conversion are compared by using an in-house MC code, McSIM, equipped with the developed CAD-based geometry processing module
A Geometry Based Infra-Structure for Computational Analysis and Design
Haimes, Robert
1998-01-01
The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator
Hierarchical Parallelization of Gene Differential Association Analysis
Directory of Open Access Journals (Sweden)
Dwarkadas Sandhya
2011-09-01
Full Text Available Abstract Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.
Directory of Open Access Journals (Sweden)
Basak KOK
2014-06-01
Full Text Available The purpose of this research is to evaluate the effects of teaching geometry which is differentiated based on the parallel curriculum for gifted/talented students on spatial ability. For this purpose; two units as “Polygons” and “Geometric Objects” of 5th grade mathematics book has been taken and formed a new differentiated geometry unit. In this study, pretest and posttest designs of experimental model were used. The study was conducted in Istanbul Science and Art Center, which offers differentiated program to those who are gifted and talented students after school, in the city of İstanbul and participants were 30 students being 15 of them are experimental group and the other 15 are control group. Experimental group students were underwent a differentiated program on “Polygons” and “Geometric Objects” whereas the other group continued their normal program without any differentiation. Spatial Ability Test developed by Talented Youth Center of John Hopkins University was used to collect data. Above mentioned test was presented to both groups of the study. Collected data was analyzed by Mann Whitney-U and Wilcoxon Signed Rank Test which is in the statistics program. It is presented as a result of the study that the program prepared for the gifted and talented students raised their spatial thinking ability.
Free-energy analysis of spin models on hyperbolic lattice geometries.
Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej
2016-04-01
We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.
Quantitative portable gamma-spectroscopy sample analysis for non-standard sample geometries
International Nuclear Information System (INIS)
Ebara, S.B.
1998-01-01
Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. This method was not developed to replace other methods such as Monte Carlo or Discrete Ordinates but rather to offer an alternative rapid solution. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma-spectroscopy system is impractical. The portable gamma-spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma-rays and cannot be used for pure beta or alpha emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma-rays. The following presents the analysis technique and presents verification results using actual experimental data, rather than comparisons to other approximations such as Monte Carlo techniques, to demonstrate the accuracy of the method given a known geometry and source term. (author)
Energy Technology Data Exchange (ETDEWEB)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan
2015-09-09
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.
Directory of Open Access Journals (Sweden)
Anita Dewi Utami
2016-03-01
Full Text Available The students' ability to solve mathematical problems are affected directly or indirectly by their pattern of problem solving when they were attending primary and secondary schools. The result of observation shows that there are students who can not answer proving problem and take no action at all, thoughit is only at the step of understanding the problem. NEA is a frame work with simple diagnostic procedures, which include (1 decoding, (2 comprehension, (3 transformation, (4 process skills, and (5 encoding. Newman’s developed diagnostic method is used to identify the error categories of descriptive test answer. Therefore, the descriptive types of students’ error in proving problem solving in Geometry 1 subject based on Newman’s error Analysis (NEA, and what are the causes for the student’s mistakes in solving those proving problem, especially in Geometry1 subject is interesting to be discussed in this article.
Theories of strain analysis from shape fabrics: A perspective using hyperbolic geometry
Yamaji, Atsushi
2008-12-01
A parameter space is proposed for unifying the theories of two-dimensional strain analysis, where strain markers are approximated by ellipses with a prescribed area. It is shown that the theories are unified by hyperbolic geometry, the oldest and simple non-Euclidean geometry. The hyperboloid model of the geometry is used for this purpose. Ellipses normalized by their areas are represented by points on the unit hyperboloid, the curved surface in a non-Euclidean space. Dissimilarity between ellipses is defined by the distance between the points that represent the ellipses. The merit of introducing the geometry comes from the fact that this distance equals the doubled natural strain needed to transform one ellipse to another. Thus, the introduction is natural and convenient for strain and error analyses. Equal-area and gnomonic projections of the hyperboloid are introduced for the Rf/ ϕ and kinematic vorticity analyses, respectively. In our formulation, the strain ellipse optimal for a set of Rf/ ϕ data is obtained as the centroid of the points corresponding to the data on the hyperboloid, and the dispersion of the points shows the uncertainty of the optimal strain. By means of a bootstrap method, the confidence region of the strain is drawn upon the surface, and equal-area projection from the surface to a Euclidean plane shows the dispersion of the points and the size of the confidence region. In addition, our formulation provides a new graphical technique for kinematic vorticity analysis using the gnomonic projection. The technique yields the optimal kinematic vorticity number with its uncertainty.
Analysis instrument test on mathematical power the material geometry of space flat side for grade 8
Kusmaryono, Imam; Suyitno, Hardi; Dwijanto, Karomah, Nur
2017-08-01
The main problem of research to determine the quality of test items on the material side of flat geometry to assess students' mathematical power. The method used is quantitative descriptive. The subjects were students of class 8 as many as 20 students. The object of research is the quality of test items in terms of the power of mathematics: validity, reliability, level of difficulty and power differentiator. Instrument mathematical power ratings are tested include: written tests and questionnaires about the disposition of mathematical power. Data were obtained from the field, in the form of test data on the material geometry of space flat side and questionnaires. The results of the test instrument to the reliability of the test item is influenced by many factors. Factors affecting the reliability of the instrument is the number of items, homogeneity test questions, the time required, the uniformity of conditions of the test taker, the homogeneity of the group, the variability problem, and motivation of the individual (person taking the test). Overall, the evaluation results of this study stated that the test instrument can be used as a tool to measure students' mathematical power.
International Nuclear Information System (INIS)
Biondo, Elliott D.; Davis, Andrew; Wilson, Paul P.H.
2016-01-01
Highlights: • A CAD-based shutdown dose rate analysis workflow has been implemented. • Cartesian and superimposed tetrahedral mesh are fully supported. • Biased and unbiased photon source sampling options are available. • Hybrid Monte Carlo/deterministic techniques accelerate photon transport. • The workflow has been validated with the FNG-ITER benchmark problem. - Abstract: In fusion energy systems (FES) high-energy neutrons born from burning plasma activate system components to form radionuclides. The biological dose rate that results from photons emitted by these radionuclides after shutdown—the shutdown dose rate (SDR)—must be quantified for maintenance planning. This can be done using the Rigorous Two-Step (R2S) method, which involves separate neutron and photon transport calculations, coupled by a nuclear inventory analysis code. The geometric complexity and highly attenuating configuration of FES motivates the use of CAD geometry and advanced variance reduction for this analysis. An R2S workflow has been created with the new capability of performing SDR analysis directly from CAD geometry with Cartesian or tetrahedral meshes and with biased photon source sampling, enabling the use of the Consistent Adjoint Driven Importance Sampling (CADIS) variance reduction technique. This workflow has been validated with the Frascati Neutron Generator (FNG)-ITER SDR benchmark using both Cartesian and tetrahedral meshes and both unbiased and biased photon source sampling. All results are within 20.4% of experimental values, which constitutes satisfactory agreement. Photon transport using CADIS is demonstrated to yield speedups as high as 8.5·10 5 for problems using the FNG geometry.
Energy Technology Data Exchange (ETDEWEB)
Biondo, Elliott D., E-mail: biondo@wisc.edu; Davis, Andrew, E-mail: davisa@engr.wisc.edu; Wilson, Paul P.H., E-mail: wilsonp@engr.wisc.edu
2016-05-15
Highlights: • A CAD-based shutdown dose rate analysis workflow has been implemented. • Cartesian and superimposed tetrahedral mesh are fully supported. • Biased and unbiased photon source sampling options are available. • Hybrid Monte Carlo/deterministic techniques accelerate photon transport. • The workflow has been validated with the FNG-ITER benchmark problem. - Abstract: In fusion energy systems (FES) high-energy neutrons born from burning plasma activate system components to form radionuclides. The biological dose rate that results from photons emitted by these radionuclides after shutdown—the shutdown dose rate (SDR)—must be quantified for maintenance planning. This can be done using the Rigorous Two-Step (R2S) method, which involves separate neutron and photon transport calculations, coupled by a nuclear inventory analysis code. The geometric complexity and highly attenuating configuration of FES motivates the use of CAD geometry and advanced variance reduction for this analysis. An R2S workflow has been created with the new capability of performing SDR analysis directly from CAD geometry with Cartesian or tetrahedral meshes and with biased photon source sampling, enabling the use of the Consistent Adjoint Driven Importance Sampling (CADIS) variance reduction technique. This workflow has been validated with the Frascati Neutron Generator (FNG)-ITER SDR benchmark using both Cartesian and tetrahedral meshes and both unbiased and biased photon source sampling. All results are within 20.4% of experimental values, which constitutes satisfactory agreement. Photon transport using CADIS is demonstrated to yield speedups as high as 8.5·10{sup 5} for problems using the FNG geometry.
Quantitative portable gamma spectroscopy sample analysis for non-standard sample geometries
International Nuclear Information System (INIS)
Enghauser, M.W.; Ebara, S.B.
1997-01-01
Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma spectroscopy system is impractical. The portable gamma spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma rays and cannot be used for pure beta emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma rays. The following presents the analysis technique and presents verification results demonstrating the accuracy of the method
Numerical analysis of systems of ordinary and stochastic differential equations
Artemiev, S S
1997-01-01
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).
Differential thermal analysis microsystem for explosive detection
Olsen, Jesper K.; Greve, Anders; Senesac, L.; Thundat, T.; Boisen, A.
2011-06-01
A micro differential thermal analysis (DTA) system is used for detection of trace explosive particles. The DTA system consists of two silicon micro chips with integrated heaters and temperature sensors. One chip is used for reference and one for the measurement sample. The sensor is constructed as a small silicon nitride membrane incorporating heater elements and a temperature measurement resistor. In this manuscript the DTA system is described and tested by measuring calorimetric response of 3 different kinds of explosives (TNT, RDX and PETN). This project is carried out under the framework of the Xsense project at the Technical University of Denmark (DTU) which combines four independent sensing techniques, these micro DNT sensors will be included in handheld explosives detectors with applications in homeland security and landmine clearance.
Differential thermal analysis of coking coals
Energy Technology Data Exchange (ETDEWEB)
Haruhisa Ueda; Frederic Honnart; Victor Zymla [Nippon Steel Corporation, Nagoya (Japan)
2004-07-01
An experimental procedure was developed enabling the heat flow at all range of the pyrolysis and carbonisation process temperature (25-1100 {sup o}C) to be measured by differential thermal analysis. The endothermic effect at temperatures below 500{sup o}C as well as exothermic effect at higher temperatures were determined. It was established that the heat of carbonisation varies with coal rank and that it is dramatically influenced by coal oxidation and by even relatively small addition of waste plastics to the coal blend. These findings could be taken into consideration in thermal balance of the carbonisation process and the automatic heating control of coke oven batteries. 5 refs., 16 figs., 1 tab.
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Spur gears: Optimal geometry, methods for generation and Tooth Contact Analysis (TCA) program
Litvin, Faydor L.; Zhang, Jiao
1988-01-01
The contents of this report include the following: (1) development of optimal geometry for crowned spur gears; (2) methods for their generation; and (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact on the crowned spur gears. The method developed for synthesis is used for the determination of the optimal geometry for crowned pinion surface and is directed to reduce the sensitivity of the gears to misalignment, localize the bearing contact, and guarantee the favorable shape and low level of the transmission errors. A new method for the generation of the crowned pinion surface has been proposed. This method is based on application of the tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The crowned pinion surface can also be generated by a generating plane whose motion is provided by an automatic grinding machine controlled by a computer. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined.
International Nuclear Information System (INIS)
Guo, Rui; Oka, Yoshiaki
2015-01-01
Highlights: • Three coolant channel geometries are proposed for high breeding LWRs. • Thermal hydraulic performance of coolant channel geometries are analyzed. • Design ranges of PWRs and BWRs with proposed geometries are designated. • One type of geometry (Geometry B) is proved to be superior to the others. - Abstract: This paper analyzes the thermal hydraulic performance of channels with different cross sectional geometries, which were adopted by tightly packed fuel rods assembly for high breeding at operating pressure of PWR and BWR. The calculations were carried out to assess the geometrical effect of coolant channels on thermal-hydraulic parameters by using a CFD code STAR-CCM+. It is found that one type of channel geometry (geometry B) is superior to others because of broad design area of power, cladding temperature and pressure drop
CFD analysis of the VHTR prismatic core with variation of geometry parameters
Energy Technology Data Exchange (ETDEWEB)
Lira, Carlos A.B.O.; Paiva, Pedro P.D.S., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear
2017-11-01
The Very High Temperature Reactor is a thermal, graphite moderated and helium cooled nuclear reactor. The purpose of this work is to study the behavior of the VHTR by means of parametric analysis, altering the energy generation profile in the fuel blocks and the influence of modifications in the geometry itself. The coolant flow through the coolant channels and by-pass channels were analyzed in a 1/12{sup th} section of a fuel block column. Geometry was used with by-pass channels of different dimensions, besides one that had only the cooling channels, without by-pass channel. It has been found that the existence of a by-pass flow induces an increase in the temperature gradient in the fuel block. Comparative studies were performed between the results obtained in simulations carried out with different profiles of thermal energy generation (uniform and sinusoidal) in the fuel channels. It was verified that when there is the same total thermal energy generation in the fuel block, the maximum temperature observed in each of the materials is smaller for the generation with sinusoidal profile. Computer simulations were performed using a geometry with a central channel with the same diameter as the others to verify the hypothesis that the existence of a temperature gradient in the fuel block, with the highest temperature at the center and the lowest temperature being at the periphery of this block, is due to the smaller dimension of the coolant channel located in the center of this block. The results obtained confirm the hypothesis. (author)
Giron Palomares, Jose Benjamin Dolores; Hsieh, Sheng-Jen
2010-05-01
This paper investigates an active thermography approach to probing hidden solder joint geometry. Ten boards were fabricated with the same number of solder joints and amount of solder paste (0.061 g), but using three solder joint geometries (60°, 90°, and 120°). The 90° angle solder pin represented a normal joint, and the 60° and 120° angle pins represented abnormal solder joints. Each board was covered with another board that had three openings just big enough to allow the pin terminals to protrude. A semi-automated system was built to heat and then transfer each board set to a chamber where an infrared camera was used to scan the board as it was cooling down. Each board set underwent the heating, cooling, and scanning process for five trials. Two-thirds of the data set was used for model development and one-third for model evaluation. An artificial neural network (ANN) was constructed to predict abnormal joints given thermal data. Results suggest that solder joints with more surface area cool much faster than those with less surface area. A Finite Element Analysis (FEA) of the heating up and cooling down process consistently predicted solder geometry using the ANN with 86% accuracy. This approach can be used not only to inspect bad solder joints (i.e., low reliability) but also to mass screen for cold solder joints during BGA assembly, since the air gaps in cold solder joints may cause them to cool more slowly than normal joints.
CFD analysis of the VHTR prismatic core with variation of geometry parameters
International Nuclear Information System (INIS)
Lira, Carlos A.B.O.; Paiva, Pedro P.D.S.
2017-01-01
The Very High Temperature Reactor is a thermal, graphite moderated and helium cooled nuclear reactor. The purpose of this work is to study the behavior of the VHTR by means of parametric analysis, altering the energy generation profile in the fuel blocks and the influence of modifications in the geometry itself. The coolant flow through the coolant channels and by-pass channels were analyzed in a 1/12 th section of a fuel block column. Geometry was used with by-pass channels of different dimensions, besides one that had only the cooling channels, without by-pass channel. It has been found that the existence of a by-pass flow induces an increase in the temperature gradient in the fuel block. Comparative studies were performed between the results obtained in simulations carried out with different profiles of thermal energy generation (uniform and sinusoidal) in the fuel channels. It was verified that when there is the same total thermal energy generation in the fuel block, the maximum temperature observed in each of the materials is smaller for the generation with sinusoidal profile. Computer simulations were performed using a geometry with a central channel with the same diameter as the others to verify the hypothesis that the existence of a temperature gradient in the fuel block, with the highest temperature at the center and the lowest temperature being at the periphery of this block, is due to the smaller dimension of the coolant channel located in the center of this block. The results obtained confirm the hypothesis. (author)
Energy Technology Data Exchange (ETDEWEB)
Retzlaff, L.; Pacheco, M.I.; Ferronatto, D.; Negri, V.J. de [Federal University of Santa Catarina (LASHIP/EMC/UFSC), Florianopolis, SC (Brazil). Mechanical Engineering Dept. Lab. of Hydraulic and Pneumatic Systems], E-mail: victor@emc.ufsc.br; Belan, H.C. [Federal Institute of Santa Catarina (IFSC), Chapeco, SC (Brazil). Mechanical Engineering Dept.; Soares, J.M.C. [REIVAX Automacao e Controle, Florianopolis, SC (Brazil)
2009-07-01
This paper discusses an analysis of the influence of internal geometric parameters on the performance of distributing valves including the theoretical and experimental analysis of a 3000 Lpm valve which is used in the speed control of a 350 MVA turbine. Using a model that represents the fluid flow through the valve, it is possible to study the influence of the internal geometry, such the orifice area, radial clearances and internal channels, on the behavior of flow rate and pressure. With the validated model, different valve configurations can be evaluated either in the design phase or during the operation and qualification tests. These results could aid both professionals involved in the operation and maintenance of hydroelectric power plants in identifying and tracking any changes in the valves performance and design engineers in the definition of the geometric and dimensional tolerances. (author)
Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry
International Nuclear Information System (INIS)
Rosa, M.; Warsa, J. S.; Kelley, T. M.
2009-01-01
A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete ordinates (S N ) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to 1. (authors)
Vollmar, Tobias; Maus, Baerbel; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar; Boehringer, Stefan
2008-01-01
Digital image analysis of faces has been demonstrated to be effective in a small number of syndromes. In this paper we investigate several aspects that help bringing these methods closer to clinical application. First, we investigate the impact of increasing the number of syndromes from 10 to 14 as compared to an earlier study. Second, we include a side-view pose into the analysis and third, we scrutinize the effect of geometry information. Picture analysis uses a Gabor wavelet transform, standardization of landmark coordinates and subsequent statistical analysis. We can demonstrate that classification accuracy drops from 76% for 10 syndromes to 70% for 14 syndromes for frontal images. Including side-views achieves an accuracy of 76% again. Geometry performs excellently with 85% for combined poses. Combination of wavelets and geometry for both poses increases accuracy to 93%. In conclusion, a larger number of syndromes can be handled effectively by means of image analysis.
Analysis a cutting edge geometry influence on circular saw teeth at the process of crosscutting wood
Directory of Open Access Journals (Sweden)
Ján Kováč
2009-01-01
Full Text Available Nowadays, the wood cutting process looks like a technological scheme consisting of several connected and relatively inseparable parts. The crosscutting wood is the most widespread in the process of forest exploitation; it is used at tree exploitation, shortening stems and assortment production. The article deals with the influence of the cutting edge geometry of circular saws on the torque and also on the cutting performance at the crosscutting wood therefore there is the influence on the whole cutting process. In the article there is described detailed measurement procedure, used measuring devices and the process of results analysis. Knowledge of wood crosscutting process and choice of suitable cutting conditions and cutting tools will contribute to decrease production costs and energy saving.
Quantization, PDEs, and geometry the interplay of analysis and mathematical physics
Bauer, Wolfram; Witt, Ingo
2016-01-01
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics. Specifically, it discusses global aspects of elliptic PDEs, Berezin-Toeplitz quantization, the stability of solitary waves, and sub-Riemannian geometry. The contributions are based on lectures given by distinguished experts at a summer school in Göttingen. The authors explain fundamental concepts and ideas and present them clearly. Starting from basic notions, these course notes take the reader to the point of current research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. All contributions are of interest to researchers in the respective fields, but they are also accessible to graduate students.
Qamar, Shamsul; Uche, David U; Khan, Farman U; Seidel-Morgenstern, Andreas
2017-05-05
This work is concerned with the analytical solutions and moment analysis of a linear two-dimensional general rate model (2D-GRM) describing the transport of a solute through a chromatographic column of cylindrical geometry. Analytical solutions are derived through successive implementation of finite Hankel and Laplace transformations for two different sets of boundary conditions. The process is further analyzed by deriving analytical temporal moments from the Laplace domain solutions. Radial gradients are typically neglected in liquid chromatography studies which are particularly important in the case of non-perfect injections. Several test problems of single-solute transport are considered. The derived analytical results are validated against the numerical solutions of a high resolution finite volume scheme. The derived analytical results can play an important role in further development of liquid chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.
Bicomplex holomorphic functions the algebra, geometry and analysis of bicomplex numbers
Luna-Elizarrarás, M Elena; Struppa, Daniele C; Vajiac, Adrian
2015-01-01
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. ...
Template security analysis of multimodal biometric frameworks based on fingerprint and hand geometry
Directory of Open Access Journals (Sweden)
Arvind Selwal
2016-09-01
Full Text Available Biometric systems are automatic tools used to provide authentication during various applications of modern computing. In this work, three different design frameworks for multimodal biometric systems based on fingerprint and hand geometry modalities are proposed. An analysis is also presented to diagnose various types of template security issues in the proposed system. Fuzzy analytic hierarchy process (FAHP is applied with five decision parameters on all the designs and framework 1 is found to be better in terms of template data security, templates fusion and computational efficiency. It is noticed that template data security before storage in database is a challenging task. An important observation is that a template may be secured at feature fusion level and an indexing technique may be used to improve the size of secured templates.
Geometry, analysis and probability in honor of Jean-Michel Bismut
Hofer, Helmut; Labourie, François; Jan, Yves; Ma, Xiaonan; Zhang, Weiping
2017-01-01
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubédat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Müller R. Rhodes D. Rössler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.
Analysis of novel geometry-independent method for dialysis access pressure-flow monitoring
Directory of Open Access Journals (Sweden)
Panduranga Harsha
2008-11-01
Full Text Available Abstract Background End-stage renal disease (ESRD confers a large health-care burden for the United States, and the morbidity associated with vascular access failure has stimulated research into detection of vascular access stenosis and low flow prior to thrombosis. We present data investigating the possibility of using differential pressure (ΔP monitoring to estimate access flow (Q for dialysis access monitoring, with the goal of utilizing micro-electro-mechanical systems (MEMS pressure sensors integrated within the shaft of dialysis needles. Methods A model of the arteriovenous graft fluid circuit was used to study the relationship between Q and the ΔP between two dialysis needles placed 2.5–20.0 cm apart. Tubing was varied to simulate grafts with inner diameters of 4.76–7.95 mm. Data were compared with values from two steady-flow models. These results, and those from computational fluid dynamics (CFD modeling of ΔP as a function of needle position, were used to devise and test a method of estimating Q using ΔP and variable dialysis pump speeds (variable flow that diminishes dependence on geometric factors and fluid characteristics. Results In the fluid circuit model, ΔP increased with increasing volume flow rate and with increasing needle-separation distance. A nonlinear model closely predicts this ΔP-Q relationship (R2 > 0.98 for all graft diameters and needle-separation distances tested. CFD modeling suggested turbulent needle effects are greatest within 1 cm of the needle tip. Utilizing linear, quadratic and combined variable flow algorithms, dialysis access flow was estimated using geometry-independent models and an experimental dialysis system with the pressure sensors separated from the dialysis needle tip by distances ranging from 1 to 5 cm. Real-time ΔP waveform data were also observed during the mock dialysis treatment, which may be useful in detecting low or reversed flow within the access. Conclusion With further
Analysis of novel geometry-independent method for dialysis access pressure-flow monitoring.
Weitzel, William F; Cotant, Casey L; Wen, Zhijie; Biswas, Rohan; Patel, Prashant; Panduranga, Harsha; Gianchandani, Yogesh B; Rubin, Jonathan M
2008-11-05
End-stage renal disease (ESRD) confers a large health-care burden for the United States, and the morbidity associated with vascular access failure has stimulated research into detection of vascular access stenosis and low flow prior to thrombosis. We present data investigating the possibility of using differential pressure (DeltaP) monitoring to estimate access flow (Q) for dialysis access monitoring, with the goal of utilizing micro-electro-mechanical systems (MEMS) pressure sensors integrated within the shaft of dialysis needles. A model of the arteriovenous graft fluid circuit was used to study the relationship between Q and the DeltaP between two dialysis needles placed 2.5-20.0 cm apart. Tubing was varied to simulate grafts with inner diameters of 4.76-7.95 mm. Data were compared with values from two steady-flow models. These results, and those from computational fluid dynamics (CFD) modeling of DeltaP as a function of needle position, were used to devise and test a method of estimating Q using DeltaP and variable dialysis pump speeds (variable flow) that diminishes dependence on geometric factors and fluid characteristics. In the fluid circuit model, DeltaP increased with increasing volume flow rate and with increasing needle-separation distance. A nonlinear model closely predicts this DeltaP-Q relationship (R2 > 0.98) for all graft diameters and needle-separation distances tested. CFD modeling suggested turbulent needle effects are greatest within 1 cm of the needle tip. Utilizing linear, quadratic and combined variable flow algorithms, dialysis access flow was estimated using geometry-independent models and an experimental dialysis system with the pressure sensors separated from the dialysis needle tip by distances ranging from 1 to 5 cm. Real-time DeltaP waveform data were also observed during the mock dialysis treatment, which may be useful in detecting low or reversed flow within the access. With further experimentation and needle design, this geometry
Selected papers on analysis and differential equations
Nomizu, Katsumi
2003-01-01
This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. The papers range over a variety of topics, including nonlinear partial differential equations, C^*-algebras, and Schrödinger operators.
International Nuclear Information System (INIS)
Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.
2009-01-01
In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples
Sensitivity analysis and design optimization through automatic differentiation
International Nuclear Information System (INIS)
Hovland, Paul D; Norris, Boyana; Strout, Michelle Mills; Bhowmick, Sanjukta; Utke, Jean
2005-01-01
Automatic differentiation is a technique for transforming a program or subprogram that computes a function, including arbitrarily complex simulation codes, into one that computes the derivatives of that function. We describe the implementation and application of automatic differentiation tools. We highlight recent advances in the combinatorial algorithms and compiler technology that underlie successful implementation of automatic differentiation tools. We discuss applications of automatic differentiation in design optimization and sensitivity analysis. We also describe ongoing research in the design of language-independent source transformation infrastructures for automatic differentiation algorithms
Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis.
Morales-Orcajo, Enrique; Bayod, Javier; Becerro-de-Bengoa-Vallejo, Ricardo; Losa-Iglesias, Marta; Doblare, Manuel
2015-07-01
Hallux abducto valgus (HAV), one of the most common forefoot deformities, occurs primarily in elderly women. HAV is a complex disease without a clearly identifiable cause for its higher prevalence in women compared with men. Several studies have reported various skeletal parameters related to HAV. This study examined the geometry of the proximal phalanx of the hallux (PPH) as a potential etiologic factor in this deformity. A total of 43 cadaver feet (22 males and 21 females) were examined by means of cadaveric dissection. From these data, ten representative PPHs for both genders were selected, corresponding to five percentiles for males (0, 25, 50, 75, and 100%) and five for females. These ten different PPHs were modeled and inserted in ten foot models. Stress distribution patterns within these ten PPH models were qualitatively compared using finite element analysis. In the ten cases analyzed, tensile stresses were larger on the lateral side, whereas compressive stresses were larger on the medial side. The bones of males were larger than female bones for each of the parameters examined; however, the mean difference between lateral and medial sides of the PPH (mean ± SD) was larger in women. Also the shallower the concavity at the base of the PPH, the larger the compressive stresses predicted. Internal forces on the PPH, due to differences in length between its medial and lateral sides, may force the PPH into a less-stressful position. The geometry of the PPH is a significant factor in HAV development influencing the other reported skeletal parameters and, thus, should be considered during preoperative evaluation. Clinical assessment should evaluate the first ray as a whole and not as isolated factors.
FRACTURE GEOMETRY ANALYSIS FOR THE STRATIGRAPHIC UNITS OF THE REPOSITORY HOST HORIZON
International Nuclear Information System (INIS)
Hardin, E.
2000-01-01
The purpose of this Analysis and Model Report (AMR) is to evaluate the geometry of the primary joint sets (i.e., fractures belonging to a group demonstrating a preferential orientation) associated with the lithostratigraphic units of the Repository Host Horizon (RHH). Specifically, the analysis is limited to examining joint sets occurring within the upper lithophysal (Tptpul), middle nonlithophysal (Tptpmn), lower lithophysal (Tptpll), and lower non-lithophysal (Tptpln) zones of the crystal-poor member of the Topopah Spring Tuff. The results of this AMR supply the geometric input parameters for the joint sets used as input to the acquired software code DRKBA V3.3 (CRWMS M and O 2000i; hereafter DRKBA), which is used in the determination of key block sizes and distributions within the ''Drift Degradation Analysis'' AMR (CRWMS M and O 2000b). Additionally, the results of this AMR provide input for selecting the orientation of the emplacement drifts used in layout design work for the potential repository
Heat leak analysis on a cryostat suspension system with complex geometry
International Nuclear Information System (INIS)
Zhang, B.
1994-01-01
An internal suspension system is designed for the cryostat of the SSC sector cryogenic shaft transfer line. The suspension system supports seven cryogenic circuits of three temperature levels at 4, 20, and 80 K. Due to strict strength requirements and space constraints, the designed suspension system has complex geometry which makes the estimate of heat leaks into the cryogenic circuits rather difficult. Numerical analysis is performed on three subassemblies of the suspension system using a finite element analysis package by Algor. Typical temperature distributions in key elements are graphically presented, and heat leaks into the circuit tubes at three temperature levels are summarized. The results of the analysis indicate that the current suspension system design, while meeting the strength requirements, significantly reduces the heat leaks into the 4 and 20 K helium circuits compared to the conventional design which uses a single spacer to support the cryogenic circuits. The results also provide good reference for the final design of the suspension system, and can be readily verified experimentally
[Geometry, analysis, and computation in mathematics and applied science]. Progress report
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.
1994-02-01
The principal investigators` work on a variety of pure and applied problems in Differential Geometry, Calculus of Variations and Mathematical Physics has been done in a computational laboratory and been based on interactive scientific computer graphics and high speed computation created by the principal investigators to study geometric interface problems in the physical sciences. We have developed software to simulate various physical phenomena from constrained plasma flow to the electron microscope imaging of the microstructure of compound materials, techniques for the visualization of geometric structures that has been used to make significant breakthroughs in the global theory of minimal surfaces, and graphics tools to study evolution processes, such as flow by mean curvature, while simultaneously developing the mathematical foundation of the subject. An increasingly important activity of the laboratory is to extend this environment in order to support and enhance scientific collaboration with researchers at other locations. Toward this end, the Center developed the GANGVideo distributed video software system and software methods for running lab-developed programs simultaneously on remote and local machines. Further, the Center operates a broadcast video network, running in parallel with the Center`s data networks, over which researchers can access stored video materials or view ongoing computations. The graphical front-end to GANGVideo can be used to make ``multi-media mail`` from both ``live`` computing sessions and stored materials without video editing. Currently, videotape is used as the delivery medium, but GANGVideo is compatible with future ``all-digital`` distribution systems. Thus as a byproduct of mathematical research, we are developing methods for scientific communication. But, most important, our research focuses on important scientific problems; the parallel development of computational and graphical tools is driven by scientific needs.
Asymptotic analysis for functional stochastic differential equations
Bao, Jianhai; Yuan, Chenggui
2016-01-01
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Continuous nowhere differentiable functions the monsters of analysis
Jarnicki, Marek
2015-01-01
This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi–van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions. To round out the presentation, advanced techniques from several areas of mathematics are brought together to give a state-of-the-art analysis of Riemann’s continuous, and purportedly nowhere differentiable, function. For the reader’s benefit, claims requiring elaboration, and open problems, are clearly indicated. An a...
Spectral analysis for differential operators with singularities
Directory of Open Access Journals (Sweden)
Vjacheslav Anatoljevich Yurko
2004-01-01
Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.
Differential analysis of matrix convex functions
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2007-01-01
We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...
Analysis of Self-Potential Response beyond the Fixed Geometry Technique
Mahardika, Harry
2018-03-01
The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.
Al Tarhuni, Mohammed; Goldman, Daniel; Jackson, Dwayne N
2016-08-01
To provide detailed geometric and topological descriptions of the rat gluteus maximus arteriolar network, and to measure the distribution of diameters and lengths as well as their associated variability within and between networks. Complete arteriolar networks arising from feed artery (inferior gluteal artery) to terminal branches were imaged under baseline conditions, using IVVM. Photomontages of complete networks were assembled and evaluated offline for measurements of geometry and topology. Single-line (skeletonized) tracings of the networks were made for fractal analysis. Diameters and lengths decreased with increasing topological order (centrifugal), while number of elements increased with increasing order. Horton's laws were shown to be valid within the arteriolar networks of the rat GM. Inter-network variability in diameter (~5-22%) and length (~17-30%) at each order was generally lower than the corresponding intra-network variability in diameter (~10-48%) and length (~39-106%). Data presented in this study provide crucial quantitative analysis of complete arteriolar networks within healthy skeletal muscle, and may serve as ideal experimental inputs for future theoretical studies of skeletal muscle microvascular structure and function. © 2016 John Wiley & Sons Ltd.
Modeling and Analysis of Cellular Networks using Stochastic Geometry: A Tutorial
Elsawy, Hesham
2016-11-03
This paper presents a tutorial on stochastic geometry (SG) based analysis for cellular networks. This tutorial is distinguished by its depth with respect to wireless communication details and its focus on cellular networks. The paper starts by modeling and analyzing the baseband interference in a baseline single-tier downlink cellular network with single antenna base stations and universal frequency reuse. Then, it characterizes signal-to-interference-plus-noise-ratio (SINR) and its related performance metrics. In particular, a unified approach to conduct error probability, outage probability, and transmission rate analysis is presented. Although the main focus of the paper is on cellular networks, the presented unified approach applies for other types of wireless networks that impose interference protection around receivers. The paper then extends the unified approach to capture cellular network characteristics (e.g., frequency reuse, multiple antenna, power control, etc.). It also presents numerical examples associated with demonstrations and discussions. To this end, the paper highlights the state-of-the- art research and points out future research directions.
Analysis of natural circulation in VVER-440 geometry with CATHARE2 V1.3U
International Nuclear Information System (INIS)
Haapalehto, T.
1995-10-01
The aim of the work is to study the phenomena taking place in the primary circuit during the different phases of the natural circulation in the Loviisa VVER-440 geometry. The analysis in carried out using the CATHARE thermal-hydraulic system analysis code. The phenomena which are analyzed in more detail are; the primary inventories during the changes of circulation mode, the intermittent behaviour of the hot leg loop seals, interaction between the loops, primary coolant distribution during the different phases of natural circulation and the effect of the low secondary water inventory. The effect of the surge lines is also analyzed, since they may act as loop seal connecting lines. The different phases of the natural circulation is studied by decreasing the primary side water inventory in steps. This procedure has been chosen in order to simplify the situation and to minimize the disturbances to the natural circulation caused by the break. The calculated results are compared to the PACTEL experimental results to find similarities or differences, although the experiments are not analyzed. In addition to an overall quantification of the phenomenology, the following observations were made: intermittent two-phase flow goes predominantly through the loop(s) that have no loop seal connections, and only one- and two-phase natural circulation stages are affected by the secondary water level. (9 refs., 71 figs., 7 tabs.)
Geringer, Alexander; Diebels, Stefan; Nothdurft, Frank P
2014-12-01
To predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Anami, Lilian Costa; Lima, Julia Magalhaes da Costa; Corazza, Pedro Henrique; Yamamoto, Eron Toshio Colauto; Bottino, Marco Antonio; Borges, Alexandre Luiz Souto
2015-02-01
To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown. © 2014 by the American College of Prosthodontists.
Directory of Open Access Journals (Sweden)
SARI BAHAGIARTI KUSUMAYUDHA
2011-12-01
Full Text Available Almost all of the Indonesian territories are high potential of geologic disaster, such as earthquake, tsunami, volcanic eruptions and landslides, because the country belongs to tectonically active areas of the world. There are three big lithosperic plates interacting one with one another and influencing the tectonic setting of Indonesia. The plates are Indo-Australia plate, Eurasia plate and Pacific plate. Indo-Australia plate moves relatively northward by about 9 cm/year, Eurasia plate creeps south eastward with approximately 7 cm/year speed, and Pacific plate moves to the west with around 11 cm/year velocity. In the meeting line of the plates, about 300 km to the south of Indonesian islands, there is the subduction zone that become places, where earthquake focuses are generated. Earthquakes from submarine source with more than 6.5 magnitude have the potential to generate tsunami. Areas situated along the south coast of Indonesia islands are vulnerable to tsunami, because directly facing the boundary lines between Eurasia plate and Indo-Australia plate. This study verified that there is positive correlation between coastal line geometry and the tsunami impact, based on fractal analysis. The case study is Maumere, Flores island, East Nusa Tenggara, Indonesia. Result of the study is expected to be used for predicting the tsunami impact intensiveness at other areas.
Virtual reality analysis of intrinsic protein geometry with applications to cis peptide planes
Hou, Yanzhen; Dai, Jin; Ilieva, Nevena; Niemi, Antti J.; Peng, Xubiao; He, Jianfeng
2017-01-01
A protein is traditionally visualised as a piecewise linear discrete curve, and its geometry is conventionally characterised by the extrinsically determined Ramachandran angles. However, a protein backbone has also two independent intrinsic geometric structures, due to the peptide planes and the side chains. Here we adapt and develop modern 3D virtual reality techniques to scrutinize the atomic geometry along a protein backbone, in the vicinity of a peptide plane. For this we compare backbone...
Schiesser, William E
2014-01-01
Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp
Schiesser, William E
2014-01-01
Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com
Differential Regulatory Analysis Based on Coexpression Network in Cancer Research
Directory of Open Access Journals (Sweden)
Junyi Li
2016-01-01
Full Text Available With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA based on gene coexpression network (GCN increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.
International conference Fourier Analysis and Pseudo-Differential Operators
Turunen, Ville; Fourier Analysis : Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations
2014-01-01
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. This collection of 20 refereed articles is based on selected talks given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland, and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”
Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design
Afify, Laila H.
2016-12-01
The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored
Module Based Differential Coexpression Analysis Method for Type 2 Diabetes
Directory of Open Access Journals (Sweden)
Lin Yuan
2015-01-01
Full Text Available More and more studies have shown that many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional biological pathway or network and are highly correlated. Differential coexpression analysis, as a more comprehensive technique to the differential expression analysis, was raised to research gene regulatory networks and biological pathways of phenotypic changes through measuring gene correlation changes between disease and normal conditions. In this paper, we propose a gene differential coexpression analysis algorithm in the level of gene sets and apply the algorithm to a publicly available type 2 diabetes (T2D expression dataset. Firstly, we calculate coexpression biweight midcorrelation coefficients between all gene pairs. Then, we select informative correlation pairs using the “differential coexpression threshold” strategy. Finally, we identify the differential coexpression gene modules using maximum clique concept and k-clique algorithm. We apply the proposed differential coexpression analysis method on simulated data and T2D data. Two differential coexpression gene modules about T2D were detected, which should be useful for exploring the biological function of the related genes.
Empirical bayes model comparisons for differential methylation analysis.
Teng, Mingxiang; Wang, Yadong; Kim, Seongho; Li, Lang; Shen, Changyu; Wang, Guohua; Liu, Yunlong; Huang, Tim H M; Nephew, Kenneth P; Balch, Curt
2012-01-01
A number of empirical Bayes models (each with different statistical distribution assumptions) have now been developed to analyze differential DNA methylation using high-density oligonucleotide tiling arrays. However, it remains unclear which model performs best. For example, for analysis of differentially methylated regions for conservative and functional sequence characteristics (e.g., enrichment of transcription factor-binding sites (TFBSs)), the sensitivity of such analyses, using various empirical Bayes models, remains unclear. In this paper, five empirical Bayes models were constructed, based on either a gamma distribution or a log-normal distribution, for the identification of differential methylated loci and their cell division-(1, 3, and 5) and drug-treatment-(cisplatin) dependent methylation patterns. While differential methylation patterns generated by log-normal models were enriched with numerous TFBSs, we observed almost no TFBS-enriched sequences using gamma assumption models. Statistical and biological results suggest log-normal, rather than gamma, empirical Bayes model distribution to be a highly accurate and precise method for differential methylation microarray analysis. In addition, we presented one of the log-normal models for differential methylation analysis and tested its reproducibility by simulation study. We believe this research to be the first extensive comparison of statistical modeling for the analysis of differential DNA methylation, an important biological phenomenon that precisely regulates gene transcription.
Empirical Bayes Model Comparisons for Differential Methylation Analysis
Directory of Open Access Journals (Sweden)
Mingxiang Teng
2012-01-01
Full Text Available A number of empirical Bayes models (each with different statistical distribution assumptions have now been developed to analyze differential DNA methylation using high-density oligonucleotide tiling arrays. However, it remains unclear which model performs best. For example, for analysis of differentially methylated regions for conservative and functional sequence characteristics (e.g., enrichment of transcription factor-binding sites (TFBSs, the sensitivity of such analyses, using various empirical Bayes models, remains unclear. In this paper, five empirical Bayes models were constructed, based on either a gamma distribution or a log-normal distribution, for the identification of differential methylated loci and their cell division—(1, 3, and 5 and drug-treatment-(cisplatin dependent methylation patterns. While differential methylation patterns generated by log-normal models were enriched with numerous TFBSs, we observed almost no TFBS-enriched sequences using gamma assumption models. Statistical and biological results suggest log-normal, rather than gamma, empirical Bayes model distribution to be a highly accurate and precise method for differential methylation microarray analysis. In addition, we presented one of the log-normal models for differential methylation analysis and tested its reproducibility by simulation study. We believe this research to be the first extensive comparison of statistical modeling for the analysis of differential DNA methylation, an important biological phenomenon that precisely regulates gene transcription.
Analysis of normal human retinal vascular network architecture using multifractal geometry
Directory of Open Access Journals (Sweden)
Ştefan Ţălu
2017-03-01
Full Text Available AIM: To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS: Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS: The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax - αmin and the spectrum arms’ heights difference (│Δf│ of the normal images were expressed as mean±standard deviation (SD: for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531±0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions (Dq for q=0, 1, 2, the width of the multifractal spectrum (Δα and the spectrum arms’ heights difference (│Δf│ of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION: The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
Analysis of linear partial differential operators
Hörmander , Lars
2005-01-01
This volume is an expanded version of Chapters III, IV, V and VII of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject. The reader is assumed to be familiar with distribution theory as presented in Volume I. Most topics discussed here have in fact been encountered in Volume I in special cases, which should provide the necessary motivation and background for a more systematic and precise exposition. The main technical tool in this volume is the Fourier- Laplace transformation. More powerful methods for the study of operators with variable coefficients will be developed in Volume III. However, constant coefficient theory has given the guidance for all that work. Although the field...
Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet
Energy Technology Data Exchange (ETDEWEB)
Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)
2012-12-15
Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.
Dynamic data analysis modeling data with differential equations
Ramsay, James
2017-01-01
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...
Zimmerman, Scott
This thesis focuses on analysis in and the geometry of the Heisenberg group as well as geometric properties of Sobolev mappings. It begins with a detailed introduction to the Heisenberg group. After, we see a new and elementary proof for the structure of geodesics in the sub-Riemannian Heisenberg group. We also prove that the Carnot-Caratheodory metric is real analytic away from the center of the group. Next, we prove a version of the classical Whitney Extension Theorem for curves in the Heisenberg group. Given a real valued function defined on a compact set in Euclidean space, the classical Whitney Extension Theorem from 1934 gives necessary and sufficient conditions for the existence of a Ck extension defined on the entire space. We prove a version of the Whitney Extension Theorem for C1 , horizontal curves in the Heisenberg group. We then turn our attention to Sobolev mappings. In particular, given a Lipschitz map from a compact subset Z of Euclidean space into a Lipschitz connected metric space, we construct a Sobolev extension defined on any bounded domain containing Z. Finally, we generalize a classical result of Dubovitskiǐ for smooth maps to the case of Sobolev mappings. In 1957, Dubovitskiǐ generalized Sard's classical theorem by establishing a bound on the Hausdorff dimension of the intersection of the critical set of a smooth map and almost every one of its level sets. We show that Dubovitskiǐ's theorem can be generalized to Wk,p loc (R n,Rm) mappings for all positive integers k and p > n.
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Axiomatic characterization of physical geometry
International Nuclear Information System (INIS)
Schmidt, H.J.
1979-01-01
This book deals with the foundations of a theory which can be considered as the most ancient part of physics, namely Euclidean geometry. It may be viewed as a partial realization of a program set up by G. Ludwig who suggested to formulate geometry explicity as a theory of possible operations with practically rigid bodies, using as basic concepts 'region', 'inclusion' and 'transport'. After an introduction to the problems, in which we sketch also the historical development, we develop a pre-theory with respect to the geometry with the aim to give an interpretation of the above-mentioned basic geometrical concepts in terms of notions which are closely related to experimental situations. The passage from a pure topological analysis of physical space to the differential geometrical view is made in the next section where we use the prerequisites established in the previous chapter to apply the Tits/Freudenthal solution of the Helmholtz-Lie problem. The main theorem of this book is stated in the last section by a characterization of Euclidean geometry. It turns out that two additional postulates are necessary whose empirical meaning we stress by referring to the axiom of dimension. The book might be of interest to scientist working in the field of axiomatics. Unfamiliar readers will be required to have a sound knowledge of topology and group theory. (HJ) 891 HJ/HJ 892 MB
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
Directory of Open Access Journals (Sweden)
Giuseppe eMercurio
2014-01-01
Full Text Available We present an analysis method of normal incidence x-ray standing wave (NIXSW data that allows detailed adsorption geometries of complex molecules to be retrieved. This method (Fourier vector analysis is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB adsorbed on the Ag(111 surface as a model system. The application of the Fourier vector analysis to AB/Ag(111 provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Introduction to global variational geometry
Krupka, Demeter
2015-01-01
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Cecil, Thomas E
2015-01-01
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...
Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis
Li, G.; Zhao, L.; Jin, M.
2017-12-01
In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.
Benard, M.R.; Harlaar, J.; Becher, J.G.; Huijing, P.A.; Jaspers, R.T.
2011-01-01
During development, muscle growth is usually finely adapted to meet functional demands in daily activities. However, how muscle geometry changes in typically developing children and how these changes are related to functional and mechanical properties is largely unknown. In rodents, longitudinal
Modeling and Analysis of Inter-Vehicle Communication: A Stochastic Geometry Approach
Farooq, Muhammad Junaid
2015-05-01
Vehicular communication is the enabling technology for the development of the intelligent transportation systems (ITS), which aims to improve the efficiency and safety of transportation. It can be used for a variety of useful applications such as adaptive traffic control, coordinated braking, emergency messaging, peer-to-peer networking for infotainment services and automatic toll collection etc... Accurate yet simple models for vehicular networks are required in order to understand and optimize their operation. For reliable communication between vehicles, the spectrum access is coordinated via carrier sense multiple access (CSMA) protocol. Existing models either use a simplified network abstraction and access control scheme for analysis or depend on simulation studies. Therefore it is important to develop an analytical model for CSMA coordinated communication between vehicles. In the first part of the thesis, stochastic geometry is exploited to develop a modeling framework for CSMA coordinated inter-vehicle communication (IVC) in a multi-lane highway scenario. The performance of IVC is studied in multi-lane highways taking into account the inter-lane separations and the number of traffic lanes and it is shown that for wide multi-lane highways, the line abstraction model that is widely used in literature loses accuracy and hence the analysis is not reliable. Since the analysis of CSMA in the vehicular setting makes the analysis intractable, an aggressive interference approximation and a conservative interference approximation is proposed for the probability of transmission success. These approximations are tight in the low traffic and high traffic densities respectively. In the subsequent part of the thesis, the developed model is extended to multi-hop IVC because several vehicular applications require going beyond the local communication and efficiently disseminate information across the roads via multi-hops. Two well-known greedy packet forwarding schemes are
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Faulkner, Thomas Ewan
1952-01-01
This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
International Nuclear Information System (INIS)
Beste, H-J.; Clemente, P.; Conti, C.; D'Ovidio, G.; Nakamura, Y.; Orlando, L.; Rea, R.; Rovelli, A.; Valente, G.
2015-01-01
By the comparison between tests and analyses, the dynamic characterization was performed, in order to obtain the map of elastic modules for soil Colosseum interaction. The accuracy for foundations and soil is lower than for monument, due ti unknown exact geometry underground. For foundations, a high variability was found of elasticity modules, which was referred to variable damage of concrete for cracking in time. For soil layers, different definitions exist, and we are interested in the best. The vibrations produced by trains are depending on the underground geometry too. The analyses are performed with traditional convoys running on Metro B and C, for the vibrations knowledge on RA XLVII and on ground felt by pedestrians.
Analysis of Paralleling Limited Capacity Voltage Sources by Projective Geometry Method
Directory of Open Access Journals (Sweden)
Alexandr Penin
2014-01-01
Full Text Available The droop current-sharing method for voltage sources of a limited capacity is considered. Influence of equalizing resistors and load resistor is investigated on uniform distribution of relative values of currents when the actual loading corresponds to the capacity of a concrete source. Novel concepts for quantitative representation of operating regimes of sources are entered with use of projective geometry method.
Analysis of aeroplane boarding via spacetime geometry and random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Bachmat, E [Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105 (Israel); Berend, D [Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105 (Israel); Sapir, L [Department of Management and Industrial Engineering, Ben-Gurion University, Beer-Sheva 84105 (Israel); Skiena, S [Department of Computer science, SUNY at Stony Brook, Stony Brook, NY 11794 (United States); Stolyarov, N [Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)
2006-07-21
We show that aeroplane boarding can be asymptotically modelled by two-dimensional Lorentzian geometry. Boarding time is given by the maximal proper time among curves in the model. Discrepancies between the model and simulation results are closely related to random matrix theory. The models can be used to explain why some commonly practiced airline boarding policies are ineffective and even detrimental. (letter to the editor)
Analysis of aeroplane boarding via spacetime geometry and random matrix theory
International Nuclear Information System (INIS)
Bachmat, E; Berend, D; Sapir, L; Skiena, S; Stolyarov, N
2006-01-01
We show that aeroplane boarding can be asymptotically modelled by two-dimensional Lorentzian geometry. Boarding time is given by the maximal proper time among curves in the model. Discrepancies between the model and simulation results are closely related to random matrix theory. The models can be used to explain why some commonly practiced airline boarding policies are ineffective and even detrimental. (letter to the editor)
topkaya, tolga; solmaz, murat yavuz; dündar, serkan; Eltas, Abubekir
2015-01-01
ABSTRACT Purpose: The success of dental implants is related to the quality, quantity of local bones, implant design and surgical technique. Implant diameter and length are accepted as key factors. Present work focuses to investigate the effect of titanium implant geometry to stress distributions in implant system.Materials and Methods: For this purpose three different implant models which are currently being used in clinical cases constructed by using ANSYS Workbench 12.1. The stress distribu...
Similarity analysis of differential equations by Lie group.
Na, T. Y.; Hansen, A. G.
1971-01-01
Methods for transforming partial differential equations into forms more suitable for analysis and solution are investigated. The idea of Lie's infinitesimal contact transformation group is introduced to develop a systematic method which involves mostly algebraic manipulations. A thorough presentation of the application of this general method to the problem of similarity analysis in a broader sense - namely, the similarity between partial and ordinary differential equations, boundary value and initial value problems, and nonlinear and linear equations - is given with new and very general methods evolved for deriving the possible groups of transformations.
Directory of Open Access Journals (Sweden)
Andi Saparuddin Nur
2017-12-01
Full Text Available This study aimed to analyze the geometry skills in solving problems in terms of cognitive styles differences in the students of SMP Negeri Urumb. The type of this research is descriptive research that is qualitative with case study approach. The subject of this research is all students of SMP Negeri Urumb. Subject selection is done by using snowball sampling technique. The main instrument in this study is the researchers themselves and accompanied by supporting instruments such as diagnostic tests, geometry solving test, and interview guides. Validity and reliability of data is done through credibility test, transferability test, dependability test, and confirmability test. Data analysis consists of data collection, data reduction, data presentation, and conclusions. The results of this study were (1 reflective FI subjects showing visual, verbal, drawing, and logic skills with level of geometry thinking at level 2 (informal deduction; (2 impulsive FI subjects exhibiting visual, verbal, and drawing skills with geometric thinking level at level 1 (analysis, (3 reflective FD subjects exhibit visual skills, and draw with level of geometric thinking at level 0 (visualization, and (4 impulsive FD subjects exhibit visual, verbal skills with geometric level thinking at level 0 (visualization.
Analysis of non-spherical grid geometry for distortion-free LEED apparatus with micro channel plate
International Nuclear Information System (INIS)
Okano, Tatsuo; Ohsaki, Akihiko; Sakurai, Makoto; Honda, Tohru; Tuzi, Yutaka
1985-01-01
A design of non-spherical grid structure for the distortion-free LEED apparalus with a micro channel plate (MCP) is described. The grid structure is assumed as an interface of two electrostatic potentials. The potential interface refracts the diffracted electrons and the LEED patterns can be projected on the MCP just like those observed on a spherical fluorescent screen. The shape of the potential interface is described by a differential equation and numerically calculated for several conditions. The most appropriate geometry is determined by the easiness of the mechanical construction. The effect of energy distribution of diffracted electrons is numerically estimated and the deviation is proved to be negligibly small for most applications. (author)
Partial differential equations modeling, analysis and numerical approximation
Le Dret, Hervé
2016-01-01
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
High Order Differential Frequency Hopping: Design and Analysis
Directory of Open Access Journals (Sweden)
Yong Li
2015-01-01
Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry
International Nuclear Information System (INIS)
Disney, R.K.; Vogtman, S.E.
1987-01-01
1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total
Function spaces and partial differential equations volume 2 : contemporary analysis
Taheri, Ali
2015-01-01
This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.
Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Molecular marker analysis to differentiate a clonal selection of ...
African Journals Online (AJOL)
Lalit Kumar
2013-04-03
Apr 3, 2013 ... Microsatellite and amplified fragment length polymorphism (AFLP) markers were used to differentiate. Manjari Naveen, a clonal selection of Centennial Seedless variety of grape. Twenty one (21) microsatellite primers could not detect variation between parent variety and its clone. AFLP analysis.
Analysis of electrical circuits with variable load regime parameters projective geometry method
Penin, A
2015-01-01
This book introduces electric circuits with variable loads and voltage regulators. It allows to define invariant relationships for various parameters of regime and circuit sections and to prove the concepts characterizing these circuits. Generalized equivalent circuits are introduced. Projective geometry is used for the interpretation of changes of operating regime parameters. Expressions of normalized regime parameters and their changes are presented. Convenient formulas for the calculation of currents are given. Parallel voltage sources and the cascade connection of multi-port networks are d
Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner
Directory of Open Access Journals (Sweden)
Al-Obaidi Abdulkareem Sh. Mahdi
2018-01-01
Full Text Available Vertical vanes of room air-conditioners are used to control and direct cold air. This paper aims to study vertical vane as one of the parameters that affect the efficiency of dissipating cold air to a given space. The vertical vane geometry is analysed and optimised for lower production cost using CFD. The optimised geometry of the vertical vane should have the same or increased efficiency of dissipating cold air and have lesser mass compared to the existing original design. The existing original design of vertical vane is simplified and analysed by using ANSYS Fluent. Efficiency of wind direction is define as how accurate the direction of airflow coming out from vertical vane. In order to calculate the efficiency of wind direction, 15° and 30° rotation of vertical vane inside room air-conditioner are simulated. The efficiency of wind direction for 15° rotation of vertical vane is 57.81% while efficiency of wind direction for 30° rotation of vertical vane is 47.54%. The results of the efficiency of wind direction are used as base reference for parametric study. The parameters investigated for optimisation of vertical vane are focused at length of long span, tip chord and short span. The design of 15% decreased in vane surface area at tip chord is the best optimised design of vertical vane because the efficiency of wind direction is the highest as 60.32%.
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry.
Wajid, Mohd; Kumar, Arun; Bahl, Rajendar
2016-05-01
Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively.
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Analysis of pharmacogenomic variants associated with population differentiation.
Yeon, Bora; Ahn, Eunyong; Kim, Kyung-Im; Kim, In-Wha; Oh, Jung Mi; Park, Taesung
2015-01-01
In the present study, we systematically investigated population differentiation of drug-related (DR) genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB) database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA) F-test, Fst, and Nearest Shrunken Centroid Method (NSCM). Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group) and genes with a low level of differentiation (LD gene group). Last, we conducted a gene ontology (GO) analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively), and "drug binding" was highly enriched (16.51) despite its relatively high q-value (0.0142). Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3) contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is associated with
Analysis of pharmacogenomic variants associated with population differentiation.
Directory of Open Access Journals (Sweden)
Bora Yeon
Full Text Available In the present study, we systematically investigated population differentiation of drug-related (DR genes in order to identify common genetic features underlying population-specific responses to drugs. To do so, we used the International HapMap project release 27 Data and Pharmacogenomics Knowledge Base (PharmGKB database. First, we compared four measures for assessing population differentiation: the chi-square test, the analysis of variance (ANOVA F-test, Fst, and Nearest Shrunken Centroid Method (NSCM. Fst showed high sensitivity with stable specificity among varying sample sizes; thus, we selected Fst for determining population differentiation. Second, we divided DR genes from PharmGKB into two groups based on the degree of population differentiation as assessed by Fst: genes with a high level of differentiation (HD gene group and genes with a low level of differentiation (LD gene group. Last, we conducted a gene ontology (GO analysis and pathway analysis. Using all genes in the human genome as the background, the GO analysis and pathway analysis of the HD genes identified terms related to cell communication. "Cell communication" and "cell-cell signaling" had the lowest Benjamini-Hochberg's q-values (0.0002 and 0.0006, respectively, and "drug binding" was highly enriched (16.51 despite its relatively high q-value (0.0142. Among the 17 genes related to cell communication identified in the HD gene group, five genes (STX4, PPARD, DCK, GRIK4, and DRD3 contained single nucleotide polymorphisms with Fst values greater than 0.5. Specifically, the Fst values for rs10871454, rs6922548, rs3775289, rs1954787, and rs167771 were 0.682, 0.620, 0.573, 0.531, and 0.510, respectively. In the analysis using DR genes as the background, the HD gene group contained six significant terms. Five were related to reproduction, and one was "Wnt signaling pathway," which has been implicated in cancer. Our analysis suggests that the HD gene group from PharmGKB is
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Mathematicians were at war with one another because Euclid's axioms for geometry were not entirely acceptable to all. Archi- medes, Pasch and others introduced further axioms as they thought that Euclid had missed a few, while other mathematicians were bothered by the non-elementary nature of the parallel axiom.
Finite element analysis of the neutron transport equation in spherical geometry
International Nuclear Information System (INIS)
Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong
1992-01-01
The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)
Directory of Open Access Journals (Sweden)
E. Rizzatti
Full Text Available This paper presents the experimental results of a research program with ceramic block masonry under compression. Four different block geometries were investigated. Two of them had circular hollows with different net area. The third one had two rectangular hollow and the last block was with rectangular hollows and a double central webs. The prisms and walls were built with two mortar type 1:1:6 (I and 1:0,5:4 (II (proportions by volume of cement: lime: sand. One:three small scale blocks were used to test block, prisms and walls on compression. It was possible to conclude that the block with double central webs gave better results of compressive strength showing to be more efficient. The mortar didn't influenced the compressive strength of prisms and walls.
Two-group Analysis of Xenon Stability in Slab Geometry by Modal Expansion
International Nuclear Information System (INIS)
Norinder, O.
1963-05-01
Xenon spatial stability is analyzed with the flux represented by two neutron energy groups. General formulas are given for expansions in a system of modes. Detailed formulas are recorded for a slab described by sinusoidal modes. A short description is given of a Mercury Autocode program for numerical calculations in slab geometry. The essential input parameters and results are noted for 80 computed cases. The main body of the calculations were intended to clarify the xenon stability properties of the Marviken reactor, which was found to have a sufficient margin against unstable xenon oscillations. The neutron flux detection and the control rod insertion in the slab were found to have a large influence on the stability in spite of the nonexistence of space-selective control in the systems investigated. Very good agreement was found between stability limits calculated according to Randall and St. John and stability limits calculated by the program
International Nuclear Information System (INIS)
Fukuoka, Toshimichi
1996-01-01
In tightening critical structural members such as pressure vessels of nuclear reactors and chemical plants and important parts of diesel engines, a hydraulic tensioner is widely used because of its high accuracy in controlling clamping force. The ratio of the desired clamping force to initial tension, which is termed the effective tensile coefficient, is the most important factor to be predicted in the actual operation of given joint configurations. It is reported, however, that a certain amount of scatter in clamping force cannot be avoided. In this paper, an elementary approach to analyze the tightening process is proposed using spring elements, where the effects of incorrect geometry at contact surface on the coefficient are taken into account. The influences of pitch error and flatness deviation at the nut-loaded surface are discussed. Finally, a simple equation for estimating the coefficient is presented, where the major factors influencing scatter in clamping force are considered. (author)
Bhattacharya, A.; Batish, A.; Kumar, P.
2012-06-01
The present study was aimed at studying the effect of type and composition of flux, welding current, arc voltage, and travel speed on depth of penetration, bead height and bead width (bead geometry responses) and to optimize the process considering multi-response criteria in a submerged arc welding process. Using the grey relational analysis technique three responses were combined into a single grey relational grade and was analyzed using Analysis of Variance. Since the three responses had conflicting requirements, optimization of the complicated multiple performance characteristics was greatly simplified through this approach. The emperical relationship between the multi-response grey relational grade and the input parameters was developed using regression analysis which was used to predict the value of the grey relational grade using the optimal parameter levels.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geometry and Hamiltonian mechanics on discrete spaces
International Nuclear Information System (INIS)
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
Directory of Open Access Journals (Sweden)
Leonardo Paris
2012-06-01
Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
International Nuclear Information System (INIS)
Chapin, D.L.
1976-03-01
Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Directory of Open Access Journals (Sweden)
Lars Yde
2012-11-01
Full Text Available In forward osmosis (FO, an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.
Zhang, Fan; Wu, Weining; Ning, Lipeng; McAnulty, Gloria; Waber, Deborah; Gagoski, Borjan; Sarill, Kiera; Hamoda, Hesham M; Song, Yang; Cai, Weidong; Rathi, Yogesh; O'Donnell, Lauren J
2018-05-01
This work presents a suprathreshold fiber cluster (STFC) method that leverages the whole brain fiber geometry to enhance statistical group difference analyses. The proposed method consists of 1) a well-established study-specific data-driven tractography parcellation to obtain white matter tract parcels and 2) a newly proposed nonparametric, permutation-test-based STFC method to identify significant differences between study populations. The basic idea of our method is that a white matter parcel's neighborhood (nearby parcels with similar white matter anatomy) can support the parcel's statistical significance when correcting for multiple comparisons. We propose an adaptive parcel neighborhood strategy to allow suprathreshold fiber cluster formation that is robust to anatomically varying inter-parcel distances. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder patients and 29 healthy controls. Evaluations are conducted using both synthetic and in-vivo data. The results indicate that the STFC method gives greater sensitivity in finding group differences in white matter tract parcels compared to several traditional multiple comparison correction methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
International Nuclear Information System (INIS)
Rahimpour-Bonab, H; Aliakbardoust, E
2014-01-01
Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)
Zuo, Yiming; Cui, Yi; Di Poto, Cristina; Varghese, Rency S; Yu, Guoqiang; Li, Ruijiang; Ressom, Habtom W
2016-12-01
Differential expression (DE) analysis is commonly used to identify biomarker candidates that have significant changes in their expression levels between distinct biological groups. One drawback of DE analysis is that it only considers the changes on single biomolecule level. Recently, differential network (DN) analysis has become popular due to its capability to measure the changes on biomolecular pair level. In DN analysis, network is typically built based on correlation and biomarker candidates are selected by investigating the network topology. However, correlation tends to generate over-complicated networks and the selection of biomarker candidates purely based on network topology ignores the changes on single biomolecule level. In this paper, we propose a novel approach, INDEED, that builds sparse differential network based on partial correlation and integrates DE and DN analyses for biomarker discovery. We applied this approach on real proteomic and glycomic data generated by liquid chromatography coupled with mass spectrometry for hepatocellular carcinoma (HCC) biomarker discovery study. For each omic data, we used one dataset to select biomarker candidates, built a disease classifier and evaluated the performance of the classifier on an independent dataset. The biomarker candidates, selected by INDEED, were more reproducible across independent datasets, and led to a higher classification accuracy in predicting HCC cases and cirrhotic controls compared with those selected by separate DE and DN analyses. INDEED also identified some candidates previously reported to be relevant to HCC, such as intercellular adhesion molecule 2 (ICAM2) and c4b-binding protein alpha chain (C4BPA), which were missed by both DE and DN analyses. In addition, we applied INDEED for survival time prediction based on transcriptomic data acquired by analysis of samples from breast cancer patients. We selected biomarker candidates and built a regression model for survival time prediction
International Nuclear Information System (INIS)
Jonsson, Karin; Elert, Mark
2006-08-01
In this report, further investigations of the model concept for radionuclide transport in stream, developed in the SKB report TR-05-03 is presented. Especially three issues have been the focus of the model investigations. The first issue was to investigate the influence of assumed channel geometry on the simulation results. The second issue was to reconsider the applicability of the equation for the bed-load transport in the stream model, and finally the last issue was to investigate how the model discretisation will influence the simulation results. The simulations showed that there were relatively small differences in results when applying different cross-sections in the model. The inclusion of the exact shape of the cross-section in the model is therefore not crucial, however, if cross-sectional data exist, the overall shape of the cross-section should be used in the model formulation. This could e.g. be accomplished by using measured values of the stream width and depth in the middle of the stream and by assuming a triangular shape. The bed-load transport was in this study determined for different sediment characteristics which can be used as an order of magnitude estimation if no exact determinations of the bed-load are available. The difference in the calculated bed-load transport for the different materials was, however, found to be limited. The investigation of model discretisation showed that a fine model discretisation to account for numerical effects is probably not important for the performed simulations. However, it can be necessary for being able to account for different conditions along a stream. For example, the application of mean slopes instead of individual values in the different stream reaches can result in very different predicted concentrations
Schulze, R K; d'Hoedt, B
2001-08-01
"Standardized" radiographs acquired in paralleling technique serve for monitoring of marginal bone levels around endosseous implants. Under clinical conditions, parallel adjustment of the film to the implant is beset with great difficulties. A mathematical model matching clinical conditions was developed to evaluate projection geometry within an interval of clinically relevant angulations (+/- 10 degrees from parallel position). Radiographs of two implants (Frialit 2, Friadent AG, Mannheim, Germany; Implant No. 1: 3.8 mm, length 10 mm; Implant No. 2: 6.5 mm, length 13 mm) were separately produced per angulation (2 degrees increments) at one focus-object distance (FO=322.9 mm). Implant images were repeatedly measured along their midline/vertical edge, local magnification (MF) was calculated and the values were compared to the computed ones. Projected dimensions of the implants were calculated for a second distance (232.3 mm). The experimentally acquired data were in agreement with the mathematical calculation. MF calculated for assessment along the vertical edge varied less (+/-1.94% from mean value) than along the midline (+/-2.74%), with a range of 1.037-1.068 (FO=322.9 mm) and 1.061-1.099 (FO=232.3 mm) for implant No.1, and 1.060-1.101 (FO=232.3 mm) and 1.037-1.069 (FO=322.9 mm) for Implant No. 2. Magnification revealed a mean variation of 4%. Radiographic evaluation of periimplant bone level should not exceed a precision of 0.5 mm, when parallelism between film and implant is not guaranteed and FO is less than 380 mm.
Circadian phase has profound effects on differential expression analysis.
Directory of Open Access Journals (Sweden)
Polly Yingshan Hsu
Full Text Available Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis, rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions, at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals, we demonstrated that even this small difference in circadian phase significantly influences the results of differential expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a cautionary note for all biologists performing genome-level expression analysis.
Winglet Geometry Impact on DLR-F4 Aerodynamics and an Analysis of a Hyperbolic Winglet Concept
Directory of Open Access Journals (Sweden)
Djahid Gueraiche
2017-12-01
Full Text Available In this article, the growth of aerodynamic efficiency and the growth of the wing structural stress is studied for DLR-F4 typical transport aircraft wing-body, after installing classical Whitcomb winglets of different configurations and a delta wingtip fence. A new-concept curved-span winglet was mathematically developed and approved through Computational Fluid Dynamics (CFD and static structural experiments, revealing the interaction of sub- and transonic air flow dynamics with the wingtip device geometry. The design space of the winglet geometry was explored briefly, and an evaluation of the lift-to-drag ratio increment depending on various winglet input parameters was performed. In particular, the winglet cant angle effect on lift and drag was thoroughly analyzed at various flow regimes and angles of attack, revealing an ambiguity and a conflicting character of results between highly canted winglets and nearly vertical ones. As a result of cant angle impact analysis, a curved winglet concept is suggested and mathematically parametrized, that could provide an innovative solution, alternative to a morphing winglet, but much simpler with a fixed structure. In conclusion, a multidisciplinary winglet efficiency estimation criterion is suggested for comparing the aerodynamic efficiency of different wingtip devices with respect to their structural weight penalty in real flight conditions.
Directory of Open Access Journals (Sweden)
Zoran D Protić
2010-01-01
Full Text Available Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. Dr-Ing. Z. Protić† has been digitized using a three-dimensional (3D scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Then, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, the impeller with optimum angle, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500rpm. Reynolds numbers generated in this way, calculated for axial velocity component, were in the range from 0,8·105 till 6·105. LDA (Laser Doppler Anemometry measurements and stereo PIV (Particle Image Velocimetry measurements of the 3D velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated 3D turbulent velocity fields.
PC analysis of stochastic differential equations driven by Wiener noise
Le Maitre, Olivier
2015-03-01
A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed for stochastic differential equations driven by additive or multiplicative Wiener noise. It is shown that for this setting, a Galerkin formalism naturally leads to the definition of a hierarchy of stochastic differential equations governing the evolution of the PC modes. Under the mild assumption that the Wiener and uncertain parameters can be treated as independent random variables, it is also shown that the Galerkin formalism naturally separates parametric uncertainty and stochastic forcing dependences. This enables us to perform an orthogonal decomposition of the process variance, and consequently identify contributions arising from the uncertainty in parameters, the stochastic forcing, and a coupled term. Insight gained from this decomposition is illustrated in light of implementation to simplified linear and non-linear problems; the case of a stochastic bifurcation is also considered.
Differential network analysis with multiply imputed lipidomic data.
Directory of Open Access Journals (Sweden)
Maiju Kujala
Full Text Available The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD. Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.
Directory of Open Access Journals (Sweden)
Shuhei Isami
Full Text Available Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.
International Nuclear Information System (INIS)
Rosa, M.; Warsa, J. S.; Chang, J. H.
2007-01-01
A Fourier analysis is conducted in two-dimensional (2D) Cartesian geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. The results for the un-accelerated algorithm show that convergence of PBJ can degrade, leading in particular to stagnation of GMRES(m) in problems containing optically thin sub-domains. The results for the accelerated algorithm indicate that TSA can be used to efficiently precondition an iterative method in the optically thin case when implemented in the 'modified' version MTSA, in which only the scattering in the low order equations is reduced by some non-negative factor β<1. (authors)
Dubuc, Serge
1991-01-01
This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion ...
Differential proteomic analysis of mammalian tissues using SILAM.
Directory of Open Access Journals (Sweden)
Daniel B McClatchy
2011-01-01
Full Text Available Differential expression of proteins between tissues underlies organ-specific functions. Under certain pathological conditions, this may also lead to tissue vulnerability. Furthermore, post-translational modifications exist between different cell types and pathological conditions. We employed SILAM (Stable Isotope Labeling in Mammals combined with mass spectrometry to quantify the proteome between mammalian tissues. Using (15N labeled rat tissue, we quantified 3742 phosphorylated peptides in nuclear extracts from liver and brain tissue. Analysis of the phosphorylation sites revealed tissue specific kinase motifs. Although these tissues are quite different in their composition and function, more than 500 protein identifications were common to both tissues. Specifically, we identified an up-regulation in the brain of the phosphoprotein, ZFHX1B, in which a genetic deletion causes the neurological disorder Mowat-Wilson syndrome. Finally, pathway analysis revealed distinct nuclear pathways enriched in each tissue. Our findings provide a valuable resource as a starting point for further understanding of tissue specific gene regulation and demonstrate SILAM as a useful strategy for the differential proteomic analysis of mammalian tissues.
Multivariable Discriminant Analysis for the Differential Diagnosis of Microcytic Anemia
Directory of Open Access Journals (Sweden)
Eloísa Urrechaga
2013-01-01
Full Text Available Introduction. Iron deficiency anemia and thalassemia are the most common causes of microcytic anemia. Powerful statistical computer programming enables sensitive discriminant analyses to aid in the diagnosis. We aimed at investigating the performance of the multiple discriminant analysis (MDA to the differential diagnosis of microcytic anemia. Methods. The training group was composed of 200 β-thalassemia carriers, 65 α-thalassemia carriers, 170 iron deficiency anemia (IDA, and 45 mixed cases of thalassemia and acute phase response or iron deficiency. A set of potential predictor parameters that could detect differences among groups were selected: Red Blood Cells (RBC, hemoglobin (Hb, mean cell volume (MCV, mean cell hemoglobin (MCH, and RBC distribution width (RDW. The functions obtained with MDA analysis were applied to a set of 628 consecutive patients with microcytic anemia. Results. For classifying patients into two groups (genetic anemia and acquired anemia, only one function was needed; 87.9% β-thalassemia carriers, and 83.3% α-thalassemia carriers, and 72.1% in the mixed group were correctly classified. Conclusion. Linear discriminant functions based on hemogram data can aid in differentiating between IDA and thalassemia, so samples can be efficiently selected for further analysis to confirm the presence of genetic anemia.
High order analysis of nonlinear periodic differential equations
International Nuclear Information System (INIS)
Amore, Paolo; Lamas, Hector Montes
2004-01-01
In this Letter we apply a method recently devised in [Phys. Lett. A 316 (2003) 218] to find accurate approximate solutions to a certain class of nonlinear differential equations. The analysis carried out in [Phys. Lett. A 316 (2003) 218] is refined and results of much higher precision are obtained for the problems previously considered (Duffing equation, sextic oscillator). Fast convergence to the exact results is observed both for the frequency and for the Fourier coefficients. The method is also applied with success to more general polynomial potentials (the octic oscillator) and to the van der Pol equation
Fresnel analysis of Kretschmann geometry with a uniaxial crystal layer on a three-layered film
Directory of Open Access Journals (Sweden)
Yu-Ju Hung
2016-04-01
Full Text Available The use of total internal reflection within the prism coupling scheme is a simple approach to the generation of surface plasmon polariton waves on a metal/dielectric interface. Unfortunately, an anisotropic layer on a metallic film complicates the derivation of resonance angle. In this study, we present clear Fresnel analysis of a liquid crystal film on a metal surface. Few current simulation packages enable the analysis of multiple layers with a single anisotropic layer. The proposed formulation process is applicable to multi-layered structures.
DEFF Research Database (Denmark)
Shin, K. W.; Andersen, Poul
2015-01-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached...
A global hierarchical and Equal-Area Sphere Grid and Its Geometry Distortion Analysis
Sun, W. B.; Zhou, C. J.
2013-10-01
A spatial data management and analysis frame is required for global problem application. Global Discrete Grid (GDG) has seamless, excellent hierarchy characteristics. GDG has been used for spatial data management, indexing and cartographic generalization. However, most GDGs are unequal-area. To extend GDG application ranges in spatial modelling and statistical analysis, the method for constructing hierarchical and equal-area GDG is discussed in this paper. The detail steps to build GDG based on inscribe polyhedron is presented. The method of transferring polyhedron surface grids onto sphere surface is described. The ratio of max, min length of grid edges and grid angle is acquired. Length ratio converges to1.7 and angle ratio converges to 3.0. The result indicates that there exists difference in length and grid angle and the ratios of them are convergent.
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
International Nuclear Information System (INIS)
Larsen, E W; Zika, M R
1999-01-01
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance
International Nuclear Information System (INIS)
Gibb, R.; Girard, R.; Thompson, W.
1997-01-01
All safety analysis codes require some representation of actual plant data as a part of their input. Such representations, referred to at Point Lepreau Generating Station (PLGS) as plant idealizations, may include piping layout, orifice, pump or valve opening characteristics, boundary conditions of various sorts, reactor physics parameters, etc. As computing power increases, the numerical capabilities of thermalhydraulic analysis tools become more sophisticated, requiring more detailed assessments, and consequently more complex and complicated idealizations of the system models. Thus, a need has emerged to create a precise plant model layout in electronic form which ensures a realistic representation of the plant systems, and form which analytical approximations of any chosen degree of accuracy may be created. The benefits of this process are twofold. Firstly, the job of developing a plant idealization is made simpler, and therefore is cheaper for the utility. More important however, are the improvements in documentation and reproducibility that this process imparts to the resultant idealization. Just as the software that performs the numerical operations on the input data must be subject to verification/validation, equally robust measures must be taken to ensure that these software operations are being applied to valid idealizations, that are formally documented. Since the CATHENA Code is one of the most important thermalhydraulic code used for safety analysis at PLGS the main effort was directed towards the systems plant models for this code. This paper reports the results of the work carried on at PLGS and ANSL to link the existing piping data base to the actual CATHENA plant idealization. An introduction to the concept is given first, followed by a description of the databases, and the supervisory tool which manages the data, and associated software. An intermediate code, which applied some thermalhydraulic rules to the data, and translated the resultant data
GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE
Liliana TOCARIU, PhD
2017-01-01
Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...
Dosimetric analysis of SMD phototransistor in dental phantom of different geometries
Energy Technology Data Exchange (ETDEWEB)
Belinato, W.; Magalhaes, C. M. S.; Souza, D. N. [Departmento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49.100-000, Rosa Elze, Sao Cristovao-SE (Brazil); Santos, L. A. P. [Laboratorio de Instrumentacao Nuclear, Centro Regional de Ciencias Nucleares, Av. Professor Luiz Freire, 200, 50-740-540, Recife-PE (Brazil)
2009-10-15
A commercial surface mount device (SMD) phototransistor, OP520, was inserted in two dental phantoms for dosimetric analysis. The irradiations were accomplished in a dental x-ray equipment of 80 kV using different exposition times. A standard ionization chamber was irradiated at the same conditions and the air kerma measured with it was compared with the electrical charge evaluated by the phototransistor. The results showed satisfactory correspondence among the detectors readings. Moreover, the phototransistor showed up quite sensitively for dental applications, allowing verifying the variations for the different phantoms configurations. (Author)
Mathematical analysis of the effect of rotor geometry on cup anemometer response.
Sanz-Andrés, Ángel; Pindado, Santiago; Sorribes-Palmer, Félix
2014-01-01
The calibration coefficients of two commercial anemometers equipped with different rotors were studied. The rotor cups had the same conical shape, while the size and distance to the rotation axis varied. The analysis was based on the 2-cup positions analytical model, derived using perturbation methods to include second-order effects such as pressure distribution along the rotating cups and friction. The comparison with the experimental data indicates a nonuniform distribution of aerodynamic forces on the rotating cups, with higher forces closer to the rotating axis. The 2-cup analytical model is proven to be accurate enough to study the effect of complex forces on cup anemometer performance.
Positive geometries and canonical forms
Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas
2017-11-01
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex
A statistical framework for differential network analysis from microarray data
Directory of Open Access Journals (Sweden)
Datta Somnath
2010-02-01
Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the
Meta-analysis of differentially expressed genes in ankylosing spondylitis.
Lee, Y H; Song, G G
2015-05-18
The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS.
Directory of Open Access Journals (Sweden)
Guang-Ming Hu
2017-01-01
This stream example demonstrates the subtleties of stream flow and the importance of flood discharge in shaping the channel geometry. Although it is difficult to scale up this example to a large river system that carves geomorphic landscape, this case shows how river geometries vary from the traditional patterns due to different gradient.
On the geometry of diffusion operators and stochastic flows
Elworthy, K David; Li, Xue-Mei
1999-01-01
Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.
Sulistyowati, Fitria; Budiyono, Slamet, Isnandar
2017-12-01
This study aims to design a didactic situation based on the analysis of learning obstacles and learning trajectory on prism volume. The type of this research is qualitative and quantitative research with steps: analyzing the learning obstacles and learning trajectory, preparing the didactic situation, applying the didactic situation in the classroom, mean difference test of problem solving ability with t-test statistic. The subjects of the study were 8th grade junior high school students in Magelang 2016/2017 selected randomly from eight existing classes. The result of this research is the design of didactic situations that can be implemented in prism volume learning. The effectiveness of didactic situations that have been designed is shown by the mean difference test that is the problem solving ability of the students after the application of the didactic situation better than before the application. The didactic situation that has been generated is expected to be a consideration for teachers to design lessons that match the character of learners, classrooms and teachers themselves, so that the potential thinking of learners can be optimized to avoid the accumulation of learning obstacles.
Shin, K. W.; Andersen, P.
2015-12-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.
Analysis of DC and analog/RF performance on Cyl-GAA-TFET using distinct device geometry
Vishvakarma, S. K.; Beohar, Ankur; Vijayvargiya, Vikas; Trivedi, Priyal
2017-07-01
In this paper, analysis of DC and analog/RF performance on cylindrical gate-all-around tunnel field-effect transistor (TFET) has been made using distinct device geometry. Firstly, performance parameters of GAA-TFET are analyzed in terms of drain current, gate capacitances, transconductance, source-drain conductance at different radii and channel length. Furthermore, we also produce the geometrical analysis towards the optimized investigation of radio frequency parameters like cut-off frequency, maximum oscillation frequency and gain bandwidth product using a 3D technology computer-aided design ATLAS. Due to band-to-band tunneling based current mechanism unlike MOSFET, gate-bias dependence values as primary parameters of TFET differ. We also analyze that the maximum current occurs when radii of Si is around 8 nm due to high gate controllability over channel with reduced fringing effects and also there is no change in the current of TFET on varying its length from 100 to 40 nm. However current starts to increase when channel length is further reduced for 40 to 30 nm. Both of these trades-offs affect the RF performance of the device. Project supported by the Council of Scientific and Industrial Research (CSIR) Funded Research Project, Grant No. 22/0651/14/EMR-II, Government of India.
Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola
2018-03-01
The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.
Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis
International Nuclear Information System (INIS)
Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook
2005-01-01
A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem
Differential DNA Methylation Analysis without a Reference Genome
Directory of Open Access Journals (Sweden)
Johanna Klughammer
2015-12-01
Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.
Sun, Leping
2016-01-01
This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.
Transcriptome analysis of reproductive tissue differentiation in Jatropha curcas Linn.
Directory of Open Access Journals (Sweden)
Nisha Govender
2017-09-01
Full Text Available Shoot and inflorescence are central physiological and developmental tissues of plants. Flowering is one of the most important agronomic traits for improvement of crop yield. To analyze the vegetative to reproductive tissue transition in Jatropha curcas, gene expression profiles were generated from shoot and inflorescence tissues. RNA isolated from both tissues was sequenced using the Ilumina HiSeq 2500 platform. Differential gene expression analysis identified key biological processes associated with vegetative to reproductive tissue transition. The present data for J. curcas may inform the design of breeding strategies particularly with respect to reproductive tissue transition. The raw data of this study has been deposited in the NCBI's Sequence Read Archive (SRA database with the accession number SRP090662.
Comparative analysis of discrete exosome fractions obtained by differential centrifugation
Directory of Open Access Journals (Sweden)
Dennis K. Jeppesen
2014-11-01
Full Text Available Background: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. Methods: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA, total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. Results: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin suggested presence of exosome subpopulations with variable sedimentation characteristics. Conclusions: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines.
DNA microarray analysis of genes differentially expressed in ...
Indian Academy of Sciences (India)
These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes ...
National Research Council Canada - National Science Library
Hartshorne, Robin
1977-01-01
.... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...
Dynamic Analysis of Electrostatic Microactuators Using the Differential Quadrature Method
Directory of Open Access Journals (Sweden)
Ming-Hung Hsu
2011-01-01
Full Text Available This work studies the dynamic behavior of electrostatic actuators using finite-element package software (FEMLAB and differential quadrature method. The differential quadrature technique is used to transform partial differential equations into a discrete eigenvalue problem. Numerical results indicate that length, width, and thickness significantly impact the frequencies of the electrostatic actuators. The thickness could not affect markedly the electrostatic actuator capacities. The effects of varying actuator length, width, and thickness on the dynamic behavior and actuator capacities in electrostatic actuator systems are investigated. The differential quadrature method is an efficient differential equation solver.
Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.
2016-09-01
Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.
Directory of Open Access Journals (Sweden)
Carolina Bermudo
2016-07-01
Full Text Available Focusing on incremental bulk metal forming processes, the indentation process is gaining interest as a fundamental part of these kinds of processes. This paper presents the analysis of the pressure obtained in indentation under the influence of different punch geometries. To this end, an innovative Upper Bound Theorem (UBT based solution is introduced. This new solution can be easily applied to estimate the necessary force that guarantees plastic deformation by an indentation process. In this work, we propose an accurate analytical approach to analyse indentation under different punches. The new Modular Upper Bound (MUB method presents a simpler and faster application. Additionally, its complexity is not considerably increased by the addition of more Triangular Rigid Zones. In addition, a two-dimensional indentation model is designed and implemented using the Finite Element Method (FEM. The comparison of the two methods applied to the indentation process analysed—the new Modular Upper Bound technique and the Finite Element Method—reveal close similarities, the new Modular Upper Bound being more computationally efficient.
Directory of Open Access Journals (Sweden)
Sari Bahagiarti Kusumayudha
2009-11-01
Full Text Available The Gunungsewu area is a karst terrain with water scarcity, located in the Yogyakarta Special Province, adjacent to the open sea of Indian Ocean in the South. Shorelines of the Gunungsewu southern parts show fractal geometry phenomenon, and there can be found some groundwater outlets discharging to the Indian Ocean. One of the coastal outlets exists at the Baron Beach.The amount of water discharge from this spring reaches 20,000 l/sec in wet season, and approximately 9000 in dry season. In order to find other potential coastal springs, shoreline of the south coast is divided into some segments. By applying fractal analysis utilizing air photo of 1 : 30,000 scale, the fractal dimension of every shore line segment is determined, and then the fractal dimension value is correlated to the existence of spring in the segment being analyzed. The results inform us that shoreline segments having fractal dimension (D > 1.300 are potential for the occurrence of coastal springs.
Directory of Open Access Journals (Sweden)
F. Pirotti
2013-10-01
Full Text Available For a correct use of metrics derived from processing of the full-waveform return signal from airborne laser scanner sensors any correlation which is not related to properties of the reflecting target must be known and, if possible, removed. In the following article we report on an analysis of correlation between several metrics extracted from the full-waveform return signal and scan characteristics (mainly range and type of land-cover (urban, grasslands, forests. The metrics taken in consideration are the amplitude, normalized amplitude, width (full width at half maximum, asymmetry indicators, left and right energy content, and the cross-section calculated from width and normalized amplitude considering the range effect. The results show that scan geometry in this case does not have a significant impact scans over forest cover, except for range affecting amplitude and width distribution. Over complex targets such as vegetation canopy, other factors such as incidence angle have little meaning, therefore corrections of range effect are the most meaningful. A strong correlation with the type of land-cover is also shown by the distribution of the values of the metrics in the different areas taken in consideration.
Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.
2016-01-01
Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708
Houssaye, Alexandra; Taverne, Maxime; Cornette, Raphaël
2018-02-06
Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Wang, Zu-yong; Teo, Erin Yiling; Chong, Mark Seow Khoon; Zhang, Qin-yuan; Lim, Jing; Zhang, Zhi-yong; Hong, Ming-hui; Thian, Eng-san; Chan, Jerry Kok Yen; Teoh, Swee-hin
2013-07-01
Anisotropic geometries are critical for eliciting cell alignment to dictate tissue microarchitectures and biological functions. Current fabrication techniques are complex and utilize toxic solvents, hampering their applications for translational research. Here, we present a novel simple, solvent-free, and reproducible method via uniaxial stretching for incorporating anisotropic topographies on bioresorbable films with ambitions to realize stem cell alignment control. Uniaxial stretching of poly(ε-caprolactone) (PCL) films resulted in a three-dimensional micro-ridge/groove topography (inter-ridge-distance: ~6 μm; ridge-length: ~90 μm; ridge-depth: 200-900 nm) with uniform distribution and controllable orientation by the direction of stretch on the whole film surface. When stretch temperature (Ts) and draw ratio (DR) were increased, the inter-ridge-distance was reduced and ridge-length increased. Through modification of hydrolysis, increased surface hydrophilicity was achieved, while maintaining the morphology of PCL ridge/grooves. Upon seeding human mesenchymal stem cells (hMSCs) on uniaxial-stretched PCL (UX-PCL) films, aligned hMSC organization was obtained. Compared to unstretched films, hMSCs on UX-PCL had larger increase in cellular alignment (>85%) and elongation, without indication of cytotoxicity or reduction in cellular proliferation. This aligned hMSC organization was homogenous and stably maintained with controlled orientation along the ridges on the whole UX-PCL surface for over 2 weeks. Moreover, the hMSCs on UX-PCL had a higher level of myogenic genes' expression than that on the unstretched films. We conclude that uniaxial stretching has potential in patterning film topography with anisotropic structures. The UX-PCL in conjunction with hMSCs could be used as "basic units" to create tissue constructs with microscale control of cellular alignment and elongation for tissue engineering applications.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
International Nuclear Information System (INIS)
Safdar, Shakeel; Li, Lin; Sheikh, M A
2007-01-01
Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data
Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications
Directory of Open Access Journals (Sweden)
Lakshman Mahto
2013-01-01
Full Text Available We use Sadovskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and compliment the existing one.
Analysis of differential infrared thermography for boundary layer transition detection
Gardner, A. D.; Eder, C.; Wolf, C. C.; Raffel, M.
2017-09-01
This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.
Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid
Directory of Open Access Journals (Sweden)
Xiaoshen Zhang
2014-03-01
Full Text Available Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx. About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
Directory of Open Access Journals (Sweden)
Yücel Haluk
2015-09-01
Full Text Available Characterization of nuclear materials is an important topic within the context of nuclear safeguards, homeland security and nuclear forensics. This paper deals with the performance of multigroup gamma-ray analysis (MGA method using the X- and γ-rays in the 80-130 keV region and enrichment meter principle (EMP based on the analysis of 185.7 keV peak for a certain geometry using different absorbers and collimators. The results from MGA and those of EMP are compared. In particular, the effect of aluminum/lead absorbers and lead collimator on the enrichment determination of 235U in natural and low enriched samples is investigated in a given source-detector geometry. The optimum diameter/height ratio for the Pb-collimator is found to be Dc/Hc = 1.4-1.6 in the chosen geometry. In order to simulate the container walls, ten different thicknesses of Al-absorbers of 141 to 840 mg·cm-2 and six different thicknesses of Pb-absorbers of 1120-7367 mg·cm-2 are interposed between sample and detector. The calibration coefficients (% enrichment/cps are calculated for each geometry. The comparison of the MGA and EMP methods shows that the enrichment meter principle provides more accurate and precise results for 235U abundance than those of MGA method at the chosen geometrical conditions. The present results suggest that a two-step procedure should be used in analyses of uranium enrichment. Firstly MGA method can be applied in situ and then EMP method can be used at a defined geometry in laboratory.
MultiDCoX: Multi-factor analysis of differential co-expression.
Liany, Herty; Rajapakse, Jagath C; Karuturi, R Krishna Murthy
2017-12-28
Differential co-expression (DCX) signifies change in degree of co-expression of a set of genes among different biological conditions. It has been used to identify differential co-expression networks or interactomes. Many algorithms have been developed for single-factor differential co-expression analysis and applied in a variety of studies. However, in many studies, the samples are characterized by multiple factors such as genetic markers, clinical variables and treatments. No algorithm or methodology is available for multi-factor analysis of differential co-expression. We developed a novel formulation and a computationally efficient greedy search algorithm called MultiDCoX to perform multi-factor differential co-expression analysis. Simulated data analysis demonstrates that the algorithm can effectively elicit differentially co-expressed (DCX) gene sets and quantify the influence of each factor on co-expression. MultiDCoX analysis of a breast cancer dataset identified interesting biologically meaningful differentially co-expressed (DCX) gene sets along with genetic and clinical factors that influenced the respective differential co-expression. MultiDCoX is a space and time efficient procedure to identify differentially co-expressed gene sets and successfully identify influence of individual factors on differential co-expression.
Litwic, A E; Clynes, M; Denison, H J; Jameson, K A; Edwards, M H; Sayer, A A; Taylor, P; Cooper, C; Dennison, E M
2016-02-01
Hip fracture is the most significant complication of osteoporosis in terms of mortality, long-term disability and decreased quality of life. In the recent years, different techniques have been developed to assess lower limb strength and ultimately fracture risk. Here we examine relationships between two measures of lower limb bone geometry and strength; proximal femoral geometry and tibial peripheral quantitative computed tomography. We studied a sample of 431 women and 488 men aged in the range 59-71 years. The hip structural analysis (HSA) programme was employed to measure the structural geometry of the left hip for each DXA scan obtained using a Hologic QDR 4500 instrument while pQCT measurements of the tibia were obtained using a Stratec 2000 instrument in the same population. We observed strong sex differences in proximal femoral geometry at the narrow neck, intertrochanteric and femoral shaft regions. There were significant (p strength (strength strain index) with each corresponding HSA variable (all p lower limb bone strength: HSA and pQCT. Validation in prospective cohorts to study associations of each with incident fracture is now indicated.
Directory of Open Access Journals (Sweden)
CHUN-SEAN LAU
2014-02-01
Full Text Available In the present study, three-dimensional (3D finite element simulation on 132 PIN fleXBGATM package was performed to predict the effect of solder joint geometry on the reliability of Ball Grid Array (BGA solder joints on flexible and rigid PCBs subjected to thermo-cyclic loading. The commercial FEA tool ABAQUS Version 6.9 was used for the simulations of various shapes of solder joints such as barrel, column and hourglass. Apart from a global modeling, the submodeling analysis technique (local modeling was also used on the critically affected solder joints, in order to enhance the computation efficiency. The accumulated creep strain and strain energy density were observed for each case, and optimum geometries were obtained. The model was validated with the published experimental data with the minimum percentage error of 3%. It was observed that the hourglass solder joint geometry was very crucial on the reliability of BGA solder joints, and for a given PCB, the optimal choice of hourglass solder joint geometry depended on its rigidity.
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
Genome wide molecular analysis of minimally differentiated acute myeloid leukemia
F.P.G. Silva (Fernando); I. Almeida (Inês); B. Morolli (Bruno); G. Brouwer-Mandema (Geeske); H. Wessels (Hans); R. Vossen (Rolf); H. Vrieling (Harry); E.W.A. Marijt (Erik); P.J.M. Valk (Peter); J.C. Kluin-Nelemans (Hanneke); W.R. Sperr (Wolfgang); W.D. Ludwig; M. Giphart-Gassler (Micheline)
2009-01-01
textabstractBackground: Minimally differentiated acute myeloid leukemia is heterogeneous in karyotype and is defined by immature morphological and molecular characteristics. This originally French-American-British classification is still used in the new World Health Organization classification when
Genome wide molecular analysis of minimally differentiated acute myeloid leukemia
Silva, Fernando P. G.; Almeida, Ines; Morolli, Bruno; Brouwer-Mandema, Geeske; Wessels, Hans; Vossen, Rolf; Vrieling, Harry; Marijt, Erik W. A.; Valk, Peter J. M.; Kluin-Nelemans, Hanneke C.; Sperr, Wolfgang R.; Ludwig, Wolf-Dieter; Giphart-Gassler, Micheline
2009-01-01
Background Minimally differentiated acute myeloid leukemia is heterogeneous in karyotype and is defined by immature morphological and molecular characteristics. This originally French-American-British classification is still used in the new World Health Organization classification when other
Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps
Li, Yan; Hu, Junhao
2013-01-01
We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.
Differential proteome analysis of chikungunya virus infection on host cells.
Directory of Open Access Journals (Sweden)
Christina Li-Ping Thio
Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.
The analysis of cholescintigraphy in differentiating the causes of jaundice
International Nuclear Information System (INIS)
Kim, Jung Gyun; Son, So Yeob; Bae, Kwang Su; Chung, Moo Chan; Choi, Deuk Lin; Kim, Ki Jung
1985-01-01
As a adjacent, 99m Tc-IDA complex cholescintigraphy has been used to differentiate the causes of jaundice, hepatocellular jaundice from the obstructive jaundice. So we conducted the retrospective study from the 41 cases of cholescintigraphy from the Mar. 83 to Sept. 84 at the dept. of radiology in the Soonchunhyang university to determine the etiology and differential points in the diagnosing the jaundice. The following results were obtained; 1. As a 1st-ordered parameter, the leading edge hepatic parenchymal transit time was very significant in differentiating the causes of jaundice, among he hepatocellular jaundice, obstructive jaundice due to tumor, and obstructive jaundice due to cholelithiasis. (ρ 2 -test) 2. As a 2nd-ordered parameter, hepatic clearance was very significant in differentiating the hepatocellular jaundice from the jaundice due to partial biliary obstruction. (ρ 2 -test) 4. The difference in bile duct dilatation among the hepatocellular jaundice obstructive jaundice due to tumor, and obstructive jaundice due to cholelithiasis, was significant in differentiating the causes of jaundice. (ρ 2 -test) 5. Intrahepatic stone showed scintigraphic intrahepatic pooling with partial stasis. 6. Cholescintigraphy was useful to differentiated the Rotor's syndrome from the Dubin-Johnson syndrome, supplying the additional criteria
Genome-wide analysis of differential RNA editing in epilepsy
Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.
2017-01-01
The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018
Information geometry near randomness and near independence
Arwini, Khadiga A
2008-01-01
This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
International Nuclear Information System (INIS)
Zhai, Yuling; Li, Zhouhang; Wang, Hua; Xu, Jianxin
2017-01-01
Highlights: • A novel geometry with rectangular and complex channels in each layer is presented. • It shows lower pressure drop and more uniform temperature distribution. • The essence of enhanced heat transfer is analyzed from thermodynamics. - Abstract: Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility.
Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud
2002-04-26
This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Directory of Open Access Journals (Sweden)
Shaheed N. Huseen
2013-01-01
Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.
International Nuclear Information System (INIS)
Kumar, Jagadeesha; Attridge, Alex; Williams, Mark A; Wood, P K C
2011-01-01
Industrial x-ray computed tomography (CT) scanners are used for non-contact dimensional measurement of small, fragile components and difficult-to-access internal features of castings and mouldings. However, the accuracy and repeatability of measurements are influenced by factors such as cone-beam system geometry, test object configuration, x-ray power, material and size of test object, detector characteristics and data analysis methods. An attempt is made in this work to understand the measurement errors of a CT scanner over the complete scan volume, taking into account only the errors in system geometry and the object configuration within the scanner. A cone-beam simulation model is developed with the radiographic image projection and reconstruction steps. A known amount of errors in geometrical parameters were introduced in the model to understand the effect of geometry of the cone-beam CT system on measurement accuracy for different positions, orientations and sizes of the test object. Simulation analysis shows that the geometrical parameters have a significant influence on the dimensional measurement at specific configurations of the test object. Finally, the importance of system alignment and estimation of correct parameters for accurate CT measurements is outlined based on the analysis
International Nuclear Information System (INIS)
Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto
2013-01-01
Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters
Energy Technology Data Exchange (ETDEWEB)
Hook, D W [Blackett Laboratory, Imperial College of Science Technology and Medicine, University of London, Prince Consort Road, London, SW7 2BW (United Kingdom)
2008-01-11
framework, and applications of the geometric approach. The first four chapters contain the standard mathematics required to understand the rest of the material presented: specific areas in colour theory, set theory, probability theory, differential geometry and projective geometry are all covered with an eye to the material that follows. Chapter 5 starts the first real discussion of quantum theory in GQS and serves as an elegant, succinct introduction to the geometry which underlies quantum theory. This may be the most worthwhile chapter for the casual reader who wants to understand the key ideas in this field. Chapter 6 builds on the discussion in Chapter 5, introducing a group theoretic approach to understand coherent states and Chapter 7 describes a geometric tool in the form of an approach to complex projective geometry called 'the stellar representation'. Chapter 8 returns to a more purely quantum mechanical discussion as the authors turn to study the space of density matrices. This chapter completes the discussion which started in Chapter 5. Chapter 9 begins the part of the book concerned with applications of the geometric approach. From this point on the book aims, specifically, to prepare the reader for the material in Chapter 15 beginning with a discussion on the purification of mixed quantum states. In the succeeding chapters a definite choice has been made to present a geometric approach to certain quantum information problems. For example, Chapter 10 contains an extremely well formulated discussion of measurement and positive operator-valued measures with several well illustrated examples and Chapter 11 reopens the discussion of density matrices. Entropy and majorization are again revisited in Chapter 12 in much greater detail than in previous chapters. Chapters 13 and 14 concern themselves with a discussion of various metrics and their relation to the problem of distinguishing between probability distributions and their suitability as probability
Directory of Open Access Journals (Sweden)
T. Wagner
2007-01-01
Full Text Available The results of a comparison exercise of radiative transfer models (RTM of various international research groups for Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS viewing geometry are presented. Besides the assessment of the agreement between the different models, a second focus of the comparison was the systematic investigation of the sensitivity of the MAX-DOAS technique under various viewing geometries and aerosol conditions. In contrast to previous comparison exercises, box-air-mass-factors (box-AMFs for different atmospheric height layers were modelled, which describe the sensitivity of the measurements as a function of altitude. In addition, radiances were calculated allowing the identification of potential errors, which might be overlooked if only AMFs are compared. Accurate modelling of radiances is also a prerequisite for the correct interpretation of satellite observations, for which the received radiance can strongly vary across the large ground pixels, and might be also important for the retrieval of aerosol properties as a future application of MAX-DOAS. The comparison exercises included different wavelengths and atmospheric scenarios (with and without aerosols. The strong and systematic influence of aerosol scattering indicates that from MAX-DOAS observations also information on atmospheric aerosols can be retrieved. During the various iterations of the exercises, the results from all models showed a substantial convergence, and the final data sets agreed for most cases within about 5%. Larger deviations were found for cases with low atmospheric optical depth, for which the photon path lengths along the line of sight of the instrument can become very large. The differences occurred between models including full spherical geometry and those using only plane parallel approximation indicating that the correct treatment of the Earth's sphericity becomes indispensable. The modelled box-AMFs constitute an
Directory of Open Access Journals (Sweden)
Dan DOBROTĂ
2017-12-01
Full Text Available The role of processing by machining is to generate surfaces that have to meet the requirements imposed by the designer through the execution drawing of the piece. The study aims to analyze how the functional geometry of the tool evolves when lathing with a transverse advance. The technological process of lathing with transverse advance is realized with a variable machining speed, and this also causes a variation of the functional geomtry of the tool. Thus, in the paper was established the optimal construction geometry of a lathe knife that can be used for lathing a piece of a certain diameter. Under these conditions, a correlation was established between the values of the geometrical constructive parameters of the knife used for the transverse lathing and the diameter of the workpiece which can be processed in optimal conditions
Gu, Wei; Cheng, Gang; Wan, Yongjian
2010-10-01
For a novel 3SPS+PS parallel bionic processing platform with 4-DOF (degree of freedom) simulating the complex processing path including optical processing and machining, the kinematic model based on Rodrigues parameters is established. The singular configurations of the processing platform are obtained from kinematic poses and geometry essence by means of Grassmann line geometry. The numerical simulations show the motion curves and surfaces of the singular configurations with lower linear variety of rank 1 to 3. Then the distribution characteristics of the singular trajectories are studied. It provides an analytical basis for workspace construction, singularity avoidance, and size optimization of the parallel bionic processing platform, as well as the other parallel manipulators.
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Second International workshop Geometry and Symbolic Computation
Walczak, Paweł; Geometry and its Applications
2014-01-01
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...
Directory of Open Access Journals (Sweden)
Raul ePayri
2015-10-01
Full Text Available Understanding and controlling mixing and combustion processes is fundamental in order to face the challenges set by the ever more demanding pollutant regulations and fuel consumption standards of direct injection diesel engines. The fundamentals of these processes haven been long studied by the diesel spray community from both experimental and numerical perspectives. However, certain topics such as the influence of nozzle geometry over the spray atomization, mixing and combustion process are still not completely well understood and predicted by numerical models. The present study seeks to contribute to the current understanding of this subject, by performing state-of-the-art optical diagnostics to liquid sprays injected through two singe-hole nozzles of different conicity. The experiments were carried out in a nitrogen-filled constant-pressure-flow facility. Back pressures were set to produce the desired engine-like density conditions in the chamber, at room temperature. The experimental setup consists in a diffused back illumination setup with a fast pulsed LED light source and a high-speed camera. The diagnostics focused on detecting the liquid spray contour and evaluating the influence of nozzle geometry over the time-resolved and quasi-steady response of the spray dispersion, at similar injection conditions. Results show a clear influence of nozzle geometry on spray contour fluctuations, where the cylindrical nozzle seems to produce larger dispersion in both time-resolved fluctuations and quasi-steady values, when compared to the conical nozzle. This evidences that the turbulence and radial velocity profiles originated at the cylindrical nozzle geometry are able to affect not only the microscopic scales inside the nozzle, but also macroscopic scales such as the steady spray. Observations from this study indicate that the effects of the flow characteristics within the nozzle are carried on to the first millimeters of the spray, in which the
Directory of Open Access Journals (Sweden)
Yun-Jong Park
Full Text Available Severe xerostomia (dry mouth compromises the quality of life in patients with Sjögren's syndrome or radiation therapy for head and neck cancer. A clinical management of xerostomia is often unsatisfactory as most interventions are palliative with limited efficacy. Following up our previous study demonstrating that mouse BM-MSCs are capable of differentiating into salivary epithelial cells in a co-culture system, we further explored the molecular basis that governs the MSC reprogramming by utilizing high-throughput iTRAQ-2D-LC-MS/MS-based proteomics. Our data revealed the novel induction of pancreas-specific transcription factor 1a (PTF1α, muscle, intestine and stomach expression-1 (MIST-1, and achaete-scute complex homolog 3 (ASCL3 in 7 day co-cultured MSCs but not in control MSCs. More importantly, a common notion of pancreatic-specific expression of PTF1 α was challenged for the first time by our verification of PTF1 α expression in the mouse salivary glands. Furthermore, a molecular network simulation of our selected putative MSC reprogramming factors demonstrated evidence for their perspective roles in salivary gland development. In conclusion, quantitative proteomics with extensive data analyses narrowed down a set of MSC reprograming factors potentially contributing to salivary gland regeneration. Identification of their differential/synergistic impact on MSC conversion warrants further investigation.
International Winter Workshop on Differential Equations and Numerical Analysis
Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin
2016-01-01
This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.
Vibration analysis of structural elements using differential quadrature method.
Nassar, Mohamed; Matbuly, Mohamed S; Ragb, Ola
2013-01-01
The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler-Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.
Vibration analysis of structural elements using differential quadrature method
Directory of Open Access Journals (Sweden)
Mohamed Nassar
2013-01-01
Full Text Available The method of differential quadrature is employed to analyze the free vibration of a cracked cantilever beam resting on elastic foundation. The beam is made of a functionally graded material and rests on a Winkler–Pasternak foundation. The crack action is simulated by a line spring model. Also, the differential quadrature method with a geometric mapping are applied to study the free vibration of irregular plates. The obtained results agreed with the previous studies in the literature. Further, a parametric study is introduced to investigate the effects of geometric and elastic characteristics of the problem on the natural frequencies.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Gruber, Peter M
1987-01-01
This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit
Analysis of the essential spectrum of singular matrix differential operators
Czech Academy of Sciences Publication Activity Database
Ibrogimov, O. O.; Siegl, Petr; Tretter, C.
2016-01-01
Roč. 260, č. 4 (2016), s. 3881-3926 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : essential spectrum * system of singular differential equations * operator matrix * Schur complement * magnetohydrodynamics * Stellar equilibrium model Subject RIV: BE - Theoretical Physics Impact factor: 1.988, year: 2016
Long SAGE analysis of genes differentially expressed in the midgut ...
African Journals Online (AJOL)
There are great differences in silk production efficiency and quality between the male and female domestic silkworm (Bombyx mori). Many genes act together but are differentially expressed between the sexes during silk biosynthesis. Two long serial analyses of gene expression (SAGE) libraries were constructed from the ...
Analysis of solutions of a nonlinear scalar field differential equation
Muhamadiev, E. M.; Naimov, A. N.
2017-10-01
We consider a nonlinear differential equation arising in mathematical models of elementary particle theory. For this equation, we examine questions of the extendability of solutions, the boundedness of solutions at infinity, and the search for new conditions for the existence of a positive particle-like solution.
Analysis of a variable stiffness differential drive (VSDD)
Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella
In robotics, differential mechanisms are widely used when lightweightness and compactness are a requisite for the robot design. Moreover, the last decades have seen the rise of (variable) compliant acuators as important elements to perform safe interaction and dynamic tasks. This paper introduces a
A Comparative Analysis of Fertility Differentials in Ghana and Nigeria
African Journals Online (AJOL)
AJRH Managing Editor
In both countries, education, age at first marriage, marital status, urban-rural residence, wealth index and use of oral contraception were the main factors influencing high fertility levels. (Afr J Reprod Health 2014; 18[3]: 36-47). Keywords: Fertility differential, Educational level, ordinal logistic regression, Nigeria, Ghana.
Stability analysis of a class of fractional delay differential equations
Indian Academy of Sciences (India)
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form D y ( t ) = a f ( y ( t − ) ) − by ( t ) , where D is a Caputo fractional derivative of order 0 < ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic ...
Stability analysis of a class of fractional delay differential equations
Indian Academy of Sciences (India)
Abstract. In this paper we analyse stability of nonlinear fractional order delay differential equa- tions of the form Dα y(t) = af (y(t − τ )) − by(t), where Dα is a Caputo fractional derivative of order 0 < α ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic ...
Introduction to geometry and relativity
2013-01-01
This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, c...
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Partial differential equations with variable exponents variational methods and qualitative analysis
Radulescu, Vicentiu D
2015-01-01
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth
Indian Academy of Sciences (India)
IAS Admin
The author earned his PhD degree in mathematics. (topology), in 2000, from. Panjab University,. Chandigarh and since then he has been teaching analysis, algebra, calculus and discrete mathematics at. DES-MDRC, Panjab. University. His areas of interest are combinatorial topology, algebraic topology, differential.
International Nuclear Information System (INIS)
Korayem, Moharam Habibnejad; Saraie, Maniya B.; Saraee, Mahdieh B.
2017-01-01
An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry
Energy Technology Data Exchange (ETDEWEB)
Korayem, Moharam Habibnejad, E-mail: hkorayem@iust.ac.ir; Saraie, Maniya B.; Saraee, Mahdieh B.
2017-04-15
An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry
Analysis III analytic and differential functions, manifolds and Riemann surfaces
Godement, Roger
2015-01-01
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...
Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A
2012-04-01
This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. Copyright Â© 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Analysis of gender wage differential in China's urban labor market
Su, Biwei; Heshmati, Almas
2011-01-01
This paper estimates the gender wage gap and its composition in China's urban labor market using the 2009 survey data from the Chinese Family Panel Studies. Several estimation and decomposition methods have been used and compared. First, we examine the gender wage gap using ordinary least square regression method with a gender dummy variable. Then, we apply Oaxaca (1973) decomposition method with different weighting systems to analyze the logarithmic wage differential. To be more specific, we...
Comparative Racial Analysis of Enlisted Advancement Exams: Item Differentiation
1977-01-01
as was a validacion and comparison on internal and external criteria of the alternative test construction pro- cedures identified. UNCLASSIFIED EY...investigated to improve test quality as measured by item differentiation or test reliability. The study specifically investigated (1) the differences in...SPICATMU OF THIS PM AN DOS AMM (20) tion from constructing tests with particular types of items deleted, and (4) exam construction or processing procedures
Buytaert, Jan A. N.; Ribbens, Bart; Vanlanduit, Steve; Dirckx, Joris J. J.
2012-08-01
The accuracy of fringe projection profilometry strongly depends on the setup. In this article different setups are discussed, and compared using custom-made freeware simulation software. The best suited geometry for aberration-free measurements on small objects is implemented in a practical setup. By using specific telecentric lenses and different grid periods, both for projection and observation, we obtain a close to aberration-free phase-shifting projection moiré profilometer. In combination with liquid crystal display panels, the setup becomes practical, versatile and user-friendly.
Partial wave analysis for folded differential cross sections
Machacek, J. R.; McEachran, R. P.
2018-03-01
The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.
Kosinski, Antoni A
2007-01-01
The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Genome-wide analysis of HOXC9-induced neuronal differentiation of neuroblastoma cells
Directory of Open Access Journals (Sweden)
Xiangwei Wang
2014-12-01
Full Text Available Induction of differentiation is a therapeutic strategy in neuroblastoma, a common pediatric cancer of the sympathetic nervous system. The homeobox protein HOXC9 is a key regulator of neuroblastoma differentiation. To gain a molecular understanding of the function of HOXC9 in promoting differentiation of neuroblastoma cells, we conducted a genome-wide analysis of the HOXC9-induced differentiation program by microarray gene expression profiling and chromatin immunoprecipitation in combination with massively parallel sequencing (ChIP-seq. Here we describe in detail the experimental system, methods, and quality control for the generation of the microarray and ChIP-seq data associated with our recent publication [1].
Gobinath, R.; Mathiselvan, G.; Kumarasubramanian, R.
2017-05-01
Flow patterns are essential to ensure that the engine can produce high performance with the presence of swirl and tumble effect inside the engine cylinder. This paper provides the simulation of air is simulated in the software to predict the flow pattern. The flow pattern is simulated by using the steady state pressure based solver. The domain used for the simulations predicated on the particular engine parameters. Mistreatment the CFD problem solver ANSYS FLUENT, the CFD simulation is earned for four totally different geometries of the valve. The geometries consist of Horizontal, Vertical, curve and arc springs. In this simulation, only the intake strokes are simulated. From this results show that the velocity of the air flow is high during the sweeps the intake stroke takes place. This situation is produced more swirls and tumble effect during the compression, hence enhancing the combustion rate in a whole region of the clearance volume of the engine cylinder. This will initiate to the production of tumble and swirl in the engine cylinder.
Concepts from tensor analysus and differential geometry
Thomas, Tracy Y
1961-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Differential geometry and the calculus of variations
Hermann, Robert
1968-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Differential geometry of quasi-Sasakian manifolds
International Nuclear Information System (INIS)
Kirichenko, V F; Rustanov, A R
2002-01-01
The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind
From Riemann to differential geometry and relativity
Papadopoulos, Athanase; Yamada, Sumio
2017-01-01
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Introduction to stochastic analysis integrals and differential equations
Mackevicius, Vigirdas
2013-01-01
This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro
Differentiation of closely related fungi by electronic nose analysis
DEFF Research Database (Denmark)
Karlshøj, Kristian; Nielsen, Per Væggemose; Larsen, Thomas Ostenfeld
2007-01-01
the electronic nose potentially responded to, volatile metabolites were collected, by diffusive sampling overnight onto tubes containing Tenax TA, between the 7th and 8th day of Incubation.Volatiles were analyzed by gas chromatography coupled to mass spectrometry and the results indicated that mail alcohols...... by high pressure liquid chromatography, coupled-to a diode array detector and a time of flight mass spectrometer. Several mycotoxins were detected in samples from the specles P.nordicum, P.roqueforti, P.paneum, P.carneum, and P.expansum. Differentiation of closely related mycotoxin producing fungi...
Multiscale differential phase contrast analysis with a unitary detector
Lopatin, Sergei
2015-12-30
A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.
Directory of Open Access Journals (Sweden)
ECOBICI MIHAELA LOREDANA
2016-12-01
Full Text Available Product quality has been and will remain one of the most important indicators of increasing economic and financial performance of a company. Quality is that which ensures the greatest part of the competitiveness of a product or service, this being the result of some important aspects such as: products and services of quality to meet consumers requirements, low costs without affecting the quality level, the performance of contractual obligations, customer satisfaction and last but not least obtaining profit. Research and results concerning this issue will result in the prerequisites in the process for quality assurance that can develop both internally and externally. The purpose of this article lies in the approach and illustration of the aspects of products differentiated and non-differentiated in quality classes. In launching this research I will try to highlight some aspects that most efficiently the indicators mentioned above, indicators that read to what extent a certain product meets the characteristics specified to its destination.
Czech Academy of Sciences Publication Activity Database
Vaculíková, Lenka; Plevová, Eva; Vallová, S.; Koutník, I.
2011-01-01
Roč. 8, č. 1 (2011), s. 59-67 ISSN 1214-9705 R&D Projects: GA ČR GA105/08/1398; GA ČR GP105/07/P416 Institutional research plan: CEZ:AV0Z30860518 Keywords : kaolins * infrared spectroscopy * thermal analysis Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/01_11/5_Vaculikova.pdf
Analysis of a ferrofluid core differential transformer tilt measurement sensor
Energy Technology Data Exchange (ETDEWEB)
Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.
2017-04-15
In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range. - Highlights: • A ferrofluid core differential transformer can be used to measure tilt. • The theoretical description of two different type of the sensor is introduced. • The measuring range, and the sensitivity depends on the dimensions of the sensor.
Differential Analysis of Genetic, Epigenetic, and Cytogenetic Abnormalities in AML
Directory of Open Access Journals (Sweden)
Mirazul Islam
2017-01-01
Full Text Available Acute myeloid leukemia (AML is a haematological malignancy characterized by the excessive proliferation of immature myeloid cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and NPMc are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide methylation changes. These include Del (5q, T (15; 17, and NPMc mutations. Four aberrations—Del (5q, T (15; 17, T (9; 22, and T (9; 11—are significantly associated with patient survival. Del (5q-positive patients have an average survival of less than 1 year, whereas T (15; 17-positive patients have a significantly better prognosis. Combining the methylation and mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and further investigation of the effects observed in this study are required to enable the clinical application of our patient classification aided by DNA methylation.
Directory of Open Access Journals (Sweden)
Wenyi Qin
2018-02-01
Full Text Available Abstract Motivation Detecting differentially expressed (DE genes between disease and normal control group is one of the most common analyses in genome-wide transcriptomic data. Since most studies don’t have a lot of samples, researchers have used meta-analysis to group different datasets for the same disease. Even then, in many cases the statistical power is still not enough. Taking into account the fact that many diseases share the same disease genes, it is desirable to design a statistical framework that can identify diseases’ common and specific DE genes simultaneously to improve the identification power. Results We developed a novel empirical Bayes based mixture model to identify DE genes in specific study by leveraging the shared information across multiple different disease expression data sets. The effectiveness of joint analysis was demonstrated through comprehensive simulation studies and two real data applications. The simulation results showed that our method consistently outperformed single data set analysis and two other meta-analysis methods in identification power. In real data analysis, overall our method demonstrated better identification power in detecting DE genes and prioritized more disease related genes and disease related pathways than single data set analysis. Over 150% more disease related genes are identified by our method in application to Huntington’s disease. We expect that our method would provide researchers a new way of utilizing available data sets from different diseases when sample size of the focused disease is limited.
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Introduction to projective geometry
Wylie, C R
2008-01-01
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w
A study of complexity of oral mucosa using fractal geometry
Directory of Open Access Journals (Sweden)
S R Shenoi
2017-01-01
Full Text Available Background: The oral mucosa lining the oral cavity is composed of epithelium supported by connective tissue. The shape of the epithelial-connective tissue interface has traditionally been used to describe physiological and pathological changes in the oral mucosa. Aim: The aim is to evaluate the morphometric complexity in normal, dysplastic, well-differentiated, and moderately differentiated squamous cell carcinoma (SCC of the oral mucosa using fractal geometry. Materials and Methods: A total of 80 periodic acid–Schiff stained histological images of four groups: normal mucosa, dysplasia, well-differentiated SCC, and moderately differentiated SCC were verified by the gold standard. These images were then subjected to fractal analysis. Statistical Analysis: ANOVA and post hoc test: Bonferroni was applied. Results: Fractal dimension (FD increases as the complexity increases from normal to dysplasia and then to SCC. Normal buccal mucosa was found to be significantly different from dysplasia and the two grades of SCC (P < 0.05. ANOVA of fractal scores of four morphometrically different groups of buccal mucosa was significantly different with F (3,76 = 23.720 and P< 0.01. However, FD of dysplasia was not significantly different from well-differentiated and moderately differentiated SCC (P = 1.000 and P = 0.382, respectively. Conclusion: This study establishes FD as a newer tool in differentiating normal tissue from dysplastic and neoplastic tissue. Fractal geometry is useful in the study of both physiological and pathological changes in the oral mucosa. A new grading system based on FD may emerge as an adjuvant aid in cancer diagnosis.
Integrable systems, geometry, and topology
Terng, Chuu-Lian
2006-01-01
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...
Directory of Open Access Journals (Sweden)
Elanda Laksinta Putri
2017-03-01
Full Text Available The purpose of this study were to describe the mathematical communication skills and the confidence of grade X SMK students on Van Hiele model geometry learning based on their cognitive styles. It was a qualitative descriptive research. The subjects were 2 impulsive students and 2 reflective students which were selected with MFFT instrument. The data collection techniques were mathematical communication skills tests (written and orally, interviews, documentation, attitude scale and activity observation sheets. The results showed that both written and orally, reflective students were able to meet 5 indicators of mathematical communication skills, and less meet another indicators. While, impulsive students less meet all of the mathematical communication skills indictors. The impulsive students confidence was in the medium category. In contrary, the reflective students confidence was in the high category.
Owaydhah, Wejdan H; Alobaidy, Mohammad A; Alraddadi, Abdulrahman S; Soames, Roger W
2017-07-01
To understand the geometry of the proximal humerus and glenoid fossa to facilitate the design of components used in shoulder arthroplasty. The aim is to evaluate the geometry of the proximal humerus and glenoid fossa and their relationship using a MicroScribe 3D digitizer. Scans and measurements were obtained from 20 pairs of dry proximal humeri and scapulae [10 female and 10 male cadavers: median age 81 years (range 70-94 years)] using a MicroScribe 3D digitizer and Rhinoceros software. Means (±SD) of humeral inclination, medial wall angle of the bicipital groove, and radius of the humeral head values were 135 ± 11°, 39 ± 19°, and 14 ± 3 mm, respectively. Means (±SD) of glenoid height and width were 35 ± 4 and 26 ± 4 mm, while the means (±SD) of the angles of glenoid inclination, retroversion, and rotation were 87 ± 32°, 96 ± 10°, and 9 ± 6°, respectively. A significant difference in glenoid height (P ≤ 0.002) and width (P ≤ 0.0001) was observed between males and females, despite them having almost an identical radius of the humeral head, glenoid inclination, retroversion, and angle of rotation. There was also a significant difference (P ≤ 0.01) in the angle of glenoid retroversion between the right and left sides. Using a MicroScribe 3D digitizer, the glenoid fossa was observed to be significantly smaller in females than males; furthermore, there was a difference in glenoid retroversion between the right and left sides.
Special metrics and group actions in geometry
Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi
2017-01-01
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Energy Technology Data Exchange (ETDEWEB)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Final Report: Geometry And Elementary Particle Physics
International Nuclear Information System (INIS)
Singer, Isadore M.
2008-01-01
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Allozyme variation in Ulmus species from France: analysis of differentiation.
Machon, N; Lefranc, M; Bilger, I; Mazer, S J; Sarr, A
1997-01-01
In the present paper, the geographical structure of genetic variation in three French elm taxa is described using electrophoretic data. For three species, Ulmus laevis, U. glabra and U. minor, two kinds of analyses were performed. First, the genetic parameters (genetic diversity indices) of individuals sampled from naturally regenerating forest were compared to samples of cultivated ornamental trees. Secondly, when sample sizes were sufficient, the genetic parameters of trees sampled from different regions of France were compared to detect geographical differentiation. From these analyses, the ultimate aim was to offer recommendations concerning the conservation policies of the genetic resources of French elms. The heterozygosity of Ulmusxhollandica (the presumed hybrid between U. minor and U. glabra) was compared to its putative parent taxa to determine whether the hybrid harbours great levels of genetic variation. In spite of the ravaging effects of Dutch Elm disease in the past, all three species exhibit high levels of electrophoretic variation. The three species surveyed displayed similar levels of genetic diversity, proportions of polymorphic loci and levels of allelic diversity in trees harvested from naturally regenerated forests relative to cultivated ornamental trees. High levels of genetic diversity in U. minor within geographical regions of France were detected, with only moderate levels of genetic differentiation detected between regions. Ulmusxhollandica is not more heterozygous than either of its parent species, suggesting that extant representatives of this taxon are the result of past and ongoing backcrosses with the parental taxa. Ongoing efforts to preserve the genetic variation still present in French elms should take advantage of their high levels of electrophoretic variation and target genetically distinct, vegetatively reproducing genotypes in their natural environment.
ADAGE signature analysis: differential expression analysis with data-defined gene sets.
Tan, Jie; Huyck, Matthew; Hu, Dongbo; Zelaya, René A; Hogan, Deborah A; Greene, Casey S
2017-11-22
Gene set enrichment analysis and overrepresentation analyses are commonly used methods to determine the biological processes affected by a differential expression experiment. This approach requires biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many organisms without extensively curated resources. New feature learning approaches can now be paired with existing data collections to directly extract functional gene sets from big data. Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are differentially active under a given treatment. Our results demonstrate that these signatures represent biological processes that are perturbed by the experiment. Because these signatures are directly learned from data without supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both an R package (ADAGEpath) and a web server ( http://adage.greenelab.com ) to run these analyses. Both are open-source to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also identified a signature that revealed the molecularly supported link between the MexT regulon and Anr. We designed
Spectral analysis of difference and differential operators in weighted spaces
Energy Technology Data Exchange (ETDEWEB)
Bichegkuev, M S [North-Ossetia State University, Vladikavkaz (Russian Federation)
2013-11-30
This paper is concerned with describing the spectrum of the difference operator K:l{sub α}{sup p}(Z,X)→l{sub α}{sup p}(Z......athscrKx)(n)=Bx(n−1), n∈Z, x∈l{sub α}{sup p}(Z,X), with a constant operator coefficient B, which is a bounded linear operator in a Banach space X. It is assumed that K acts in the weighted space l{sub α}{sup p}(Z,X), 1≤p≤∞, of two-sided sequences of vectors from X. The main results are obtained in terms of the spectrum σ(B) of the operator coefficient B and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles.
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq.
Directory of Open Access Journals (Sweden)
Yafang Li
Full Text Available Alternative splicing is an important biological process in the generation of multiple functional transcripts from the same genomic sequences. Differential analysis of splice junctions (SJs and intron retentions (IRs is helpful in the detection of alternative splicing events. In this study, we conducted differential analysis of SJs and IRs by use of DEXSeq, a Bioconductor package originally designed for differential exon usage analysis in RNA-seq data analysis. We set up an analysis pipeline including mapping of RNA-seq reads, the preparation of count tables of SJs and IRs as the input files, and the differential analysis in DEXSeq. We analyzed the public RNA-seq datasets generated from RNAi experiments on Drosophila melanogaster S2-DRSC cells to deplete RNA-binding proteins (GSE18508. The analysis confirmed previous findings on the alternative splicing of the trol and Ant2 (sesB genes in the CG8144 (ps-depletion experiment and identified some new alternative splicing events in other RNAi experiments. We also identified IRs that were confirmed in our SJ analysis. The proposed method used in our study can output the genomic coordinates of differentially used SJs and thus enable sequence motif search. Sequence motif search and gene function annotation analysis helped us infer the underlying mechanism in alternative splicing events. To further evaluate this method, we also applied the method to public RNA-seq data from human breast cancer (GSE45419 and the plant Arabidopsis (SRP008262. In conclusion, our study showed that DEXSeq can be adapted to differential analysis of SJs and IRs, which will facilitate the identification of alternative splicing events and provide insights into the molecular mechanisms of transcription processes and disease development.
Directory of Open Access Journals (Sweden)
M. R. Pakmanesh
2018-03-01
Full Text Available In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.
Directory of Open Access Journals (Sweden)
Wojtkowiak Dominik
2018-01-01
Full Text Available Perforated belts, which are used in vacuum conveyor belts, can have significantly different mechanical properties like strength and elasticity due to a variety of used materials and can have different thickness from very thin (0,7 mm to thick belts (6 mm. In order to design a complex machine for mechanical perforation, which can perforate whole range of belts, it is necessary to research the influence of the cutting edge geometry on the parameters of the perforation process. Three most important parameters, which describe the perforation process are the cutting force, the velocity and the temperature of the piercing punch. The results presented in this paper consider two different types of punching (a piercing punch with the punching die or with the reducer plate and different cutting edge directions, angles, diameters and material properties. Test were made for different groups of composites belts – with polyurethane and polyester fabric, polyamide core or aramid-fibre reinforced polymers. The main goal of this research is to specify effective tools and parameters of the perforation process for each group of composites belts.
Fatima, Nikhat; Khan, Aleem A; Vishwakarma, Sandeep K
2017-01-01
Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro . The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical analysis used one-way analysis of variance, Student's t -test, Livak method for relative quantification, and R programming. Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications.
Spectrophotometric intracutaneous analysis for differential diagnosis of pigmented skin lesions
Directory of Open Access Journals (Sweden)
Е. V. Filonenko
2013-01-01
Full Text Available The non-invasive diagnosis of pigmented skin lesions by spectrophotometric intracutaneous analysis (SIA-scopy using device for dermatoscopy (SIAscope V by Astron Clinica, Ltd was approved in P.A.Herzen Moscow Cancer Research Institute. The method is based on analysis of light interaction with wavelength of 440–960 nm anf human skin, which is recorded by change of image on scan. The comparative analysis of SIA-scopy and histological data in 327 pigmented skin lesions in 147 patients showed, that SIA had high diagnostic efficiency for cutaneous melanoma: the sensitivity was 96%, specifity – 94%, diagnostic accuracy – 94%. For study of malignant potential of pigmented lesions by SIA-scopy the most informative capacity was obtained for assessment of melanin in papillary dermis, status of blood vessels and collagen fibres (SIA-scans 3, 4, 5.
The Use of Differential Item Functioning (DIF) Analysis to Distinguish Between Similar Job Roles.
Risk, Nicole M; Fidler, James R
Two primary roles in the clinical laboratory are those of Medical Technologist (MT) and Medical Laboratory Technician (MLT). Job analyses, which form the foundation of test blueprints employed for credentialing practitioners, suggest a reasonable amount of overlap in the tasks performed by MTs and MLTs. However, credentialing assessments must clearly distinguish between the two roles and ensure that they address competencies appropriate to each practice designation. Differential item functioning (DIF) analysis techniques were applied to explore and differentiate the two laboratory practitioner job roles as an aspect of examination development. Results from the analysis suggest a high degree of similarity between these two groups in terms of scope of tasks performed. Subject matter expert interpretation suggests that the assessments are more appropriately differentiated by underlying level of task knowledge rather than scope of tasks. DIF may be applicable to other exploratory investigations that seek to differentiate job roles comprised of common competencies.
Portillo, Mary; Lindsey, Keith; Casson, Stuart; García-Casado, Gloria; Solano, Roberto; Fenoll, Carmen; Escobar, Carolina
2009-07-01
Plant organ gene expression profile analyses are complicated by the various cell types, and therefore transcription patterns, present in each organ. For example, each gall formed in roots following root knot nematode infection contains between four and eight specialized feeding cells (giant cells, GCs) embedded within hypertrophied root tissues. A recent goal in plant science has been the isolation of nematode feeding cell mRNAs for subsequent gene expression analysis. By adapting current protocols for different plant species and cells, we have developed a simple and rapid method for obtaining GCs from frozen tissue sections of tomato with good morphology and preserved RNA. The tissue sections obtained were suitable for the laser capture microdissection of GCs 6-7 days post-infection, and even of very early developing GCs (48-72 h post-infection), by fixation of tissue with ethanol-acetic acid, infiltration with sucrose and freezing in isopentane with optimal cutting temperature medium. This process was also successful for obtaining control vascular cells from uninfected roots for direct comparison with GCs. A minimum of about 300 GCs and 600 control vascular cells was required for efficient linear RNA amplification through in vitro transcription. Laser capture microdissection-derived RNA, after two rounds of amplification, was successfully used for microarray hybridization and validated with several differentially expressed genes by quantitative polymerase chain reaction. Consistent with our results, 117 homologous genes were found to be co-regulated in a previous microarray analysis of Arabidopsis galls at the same developmental stage. Therefore, we conclude that our method allows the isolation of a sufficient quantity of RNA with a high quality/integrity, appropriate for differential transcriptome analysis.
Analysis of an Nth-order nonlinear differential-delay equation
Vallée, Réal; Marriott, Christopher
1989-01-01
The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.
Euclidean geometry and transformations
Dodge, Clayton W
1972-01-01
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
International Nuclear Information System (INIS)
Hrivnacova, I; Viren, B
2008-01-01
The Virtual Geometry Model (VGM) was introduced at CHEP in 2004 [1], where its concept, based on the abstract interfaces to geometry objects, has been presented. Since then, it has undergone a design evolution to pure abstract interfaces, it has been consolidated and completed with more advanced features. Currently it is used in Geant4 VMC for the support of TGeo geometry definition with Geant4 native geometry navigation and recently it has been used in the validation of the G4Root tool. The implementation of the VGM for a concrete geometry model represents a small layer between the VGM and the particular native geometry. In addition to the implementations for Geant4 and Root TGeo geometry models, there is now added the third one for AGDD, which together with the existing XML exporter makes the VGM the most advanced tool for exchanging geometry formats providing 9 ways of conversions between Geant4, TGeo, AGDD and GDML models. In this presentation we will give the overview and the present status of the tool, we will review the supported features and point to possible limits in converting geometry models
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
International Nuclear Information System (INIS)
Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria
2008-01-01
In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks
The ultrasonographic features of endometriomas: morphologic analysis and differential diagnosis
Energy Technology Data Exchange (ETDEWEB)
Kim, Mi Sung; Park, Chan Sup; Song, Soon Young; Lee, Eun Ja; Park, No Hyuck [College of Medicine, Kwandong Univ., Koyang (Korea, Republic of); Park, Cheol Min [College of Medicine, Korea Univ., Seoul (Korea, Republic of); Kim, Bo Hyun; Kim, Chan Kyo [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)
2003-12-01
septation, wall nodularity, focal echogenic wall foci, and a solid area, all of which were also apparent in group I. The US findings of endometriomas vary: the most common is homogeneous fine internal echoes (79%), found in 85% of unilocular or multiseptated cysts. Their appearance may also be atypical, however: namely solid and cystic or mixed type, with diverse internal echogenicity, and such masses should be differentiated from other adnexal masses such as cystic neoplasm, teratoma, hemorrhagic cyst, functional cyst and ovarian cancer.
An analysis of income differentials by marital status
Directory of Open Access Journals (Sweden)
Regina Madalozzo
2008-01-01
Full Text Available Unmarried cohabitation has become a more frequently observed phenomenon over the last three decades, and not only in the United States. The objective of this work is to examine income differentials between married women and those who remain single or cohabitate. The empirical literature shows that, while the marriage premium is verified in different studies for men, the result for women is not conclusive. The main innovation of my study is the existence of controls for selection. In this study, we have two sources of selectivity: into the labor force and into a marital status category. The switching regressions and the Oaxaca decomposition results demonstrate the existence of a significant penalty for marriage. Correcting for both types of selection, the difference in wages varies between 49% and 53%, when married women are compared with cohabiting ones, and favors non-married women. This result points to the existence of a marriage penalty.O casamento não oficializado, coabitação, tem se tornado cada vez mais freqüente nas últimas décadas. O objetivo deste trabalho é examinar a relação entre os salários das mulheres casadas e das solteiras ou coabitantes. A literatura a este respeito mostra que, enquanto o prêmio financeiro para o casamento é verificado em diversos estudos e países quando o objeto de estudo são os homens, o resultado para mulheres não é conclusivo. A principal inovação do presente estudo é a existência de controles para seleção, tanto na escolha em participar da força de trabalho como de alterar seu estado civil. Regressões "switching" e decomposição de Oaxaca mostram a existência de uma penalização financeira para mulheres casadas. Corrigindo para ambos os tipos de seleção, a diferença nos salários das mulheres casadas com relação às coabitantes varia entre 49% e 53%, favorecendo as coabitantes. Este resultado aponta para a existência de uma penalidade ao casamento.
Analysis of the F. Calogero Type Projection-Algebraic Scheme for Differential Operator Equations
International Nuclear Information System (INIS)
Lustyk, Miroslaw; Bogolubov, Nikolai N. Jr.; Blackmore, Denis; Prykarpatsky, Anatoliy K.
2010-12-01
The existence, convergence, realizability and stability of solutions of differential operator equations obtained via a novel projection-algebraic scheme are analyzed in detail. This analysis is based upon classical discrete approximation techniques coupled with a recent generalization of the Leray-Schauder fixed point theorem. An example is included to illustrate the efficacy of the projection scheme and analysis strategy. (author)
Directory of Open Access Journals (Sweden)
Manoj Tripathy
2012-01-01
Full Text Available This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to discriminate between internal faults from inrush and overexcitation conditions. This algorithm has been developed by considering optimal number of neurons in hidden layer and optimal number of neurons at output layer. The proposed algorithm makes use of ratio of voltage to frequency and amplitude of differential current for transformer operating condition detection. This paper presents a comparative study of power transformer differential protection algorithms based on harmonic restraint method, NNPCA, feed forward back propagation neural network (FFBPNN, space vector analysis of the differential signal, and their time characteristic shapes in Park’s plane. The algorithms are compared as to their speed of response, computational burden, and the capability to distinguish between a magnetizing inrush and power transformer internal fault. The mathematical basis for each algorithm is briefly described. All the algorithms are evaluated using simulation performed with PSCAD/EMTDC and MATLAB.
Kong, Jun; Sertel, Olcay; Shimada, Hiroyuki; Boyer, Kim L.; Saltz, Joel H.; Gurcan, Metin N.
2008-03-01
Neuroblastic Tumor (NT) is one of the most commonly occurring tumors in children. Of all types of NTs, neuroblastoma is the most malignant tumor that can be further categorized into undifferentiated (UD), poorly-differentiated (PD) and differentiating (D) types, in terms of the grade of pathological differentiation. Currently, pathologists determine the grade of differentiation by visual examinations of tissue samples under the microscope. However, this process is subjective and, hence, may lead to intra- and inter-reader variability. In this paper, we propose a multi-resolution image analysis system that helps pathologists classify tissue samples according to their grades of differentiation. The inputs to this system are color images of haematoxylin and eosin (H&E) stained tissue samples. The complete image analysis system has five stages: segmentation, feature construction, feature extraction, classification and confidence evaluation. Due to the large number of input images, both parallel processing and multi-resolution analysis were carried out to reduce the execution time of the algorithm. Our training dataset consists of 387 images tiles of size 512x512 in pixels from three whole-slide images. We tested the developed system with an independent set of 24 whole-slide images, eight from each grade. The developed system has an accuracy of 83.3% in correctly identifying the grade of differentiation, and it takes about two hours, on average, to process each whole slide image.
Hafizzal, Y.; Nurulhuda, A.; Izman, S.; Khadir, AZA
2017-08-01
POM-copolymer bond breaking leads to change depending with respect to processing methodology and material geometries. This paper present the oversights effect on the material integrity due to different geometries and processing methodology. Thermo-analytical methods with reference were used to examine the degradation of thermomechanical while Thermogravimetric Analysis (TGA) was used to judge the thermal stability of sample from its major decomposition temperature. Differential Scanning Calorimetry (DSC) investigation performed to identify the thermal behaviour and thermal properties of materials. The result shown that plastic gear geometries with injection molding at higher tonnage machine more stable thermally rather than resin geometries. Injection plastic gear geometries at low tonnage machine faced major decomposition temperatures at 313.61°C, 305.76 °C and 307.91 °C while higher tonnage processing method are fully decomposed at 890°C, significantly higher compared to low tonnage condition and resin geometries specimen at 398°C. Chemical composition of plastic gear geometries with injection molding at higher and lower tonnage are compare based on their moisture and Volatile Organic Compound (VOC) content, polymeric material content and the absence of filler. Results of higher moisture and Volatile Organic Compound (VOC) content are report in resin geometries (0.120%) compared to higher tonnage of injection plastic gear geometries which is 1.264%. The higher tonnage of injection plastic gear geometry are less sensitive to thermo-mechanical degradation due to polymer chain length and molecular weight of material properties such as tensile strength, flexural strength, fatigue strength and creep resistance.
Directory of Open Access Journals (Sweden)
Libermann Towia
2008-05-01
Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that
Elliptic partial differential equations
Han, Qing
2011-01-01
Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo
International Nuclear Information System (INIS)
Dunca, G; Isbasoiu, E C; Muntean, S
2010-01-01
The paper presents the 3D numerical analysis of the flow into a hydraulic passage of the two stages and double entry storage pump. One of the reasons for choosing this machinery was that, even from the beginning of its operation, high levels of noise and vibration were recorded. According to the literature, these can be considered as effects of the impeller-stator phenomenon. After only 100 hours of operation, the pump' first stator blades was bend and the second stator blades was broken. As a rehabilitation solution, 100 mm of the chord were cut from the stator blades, near the leading edge. After the rehabilitation, a decrease of the noise and vibration levels during pump operation was observed. In order to analyse the pump behaviour, three measurements campaigns were conducted, after the rehabilitation. Yet, the experimental results were not very conclusive. A more detailed experimental analysis on a real turbo machine is very difficult and expensive. Thus, in order to obtain more detailed information regarding the impeller-stator phenomenon inside the analysed pump, a numerical analysis was realized. The impeller-stator (between the first impeller and first stator as well as between second impeller and second stator) and stator-impeller (between the first stator and second impeller) interactions are taken into account with mixing interface method. The hydrodynamic field from the inlet to the outlet is obtained. As a result, the pressure rise and hydraulic efficiency are computed at best efficiency point. These values are validated against experimental data measured into the storage pump. Comparing the numerical results obtained for the two geometries of the stators, it can be seen that they have different behaviour during the pump's operation. It can be considered that, although the same geometry modification was realized for both the stators, the effects on the flow parameters are different, only for the second stator being possible to observe a net
Dunca, G.; Muntean, S.; Isbasoiu, E. C.
2010-08-01
The paper presents the 3D numerical analysis of the flow into a hydraulic passage of the two stages and double entry storage pump. One of the reasons for choosing this machinery was that, even from the beginning of its operation, high levels of noise and vibration were recorded. According to the literature, these can be considered as effects of the impeller-stator phenomenon. After only 100 hours of operation, the pump' first stator blades was bend and the second stator blades was broken. As a rehabilitation solution, 100 mm of the chord were cut from the stator blades, near the leading edge. After the rehabilitation, a decrease of the noise and vibration levels during pump operation was observed. In order to analyse the pump behaviour, three measurements campaigns were conducted, after the rehabilitation. Yet, the experimental results were not very conclusive. A more detailed experimental analysis on a real turbo machine is very difficult and expensive. Thus, in order to obtain more detailed information regarding the impeller-stator phenomenon inside the analysed pump, a numerical analysis was realized. The impeller-stator (between the first impeller and first stator as well as between second impeller and second stator) and stator-impeller (between the first stator and second impeller) interactions are taken into account with mixing interface method. The hydrodynamic field from the inlet to the outlet is obtained. As a result, the pressure rise and hydraulic efficiency are computed at best efficiency point. These values are validated against experimental data measured into the storage pump. Comparing the numerical results obtained for the two geometries of the stators, it can be seen that they have different behaviour during the pump's operation. It can be considered that, although the same geometry modification was realized for both the stators, the effects on the flow parameters are different, only for the second stator being possible to observe a net
Automatic differential analysis of NMR experiments in complex samples.
Margueritte, Laure; Markov, Petar; Chiron, Lionel; Starck, Jean-Philippe; Vonthron-Sénécheau, Catherine; Bourjot, Mélanie; Delsuc, Marc-André
2017-11-20
Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Copyright © 2017 John Wiley & Sons, Ltd.
Increasing insightful thinking in analytic geometry
Timmer, Mark; Verhoef, Neeltje Cornelia
Elsewhere in this issue Ferdinand Verhulst described the discussion of the interaction of analysis and geometry in the 19th century. In modern times such discussions come up again and again. As of 2014, synthetic geometry will not be part of the Dutch 'vwo - mathematics B' programme anymore.
Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem
2009-01-01
Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Supersymmetric Sigma Model Geometry
Directory of Open Access Journals (Sweden)
Ulf Lindström
2012-08-01
Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Brunner, Hermann
2009-06-01
The numerical analysis of Volterra functional integro-differential equations with vanishing delays has to overcome a number of challenges that are not encountered when solving [`]classical' delay differential equations with non-vanishing delays. In this paper I shall describe recent results in the analysis of optimal (global and local) superconvergence orders in collocation methods for such evolutionary problems. Following a brief survey of results for equations containing Volterra integral operators with non-vanishing delays, the discussion will focus on pantograph-type Volterra integro-differential equations with (linear and nonlinear) vanishing delays. The paper concludes with a section on open problems; these include the asymptotic stability of collocation solutions uh on uniform meshes for pantograph-type functional equations, and the analysis of collocation methods for pantograph-type functional equations with advanced arguments.
Automated differentiation of computer models for sensitivity analysis
International Nuclear Information System (INIS)
Worley, B.A.
1991-01-01
Sensitivity analysis of reactor physics computer models is an established discipline after more than twenty years of active development of generalized perturbations theory based on direct and adjoint methods. Many reactor physics models have been enhanced to solve for sensitivities of model results to model data. The calculated sensitivities are usually normalized first derivatives, although some codes are capable of solving for higher-order sensitivities. The purpose of this paper is to report on the development and application of the GRESS system for automating the implementation of the direct and adjoint techniques into existing FORTRAN computer codes. The GRESS system was developed at ORNL to eliminate the costly man-power intensive effort required to implement the direct and adjoint techniques into already-existing FORTRAN codes. GRESS has been successfully tested for a number of codes over a wide range of applications and presently operates on VAX machines under both VMS and UNIX operating systems. (author). 9 refs, 1 tab
Z. Pashazadeh Atabakan; A. Kazemi Nasab; A. Kılıçman; Zainidin K. Eshkuvatov
2013-01-01
Spectral homotopy analysis method (SHAM) as a modification of homotopy analysis method (HAM) is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange i...
VIII International Meeting on Lorentzian Geometry
Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics
2017-01-01
This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Geometry and dynamics of integrable systems
Matveev, Vladimir
2016-01-01
Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Cunha, A C; da Veiga, A M A; Masterson, D; Mattos, C T; Nojima, L I; Nojima, M C G; Maia, L C
2017-12-01
The aim of this systematic review and meta-analysis was to investigate how parameters related to geometry influence the clinical performance of orthodontic mini-implants (MIs). Systematic searches were performed in electronic databases including MEDLINE, Scopus, Web of Science, Virtual Health Library, and Cochrane Library and reference lists up to March 2016. Eligibility criteria comprised clinical studies involving patients who received MIs for orthodontic anchorage, with data for categories of MI dimension, shape, and thread design and insertion site, and evaluated by assessment of primary and secondary stability. Study selection, data extraction, quality assessment, and a meta-analysis were carried out. Twenty-seven studies were included in the qualitative synthesis: five randomized, eight prospective, and 14 retrospective clinical studies. One study with a serious risk of bias was later excluded. Medium and short MIs (1.4-1.9mm diameter and 5-8mm length) presented the highest success rates (0.87, 95% CI 0.80-0.92). A maximum insertion torque of 13.28Ncm (standard error 0.34) was observed for tapered self-drilling MIs in the mandible, whereas cylindrical MIs in the maxilla presented a maximum removal torque of 10.01Ncm (standard error 0.17). Moderate evidence indicates that the clinical performance of MIs is influenced by implant geometry parameters and is also related to properties of the insertion site. However, further research is necessary to support these associations. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Nikhat Fatima
2017-01-01
Full Text Available Background: Growing evidence shows that dental pulp (DP tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH and non-ADH (NADH neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed> 80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71, and> 30% for chemotactic factor (CXCR3. These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications.
Directory of Open Access Journals (Sweden)
Robinson Timothy
2018-01-01
Full Text Available We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with 30 MeV energies, suggesting the discharge current contribution to EMP is dominant.
Benzi, F; Davoli, I; Rovezzi, M; d'Acapito, F
2008-10-01
A novel code for the analysis of extended x-ray absorption fine structure (EXAFS) data collected in total reflection mode (reflEXAFS) is presented. The procedure calculates the theoretical fine structure signals appearing in the reflectivity spectrum starting from the ab initio EXAFS calculations. These signals are then used in complex structural refinement (i.e., also including multiple scattering paths) with usual fitting programs of EXAFS data. A test case consisting in the analysis of a gold film collected at different incidence angles is presented in detail.
International Nuclear Information System (INIS)
Smitha, K A; Gupta, A K; Jayasree, R S
2015-01-01
Glioma, the heterogeneous tumors originating from glial cells, generally exhibit varied grades and are difficult to differentiate using conventional MR imaging techniques. When this differentiation is crucial in the disease prognosis and treatment, even the advanced MR imaging techniques fail to provide a higher discriminative power for the differentiation of malignant tumor from benign ones. A powerful image processing technique applied to the imaging techniques is expected to provide a better differentiation. The present study focuses on the fractal analysis of fluid attenuation inversion recovery MR images, for the differentiation of glioma. For this, we have considered the most important parameters of fractal analysis, fractal dimension and lacunarity. While fractal analysis assesses the malignancy and complexity of a fractal object, lacunarity gives an indication on the empty space and the degree of inhomogeneity in the fractal objects. Box counting method with the preprocessing steps namely binarization, dilation and outlining was used to obtain the fractal dimension and lacunarity in glioma. Statistical analysis such as one-way analysis of variance and receiver operating characteristic (ROC) curve analysis helped to compare the mean and to find discriminative sensitivity of the results. It was found that the lacunarity of low and high grade gliomas vary significantly. ROC curve analysis between low and high grade glioma for fractal dimension and lacunarity yielded 70.3% sensitivity and 66.7% specificity and 70.3% sensitivity and 88.9% specificity, respectively. The study observes that fractal dimension and lacunarity increases with an increase in the grade of glioma and lacunarity is helpful in identifying most malignant grades. (paper)
Smitha, K A; Gupta, A K; Jayasree, R S
2015-09-07
Glioma, the heterogeneous tumors originating from glial cells, generally exhibit varied grades and are difficult to differentiate using conventional MR imaging techniques. When this differentiation is crucial in the disease prognosis and treatment, even the advanced MR imaging techniques fail to provide a higher discriminative power for the differentiation of malignant tumor from benign ones. A powerful image processing technique applied to the imaging techniques is expected to provide a better differentiation. The present study focuses on the fractal analysis of fluid attenuation inversion recovery MR images, for the differentiation of glioma. For this, we have considered the most important parameters of fractal analysis, fractal dimension and lacunarity. While fractal analysis assesses the malignancy and complexity of a fractal object, lacunarity gives an indication on the empty space and the degree of inhomogeneity in the fractal objects. Box counting method with the preprocessing steps namely binarization, dilation and outlining was used to obtain the fractal dimension and lacunarity in glioma. Statistical analysis such as one-way analysis of variance and receiver operating characteristic (ROC) curve analysis helped to compare the mean and to find discriminative sensitivity of the results. It was found that the lacunarity of low and high grade gliomas vary significantly. ROC curve analysis between low and high grade glioma for fractal dimension and lacunarity yielded 70.3% sensitivity and 66.7% specificity and 70.3% sensitivity and 88.9% specificity, respectively. The study observes that fractal dimension and lacunarity increases with an increase in the grade of glioma and lacunarity is helpful in identifying most malignant grades.
Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics
International Nuclear Information System (INIS)
Rivera Hernandez, Sergio
2012-01-01
Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all
Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics
Energy Technology Data Exchange (ETDEWEB)
Rivera Hernandez, Sergio
2012-02-15
Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all
Small-Signal Modeling and Analysis of Grid-Connected Inverter with Power Differential Droop Control
Directory of Open Access Journals (Sweden)
Xin Chen
2016-01-01
Full Text Available The conventional voltage and frequency droop control strategy in grid-connected inverter suffers a major setback in the presence of disturbance by producing oscillations. Adding a power differential term in droop controller is an effective way to address such drawback. In this paper, grid-connected inverter’s small-signal models of the conventional droop control and the power differential droop control are established. The eigenvalues of the models are then determined by system matrix. The eigenvalues analysis is presented which helps in identifying the relationship between the system stability and controller parameters. It is concluded that the damping ratio of dominant low-frequency eigenvalues increased and the oscillation caused by the disturbance is suppressed when a power differential term is added to the droop control method. The MATLAB/Simulink models of grid-connected inverter with both control strategies are also established to validate the results of small-signal analysis.
DEFF Research Database (Denmark)
Gallo, G.; Renzone, G.; Alduina, R.
2010-01-01
A differential proteomic analysis, based on 2-DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin-like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis......, energetic and redox balance, sugar/amino sugar metabolism, balhimycin biosynthesis and transcriptional regulation or with hypothetical and/or unknown function. Interestingly, proteins involved in the biosynthesis of balhimycin precursors, such as amino acids, amino sugars and central carbon metabolism...
Chen, Bi-Cang; Wu, Qiu-Ying; Xiang, Cheng-Bin; Zhou, Yi; Guo, Ling-Xiang; Zhao, Neng-Jiang; Yang, Shu-Yu
2006-01-01
To evaluate the quality of reports published in recent 10 years in China about quantitative analysis of syndrome differentiation for diabetes mellitus (DM) in order to explore the methodological problems in these reports and find possible solutions. The main medical literature databases in China were searched. Thirty-one articles were included and evaluated by the principles of clinical epidemiology. There were many mistakes and deficiencies in these articles, such as clinical trial designs, diagnosis criteria for DM, standards of syndrome differentiation of DM, case inclusive and exclusive criteria, sample size and estimation, data comparability and statistical methods. It is necessary and important to improve the quality of reports concerning quantitative analysis of syndrome differentiation of DM in light of the principles of clinical epidemiology.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
GEOMETRY AND COMPLEXITY IN ARCHITECTURE
Directory of Open Access Journals (Sweden)
RUSU Maria Ana
2015-06-01
Full Text Available As Constantin Brancuși (1876-1956 said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design.
A Geometry in which all Triangles are Isosceles
Indian Academy of Sciences (India)
. The purpose of this article is to introduce 'a new analysis' to students of mathematics at the un- dergraduate and postgraduate levels, which in turn introduces a geometry very different from our Euclidean geometry and Riemannian geom-.
International Nuclear Information System (INIS)
Pescarini, M.; Orsi, R.; Martinelli, T.
2003-01-01
In many practical radiation transport applications today the cost for solving refined, large size and complex multi-dimensional problems is not so much computing but is linked to the cumbersome effort required by an expert to prepare a detailed geometrical model, verify and validate that it is correct and represents, to a specified tolerance, the real design or facility. This situation is, in particular, relevant and frequent in reactor core criticality and shielding calculations, with three-dimensional (3D) general purpose radiation transport codes, requiring a very large number of meshes and high performance computers. The need for developing tools that make easier the task to the physicist or engineer, by reducing the time required, by facilitating through effective graphical display the verification of correctness and, finally, that help the interpretation of the results obtained, has clearly emerged. The paper shows the results of efforts in this field through detailed simulations of a complex shielding benchmark experiment. In the context of the activities proposed by the OECD/NEA Nuclear Science Committee (NSC) Task Force on Computing Radiation Dose and Modelling of Radiation-Induced Degradation of Reactor Components (TFRDD), the ENEA-Bologna Nuclear Data Centre contributed with an analysis of the VENUS-3 low-flux neutron shielding benchmark experiment (SCK/CEN-Mol, Belgium). One of the targets of the work was to test the BOT3P system, originally developed at the Nuclear Data Centre in ENEA-Bologna and actually released to OECD/NEA Data Bank for free distribution. BOT3P, ancillary system of the DORT (2D) and TORT (3D) SN codes, permits a flexible automatic generation of spatial mesh grids in Cartesian or cylindrical geometry, through combinatorial geometry algorithms, following a simplified user-friendly approach. This system demonstrated its validity also in core criticality analyses, as for example the Lewis MOX fuel benchmark, permitting to easily
Conformal Lorentz geometry revisited
Teleman, Kostake
1996-02-01
. We also show that Mach's principle on inertial motions receives an explanation in our theory by considering the particular geodesic paths, for which one of the partners of an interacting pair is fixed and sent to infinity. In fact we study a dynamical system (W,L) which presents some formal and topological similarities with a system of two particles interacting gravitationally. (W,L) is the only conformally invariant relativistic two-point dynamical system. At the end we show that W can be naturally regarded as the base of a principal GL(2,C)-bundle which comes with a natural connection. We study this bundle from differential geometric point of view. Physical interpretations will be discussed in a future paper. This text is an improvement of a previous version, which was submitted under the title ``Hypertwistor Geometry.'' [See, K. Teleman, ``Hypertwistor Geometry (abstract),'' 14th International Conference on General Relativity and Gravitation, Florence, Italy, 1995.] The change of the title and many other improvements are due to the valuable comments of the referee, who also suggested the author to avoid hazardous interpretations.
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Directory of Open Access Journals (Sweden)
Treuner-Lange Anke
2010-04-01
Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate
Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.
2018-01-01
We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.
Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment
Liu, Dayan
2015-03-31
The integer order differentiation by integration method based on the Jacobi orthogonal polynomials for noisy signals was originally introduced by Mboup, Join and Fliess. We propose to extend this method from the integer order to the fractional order to estimate the fractional order derivatives of noisy signals. Firstly, two fractional order differentiators are deduced from the Jacobi orthogonal polynomial filter, using the Riemann-Liouville and the Caputo fractional order derivative definitions respectively. Exact and simple formulae for these differentiators are given by integral expressions. Hence, they can be used for both continuous-time and discrete-time models in on-line or off-line applications. Secondly, some error bounds are provided for the corresponding estimation errors. These bounds allow to study the design parameters\\' influence. The noise error contribution due to a large class of stochastic processes is studied in discrete case. The latter shows that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, whose mean value and variance functions are polynomial time-varying. Thanks to the design parameters analysis, the proposed fractional order differentiators are significantly improved by admitting a time-delay. Thirdly, in order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, the proposed differentiator based on the Riemann-Liouville fractional order derivative is used to estimate the state of a fractional order system and numerical simulations illustrate the accuracy and the robustness with respect to corrupting noises.
Directory of Open Access Journals (Sweden)
Yi Gan
2014-01-01
Full Text Available Aim: The objective of this study is to characterize differential proteomic expression among well-differentiation and poor-differentiation colorectal carcinoma tissues and normal mucous epithelium. Materials and Methods: The study is based on quantitative 2-dimensional gel electrophoresis and analyzed by PDquest. Results: Excluding redundancies due to proteolysis and posttranslational modified isoforms of over 600 protein spots, 11 proteins were revealed as regulated with statistical variance being within the 95 th confidence level and were identified by peptide mass fingerprinting in matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Progression-associated proteins belong to the functional complexes of tumorigenesis, proliferation, differentiation, metabolism, and the regulation of major histocompatibility complex processing and other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in CRC. Among various differentiation stage of CRC tissues, we identified calreticulin precursor, MHC class I antigen (human leukocyte antigen A , glutathione S-transferase pi1, keratin 8, heat shock protein 27, tubulin beta chain, triosephosphate, fatty acid-binding protein, hemoglobin (deoxy mutant with val b 1 replaced by met (HBB, and zinc finger protein 312 (FEZF2. Conclusions: Their functional networks were analyzed by Ingenuity systems Ingenuity Pathways Analysis and revealed the potential roles as novel biomarkers for progression in various differentiation stages of CRC.
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
[SADE] a Maple package for the symmetry analysis of differential equations
Rocha Filho, Tarcísio M.; Figueiredo, Annibal
2011-02-01
We present the package SADE (Symmetry Analysis of Differential Equations) for the determination of symmetries and related properties of systems of differential equations. The main methods implemented are: Lie, nonclassical, Lie-Bäcklund and potential symmetries, invariant solutions, first-integrals, Nöther theorem for both discrete and continuous systems, solution of ordinary differential equations, order and dimension reductions using Lie symmetries, classification of differential equations, Casimir invariants, and the quasi-polynomial formalism for ODE's (previously implemented by the authors in the package QPSI) for the determination of quasi-polynomial first-integrals, Lie symmetries and invariant surfaces. Examples of use of the package are given. Program summaryProgram title: SADE Catalogue identifier: AEHL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 704 No. of bytes in distributed program, including test data, etc.: 346 954 Distribution format: tar.gz Programming language: MAPLE 13 and MAPLE 14 Computer: PCs and workstations Operating system: UNIX/LINUX systems and WINDOWS Classification: 4.3 Nature of problem: Determination of analytical properties of systems of differential equations, including symmetry transformations, analytical solutions and conservation laws. Solution method: The package implements in MAPLE some algorithms (discussed in the text) for the study of systems of differential equations. Restrictions: Depends strongly on the system and on the algorithm required. Typical restrictions are related to the solution of a large over-determined system of linear or non-linear differential equations. Running time: Depends strongly on the order, the complexity of the differential
Differential Item Functioning Analysis of the Mental, Emotional, and Bodily Toughness Inventory
Gao, Yong; Mack, Mick G.; Ragan, Moira A.; Ragan, Brian
2012-01-01
In this study the authors used differential item functioning analysis to examine if there were items in the Mental, Emotional, and Bodily Toughness Inventory functioning differently across gender and athletic membership. A total of 444 male (56.3%) and female (43.7%) participants (30.9% athletes and 69.1% non-athletes) responded to the Mental,…
Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density
B. H. Bond; D. Earl Kline; Philip A. Araman
2002-01-01
Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to...
Analysis of a first-order delay differential-delay equation containing two delays
Marriott, C.; Vallée, R.; Delisle, C.
1989-09-01
An experimental and numerical analysis of the behavior of a two-delay differential equation is presented. It is shown that much of the system's behavior can be related to the stability behavior of the underlying linearized modes. A new phenomenon, mode crossing, is explored.
Dimitrov, Dimiter M.
2017-01-01
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
Pierce, W. David; Sydie, R. A.; Stratkotter, Rainer
2003-01-01
Male and female participants (N = 274) made judgments about the social concepts of "feminist," "man," and "woman" on 63 semantic differential items. Factor analysis identified three basic dimensions termed evaluative, potency, and activity as well as two secondary factors called expressiveness and sexuality. Results for the evaluative dimension…
Shinar, J.; Siegel, A.W.
1988-01-01
The investigation is motivated by the dynamic conflict in an air-to-air combat between two aggressive aircraft, both equipped with medium-range guided missiles. It is a two-target differential game with two independent pursuit-evasion games. A description is given of the analysis of the conflict by
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Melzak, Z A
2008-01-01
Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Needle decompositions in Riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Needle decompositions in riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Directory of Open Access Journals (Sweden)
Ali Jahan
2015-01-01
Full Text Available Knee prostheses as medical products require careful application of quality and design tool to ensure the best performance. Therefore, quality function deployment (QFD was proposed as a quality tool to systematically integrate consumer’s expectation to perceived needs by medical and design team and to explicitly address the translation of customer needs into engineering characteristics. In this study, full factorial design of experiment (DOE method was accompanied by finite element analysis (FEA to evaluate the effect of inner contours of femoral component on mechanical stability of the implant and biomechanical stresses within the implant components and adjacent bone areas with preservation of the outer contours for standard Co-Cr alloy and a promising functionally graded material (FGM. The ANOVA revealed that the inner shape of femoral component influenced the performance measures in which the angle between the distal and anterior cuts and the angle between the distal and posterior cuts were greatly influential. In the final ranking of alternatives, using multicriteria decision analysis (MCDA, the designs with FGM was ranked first over the Co-Cr femoral component, but the original design with Co-Cr material was not the best choice femoral component, among the top ranked design with the same material.
The elements of non-Euclidean geometry
Sommerville, D MY
2012-01-01
Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.
Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.
2014-06-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Yue Sheng; Wei Zhao; Ying Song; Zhigang Li; Majing Luo; Quan Lei; Hanhua Cheng; Rongjia Zhou
2015-01-01
A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transf...
Jayaswal, Vivek; Schramm, Sarah-Jane; Mann, Graham J; Wilkins, Marc R; Yang, Yee Hwa
2013-01-01
Background Large-scale molecular interaction networks are dynamic in nature and are of special interest in the analysis of complex diseases, which are characterized by network-level perturbations rather than changes in individual genes/proteins. The methods developed for the identification of differentially expressed genes or gene sets are not suitable for network-level analyses. Consequently, bioinformatics approaches that enable a joint analysis of high-throughput transcriptomics datasets a...
Directory of Open Access Journals (Sweden)
N. Sharmila
2016-11-01
Full Text Available In the title compound, C10H8BrNO2, the isatin (1H-indole-2,3-dione moiety is nearly planar (r.m.s. deviation = 0.026 Å. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming layers parallel to the ab plane, and enclosing R44(24 loops. There are a low percentage (19.3% of intermolecular H...H contacts in the structure, as estimated by the analysis of Hirshfeld surfaces. This could be due to the presence of the Br atom, present in the bromoethylene group, which makes ca 18.7% Br...H contacts.
International Nuclear Information System (INIS)
Clifton, P.M.
1984-12-01
The deep basalt formations beneath the Hanford Site are being investigated for the Department of Energy (DOE) to assess their suitability as a host medium for a high level nuclear waste repository. Predicted performance of the proposed repository is an important part of the investigation. One of the performance measures being used to gauge the suitability of the host medium is pre-waste-emplacement groundwater travel times to the accessible environment. Many deterministic analyses of groundwater travel times have been completed by Rockwell and other independent organizations. Recently, Rockwell has completed a preliminary stochastic analysis of groundwater travel times. This document presents analyses that show the sensitivity of the results from the previous stochastic travel time study to: (1) scale of representation of model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross-correlation between transmissivity and effective thickness. 40 refs., 29 figs., 6 tabs
Quasi-static state analysis of differential, difference, integral, and gradient systems
Hoppensteadt, Frank C
2010-01-01
This book is based on a course on advanced topics in differential equations given in Spring 2010 at the Courant Institute of Mathematical Sciences. It describes aspects of mathematical modeling, analysis, computer simulation, and visualization in the mathematical sciences and engineering that involve singular perturbations. There is a large literature devoted to singular perturbation methods for ordinary and partial differential equations, but there are not many studies that deal with difference equations, Volterra integral equations, and purely nonlinear gradient systems where there is no dom
Gas stream analysis using voltage-current time differential operation of electrochemical sensors
Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl
2018-01-02
A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
International Nuclear Information System (INIS)
Clifton, P.M.
1985-03-01
This study examines the sensitivity of the travel time distribution predicted by a reference case model to (1) scale of representation of the model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross correlations between transmissivity and effective thickness. The basis for the reference model is the preliminary stochastic travel time model previously documented by the Basalt Waste Isolation Project. Results of this study show the following. The variability of the predicted travel times can be adequately represented when the ratio between the size of the zones used to represent the model parameters and the log-transmissivity correlation range is less than about one-fifth. The size of the model domain and the types of boundary conditions can have a strong impact on the distribution of travel times. Longer log-transmissivity correlation ranges cause larger variability in the predicted travel times. Positive cross correlation between transmissivity and effective thickness causes a decrease in the travel time variability. These results demonstrate the need for a sound conceptual model prior to conducting a stochastic travel time analysis
Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.
2016-09-01
The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.