WorldWideScience

Sample records for analysis code system

  1. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  2. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  3. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  4. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  5. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  6. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  7. Java Source Code Analysis for API Migration to Embedded Systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Victor [Univ. of Nebraska, Omaha, NE (United States); McCoy, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guerrero, Jonathan [Univ. of Nebraska, Omaha, NE (United States); Reinke, Carl Werner [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perry, James Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered by APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.

  8. Verification of the CONPAS (CONtainment Performance Analysis System) code package

    International Nuclear Information System (INIS)

    Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.

    1997-09-01

    CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs

  9. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  10. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  11. SALT [System Analysis Language Translater]: A steady state and dynamic systems code

    International Nuclear Information System (INIS)

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs

  12. Fusion PIC code performance analysis on the Cori KNL system

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)

    2017-05-25

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.

  13. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  14. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  15. Sandia Engineering Analysis Code Access System v. 2.0.1

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-30

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  16. Analysis of the KUCA MEU experiments using the ANL code system

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.

  17. Development of dynamic analysis code for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Maeda, Yukimasa; Nishihara, Tetsuo; Ohashi, Hirohumi; Sato, Hiroyuki; Inagaki, Yoshiyuki

    2005-03-01

    A heat and mass balance analysis code (N-HYPAC) has been developed to investigate transient behavior in the HTTR hydrogen production system. The code can analyze heat and mass transfer (temperature and mass and pressure distributions of process and helium gases) and behavior of the control system under both static state (case of steady operation) and dynamic state (case of transient operation). Analysis model of helium and process gases from IHX to secondary helium loop and hydrogen production system has been constructed. This report describes analytical flow sheet, construction of the code, basic equations, method to treat the input data, estimation of the preliminary analysis. (author)

  18. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous OCDMA systems

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Zhang, Xiu-rong; Chen, Mei-juan; He, Dong-dong; Fan, Qing-bin

    2014-07-01

    A construction scheme of variable-weight optical orthogonal codes (VW-OOCs) for asynchronous optical code division multiple access (OCDMA) system is proposed. According to the actual situation, the code family can be obtained by programming in Matlab with the given code weight and corresponding capacity. The formula of bit error rate (BER) is derived by taking account of the effects of shot noise, avalanche photodiode (APD) bulk, thermal noise and surface leakage currents. The OCDMA system with the VW-OOCs is designed and improved. The study shows that the VW-OOCs have excellent performance of BER. Despite of coming from the same code family or not, the codes with larger weight have lower BER compared with the other codes in the same conditions. By taking simulation, the conclusion is consistent with the analysis of BER in theory. And the ideal eye diagrams are obtained by the optical hard limiter.

  19. Development of a code system DEURACS for theoretical analysis and prediction of deuteron-induced reactions

    OpenAIRE

    Nakayama Shinsuke; Kouno Hiroshi; Watanabe Yukinobu; Iwamoto Osamu; Ye Tao; Ogata Kazuyuki

    2017-01-01

    We have developed an integrated code system dedicated for theoretical analysis and prediction of deuteron-induced reactions, which is called DEUteron-induced Reaction Analysis Code System (DEURACS). DEURACS consists of several calculation codes based on theoretical models to describe respective reaction mechanisms and it was successfully applied to (d,xp) and (d,xn) reactions. In the present work, the analysis of (d,xn) reactions is extended to higher incident energy up to nearly 100 MeV and ...

  20. Performance analysis of super-orthogonal space-frequency trellis coded OFDM system

    CSIR Research Space (South Africa)

    Sokoya, O

    2009-08-01

    Full Text Available This paper presents the performance analysis of Super-Orthogonal Space-Frequency trellis coded OFDM (SOSFTC-OFDM) system using the Gauss-Chebyshev Quadrature technique. SOSFTC-OFDM is a form of the super-orthogonal space-time trellis code...

  1. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W

    2006-01-15

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  2. Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach

    International Nuclear Information System (INIS)

    Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou

    2005-01-01

    A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)

  3. HDL code analysis for ASICs in mobile systems

    OpenAIRE

    Wickberg, Fredrik

    2007-01-01

    The complex work of designing new ASICs today and the increasing costs of time to market (TTM) delays are putting high responsibility on the research and development teams to make fault free designs. The main purpose of implementing a static rule checking tool in the design flow today is to find errors and bugs in the hardware definition language (HDL) code as fast and soon as possible. The sooner you find a bug in the design, the shorter the turnaround time becomes, and thereby both time and...

  4. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal

    2007-07-01

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE

  5. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  6. Non-coding sequence retrieval system for comparative genomic analysis of gene regulatory elements

    Directory of Open Access Journals (Sweden)

    Temple Matthew H

    2007-03-01

    Full Text Available Abstract Background Completion of the human genome sequence along with other species allows for greater understanding of the biochemical mechanisms and processes that govern healthy as well as diseased states. The large size of the genome sequences has made them difficult to study using traditional methods. There are many studies focusing on the protein coding sequences, however, not much is known about the function of non-coding regions of the genome. It has been demonstrated that parts of the non-coding region play a critical role as gene regulatory elements. Enhancers that regulate transcription processes have been found in intergenic regions. Furthermore, it is observed that regulatory elements found in non-coding regions are highly conserved across different species. However, the analysis of these regulatory elements is not as straightforward as it may first seem. The development of a centralized resource that allows for the quick and easy retrieval of non-coding sequences from multiple species and is capable of handing multi-gene queries is critical for the analysis of non-coding sequences. Here we describe the development of a web-based non-coding sequence retrieval system. Results This paper presents a Non-Coding Sequences Retrieval System (NCSRS. The NCSRS is a web-based bioinformatics tool that performs fast and convenient retrieval of non-coding and coding sequences from multiple species related to a specific gene or set of genes. This tool has compiled resources from multiple sources into one easy to use and convenient web based interface. With no software installation necessary, the user needs only internet access to use this tool. Conclusion The unique features of this tool will be very helpful for those studying gene regulatory elements that exist in non-coding regions. The web based application can be accessed on the internet at: http://cell.rutgers.edu/ncsrs/.

  7. Development of platform to compare different wall heat transfer packages for system analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Shin, Sung Gil [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future.

  8. Development of platform to compare different wall heat transfer packages for system analysis codes

    International Nuclear Information System (INIS)

    Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik; Shin, Sung Gil

    2016-01-01

    System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future

  9. Verification and implications of the multiple pin treatment in the SASSYS-1 LMR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1994-01-01

    As part of a program to obtain realistic, as opposed to excessively conservative, analysis of reactor transients, a multiple pin treatment for the analysis of intra-subassembly thermal hydraulics has been included in the SASSYS-1 liquid metal reactor systems analysis code. This new treatment has made possible a whole new level of verification for the code. The code can now predict the steady-state and transient responses of individual thermocouples within instrumented subassemlies in a reactor, rather than just predicting average temperatures for a subassembly. Very good agreement has been achieved between code predictions and the experimental measurements of steady-state and transient temperatures and flow rates in the Shutdown Heat Removal Tests in the EBR-II Reactor. Detailed multiple pin calculations for blanket subassemblies in the EBR-II reactor demonstrate that the actual steady-state and transient peak temperatures in these subassemblies are significantly lower than those that would be calculated by simpler models

  10. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    International Nuclear Information System (INIS)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong

    2007-03-01

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow

  11. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  12. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

  13. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

  14. Performance Analysis of Spectral Amplitude Coding Based OCDMA System with Gain and Splitter Mismatch

    Science.gov (United States)

    Umrani, Fahim A.; Umrani, A. Waheed; Umrani, Naveed A.; Memon, Kehkashan A.; Kalwar, Imtiaz Hussain

    2013-09-01

    This paper presents the practical analysis of the optical code-division multiple-access (O-CDMA) systems based on perfect difference codes. The work carried out use SNR criterion to select the optimal value of avalanche photodiodes (APD) gain and shows how the mismatch in the splitters and gains of the APD used in the transmitters and receivers of network can degrade the BER performance of the system. The investigations also reveal that higher APD gains are not suitable for such systems even at higher powers. The system performance, with consideration of shot noise, thermal noise, bulk and surface leakage currents is also investigated.

  15. SAFIRE: A systems analysis code for ICF [inertial confinement fusion] reactor economics

    International Nuclear Information System (INIS)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants

  16. Detection optimization using linear systems analysis of a coded aperture laser sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, S.M. [Sandia National Labs., Albuquerque, NM (United States). Optoelectronic Design Dept.

    1994-09-01

    Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

  17. DNBR calculation in digital core protection system by a subchannel analysis code

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, T. H.; Ji, S. K.

    2001-01-01

    The DNBR calculation uncertainty and DNBR margin were evaluated in digital core protection system by a thermal-hydrualic subchannel analysis code MATRA. A simplified thermal-hydraulic code CETOP is used to calculate on-line DNBR in core protection system at a digital PWR. The DNBR tuning process against a best-estimate subchannel analysis code is required for CETOP to ensure accurate and conservative DNBR calculation but not necessary for MATRA. The DNBR calculations by MATRA and CETOP were performed for a large number of operating condition in Yonggwang nulcear units 3-4 where the digitial core protection system is initially implemented in Korea. MATRA resulted in a less negative mean value (i.e., reduce the overconservatism) and a somewhat larger standard deviation of the DNBR error. The uncertainty corrected minimum DNBR by MATRA was shown to be higher by 1.8% -9.9% that the CETOP DNBR

  18. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo [Seoul National University, Seoul (Korea, Republic of)

    2005-07-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code.

  19. Objective Oriented Design of Architecture for TH System Safety Analysis Code and Verification

    International Nuclear Information System (INIS)

    Chung, Bub Dong

    2008-03-01

    In this work, objective oriented design of generic system analysis code has been tried based on the previous works in KAERI for two phase three field Pilot code. It has been performed to implement of input and output design, TH solver, component model, special TH models, heat structure solver, general table, trip and control, and on-line graphics. All essential features for system analysis has been designed and implemented in the final product SYSTF code. The computer language C was used for implementation in the Visual studio 2008 IDE (Integrated Development Environment) since it has easier and lighter than C++ feature. The code has simple and essential features of models and correlation, special component, special TH model and heat structure model. However the input features is able to simulate the various scenarios, such as steady state, non LOCA transient and LOCA accident. The structure validity has been tested through the various verification tests and it has been shown that the developed code can treat the non LOCA and LOCA simulation. However more detailed design and implementation of models are required to get the physical validity of SYSTF code simulation

  20. Verification and validation of the THYTAN code for the graphite oxidation analysis in the HTGR systems

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Isaka, Kazuyoshi; Nomoto, Yasunobu; Seki, Tomokazu; Ohashi, Hirofumi

    2014-12-01

    The analytical models for the evaluation of graphite oxidation were implemented into the THYTAN code, which employs the mass balance and a node-link computational scheme to evaluate tritium behavior in the High Temperature Gas-cooled Reactor (HTGR) systems for hydrogen production, to analyze the graphite oxidation during the air or water ingress accidents in the HTGR systems. This report describes the analytical models of the THYTAN code in terms of the graphite oxidation analysis and its verification and validation (V and V) results. Mass transfer from the gas mixture in the coolant channel to the graphite surface, diffusion in the graphite, graphite oxidation by air or water, chemical reaction and release from the primary circuit to the containment vessel by a safety valve were modeled to calculate the mass balance in the graphite and the gas mixture in the coolant channel. The computed solutions using the THYTAN code for simple questions were compared to the analytical results by a hand calculation to verify the algorithms for each implemented analytical model. A representation of the graphite oxidation experimental was analyzed using the THYTAN code, and the results were compared to the experimental data and the computed solutions using the GRACE code, which was used for the safety analysis of the High Temperature Engineering Test Reactor (HTTR), in regard to corrosion depth of graphite and oxygen concentration at the outlet of the test section to validate the analytical models of the THYTAN code. The comparison of THYTAN code results with the analytical solutions, experimental data and the GRACE code results showed the good agreement. (author)

  1. Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Mousseau

    2010-05-01

    This document presents high-level architectural and system requirements for a next-generation system analysis code (NGSAC) to support reactor safety decision-making by plant operators and others, especially in the context of light water reactor plant life extension. The capabilities of NGSAC will be different from those of current-generation codes, not only because computers have evolved significantly in the generations since the current paradigm was first implemented, but because the decision-making processes that need the support of next-generation codes are very different from the decision-making processes that drove the licensing and design of the current fleet of commercial nuclear power reactors. The implications of these newer decision-making processes for NGSAC requirements are discussed, and resulting top-level goals for the NGSAC are formulated. From these goals, the general architectural and system requirements for the NGSAC are derived.

  2. French code system for a sodium cooled LMR inter-assembly thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Kim, Young-Gyun; Lim, Hyun-Jin; Kim, Young-Il

    2005-03-01

    Sodium cooled LMR core is generally comprised of many ducted assemblies which have no flow exchanges between them. So, the required flow to each assembly corresponding to its power has to be allocated in thermal hydraulic design. Flow allocation facility, which is called orifice, is used for this purpose in an LMR core. In this context, flow grouping, assembly subchannel analysis and inter-assembly flow analysis have to be done in the LMR core thermal hydraulic design and analysis. This report describes this sodium cooled LMR core thermal hydraulic design procedure, in which are flow grouping, subchannel analysis and inter-assembly whole core analysis. And the French whole core analysis code system is described which is used for the domestic whole core thermal hydraulic analysis code system development. Firstly, sodium cooled LMR core thermal hydraulic conceptual design and analysis procedure is explained in chapter 2. Chapter 3 overviews the necessity and methodology of the whole core thermal hydraulic analysis, and the French whole core analysis system is described in chapter 4. Chapter 5 describes the domestic plan of the inter-assembly thermal hydraulic analysis system, and chapter 6 shows the conclusion and the future works

  3. French code system for a sodium cooled LMR inter-assembly thermal hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Gyun; Lim, Hyun-Jin; Kim, Young-Il

    2005-03-01

    Sodium cooled LMR core is generally comprised of many ducted assemblies which have no flow exchanges between them. So, the required flow to each assembly corresponding to its power has to be allocated in thermal hydraulic design. Flow allocation facility, which is called orifice, is used for this purpose in an LMR core. In this context, flow grouping, assembly subchannel analysis and inter-assembly flow analysis have to be done in the LMR core thermal hydraulic design and analysis. This report describes this sodium cooled LMR core thermal hydraulic design procedure, in which are flow grouping, subchannel analysis and inter-assembly whole core analysis. And the French whole core analysis code system is described which is used for the domestic whole core thermal hydraulic analysis code system development. Firstly, sodium cooled LMR core thermal hydraulic conceptual design and analysis procedure is explained in chapter 2. Chapter 3 overviews the necessity and methodology of the whole core thermal hydraulic analysis, and the French whole core analysis system is described in chapter 4. Chapter 5 describes the domestic plan of the inter-assembly thermal hydraulic analysis system, and chapter 6 shows the conclusion and the future works.

  4. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  5. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  6. MARVEL: a digital computer code for transient analysis of a multiloop PWR system

    International Nuclear Information System (INIS)

    Krise, R.C.; Miranda, S.

    1977-11-01

    The MARVEL (Multi-Loop Analysis of Pressurized Water Reactor System Transient) digital computer code was developed to calculate multiloop detailed transient behavior of pressurized water reactor systems. The program simulates two reactor coolant loops including two steam generators and associated systems. It also simulates reactor kinetics, reactor control and protection system, safeguards system, and other subsystems. The code can also be used for three- or four-loop plants by assuming that the other loops are operated in the same way as either of the two loops. The program can be utilized as a tool for various types of accident analyses and control studies, including startup of an inactive reactor coolant loop, loss of reactor coolant flow, reactivity insertion incidents, steam line break accident, steam generator tube rupture accident, and others

  7. CASKETSS-2: a computer code system for thermal and structural analysis of nuclear fuel shipping casks (version 2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-08-01

    A computer program CASKETSS-2 has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS-2 means a modular code system for CASK Evaluation code system Thermal and Structural Safety (Version 2). Main features of CASKETSS-2 are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) There are simplified computer programs and a detailed one in the structural analysis part in the code system. (3) Input data generator is provided in the code system. (4) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  8. Evaluation of Advanced Thermohydraulic System Codes for Design and Safety Analysis of Integral Type Reactors

    International Nuclear Information System (INIS)

    2014-02-01

    The integral pressurized water reactor (PWR) concept, which incorporates the nuclear steam supply systems within the reactor vessel, is one of the innovative reactor types with high potential for near term deployment. An International Collaborative Standard Problem (ICSP) on Integral PWR Design, Natural Circulation Flow Stability and Thermohydraulic Coupling of Primary System and Containment during Accidents was established in 2010. Oregon State University, which made available the use of its experimental facility built to demonstrate the feasibility of the Multi-application Small Light Water Reactor (MASLWR) design, and sixteen institutes from seven Member States participated in this ICSP. The objective of the ICSP is to assess computer codes for reactor system design and safety analysis. This objective is achieved through the production of experimental data and computer code simulation of experiments. A loss of feedwater transient with subsequent automatic depressurization system blowdown and long term cooling was selected as the reference event since many different modes of natural circulation phenomena, including the coupling of primary system, high pressure containment and cooling pool are expected to occur during this transient. The power maneuvering transient is also tested to examine the stability of natural circulation during the single and two phase conditions. The ICSP was conducted in three phases: pre-test (with designed initial and boundary conditions established before the experiment was conducted), blind (with real initial and boundary conditions after the experiment was conducted) and open simulation (after the observation of real experimental data). Most advanced thermohydraulic system analysis codes such as TRACE, RELAPS and MARS have been assessed against experiments conducted at the MASLWR test facility. The ICSP has provided all participants with the opportunity to evaluate the strengths and weaknesses of their system codes in the transient

  9. Establishment of joint application system of safety analysis codes between Korea and Vietnam

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Park, Cheol; Bae, Sung Won; Baek, Won Pil; Song, Cheol hwa; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Lee, Chang Sup

    2011-04-01

    The following KAERI-VAEI collaboration works have been performed during the 2 year project ('09.4∼'11.4). 1) On the job training of Vietnam code users(1st training for 4 VAEI staff-3 months. 2nd training for 3 VAEI staff- 3 month), 2) Lecture of nuclear safety analysis (30 hrs basic course and 30 hrs advanced course), 3) Review of safety analysis method (IAEA safety concept and requirements), 4) Collaborative assessment of safety analysis code MARS (13 conceptual problem, 2 separate effect test problem, 1 integral effect test problem), 5) Input deck preparation of standard PWR (Preparation of APR1400 input deck and safety analysis of DBA). VAEI staffs have been familiarized to Korean PWR safety assessment technology through the collaboration assessment work using a computer code developed in Korea. The lectures for Vietnamese research will be contributed to the utilization and cultivation of Korean safety technology. The collaborated assessment works will be used for the establishment of MARS based safety analysis system which is independent from US safety assessment system

  10. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  11. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    Science.gov (United States)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  12. Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2017-01-01

    Full Text Available This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON. Enhanced multidiagonal (EMD code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.

  13. Performance analysis of wavelength/spatial coding system with fixed in-phase code matrices in OCDMA network

    Science.gov (United States)

    Tsai, Cheng-Mu; Liang, Tsair-Chun

    2011-12-01

    This paper proposes a wavelength/spatial (W/S) coding system with fixed in-phase code (FIPC) matrix in the optical code-division multiple-access (OCDMA) network. A scheme is presented to form the FIPC matrix which is applied to construct the W/S OCDMA network. The encoder/decoder in the W/S OCDMA network is fully able to eliminate the multiple-access-interference (MAI) at the balanced photo-detectors (PD), according to fixed in-phase cross correlation. The phase-induced intensity noise (PIIN) related to the power square is markedly suppressed in the receiver by spreading the received power into each PD while the net signal power is kept the same. Simulation results show that the W/S OCDMA network based on the FIPC matrices cannot only completely remove the MAI but effectively suppress the PIIN to upgrade the network performance.

  14. ELCOS: the PSI code system for LWR core analysis. Part II: user's manual for the fuel assembly code BOXER

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.; Hollard, J.M.

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs

  15. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  16. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  17. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    International Nuclear Information System (INIS)

    Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.

    2010-10-01

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  18. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  19. Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F.

    1992-09-01

    This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

  20. Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F.

    1992-01-01

    This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

  1. DENINT power plant cost benefit analysis code: Analysis of methane fuelled power plant/district heating system

    International Nuclear Information System (INIS)

    Cincotti, V.; D'Andrea, A.

    1989-07-01

    The DENINT power plant cost benefit analysis code takes into consideration, not only power production costs at the generator terminals, but also, in the case of cogeneration, the costs of the fuel supply and heat and power distribution systems which depend greatly on the location of the plant. The code is able to allow comparisons of alternatives with varying annual operation hours, fuel cost increases, and different types of fossil fuels and production systems. For illustrative purposes, this paper examines two methane fired cogeneration plant/district heating alternatives

  2. Development of a High Fidelity System Analysis Code for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hongbin Zhang; Vincent Mousseau; Haihua Zhao

    2008-06-01

    Traditional nuclear reactor system analysis codes such as RELAP and TRAC employ an operator split methodology. In this approach, each of the physics (fluid flow, heat conduction and neutron diffusion) is solved separately and the coupling terms are done explicitly. This approach limits accuracy (first order in time at best) and makes the codes slow in running since the explicit coupling imposes stability restrictions on the time step size. These codes have been extensively tested and validated for the existing LWRs. However, for GEN IV nuclear reactor designs which tend to have long lasting transients resulting from passive safety systems, the performance is questionable and modern high fidelity simulation tools will be required. The requirement for accurate predictability is the motivation for a large scale overhaul of all of the models and assumptions in transient nuclear reactor safety simulation software. At INL we have launched an effort with the long term goal of developing a high fidelity system analysis code that employs modern physical models, numerical methods, and computer science for transient safety analysis of GEN IV nuclear reactors. Modern parallel solution algorithms will be employed through utilizing the nonlinear solution software package PETSc developed by Argonne National Laboratory. The physical models to be developed will have physically realistic length scales and time scales. The solution algorithm will be based on the physics-based preconditioned Jacobian-free Newton-Krylov solution methods. In this approach all of the physical models are solved implicitly and simultaneously in a single nonlinear system. This includes the coolant flow, nonlinear heat conduction, neutron kinetics, and thermal radiation, etc. Including modern physical models and accurate space and time discretizations will allow the simulation capability to be second order accurate in space and in time. This paper presents the current status of the development efforts as

  3. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.

    2008-01-01

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  4. Code C# for chaos analysis of relativistic many-body systems

    Science.gov (United States)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Felea, D.; Stan, E.; Esanu, T.

    2010-08-01

    This work presents a new Microsoft Visual C# .NET code library, conceived as a general object oriented solution for chaos analysis of three-dimensional, relativistic many-body systems. In this context, we implemented the Lyapunov exponent and the “fragmentation level” (defined using the graph theory and the Shannon entropy). Inspired by existing studies on billiard nuclear models and clusters of galaxies, we tried to apply the virial theorem for a simplified many-body system composed by nucleons. A possible application of the “virial coefficient” to the stability analysis of chaotic systems is also discussed. Catalogue identifier: AEGH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30 053 No. of bytes in distributed program, including test data, etc.: 801 258 Distribution format: tar.gz Programming language: Visual C# .NET 2005 Computer: PC Operating system: .Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread RAM: 128 Megabytes Classification: 6.2, 6.5 External routines: .Net Framework 2.0 Library Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, and energy conservation precision test. Additional comments: Easy copy/paste based deployment method. Running time: Quadratic complexity.

  5. Performance Analysis of a CDMA VSAT System With Convoltional and Reed-Solomon Coding

    Science.gov (United States)

    Yigit, Ugur

    2002-09-01

    The purpose of this thesis is to model a satellite communication system with VSATs, using Spread Spectrum CDMA methods and Forward Error Correction (FEC), Walsh codes and PN sequences are used to generate a CDMA system and FEC is used to further improve the performance. Convolutional and block coding methods are examined and the results are obtained for each different case, including concatenated use of the codes, The performance of the system is given in terms of Bit Error Rate (BER), As observed from the results, the performance is mainly affected by the number of users and the code rates,

  6. Using wavefront coding technique as an optical encryption system: reliability analysis and vulnerabilities assessment

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.

  7. ELCOS: the PSI code system for LWR core analysis. Part I: user's manual for the library preparation code ETOBOX

    International Nuclear Information System (INIS)

    Paratte, J.M.; Foskolos, K.; Grimm, P.; Hollard, J.M.

    1996-01-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the first one is presented here. From a basic neutronic data library in ENDF/B format, the code ETOBOX produces a condensed cross section library. Smooth cross sections are integrated into energy groups. In the ETOBOX 'resonance range' the resonance parameters are transformed into pointwise cross sections. Outside this range the resolved as well as the unresolved resonances are integrated into groups for 3 values of the temperature and 4 values of the dilution cross section. The transfer matrices are calculated in the epithermal as well as in the thermal energy range for a given order of anisotropy for the elastic and the inelastic scattering, as well as for the (n,xn) reactions. In the thermal energy range the transfer matrices are calculated for a maximum of 10 different temperatures. The pointwise resonance cross sections are Doppler broadened for the same temperatures. A working library can be defined as a reduced list of the nuclides calculated, where the coupling between each other is established for burnup calculations. This manual shows all input commands which can be used while running the different modules of ETOBOX. The last chapter describes the library produced. (author) figs., tabs., refs

  8. Comparative Neutronics Analysis of DIMPLE S06 Criticality Benchmark with Contemporary Reactor Core Analysis Computer Code Systems

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2015-01-01

    Full Text Available A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.

  9. Analysis of recent post irradiation tests by Japanese and French burnup analysis code systems

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hiraizumi, Hiroaki; Youinou, Gilles

    2002-01-01

    Benchmark problem based on Japanese Post Irradiation Experiment (PIE) data was analyzed by Japanese burnup analysis code and French one under the cooperative research program between the Japanese University Association (JUA) in Japan and Commissariat a l'Enegie Atomique (CEA) in France. Significant discrepancies over 10% were found between the Japanese and French results for 238 Pu, 243 Am, 244 Cm, 125 Sb, 154 Eu, 134 Cs and 144 Ce. It is supposed that the difference of C/E for 243 Am and 244 Cm between Japanese results and French ones is due to the (n,gamma) reaction of 242m Am. For 125 Sb and 154 Eu, the C/E values are improved by using new cross section and fission yield libraries. (author)

  10. PRAAGE-1988: An interactive IBM-PC code for aging analysis of NUREG-1150 systems

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Shier, W.G.

    1988-01-01

    Probabilistic Risk Assessments (PRA) contain a great deal of information for estimating the risk of a nuclear power plant but do not consider aging. PRAAGE (PRA+AGE) is an interactive, IBM-PC code for processing PRA-developed system models using non-aged failure rate data in conjunction with user-supplied time-dependent nuclear plant experience component failure rate data to determine the effects of component aging on a system's reliability as well as providing the age-dependent importances of various generic components. This paper describes the structure, use and application of PRAAGE to the aging analysis of the Peach Bottom 2 RHR system in the LPCI and SDC modes of operation. 4 refs., 15 figs., 5 tabs

  11. Fuel performance analysis code 'FAIR'

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1994-01-01

    For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs

  12. ESCADRE and ICARE code systems

    International Nuclear Information System (INIS)

    Reocreux, M.; Gauvain, J.

    1992-01-01

    The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab

  13. Analysis of a distributed pulse power system using a circuit analysis code

    International Nuclear Information System (INIS)

    Hoeft, L.O.; BDM Corp., Albuquerque, NM)

    1979-01-01

    A sophisticated computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash x-ray machine. This device was considered to be a transmission line whose impedance varied with position. This distributed system was modeled by lumped parameter sections with time constants of 1 ns. The model was used to interpret voltage, current, and radiation measurements in terms of diode performance. The effects of tube impedance, diode model, switch behavior, and potential geometric modifications were determined. The principal conclusions were that, since radiation output depends strongly on voltage, diode impedance was much more important than the other parameters, and the charge voltage must be accurately known

  14. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  15. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.; Kalimullah; Hill, D.J.

    1986-01-01

    The SAS4A code system has been designed for the analysis of the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modelong the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel relocation are emphasized. 12 refs

  16. System Code Models and Capabilities

    International Nuclear Information System (INIS)

    Bestion, D.

    2008-01-01

    System thermalhydraulic codes such as RELAP, TRACE, CATHARE or ATHLET are now commonly used for reactor transient simulations. The whole methodology of code development is described including the derivation of the system of equations, the analysis of experimental data to obtain closure relation and the validation process. The characteristics of the models are briefly presented starting with the basic assumptions, the system of equations and the derivation of closure relationships. An extensive work was devoted during the last three decades to the improvement and validation of these models, which resulted in some homogenisation of the different codes although separately developed. The so called two-fluid model is the common basis of these codes and it is shown how it can describe both thermal and mechanical nonequilibrium. A review of some important physical models allows to illustrate the main capabilities and limitations of system codes. Attention is drawn on the role of flow regime maps, on the various methods for developing closure laws, on the role of interfacial area and turbulence on interfacial and wall transfers. More details are given for interfacial friction laws and their relation with drift flux models. Prediction of chocked flow and CFFL is also addressed. Based on some limitations of the present generation of codes, perspectives for future are drawn.

  17. ANALYSIS OF EXISTING AND PROSPECTIVE TECHNICAL CONTROL SYSTEMS OF NUMERIC CODES AUTOMATIC BLOCKING

    Directory of Open Access Journals (Sweden)

    A. M. Beznarytnyy

    2013-09-01

    Full Text Available Purpose. To identify the characteristic features of the engineering control measures system of automatic block of numeric code, identifying their advantages and disadvantages, to analyze the possibility of their use in the problems of diagnosing status of the devices automatic block and setting targets for the development of new diagnostic systems. Methodology. In order to achieve targets the objective theoretical and analytical method and the method of functional analysis have been used. Findings. The analysis of existing and future facilities of the remote control and diagnostics automatic block devices had shown that the existing systems of diagnosis were not sufficiently informative, designed primarily to control the discrete parameters, which in turn did not allow them to construct a decision support subsystem. In developing of new systems of technical diagnostics it was proposed to use the principle of centralized distributed processing of diagnostic data, to include a subsystem support decision-making in to the diagnostics system, it will reduce the amount of work to maintain the devices blocking and reduce recovery time after the occurrence injury. Originality. As a result, the currently existing engineering controls facilities of automatic block can not provide a full assessment of the state distillation alarms and locks. Criteria for the development of new systems of technical diagnostics with increasing amounts of diagnostic information and its automatic analysis were proposed. Practical value. These results of the analysis can be used in practice in order to select the technical control of automatic block devices, as well as the further development of diagnostic systems automatic block that allows for a gradual transition from a planned preventive maintenance service model to the actual state of the monitored devices.

  18. Code division multiple-access techniques in optical fiber networks. II - Systems performance analysis

    Science.gov (United States)

    Salehi, Jawad A.; Brackett, Charles A.

    1989-08-01

    A technique based on optical orthogonal codes was presented by Salehi (1989) to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using a optical hard-limiter would, in general, improve system performance.

  19. SCALE Code System

    Energy Technology Data Exchange (ETDEWEB)

    Jessee, Matthew Anderson [ORNL

    2016-04-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE

  20. MARS 1.3 system analysis code coupling with CONTEMPT4/MOD5/PCCS containment analysis code using dynamic link library

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Lee, Won Jae

    1998-01-01

    The two independent codes, MARS 1.3 and CONTEMPT4/MOD5/PCCS, have been coupled using the method of dynamic-link-library (DLL) technique. Overall configuration of the code system is designed so that MARS will be a main driver program which use CONTEMPT as associated routines. Using Digital Visual Fortran compiler, DLL was generated from the CONTEMPT source code with the interfacing routine names and arguments. Coupling of MARS with CONTEMPT was realized by calling the DLL routines at the appropriate step in the MARS code. Verification of coupling was carried out for LBLOCA transient of a typical plant design. It was found that the DLL technique is much more convenient than the UNIX process control techniques and effective for Window operating system. Since DLL can be used by more than one application and an application program can use many DLLs simultaneously, this technique would enable the existing codes to use more broadly with linking others

  1. MARS 1.3 system analysis code coupling with CONTEMPT4/MOD5/PCCS containment analysis code using dynamic link library

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Jeong, Jae Jun; Lee, Won Jae [KAERI, Taejon (Korea, Republic of)

    1998-10-01

    The two independent codes, MARS 1.3 and CONTEMPT4/MOD5/PCCS, have been coupled using the method of dynamic-link-library (DLL) technique. Overall configuration of the code system is designed so that MARS will be a main driver program which use CONTEMPT as associated routines. Using Digital Visual Fortran compiler, DLL was generated from the CONTEMPT source code with the interfacing routine names and arguments. Coupling of MARS with CONTEMPT was realized by calling the DLL routines at the appropriate step in the MARS code. Verification of coupling was carried out for LBLOCA transient of a typical plant design. It was found that the DLL technique is much more convenient than the UNIX process control techniques and effective for Window operating system. Since DLL can be used by more than one application and an application program can use many DLLs simultaneously, this technique would enable the existing codes to use more broadly with linking others.

  2. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  3. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO 2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO 2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO 2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO 2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO 2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  4. Analysis of PPM-CDMA and OPPM-CDMA communication systems with new optical code

    Science.gov (United States)

    Liu, F.; Ghafouri-Shiraz, H.

    2005-11-01

    A novel type of optical spreading sequences, named the 'new-Modified Prime Code (nMPC)', is proposed for use in synchronous direct-detection optical code-division multiple-access (CDMA) systems which employ both pulse position modulation (PPM) and overlapping pulse position modulation (OPPM) schemes. The upper bounds on the bit error rate (BER) for nMPC used in PPM-CDMA systems are derived and compared with the respective systems, using a modified prime code (MPC) and a padded modified prime code (PMPC). The nMPC is further applied to the OPPM-CDMA system and the system with a proposed interference cancellation scheme. Our results show that under the same conditions the PPM-CDMA system performances are more improved with the use of nMPC than with the two other traditional codes. Moreover, they show that the system performances are significantly enhanced by the proposed interference reduction methods, if the nMPC is used in the OPPM-CDMA systems.

  5. A new balance-of-plant model for the SASSYS-1 LMR systems analysis code

    International Nuclear Information System (INIS)

    Briggs, L.L.

    1989-01-01

    A balance-of-plant model has been added to the SASSYS-1 liquid metal reactor systems analysis code. Until this addition, the only waterside component which SASSYS-1 could explicitly model was the water side of a steam generator, with the remainder of the water side represented by boundary conditions on the steam generator. The balance-of-plant model is based on the model used for the sodium side of the plant. It will handle subcooled liquid water, superheated steam, and saturated two-phase fluid. With the exception of heated flow paths in heaters, the model assumes adiabatic conditions along flow paths; this assumption simplifies the solution procedure while introducing very little error for a wide range of reactor plant problems. Only adiabatic flow is discussed in this report. 3 refs., 4 figs

  6. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  7. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  8. Development of a system code for transient analysis in a HTGR

    International Nuclear Information System (INIS)

    Lee, Tae Beom

    2004-02-01

    A GAMMA (GAs Multi-component Multi-dimensional Analysis) code is developed for transient analysis and air ingress analysis in High Temperature Gas-cooled Reactors (HTGR). The PBMR of ESKOM is selected as a reference plant for the High Temperature Gas-cooled Reactor here, which uses a direct helium cycle and pebble fuel. Physical models included in GAMMA are the pebble conduction model, radiation heat transfer model, point kinetics model, decay heat model, and component models for break flow, valve, pump, cooler, power conversion unit model. The temperature distribution and the flow distribution of the PBMR are calculated for initial and accident core in the present study. In the accident analysis, typical design basis accident (DBA), including the load transient accident and depressurization accident into the system are selected and analyzed in detail. The predictions by GAMMA for PBMR at 100% power are compared with those by VSOP and PBR S IM. It turns out that the temperature in the upper region in the third channel predicted by GAMMA is about 62 .deg. C at maximum higher than that by VSOP, but is pretty close to that by PBR S IM. The center temperature of the fuel shows that that predicted by considering swelling effect is higher than that without swelling effect by about 10 .deg. C. The net efficiency of direct system is higher than that of indirect system due to an effect of the circulator power. The transient capability of GAMMA is validated through analytical solution and PBR S IM analyzing the depressurization (Loss Of Coolant Accident, LOCA) and load transient accident. After the LOCA the system pressure decreases dramatically from 8MPa to 0.4MPa within 2 sec. After the PI (Proportional-plus-Integral) controller senses that the power shaft is over the set-point of 3,600 rpm, the bypass valve makes shaft speed back to the set-point

  9. Error analysis of supercritical water correlations using ATHLET system code under DHT conditions

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, J., E-mail: jeffrey.samuel@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is used for analysis of anticipated and abnormal plant transients, including safety analysis of Light Water Reactors (LWRs) and Russian Graphite-Moderated High Power Channel-type Reactors (RBMKs). The range of applicability of ATHLET has been extended to supercritical water by updating the fluid-and transport-properties packages, thus enabling the code to the used in analysis of SuperCritical Water-cooled Reactors (SCWRs). Several well-known heat-transfer correlations for supercritical fluids were added to the ATHLET code and a numerical model was created to represent an experimental test section. In this work, the error in the Heat Transfer Coefficient (HTC) calculation by the ATHLET model is studied along with the ability of the various correlations to predict different heat transfer regimes. (author)

  10. Analysis of Korean Nuclear Fuel Cycle System by Using DANESS Code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2009-08-01

    Korean fast reactor scenarios have been analyzed for various kinds of conversion ratio (CR) by the DANESS system dynamic analysis code. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. The fast reactor scenario analysis has been performed for three kinds of conversion ratios such as 0.3, 0.61 and 1.0. Through the calculations, the nuclear reactor deployment scenario, front-end cycle, back-end cycle, and long-term heat load have been investigated. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. The fast reactor (FR) scenario analysis results show that the spent fuel inventory and out-pile transuranic element (TRU) can be reduced by increasing the fast reactor conversion ratio. Furthermore, the long-term heat load of spent fuel decreases with increasing the conversion ratio. However, it is known that the deployment of a fast reactor of low conversion ratio does not much reduce the spent fuel and out-pile TRU inventory due to the fast reactor deployment limitation which is related to the availability of TRU

  11. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2009-02-01

    Full Text Available We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded FHSS over Rician fading channel. The effect of pilot-aided channel estimation is studied for Rician fading channels using the Gaussian approximation. From this, the optimal hopping rate in coded FHSS is approximated. Results show that the performance loss due to interference increases as the hopping rate decreases.

  12. A ''SuperCode'' for performing systems analysis of tokamak experiments and reactors

    International Nuclear Information System (INIS)

    Haney, S.W.; Barr, W.L.; Crotinger, J.A.; Perkins, L.J.; Solomon, C.J.; Chaniotakis, E.A.; Freidberg, J.P.; Wei, J.; Galambos, J.D.; Mandrekas, J.

    1992-01-01

    A new code, named the ''SUPERCODE,'' has been developed to fill the gap between currently available zero dimensional systems codes and highly sophisticated, multidimensional plasma performance codes. The former are comprehensive in content, fast to execute, but rather simple in terms of the accuracy of the physics and engineering models. The latter contain state-of-the-art plasma physics modelling but are limited in engineering content and time consuming to run. The SUPERCODE upgrades the reliability and accuracy of systems codes by calculating the self consistent 1 1/2 dimensional MHD-transport plasma evolution in a realistic engineering environment. By a combination of variational techniques and careful formation, there is only a modest increase in CPU time over O-D runs, thereby making the SUPERCODE suitable for use as a systems studies tool. In addition, considerable effort has been expended to make the code user- and programming-friendly, as well as operationally flexible, with the hope of encouraging wide usage throughout the fusion community

  13. Multi-scale analysis of gas cooled reactors through CFD and system codes

    International Nuclear Information System (INIS)

    Cioni, Olivier; Perdu, Fabien; Ducros, Frederic; Geffraye, Genevieve; Tauveron, Nicolas; Tenchine, Denis; Ruby, Alain; Saez, Manuel

    2006-01-01

    The aim of this paper is to define the space scales related to the thermalhydraulic phenomena in the case of a Gas Cooled Reactor (GCR), and to propose a coherent set of numerical descriptions adapted to each scale. These descriptions will have to allow, by coupling simulations on different scales, to perform parametric studies for the design, or very precise safety studies in specific zones of the reactor. After having identified the various scales, the various types of couplings will be listed. This document is limited primarily to the description of the vessel (core and plenums), even if other elements of the primary circuit can benefit from a multi-scales description (exchangers, decay heat removal system, for example). Lastly, a section is devoted to the first step of coupling with the CFD code Trio U and the system code CATHARE. The paper has the following structure: 1. Introduction; 2. The different scales; 2.1. The system scale (tens of meters); 2.2. The vessel scale (metres); 2.2.1. The plenums and the downcomer; 2.2.2. The core; 2.3. The subassembly scale (centimeters); 2.3.1. The subassembly; 2.3.2. The gaps between subassemblies; 2.4. The fuel element scale (centimeters); 2.5. The fuel ball scale (micrometers); 3. Coupling methods; 3.1. Two possible approaches of coupling; 3.1.1. Domain Decomposition Method without overlapping; 3.1.2. Domain Decomposition Method with overlapping; 4. First realizations; 4.1. The subassembly scale: Blocking of Helium channels in a HTGR; 4.1.1. Description of the study; 4.1.2. Main results; 4.1.3. Conclusion; 4.2. The plenum scale: Thermal fluctuations in the lower plenum of a HTGR; 4.2.1. Description of the study; 4.2.2. Example of results; 4.2.3. Conclusion; 4.3. Scale of the core; 4.3.1. Application to a pebble bed reactor; 4.4. Preliminary work of coupling between the system code CATHARE and the CFD code Trio U; 5. Conclusion. To summarize, this document underlines the various scales, relating to the thermalhydraulic

  14. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  15. The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.

  16. Users manual for the FORSS sensitivity and uncertainty analysis code system

    International Nuclear Information System (INIS)

    Lucius, J.L.; Weisbin, C.R.; Marable, J.H.; Drischler, J.D.; Wright, R.Q.; White, J.E.

    1981-01-01

    FORSS is a code system used to study relationships between nuclear reaction cross sections, integral experiments, reactor performance parameter predictions and associated uncertainties. This report describes the computing environment and the modules currently used to implement FORSS Sensitivity and Uncertainty Methodology

  17. Analysis of pressure wave transients and seismic response in LMFBR piping systems using the SHAPS code

    International Nuclear Information System (INIS)

    Zeuch, W.R.; Wang, C.Y.

    1985-01-01

    This paper presents some of the current capabilities of the three-dimensional piping code SHAPS and demonstrates their usefulness in handling analyses encountered in typical LMFBR studies. Several examples demonstrate the utility of the SHAPS code for problems involving fluid-structure interactions and seismic-related events occurring in three-dimensional piping networks. Results of two studies of pressure wave propagation demonstrate the dynamic coupling of pipes and elbows producing global motion and rigorous treatment of physical quantities such as changes in density, pressure, and strain energy. Results of the seismic analysis demonstrate the capability of SHAPS to handle dynamic structural response within a piping network over an extended transient period of several seconds. Variation in dominant stress frequencies and global translational frequencies were easily handled with the code. 4 refs., 10 figs

  18. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  19. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  20. Video Streaming in Distributed Erasure-coded Storage Systems: Stall Duration Analysis

    OpenAIRE

    Al-Abbasi, Abubakr O.; Aggarwal, Vaneet

    2017-01-01

    The demand for global video has been burgeoning across industries. With the expansion and improvement of video streaming services, cloud-based video is evolving into a necessary feature of any successful business for reaching internal and external audiences. This paper considers video streaming over distributed systems where the video segments are encoded using an erasure code for better reliability thus being the first work to our best knowledge that considers video streaming over erasure-co...

  1. Using finite mixture models in thermal-hydraulics system code uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, S., E-mail: scarlos@iqn.upv.es [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Sánchez, A. [Department d’Estadística Aplicada i Qualitat, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Ginestar, D. [Department de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Martorell, S. [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain)

    2013-09-15

    Highlights: • Best estimate codes simulation needs uncertainty quantification. • The output variables can present multimodal probability distributions. • The analysis of multimodal distribution is performed using finite mixture models. • Two methods to reconstruct output variable probability distribution are used. -- Abstract: Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty in input parameters and modeling, it is necessary to perform uncertainty assessment (UA), and eventually sensitivity analysis (SA), of the results obtained. These analyses are part of the appropriate treatment of uncertainties imposed by current regulation based on the adoption of the best estimate plus uncertainty (BEPU) approach. The most popular approach for uncertainty assessment, based on Wilks’ method, obtains a tolerance/confidence interval, but it does not completely characterize the output variable behavior, which is required for an extended UA and SA. However, the development of standard UA and SA impose high computational cost due to the large number of simulations needed. In order to obtain more information about the output variable and, at the same time, to keep computational cost as low as possible, there has been a recent shift toward developing metamodels (model of model), or surrogate models, that approximate or emulate complex computer codes. In this way, there exist different techniques to reconstruct the probability distribution using the information provided by a sample of values as, for example, the finite mixture models. In this paper, the Expectation Maximization and the k-means algorithms are used to obtain a finite mixture model that reconstructs the output variable probability distribution from data obtained with RELAP-5 simulations. Both methodologies have been applied to a separated

  2. Code C# for chaos analysis of relativistic many-body systems with reactions

    Science.gov (United States)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.

    2012-04-01

    In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions

  3. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  4. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  5. BURNUR.SYS: A 2-D code system for NUR research reactor burn up analysis

    International Nuclear Information System (INIS)

    Meftah, B.; Halilou, A.; Letaim, F.; Mazidi, S.; Mokeddem, M.Y.; Zeggar, F.

    2008-01-01

    Adequate knowledge of burn up levels of fuel elements within a research reactor is of great importance for its optimum operation. Such knowledge is required for the monitoring of reactivity parameters and flux and power distributions throughout the reactor core, the estimation of the radioactive source term needed in accidental situations analysis, the evaluation of the amount of fissile materials present at any moment within the fuel for safeguards purposes and the estimation of cooling and shielding requirements for interim storage or transport of spent fuel elements. This paper presents the approach of fuel burn up evaluation used at the NUR research reactor. The approach is essentially based upon the utilization of BURNUR.SYS code, an in-house developed software. BURNUR.SYS is an object oriented program under DELPHI 7 that integrates the cell calculation code WIMSD-4 and the core calculation code CITVAP. BURNUR.SYS calculates the evolution in time of pertinent quantities such as: the concentrations of U235 and others actinides, the concentrations of major poisons (Xe135 and Sm149), the distributions of power densities and burn up levels within fuel elements, the effective multiplication factor and core reactivity. The results are displayed in user friendly graphical and numerical formats

  6. Development of heat and mass balance analysis code in out-of-pile hydrogen production system for HTTR heat utilization system (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Inagaki, Yoshiyuki; Hayashi, Koji; Suyama, Kazumasa [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-03-01

    A heat and mass balance analysis code has been developed to examine test conditions, to investigate transient behavior etc. in the out-of-pile hydrogen production system for the HTTR heat utilization system. The code can analyze temperature, mass and pressure profiles of helium and process gases and behavior of the control system under both static state (case of steady operation) and dynamic state (case of transient operation). This report describes analytical methods, basic equations and constitution of the code, and how to make of the input data, estimate of the analytical results and so on. (author)

  7. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    Science.gov (United States)

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.

  8. STEALTH: a Lagrange explicit finite difference code for solids, structural, and thermohydraulic analysis. Volume 6: piping systems manual. Computer code manual

    International Nuclear Information System (INIS)

    Cohen, L.M.

    1982-03-01

    This volume documents the STEALTH piping numerical code, which can simulate the time-dependent flow phenomena that occur in piping systems. This volume also contains the input instructions for the STEALTH piping code, and a sample problem of a pipe flow simulation

  9. Analysis of some antecipated transients without scram for PWR type reactors by coupling of the CORAN code to the ALMOD code system

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author) [pt

  10. Flow Analysis of Code Customizations

    DEFF Research Database (Denmark)

    Hessellund, Anders; Sestoft, Peter

    2008-01-01

    Inconsistency between metadata and code customizations is a major concern in modern, configurable enterprise systems. The increasing reliance on metadata, in the form of XML files, and code customizations, in the form of Java files, has led to a hybrid development platform. The expected consistency...

  11. EGS4 code system and its application

    International Nuclear Information System (INIS)

    Shin, Chang Ho; Kim, Jong Kyung

    1998-01-01

    The EGS4 code system is a powerful and user-friend software package permitting state-of-the-art Monte Carlo solution of time-independent coupled electron/photon transport problems, with or without presence of macroscopic electric and magnetic fields. The EGS4 code system consists of EGS4, PEGS4, and USER code. The EGS4 code is designed to simulate electromagnetic cascades in various geometries and at energies up to a few thousand GeV and down to cut-off kinetic energies of 10 and 1 keV for electrons and photons, respectively. The radiation transport of electrons or photons can be simulated in any elements, compound, or mixture. The PEGS4 code, data preparation package, creates data to be used by the EGS4 code, using cross section tables for elements 1 through 100. USER code should be written. This consists of a MAIN program and the subroutines HOWFAR and AUSGAB, the latter two determining the geometry and output (scoring), respectively. The EGS4 code system has been written in a MORTRAN language, extended FORTRAN language. The EGS4 code system has been used in a wide range of applications, such as beam target design, accelerator shielding analysis, gas bremsstrahlung analysis, nuclear data evaluation, and so on. An example is calculation of photonuclear reaction (γ, n) yield and produced neutron energy distribution. In this work, the routine for photonuclear reaction yield and neutron energy distribution calculation was developed using the EGS4 code system. The photonuclear reaction yield was obtained by the convolution of the photonuclear reaction cross section and photon differential track length. The photonuclear reaction cross section was evaluated from Lorentz formula. Benchmark calculation was performed to compare our results with Hansen's those. The results obtained from the EGS4 code system and Hansen's those are in good agreement

  12. Analysis of the VVER-1000 coolant transient benchmark phase 1 with the code system RELAP5/PARCS

    International Nuclear Information System (INIS)

    Victor Hugo Sanchez Espinoza

    2005-01-01

    Full text of publication follows: As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during

  13. Beta Testing of CFD Code for the Analysis of Combustion Systems

    Science.gov (United States)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  14. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  15. Low Spectral Efficiency Trellis Coded Modulation Systems

    Science.gov (United States)

    2006-09-01

    2 bBW R= . The three alternative systems are all non- TCM systems and consist of QPSK with independent r=1/2 error correction coding on the in-phase...and quadrature components, with null-to-null bandwidth 2 bBW R= , 8-ary biorthogonal keying (8-BOK) with r=2/3 error correction coding with bandwidth...21 12 bBW R= and 16-BOK with r=3/4 error correction coding and with bandwidth 44 24 bBW R= . At the beginning of the analysis only the effect of

  16. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Code Division Multiple Access (CDMA technique which allows communications of multiple users in the same communication system. This is achieved in such a way that each user is assigned a unique code sequence, which is used at the receiver side to discover the information dedicated to that user. These systems belong to the group of communication systems for direct sequence spread spectrum systems. Traditionally, CDMA systems use binary orthogonal spreading codes. In this paper, a mathematical model and simulation of a CDMA system based on the application of non-binary, precisely speaking, chaotic spreading sequences. In their nature, these sequences belong to random sequences with infinite periodicity, and due to that they are appropriate for applications in the systems that provide enhanced security against interception and secrecy in signal transmission. Numerous papers are dedicated to the development of CDMA systems in flat fading channels. This paper presents the results of these systems analysis for the case when frequency selective fading is present in the channel. In addition, the paper investigates a possibility of using interleaving techniques to mitigate fading in a wideband channel with the frequency selective fading. Basic structure of a CDMA communication system and its operation In this paper, a CDMA system block schematic is ppresented and the function of all blocks is explained. Notation  to be used in the paper is introduced. Chaotic sequences are defined and explained in accordance with the method of their generation. A wideband channel with frequency selective fading is defined by its impulse response function. Theoretical analysis of a CDMA system with flat fading in a narrowband channel A narrowband channel and flat fading are defined. A mathematical analysis of the system is conducted by presenting the signal expressions at vital points in the transmitter and receiver. The expression of the signal at the output of the sequence correlator is

  17. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  18. CINETHICA - Core accident analysis code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    A computer program for nuclear accident analysis has been developed based on the point-kinetics approximation and one-dimensional heat transfer model for reactivity feedback calculation. Hansen's method/1/ were used for the kinetics equation solution and explicit Euler method were adopted for the thermohidraulic equations. The results were favorably compared to those from the GAPOTKIN Code/2/. (author) [pt

  19. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  20. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  1. Analysis of piping systems by finite element method using code SAP-IV

    International Nuclear Information System (INIS)

    Cizelj, L.; Ogrizek, D.

    1987-01-01

    Due to extensive and multiple use of the computer code SAP-IV we have decided to install it on VAX 11/750 machine. Installation required a large quantity of programming due to great discrepancies between the CDC (the original program version) and the VAX. Testing was performed basically in the field of pipe elements, based on a comparison between results obtained with the codes PSAFE2, DOCIJEV, PIPESD and SAP -V. Besides, the model of reactor pressure vessel with 3-D thick shell elements was done. The capabilities show good agreement with the results of other programs mentioned above. Along with the package installation, the graphical postprocessors being developed for mesh plotting. (author)

  2. Analytical qualification of system identification (modal analysis) codes for use in the dynamic testing of nuclear power plant structures

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, H.J.; Ng, D.; Lager, D.

    1980-01-02

    The analytical evaluation of two particular system identification codes used at Lawrence Livermore Laboratory is presented. Both codes are eigenparameter identification codes; however, one uses a time domain approach while the other a frequency domain approach. The evaluation was accomplished by analytically generating several time history signals in which the true modal parameters were known. These time histories ranged from widely spaced modes with spacing factors of 100 percent to closely spaced modes with spacing factors of 6 percent. These signals were then polluted with various levels of simulated measurement noise and the ability of our computer codes to extract the parameters from this noisy data was evaluated.

  3. TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-08-01

    Full Text Available REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility. Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

  4. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    International Nuclear Information System (INIS)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2006-01-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system's response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for ansforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with general

  5. A simple numerical coding system for clinical electrocardiography

    NARCIS (Netherlands)

    Robles de Medina, E.O.; Meijler, F.L.

    1974-01-01

    A simple numerical coding system for clinical electrocardiography has been developed. This system enables the storage in coded form of the ECG analysis. The code stored on a digital magnetic tape can be used for a computer print-out of the analysis, while the information can be retrieved at any time

  6. Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, including containment. Summary report of a technical meeting

    International Nuclear Information System (INIS)

    2003-11-01

    Safety analysis is an important tool for justifying the safety of nuclear power plants. Typically, this type of analysis is performed by means of system computer codes with one dimensional approximation for modelling real plant systems. However, in the nuclear area there are issues for which traditional treatment using one dimensional system codes is considered inadequate for modelling local flow and heat transfer phenomena. There is therefore increasing interest in the application of three dimensional computational fluid dynamics (CFD) codes as a supplement to or in combination with system codes. There are a number of both commercial (general purpose) CFD codes as well as special codes for nuclear safety applications available. With further progress in safety analysis techniques, the increasing use of CFD codes for nuclear applications is expected. At present, the main objective with respect to CFD codes is generally to improve confidence in the available analysis tools and to achieve a more reliable approach to safety relevant issues. An exchange of views and experience can facilitate and speed up progress in the implementation of this objective. Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA) believed that it would be advantageous to provide a forum for such an exchange. Therefore, within the framework of the Working Group on the Analysis and Management of Accidents of the NEA's Committee on the Safety of Nuclear Installations, the IAEA and the NEA agreed to jointly organize the Technical Meeting on the Use of Computational Fluid Dynamics Codes for Safety Analysis of Reactor Systems, including Containment. The meeting was held in Pisa, Italy, from 11 to 14 November 2002. The publication constitutes the report of the Technical Meeting. It includes short summaries of the presentations that were made and of the discussions as well as conclusions and

  7. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for transforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  8. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2006-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for ansforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  9. Analysis of some antecipated transients without scram for a pressurized water cooled reactor (PWR) using coupling of the containment code CORAN to the system model code ALMOD

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author) [pt

  10. Description of the TREBIL, CRESSEX and STREUSL computer programs, that belongs to RALLY computer code pack for the analysis of reliability systems

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1982-11-01

    The RALLY computer code pack (RALLY pack) is a set of computer codes destinate to the reliability of complex systems, aiming to a risk analysis. Three of the six codes, are commented, presenting their purpose, input description, calculation methods and results obtained with each one of those computer codes. The computer codes are: TREBIL, to obtain the fault tree logical equivalent; CRESSEX, to obtain the minimal cut and the punctual values of the non-reliability and non-availability of the system; and STREUSL, for the dispersion calculation of those values around the media. In spite of the CRESSEX, in its version available at CNEN, uses a little long method to obtain the minimal cut in an HB-CNEN system, the three computer programs show good results, mainly the STREUSL, which permits the simulation of various components. (E.G.) [pt

  11. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    Science.gov (United States)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  12. DEFORM-4: fuel pin characterization and transient response in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Miles, K.J.; Hill, D.J.

    1986-01-01

    The DEFORM-4 module is the segment of the SAS4A Accident Analysis Code System that calculates the fuel pin characterization in response to a steady state irradiation history, thereby providing the initial conditions for the transient calculation. The various phenomena considered include fuel porosity migration, fission gas bubble induced swelling, fuel cracking and healing, fission gas release, cladding swelling, and the thermal-mechanical state of the fuel and cladding. In the transient state, the module continues the thermal-mechanical response calculation, including fuel melting and central cavity pressurization, until cladding failure is predicted and one of the failed fuel modules is initiated. Comparisons with experimental data have demonstrated the validity of the modeling approach

  13. A new balance-of-plant model for the SASSYS-1 LMR [liquid metal reactor] systems analysis code

    International Nuclear Information System (INIS)

    Briggs, L.L.

    1989-01-01

    A balance-of-plant (BOP) model has been developed for use within the SASSYS-1 liquid-metal reactor systems analysis code. This model expands the scope of SASSYS-1 so that the code can explicitly model the waterside components of a nuclear power plant; previously, only the water side of the steam generators could be modeled, with the remainder of the water side represented by boundary conditions on the steam generator. The model represents the BOP a set of flow paths and path junctions; the mass and energy equations are solved at the junctions, and the momentum equation is solved along the flow paths. The junctions are thus mass and energy cells, and the paths are momentum cells. The various waterside component models (pumps, valves, etc.) are specialized types of energy or momentum cells, as appropriate. The solution scheme implicitly couples the energy cells through the momentum cells and solves simultaneously for pressures and enthalpies within the energy cells and for flows within the momentum cells

  14. Development of eddy current analysis code ''INCANET''

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru; Hoshi, Yuichi

    1987-01-01

    The eddy current analysis code, INCANET (IHI Induced Current Analysis Code by the Network Mesh Method), for an arbitrary thin shell structure was developed based on the Network Mesh Method. In this method, which was developed by Princeton University in the United States in 1979, a continuous surface is approximated to a network of equivalent circuits. The eddy current, magnetic field generated by it, Joule Power Loss and Lorentz force are calculated by using INCANET which is installed in the VAX/CAE system and a successive stress analysis by Lorentz force is available. The results of INCANET were confirmed in the International Workshop for Eddy Current Code Comparison (Tokyo, 1986). INCANET has been successfully applied to advanced technical fields such as magnetic fusion devices, a positron storage ring, and Magnetic Resonance Imaging (MRI). (author)

  15. MGEX data analysis at CODE - current status

    Science.gov (United States)

    Prange, Lars; Dach, Rolf; Lutz, Simon; Schaer, Stefan; Jäggi, Adrian

    2013-04-01

    The Center for Orbit Determination in Europe (CODE) is contributing as an analysis center to the International GNSS Service (IGS) since many years. The processing of GPS and GLONASS data is well established in CODE's ultra-rapid, rapid, and final product lines. In 2012 the IGS started its "Multi GNSS EXperiment" (MGEX). Meanwhile (status end of 2012) about 50 new or upgraded MGEX tracking stations offer their data to the user community meeting the IGS standards (e.g., correct equipment information, calibrated antennas, RINEX data format). MGEX supports the RINEX3 data format, new signal types for the established GNSS (e.g., L5 for GPS), and new GNSS, such as Galileo, Compass, and QZSS. It is therefore well suited as a testbed for future developments in GNSS processing. CODE supports MGEX by providing a three-system orbit solution (GPS+GLONASS+Galileo) on a non-operational basis. The CODE MGEX products are freely available at ftp://cddis.gsfc.nasa.gov/gnss/products/mgex (solution ID "com" stands for CODE-MGEX). The current status of the MGEX processing at CODE will be presented focusing on the consistency of GNSS-derived results based on different frequencies/signals. An outlook about CODE's future multi-GNSS activities will be given.

  16. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  17. Plotting system for the MINCS code

    International Nuclear Information System (INIS)

    Watanabe, Tadashi

    1990-08-01

    The plotting system for the MINCS code is described. The transient two-phase flow analysis code MINCS has been developed to provide a computational tool for analysing various two-phase flow phenomena in one-dimensional ducts. Two plotting systems, namely the SPLPLOT system and the SDPLOT system, can be used as the plotting functions. The SPLPLOT system is used for plotting time transients of variables, while the SDPLOT system is for spatial distributions. The SPLPLOT system is based on the SPLPACK system, which is used as a general tool for plotting results of transient analysis codes or experiments. The SDPLOT is based on the GPLP program, which is also regarded as one of the general plotting programs. In the SPLPLOT and the SDPLOT systems, the standardized data format called the SPL format is used in reading data to be plotted. The output data format of MINCS is translated into the SPL format by using the conversion system called the MINTOSPL system. In this report, how to use the plotting functions is described. (author)

  18. Fire-accident analysis code (FIRAC) verification

    International Nuclear Information System (INIS)

    Nichols, B.D.; Gregory, W.S.; Fenton, D.L.; Smith, P.R.

    1986-01-01

    The FIRAC computer code predicts fire-induced transients in nuclear fuel cycle facility ventilation systems. FIRAC calculates simultaneously the gas-dynamic, material transport, and heat transport transients that occur in any arbitrarily connected network system subjected to a fire. The network system may include ventilation components such as filters, dampers, ducts, and blowers. These components are connected to rooms and corridors to complete the network for moving air through the facility. An experimental ventilation system has been constructed to verify FIRAC and other accident analysis codes. The design emphasizes network system characteristics and includes multiple chambers, ducts, blowers, dampers, and filters. A larger industrial heater and a commercial dust feeder are used to inject thermal energy and aerosol mass. The facility is instrumented to measure volumetric flow rate, temperature, pressure, and aerosol concentration throughout the system. Aerosol release rates and mass accumulation on filters also are measured. We have performed a series of experiments in which a known rate of thermal energy is injected into the system. We then simulated this experiment with the FIRAC code. This paper compares and discusses the gas-dynamic and heat transport data obtained from the ventilation system experiments with those predicted by the FIRAC code. The numerically predicted data generally are within 10% of the experimental data

  19. Structural analysis program of plant piping system. Introduction of AutoPIPE V8i new feature. JSME PPC-class 2 piping code

    International Nuclear Information System (INIS)

    Motohashi, Kazuhiko

    2009-01-01

    After an integration with ADLPipe, AutoPIPE V8i (ver.9.1) became the structural analysis program of plant piping system featured with analysis capability for the ASME NB Class 1 and JSME PPC-Class 2 piping codes including ASME NC Class 2 and ASME ND Class 3. This article described analysis capability for the JSME PPC-Class 2 piping code as well as new general features such as static analysis up to 100 thermal, 10 seismic and 10 wind load cases including different loading scenarios and pipe segment edit function: join, split, reverse and re-order segments. (T. Tanaka)

  20. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  1. An integrated radiation physics computer code system.

    Science.gov (United States)

    Steyn, J. J.; Harris, D. W.

    1972-01-01

    An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

  2. Analysis of a small PWR core with the PARCS/Helios and PARCS/Serpent code systems

    International Nuclear Information System (INIS)

    Baiocco, G.; Petruzzi, A.; Bznuni, S.; Kozlowski, T.

    2017-01-01

    Highlights: • The consistency between Helios and Serpent few-group cross sections is shown. • The PARCS model is validated against a Monte Carlo 3D model. • The fission and capture rates are compared. • The influence of the spacer grids on the axial power distribution is shown. - Abstract: Lattice physics codes are primarily used to generate cross-section data for nodal codes. In this work the methodology of homogenized constant generation was applied to a small Pressurized Water Reactor (PWR) core, using the deterministic code Helios and the Monte Carlo code Serpent. Subsequently, a 3D analysis of the PWR core was performed with the nodal diffusion code PARCS using the two-group cross section data sets generated by Helios and Serpent. Moreover, a full 3D model of the PWR core was developed using Serpent in order to obtain a reference solution. Several parameters, such as k eff , axial and radial power, fission and capture rates were compared and found to be in good agreement.

  3. Web interface for plasma analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)], E-mail: emo@nifs.ac.jp; Murakami, S. [Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yoshida, M.; Funaba, H.; Nagayama, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2008-04-15

    There are many analysis codes that analyze various aspects of plasma physics. However, most of them are FORTRAN programs that are written to be run in supercomputers. On the other hand, many scientists use GUI (graphical user interface)-based operating systems. For those who are not familiar with supercomputers, it is a difficult task to run analysis codes in supercomputers, and they often hesitate to use these programs to substantiate their ideas. Furthermore, these analysis codes are written for personal use, and the programmers do not expect these programs to be run by other users. In order to make these programs to be widely used by many users, the authors developed user-friendly interfaces using a Web interface. Since the Web browser is one of the most common applications, it is useful for both the users and developers. In order to realize interactive Web interface, AJAX technique is widely used, and the authors also adopted AJAX. To build such an AJAX based Web system, Ruby on Rails plays an important role in this system. Since this application framework, which is written in Ruby, abstracts the Web interfaces necessary to implement AJAX and database functions, it enables the programmers to efficiently develop the Web-based application. In this paper, the authors will introduce the system and demonstrate the usefulness of this approach.

  4. The CALOR93 code system

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1993-01-01

    The purpose of this paper is to describe a program package, CALOR93, that has been developed to design and analyze different detector systems, in particular, calorimeters which are used in high energy physics experiments to determine the energy of particles. One's ability to design a calorimeter to perform a certain task can have a strong influence upon the validity of experimental results. The validity of the results obtained with CALOR93 has been verified many times by comparison with experimental data. The codes (HETC93, SPECT93, LIGHT, EGS4, MORSE, and MICAP) are quite generalized and detailed enough so that any experimental calorimeter setup can be studied. Due to this generalization, some software development is necessary because of the wide diversity of calorimeter designs

  5. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  6. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    Farnham, J.E.; Schlenker, R.A.

    1976-01-01

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  7. CONTEMPT-DG containment analysis code

    International Nuclear Information System (INIS)

    Deem, R.E.; Rousseau, K.

    1982-01-01

    The assessment of hydrogen burning in a containment building during a degraded core event requires a knowledge of various system responses. These system responses (i.e. heat sinks, fan cooler units, sprays, etc.) can have a marked effect on the overall containment integrity results during a hydrogen burn. In an attempt to properly handle the various system responses and still retain the capability to perform sensitivity analysis on various parameters, the CONTEMPT-DG computer code was developed. This paper will address the historical development of the code, its various features, and the rationale for its development. Comparisons between results from the CONTEMPT-DG analyses and results from similar MARCH analyses will also be given

  8. SAS6. User's guide. A two-dimensional depletion and criticality analysis code package based on the SCALE-4 system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Li, J.M.; Kloosterman, J.L.

    1995-04-01

    This users' guide gives a description of the functionality and the requested input of the SAS6 code sequence which can be used to perform burnup and criticality calculations based on functional modules from the SCALE-4 code system and libraries. The input file for the SAS6 control module is very similar to that of the other SAS and CSAS control modules available in the SCALE-4 system. Especially the geometry input of SAS6 is quite similar to that of SAS2H. However, the functionality of SAS6 is different from that of SAS2H. The geometry of the reactor lattice can be treated in more detail because use is made of the two-dimensional lattice code WIMS-D/IRI (An adapted version of WIMS-D/4) instead of the one-dimensional transport code XSDRNPM-S. Also the neutron absorption and production rates of nuclides not explicitly specified in the input can be accounted for by six pseudo nuclides. Furthermore, the centre pin can be subdivided into maximal 10 zones to improve the burnup calculation of the centre pin and to obtain more accurate k-infinite values for the assembly. Also the time step specification is more flexible than in the SAS2H sequence. (orig.)

  9. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  10. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  11. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  12. Integrated burnup calculation code system SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Hirakawa, Naohiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwasaki, Tomohiko

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user`s manual of SWAT. (author)

  13. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  14. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  15. Uncertainty analysis of the FRAP code

    International Nuclear Information System (INIS)

    Peck, S.O.

    1978-01-01

    A user oriented, automated uncertainty analysis capability has been built into the FRAP code (Fuel Rod Analysis Program) and applied to a PWR fuel rod undergoing a LOCA. The method of uncertainty analysis is the Response Surface Method (RSM). (author)

  16. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  17. Manometer Behavior Analysis using CATHENA, RELAP and GOTHIC Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Han, Kee Soo; Moon, Bok Ja; Jang, Misuk [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    In this presentation, simple thermal hydraulic behavior is analyzed using three codes to show the possibility of using alternative codes. We established three models of simple u-tube manometer using three different codes. CATHENA (Canadian Algorithm for Thermal hydraulic Network Analysis), RELAP (Reactor Excursion and Leak Analysis Program), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are used for this analysis. CATHENA and RELAP are widely used codes for the analysis of system behavior of CANDU and PWR. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. In this paper, the internal behavior of u-tube manometer was analyzed using 3 codes, CATHENA, RELAP and GOTHIC. The general transient behavior is similar among 3 codes. However, the behavior simulated using GOTHIC shows some different trend compared with the results from the other 2 codes at the end of the transient. It would be resulted from the use of different physical model in GOTHIC, which is specialized for the multi-phase thermal hydraulic behavior analysis of containment system unlike the other two codes.

  18. Manometer Behavior Analysis using CATHENA, RELAP and GOTHIC Codes

    International Nuclear Information System (INIS)

    Kim, Yang Hoon; Han, Kee Soo; Moon, Bok Ja; Jang, Misuk

    2014-01-01

    In this presentation, simple thermal hydraulic behavior is analyzed using three codes to show the possibility of using alternative codes. We established three models of simple u-tube manometer using three different codes. CATHENA (Canadian Algorithm for Thermal hydraulic Network Analysis), RELAP (Reactor Excursion and Leak Analysis Program), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are used for this analysis. CATHENA and RELAP are widely used codes for the analysis of system behavior of CANDU and PWR. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. In this paper, the internal behavior of u-tube manometer was analyzed using 3 codes, CATHENA, RELAP and GOTHIC. The general transient behavior is similar among 3 codes. However, the behavior simulated using GOTHIC shows some different trend compared with the results from the other 2 codes at the end of the transient. It would be resulted from the use of different physical model in GOTHIC, which is specialized for the multi-phase thermal hydraulic behavior analysis of containment system unlike the other two codes

  19. Quality coding by neural populations in the early olfactory pathway: analysis using information theory and lessons for artificial olfactory systems.

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    Full Text Available In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.

  20. Flow Analysis of Code Customizations

    DEFF Research Database (Denmark)

    Hessellund, Anders; Sestoft, Peter

    2008-01-01

    requirements between metadata and code should be checked but often are not, so current tools offer surprisingly poor development support. In this paper, we adapt classical data flow analyses to detect inconsistencies and provide better static guarantees. We provide a formalization of the consistency...... requirements and a set of adapted analyses for a concrete case study. Our work is implemented in a fast and efficient prototype in the form of an Eclipse plugin. We validate our work by testing this prototype on actual production code; preliminary results show that this approach is worthwhile. We found...

  1. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  2. Source Code Analysis Laboratory (SCALe)

    Science.gov (United States)

    2012-04-01

    Samba and NFS. The Windows VMs can be remotely accessed from within the CERT network by using Remote Desktop Protocol (RDP) and the Linux VMs by...File Server • Samba • NFS RDP SSH Other VMs CMU/SEI-2012-TN-013 | 10 Source code being analyzed is copied onto the file server, where it is

  3. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  4. Application of ASTEC, MELCOR, and MAAP Computer Codes for Thermal Hydraulic Analysis of a PWR Containment Equipped with the PCFV and PAR Systems

    Directory of Open Access Journals (Sweden)

    Siniša Šadek

    2017-01-01

    Full Text Available The integrity of the containment will be challenged during a severe accident due to pressurization caused by the accumulation of steam and other gases and possible ignition of hydrogen and carbon monoxide. Installation of a passive filtered venting system and passive autocatalytic recombiners allows control of the pressure, radioactive releases, and concentration of flammable gases. Thermal hydraulic analysis of the containment equipped with dedicated passive safety systems after a hypothetical station blackout event is performed for a two-loop pressurized water reactor NPP with three integral severe accident codes: ASTEC, MELCOR, and MAAP. MELCOR and MAAP are two major US codes for severe accident analyses, and the ASTEC code is the European code, joint property of Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France and Gesellschaft für Anlagen und Reaktorsicherheit (GRS, Germany. Codes’ overall characteristics, physics models, and the analysis results are compared herein. Despite considerable differences between the codes’ modelling features, the general trends of the NPP behaviour are found to be similar, although discrepancies related to simulation of the processes in the containment cavity are also observed and discussed in the paper.

  5. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  6. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-01-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges

  7. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat @

    2014-02-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  8. RDS; A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Mohd Faiz Salim; Ridha Roslan; Mohd Rizal Mamat

    2013-01-01

    Full-text: Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBIMOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges. (author)

  9. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    Science.gov (United States)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  10. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  11. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  12. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  13. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  14. ENSDF analysis codes: IBM version. August 1982

    International Nuclear Information System (INIS)

    Lorenz, A.

    1982-09-01

    The nuclear structure analysis programme tape consists of physics computer processing codes used in the evaluation of mass-chain structure data. This tape was generated by the National Nuclear Data Centre, Brookhaven National Laboratory in the USA. (author)

  15. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  16. SCALE Code System 6.2.2

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.

  17. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  18. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...

  19. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  20. A compendium of computer codes in fault tree analysis

    International Nuclear Information System (INIS)

    Lydell, B.

    1981-03-01

    In the past ten years principles and methods for a unified system reliability and safety analysis have been developed. Fault tree techniques serve as a central feature of unified system analysis, and there exists a specific discipline within system reliability concerned with the theoretical aspects of fault tree evaluation. Ever since the fault tree concept was established, computer codes have been developed for qualitative and quantitative analyses. In particular the presentation of the kinetic tree theory and the PREP-KITT code package has influenced the present use of fault trees and the development of new computer codes. This report is a compilation of some of the better known fault tree codes in use in system reliability. Numerous codes are available and new codes are continuously being developed. The report is designed to address the specific characteristics of each code listed. A review of the theoretical aspects of fault tree evaluation is presented in an introductory chapter, the purpose of which is to give a framework for the validity of the different codes. (Auth.)

  1. High frequency coded imaging system with RF.

    Science.gov (United States)

    Lewandowski, Marcin; Nowicki, Andrzej

    2008-08-01

    Coded transmission is an approach to solve the inherent compromise between penetration and resolution required in ultrasound imaging. Our goal was to examine the applicability of the coded excitation to HF (20-35 MHz) ultrasound imaging. A novel real-time imaging system for research and evaluation of the coded transmission was developed. The digital programmable coder- digitizer module based on the field programmable gate array (FPGA) chip supports arbitrary waveform coded transmission and RF echo sampling up to 200 megasamples per second, as well as real-time streaming of digitized RF data via a high-speed USB interface to the PC. All RF and image data processing were implemented in the software. A novel balanced software architecture supports real-time processing and display at rates up to 30 frames/sec. The system was used to acquire quantitative data for sine burst and 16-bit Golay code excitation at 20 MHz fundamental frequency. SNR gain close to 14 dB was obtained. The example of the skin scan clearly shows the extended penetration and improved contrast when a 35-MHz Golay code is used. The system presented is a practical and low-cost implementation of a coded excitation technique in HF ultrasound imaging that can be used as a research tool as well as to be introduced into production.

  2. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  3. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  4. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  5. EXTRA·M: a computing code system for analysis of the Purex process with mixer settlers for reprocessing

    International Nuclear Information System (INIS)

    Tachimori, Shoichi

    1994-03-01

    A computer code system EXTRA·M, for simulation of transient behavior of the solutes in a multistage countercurrent extraction process, was developed aiming to predict the distribution and chemical behaviors of actinide elements, i.e., U, Pu, Np, and of technetium in the Purex process of fuel reprocessing. The mathematical model is applicable to a complete mixing stagewise contactor such as mixer settler and to the Purex, with tri-n-butylphosphate (TBP) and nitric acid system. The main characteristics of the EXTRA·M are as follows; i) Calculation of distribution ratios of the solutes is based on numerical equations of which parameter values are to be determined by a best fit method with a number of experimental data. ii) Total of 18 solutes; U(IV), U(VI), Pu(III), Pu(IV), Pu(V), Pu(VI), Np(IV), Np(V), Np(VI), Tc(IV), Tc(V), Tc(VI), Tc(VII), Zr(IV), HNO 3 , hydrazine, hydroxylamine nitrate and nitrous acid, are treated and rate equations of total 40 chemical reactions involving these solutes are incorporated. iii) Instantaneous change of flow conditions, i.e., concentration of the solutes and flow rate of the feeding solutions, is contrived by computation. iv) Reflux or bypass mode calculation, in which an aqueous raffinate stream is transferred to the preceding bank or stage, is possible. The present report explains the concept, assumptions and characteristics of the model, the material balance equations including distribution and reaction rate equations and their solution method, and the usefulness of the model by showing some examples of the verification results. A description and source program of EXTRA·M1, as an example, are listed in the annex. (J.P.N.) 63 refs

  6. Uncertainty analysis of the SWEPP PAN assay system for glass waste (content codes 440, 441 and 442)

    International Nuclear Information System (INIS)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, W.Y.

    1996-10-01

    INEL is being used as a temporary storage facility for transuranic waste generated by the Nuclear Weapons program at the Rocky Flats Plant. Currently, there is a large effort in progress to prepare to ship this waste to WIPP. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Action Neutron (PAN) radioassay system. This paper discusses a modified statistical sampling and verification approach used to determine the total uncertainty of SWEPP PAN measurements for glass waste (content codes 440, 441, and 442) contained in 208 liter drums. In the modified statistical sampling and verification approach, the total performance of the SWEPP PAN nondestructive assay system for specifically selected waste conditions is simulated using computer models. A set of 100 cases covering the known conditions exhibited in glass waste was compiled using a combined statistical sampling and factorial experimental design approach. Parameter values assigned in each simulation were derived from reviews of approximately 100 real-time radiography video tapes of RFP glass waste drums, results from previous SWEPP PAN measurements on glass waste drums, and shipping data from RFP where the glass waste was generated. The data in the 100 selected cases form the multi-parameter input to the simulation model. The reported plutonium masses from the simulation model are compared with corresponding input masses. From these comparisons, the bias and total uncertainty associated with SWEPP PAN measurements on glass waste drums are estimated. The validity of the simulation approach is verified by comparing simulated output against results from calibration measurements using known plutonium sources and two glass waste calibration drums

  7. Uncertainty analysis of the SWEPP PAN assay system for glass waste (content codes 440, 441 and 442)

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, W.Y.

    1996-10-01

    INEL is being used as a temporary storage facility for transuranic waste generated by the Nuclear Weapons program at the Rocky Flats Plant. Currently, there is a large effort in progress to prepare to ship this waste to WIPP. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Action Neutron (PAN) radioassay system. This paper discusses a modified statistical sampling and verification approach used to determine the total uncertainty of SWEPP PAN measurements for glass waste (content codes 440, 441, and 442) contained in 208 liter drums. In the modified statistical sampling and verification approach, the total performance of the SWEPP PAN nondestructive assay system for specifically selected waste conditions is simulated using computer models. A set of 100 cases covering the known conditions exhibited in glass waste was compiled using a combined statistical sampling and factorial experimental design approach. Parameter values assigned in each simulation were derived from reviews of approximately 100 real-time radiography video tapes of RFP glass waste drums, results from previous SWEPP PAN measurements on glass waste drums, and shipping data from RFP where the glass waste was generated. The data in the 100 selected cases form the multi-parameter input to the simulation model. The reported plutonium masses from the simulation model are compared with corresponding input masses. From these comparisons, the bias and total uncertainty associated with SWEPP PAN measurements on glass waste drums are estimated. The validity of the simulation approach is verified by comparing simulated output against results from calibration measurements using known plutonium sources and two glass waste calibration drums.

  8. Software and codes for analysis of concentrating solar power technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  9. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  10. Modernization and restructuring of realistic thermal hydraulic system analysis code, RELAP5/MOD3.3.1.2

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Won Jae; Jeong, Jae Jun; Ha, Kwi Seok

    1998-01-01

    The code architecture entails the programming language and the code database. Various recent programming languages such as C, C ++ , Fortran 90, were considered as the candidate language for the modernization of RELAP5/MOD3.2.1.2. Among them, Fortran 90 was selected as a basic programming laguage for the modernization and restructuring of the code. Most of header file ( * .h) and equivalenced variables in RELAP5 have been replaced with members in the MODULE, which greatly enhance the code maintenance and readability. The FTB package is used for the dynamic memory management (DMM) of RELAP5. Although FTB DMM features are very successful, the use of FTB has been the obstacle in the maintenance of the code. It is difficult to understand and change the coding, and it requires a significant effort to find out index errors in large memory pools. With new features introduced in Fortran 90, it is possible to slove dynamic allocation problems within the standard features in an elegant, clear safe way. Each of FTB data blocks can be replaced by the suitably organized derived variables in MODULE and the standard DMM scheme. This DMM scheme provides the code flexibility which can save the memory requirements depending on the problem sizes without a extensive use of the complex FTB package. The current user's interface of the RELAP5 consists of a set of input file, output file, and restart/plot file. Many users complain that this interface is not user friendly. It was mainly caused by the text-oriented programming, namly console programming during the past many years. Now, windows programming has become popular in most areas of software development. Using this windows programming technique, the user friend freatures can be implemented. The Visual Fortran Quick Win run-time library helps to turn graphics programs into simple Windows applications. RELAP5 code has been re-compiled with the Quick Win feature, and the mask for user's dialog and graphical x-y plot were designed. This

  11. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  12. Analysis of PWR control rod ejection accident with the coupled code system SKETCH-INS/TRACE by incorporating pin power reconstruction model

    International Nuclear Information System (INIS)

    Nakajima, T.; Sakai, T.

    2010-01-01

    The pin power reconstruction model was incorporated in the 3-D nodal kinetics code SKETCH-INS in order to produce accurate calculation of three-dimensional pin power distributions throughout the reactor core. In order to verify the employed pin power reconstruction model, the PWR MOX/UO 2 core transient benchmark problem was analyzed with the coupled code system SKETCH-INS/TRACE by incorporating the model and the influence of pin power reconstruction model was studied. SKETCH-INS pin power distributions for 3 benchmark problems were compared with the PARCS solutions which were provided by the host organisation of the benchmark. SKETCH-INS results were in good agreement with the PARCS results. The capability of employed pin power reconstruction model was confirmed through the analysis of benchmark problems. A PWR control rod ejection benchmark problem was analyzed with the coupled code system SKETCH-INS/ TRACE by incorporating the pin power reconstruction model. The influence of pin power reconstruction model was studied by comparing with the result of conventional node averaged flux model. The results indicate that the pin power reconstruction model has significant effect on the pin powers during transient and hence on the fuel enthalpy

  13. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  14. Analysis of ZR-6 experiments using the KARATE-440 code system upgraded by ENDF/B-VI data

    International Nuclear Information System (INIS)

    Hegyi, Gy.; Kereszuri, A.; Maraczy, Cs.

    2002-01-01

    Extensive validation of nuclear libraries was performed against lattice experiments with the help of the MULTICELL lattice calculation code and the COREMICRO 2D fine diffusion code. New cross-section library set was developed for these codes based on the ENDF/B-VI nuclear database. These codes belong to the KARATE-440 code package which is used for the calculation of VVER-440 reactor cores. The ZR-6 zero power critical facility was used as experimental database, where a wide range of hexagonal lattices were investigated. In the first step single-pin-cell calculations were performed for uniform critical ZR-6 lattices, where the axial and radial leakage were taken into account by the measured material buckling. In this step beside of criticality some spectral indices were investigated too. In the second step 2D calculations were applied for all the experimental configurations, including different temperatures. The ∂ρ/∂Η and ∂ρ/∂Τ coefficients were evaluated, too.(author)

  15. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [OSAP-1 code; OTEC Steady-State Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Arthur

    1978-12-04

    The following appendices are included: highlights of direction and correspondence; user manual for OTEC Steady-State Analysis Program (OSAP-1); sample results of OSAP-1; surface condenser installations; double-clad systems; aluminum alloy seawater piping; references searched for ammonia evaluation; references on stress-corrosion for ammonia; references on anhydrous ammonia storage; references on miscellaneous ammonia items; OTEC materials testing; test reports; OTEC technical specification chlorination system; OTEC technical specification AMERTAP system; OTEC optimization program users guide; concrete hull construction; weight and stability estimates; packing factor data; machinery and equipment list; letter from HPTI on titanium tubes; tables on Wolverine Korodense tubes; evaporator and condenser enhancement tables; code weld titanium tube price, weight tables Alcoa tubing tables; Union Carbide tubing pricing tables; turbotec tubing pricing tables; Wolverine tubing pricing tables; Union Carbide tubing characteristics and pricing; working fluids and turbines for OTEC power system; and hydrodynamic design of prototype OTEC cold and warm seawater pumps. (WHK)

  16. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  17. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  18. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Rollstin, J.A.; Chanin, D.I.; Jow, H.N.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  19. Fault tree analysis. Implementation of the WAM-codes

    International Nuclear Information System (INIS)

    Bento, J.P.; Poern, K.

    1979-07-01

    The report describes work going on at Studsvik at the implementation of the WAM code package for fault tree analysis. These codes originally developed under EPRI contract by Sciences Applications Inc, allow, in contrast with other fault tree codes, all Boolean operations, thus allowing modeling of ''NOT'' conditions and dependent components. To concretize the implementation of these codes, the auxiliary feed-water system of the Swedish BWR Oskarshamn 2 was chosen for the reliability analysis. For this system, both the mean unavailability and the probability density function of the top event - undesired event - of the system fault tree were calculated, the latter using a Monte-Carlo simulation technique. The present study is the first part of a work performed under contract with the Swedish Nuclear Power Inspectorate. (author)

  20. Sensitivity analysis of the RESRAD, a dose assessment code

    International Nuclear Information System (INIS)

    Yu, C.; Cheng, J.J.; Zielen, A.J.

    1991-01-01

    The RESRAD code is a pathway analysis code that is designed to calculate radiation doses and derive soil cleanup criteria for the US Department of Energy's environmental restoration and waste management program. the RESRAD code uses various pathway and consumption-rate parameters such as soil properties and food ingestion rates in performing such calculations and derivations. As with any predictive model, the accuracy of the predictions depends on the accuracy of the input parameters. This paper summarizes the results of a sensitivity analysis of RESRAD input parameters. Three methods were used to perform the sensitivity analysis: (1) Gradient Enhanced Software System (GRESS) sensitivity analysis software package developed at oak Ridge National Laboratory; (2) direct perturbation of input parameters; and (3) built-in graphic package that shows parameter sensitivities while the RESRAD code is operational

  1. Analysis of pipe stress using CAESAR II code

    International Nuclear Information System (INIS)

    Sitandung, Y.B.; Bandriyana, B.

    2002-01-01

    Analysis of this piping stress with the purpose of knowing stress distribution piping system in order to determine pipe supports configuration. As an example of analysis, Gas Exchanger to Warm Separator Line was chosen with, input data was firstly prepared in a document, i.e. piping analysis specification that its content named as pipe characteristics, material properties, operation conditions, guide equipment's and so on. Analysis result such as stress, load, displacement and the use support type were verified based on requirements in the code, standard, and regularities were suitable with piping system condition analyzed. As the proof that piping system is in safety condition, it can be indicated from analysis results (actual loads) which still under allowable load. From the analysis steps that have been done CAESAR II code fulfill requirements to be used as a tool of piping stress analysis as well as nuclear and non nuclear installation piping system

  2. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  3. Static Code Analysis with Gitlab-CI

    CERN Document Server

    Datko, Szymon Tomasz

    2016-01-01

    Static Code Analysis is a simple but efficient way to ensure that application’s source code is free from known flaws and security vulnerabilities. Although such analysis tools are often coming with more advanced code editors, there are a lot of people who prefer less complicated environments. The easiest solution would involve education – where to get and how to use the aforementioned tools. However, counting on the manual usage of such tools still does not guarantee their actual usage. On the other hand, reducing the required effort, according to the idea “setup once, use anytime without sweat” seems like a more promising approach. In this paper, the approach to automate code scanning, within the existing CERN’s Gitlab installation, is described. For realization of that project, the Gitlab-CI service (the “CI” stands for "Continuous Integration"), with Docker assistance, was employed to provide a variety of static code analysers for different programming languages. This document covers the gene...

  4. Design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication systems

    Science.gov (United States)

    Kostic, Zoran; Titlebaum, Edward L.

    1994-08-01

    New families of spread-spectrum codes are constructed, that are applicable to optical synchronous code-division multiple-access (CDMA) communications as well as to arbitrary-medium time-hopping synchronous CDMA communications. Proposed constructions are based on the mappings from integer sequences into binary sequences. We use the concept of number theoretic quadratic congruences and a subset of Reed-Solomon codes similar to the one utilized in the Welch-Costas frequency-hop (FH) patterns. The properties of the codes are as good as or better than the properties of existing codes for synchronous CDMA communications: Both the number of code-sequences within a single code family and the number of code families with good properties are significantly increased when compared to the known code designs. Possible applications are presented. To evaluate the performance of the proposed codes, a new class of hit arrays called cyclical hit arrays is recalled, which give insight into the previously unknown properties of the few classes of number theoretic FH patterns. Cyclical hit arrays and the proposed mappings are used to determine the exact probability distribution functions of random variables that represent interference between users of a time-hopping or optical CDMA system. Expressions for the bit error probability in multi-user CDMA systems are derived as a function of the number of simultaneous CDMA system users, the length of signature sequences and the threshold of a matched filter detector. The performance results are compared with the results for some previously known codes.

  5. Performance Analysis of Wavelet Channel Coding in COST207-based Channel Models on Simulated Radio-over-Fiber Systems at the W-Band

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Silveira, Luiz F. Q.; Rommel, Simon

    2016-01-01

    , such systems use diversity schemes in combination with digital signal processing (DSP) techniques to overcome effects such as fading and inter-symbol interference (ISI). Wavelet Channel Coding (WCC) has emerged as a technique to minimize the fading effects of wireless channels, which is a mayor challenge......Millimeter wave communications based on photonic technologies have gained increased attention to provide optic fiber-like capacity in wireless environments. However, the new hybrid fiber-wireless channel represents new challenges in terms of signal transmission performance analysis. Traditionally...... in systems operating in the millimeter wave regime. This work takes the WCC one step beyond by performance evaluation in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, the main international...

  6. SRAC2006; A Comprehensive neutronics calculation code system

    OpenAIRE

    奥村 啓介; 久語 輝彦; 金子 邦男; 土橋 敬一郎

    2007-01-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five ele...

  7. Benchmark calculation of subchannel analysis codes

    International Nuclear Information System (INIS)

    1996-02-01

    In order to evaluate the analysis capabilities of various subchannel codes used in thermal-hydraulic design of light water reactors, benchmark calculations were performed. The selected benchmark problems and major findings obtained by the calculations were as follows: (1)As for single-phase flow mixing experiments between two channels, the calculated results of water temperature distribution along the flow direction were agreed with experimental results by tuning turbulent mixing coefficients properly. However, the effect of gap width observed in the experiments could not be predicted by the subchannel codes. (2)As for two-phase flow mixing experiments between two channels, in high water flow rate cases, the calculated distributions of air and water flows in each channel were well agreed with the experimental results. In low water flow cases, on the other hand, the air mixing rates were underestimated. (3)As for two-phase flow mixing experiments among multi-channels, the calculated mass velocities at channel exit under steady-state condition were agreed with experimental values within about 10%. However, the predictive errors of exit qualities were as high as 30%. (4)As for critical heat flux(CHF) experiments, two different results were obtained. A code indicated that the calculated CHF's using KfK or EPRI correlations were well agreed with the experimental results, while another code suggested that the CHF's were well predicted by using WSC-2 correlation or Weisman-Pei mechanistic model. (5)As for droplets entrainment and deposition experiments, it was indicated that the predictive capability was significantly increased by improving correlations. On the other hand, a remarkable discrepancy between codes was observed. That is, a code underestimated the droplet flow rate and overestimated the liquid film flow rate in high quality cases, while another code overestimated the droplet flow rate and underestimated the liquid film flow rate in low quality cases. (J.P.N.)

  8. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  9. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  10. The integral analysis of 40 mm diameter pipe rupture in cooling system of fusion facility W7-X with ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Kačegavičius, Tomas, E-mail: Tomas.Kacegavicius@lei.lt; Povilaitis, Mantas, E-mail: Mantas.Povilaitis@lei.lt

    2015-12-15

    Highlights: • The analysis of loss-of-coolant accident (LOCA) in W7-X facility. • Burst disc is sufficient to prevent pressure inside the plasma vessel exceeding 110 kPa. • Developed model of the cooling system adequately represents the expected phenomena. - Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Wendelstein 7-X (W7-X) is an experimental facility of stellarator type, which is currently being built at the Max-Planck-Institute for Plasmaphysics located in Greifswald, Germany. W7-X shall demonstrate that in future the energy could be produced in such type of fusion reactors. The safety analysis is required before the operation of the facility could be started. A rupture of 40 mm diameter pipe, which is connected to the divertor unit (module for plasma cooling) to ensure heat removal from the vacuum vessel in case of no-plasma operation mode “baking” is one of the design basis accidents to be investigated. During “baking” mode the vacuum vessel structures and working fluid – water are heated to the temperature 160 °C. This accident was selected for the detailed analysis using integral code ASTEC, which is developed by IRSN (France) and GRS mbH (Germany). This paper presents the integral analysis of W7-X response to a selected accident scenario. The model of the main cooling circuit and “baking” circuit was developed for ASTEC code. There were analysed two cases: (1) rupture of a pipe connected to the upper divertor unit and (2) rupture of a pipe connected to the lower divertor unit. The results of analysis showed that in both cases the water is almost completely released from the units into the plasma vessel. In both cases the pressure in the plasma vessel rapidly increases and in 28 s the set point for burst disc opening is reached preventing further pressurisation.

  11. Performance analysis for a chaos-based code-division multiple access system in wide-band channel

    Directory of Open Access Journals (Sweden)

    Ciprian Doru Giurcăneanu

    2015-08-01

    Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.

  12. A development of containment performance analysis methodology using GOTHIC code

    International Nuclear Information System (INIS)

    Lee, B. C.; Yoon, J. I.; Byun, C. S.; Lee, J. Y.; Lee, J. Y.

    2003-01-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code

  13. A development of containment performance analysis methodology using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. C.; Yoon, J. I. [Future and Challenge Company, Seoul (Korea, Republic of); Byun, C. S.; Lee, J. Y. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, J. Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-10-01

    In a circumstance that well-established containment pressure/temperature analysis code, CONTEMPT-LT treats the reactor containment as a single volume, this study introduces, as an alternative, the GOTHIC code for an usage on multi-compartmental containment performance analysis. With a developed GOTHIC methodology, its applicability is verified for containment performance analysis for Korean Nuclear Unit 1. The GOTHIC model for this plant is simply composed of 3 compartments including the reactor containment and RWST. In addition, the containment spray system and containment recirculation system are simulated. As a result of GOTHIC calculation, under the same assumptions and conditions as those in CONTEMPT-LT, the GOTHIC prediction shows a very good result; pressure and temperature transients including their peaks are nearly the same. It can be concluded that the GOTHIC could provide reasonable containment pressure and temperature responses if considering the inherent conservatism in CONTEMPT-LT code.

  14. Source Code Vulnerabilities in IoT Software Systems

    Directory of Open Access Journals (Sweden)

    Saleh Mohamed Alnaeli

    2017-08-01

    Full Text Available An empirical study that examines the usage of known vulnerable statements in software systems developed in C/C++ and used for IoT is presented. The study is conducted on 18 open source systems comprised of millions of lines of code and containing thousands of files. Static analysis methods are applied to each system to determine the number of unsafe commands (e.g., strcpy, strcmp, and strlen that are well-known among research communities to cause potential risks and security concerns, thereby decreasing a system’s robustness and quality. These unsafe statements are banned by many companies (e.g., Microsoft. The use of these commands should be avoided from the start when writing code and should be removed from legacy code over time as recommended by new C/C++ language standards. Each system is analyzed and the distribution of the known unsafe commands is presented. Historical trends in the usage of the unsafe commands of 7 of the systems are presented to show how the studied systems evolved over time with respect to the vulnerable code. The results show that the most prevalent unsafe command used for most systems is memcpy, followed by strlen. These results can be used to help train software developers on secure coding practices so that they can write higher quality software systems.

  15. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  16. Electromagnetic field and mechanical stress analysis code

    International Nuclear Information System (INIS)

    1978-01-01

    Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem

  17. 2-dimensional steam explosion analysis code development

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Song, J. H.; Kim, J. H.; Hong, S. W.; Min, B. T.; Kim, H. Y.; Kim, H. D.

    2003-12-01

    One technique or concept that is considered for the purpose of analyzing and simulating the process of fuel-coolant interaction is the implementation of the Lagrangian-Eulerian fields for the discrete molten fuel particles and the vapor-liquid coolant mixture. One example of the computer code that employs such technique is TEXAS-V. Unfortunately, while TEXAS-V has been used with the different degree of success for many simulations, it has one distinct disadvantage in that it can be used for the one-dimensional system. Therefore, it lacks the ability to describe the transient that occurs in the direction normal to its main direction. Since the system of an actual interest is more possible to be two or three dimensions, the applicability of TEXAS-V is quite limited in this regard. The first stage in the development of LeSiM, the modules for simulating the movements of the Lagrangian particles and their interactions with the surrounding fluid, has been concluded. The development is now moved to implement the developed modules with a fluid dynamic code. For this purpose, the fluid dynamic code K-FIX was chosen. The objectives at this stage are to verify the feasibility of extending the fluid dynamic code with LeSiM and to test the capability of the extended code in simulating the interactions between the Lagrangian particles and the dynamic fluid. This report documents the information on the modification of K-FIX in order to accommodate the extension with LeSiM. It also provides the sample input files for the calculation, the examples of the simulations and their results. The manual is intended as the supplement on the manuals for K-FIX and LeSiM. Therefore, it should be consulted together with these two volumes

  18. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  19. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  20. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  1. Modification of BINX code for HP9000 system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. C.; Kim, Y. J.; Kim, Y. G.; Chung, H. T.

    1997-12-01

    As one of the efforts to construct an integrated computation system, the K-CORE system for LMR core design and analysis, the BINX code which converts format of CCCC standard input/output files has been modified so that it works on HP 9000 workstations. The BINX code was improved to manipulate input/output files in the newer CCCC version IV format and some bugs in the former code were eliminated. These give BINX the compatibility of the input/output files among calculation modules. Hence the cross-section library processing system that can convert and produce standard input/output files satisfying the user`s function requirement has been established in the K-CORE system. (author). 10 refs.

  2. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  3. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  4. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    POS Tagging, and Dependency Parsing. Fourth Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL). English (Note: These are for...Detection, Affix Labeling, POS Tagging, and Dependency Parsing" by Stephen Tratz presented at the Statistical Parsing of Morphologically Rich Languages ...and also English ) natural language processing (NLP), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s

  5. Satellite link protocols design for the CODE system

    Science.gov (United States)

    Fernandez, A.; Vidaller, L.; Miguel, C.; Briones, D.

    1989-05-01

    The design of satellite link protocols for Very Small Aperture Terminals (VSAT) systems is outlined. The CODE system (Cooperative Olympus Data Experiment) is a VSAT system with two main characteristics: very low bit error rate, and multiple access over FDM channels in the inbound link. The design of the link protocols for this system covers two main aspects: error control procedures and medium access control procedures. In order to analyze both aspects, a profile of the average user of the CODE system is defined in terms of types of traffic and of messages arrival and service rates for every type of traffic. An analysis of the mean time between failures is made, and the average delay and through-put for different access methods are computed, including stability analysis for Aloha-based systems.

  6. Sequence Coding and Search System for licensee event reports: code listings. Volume 2

    International Nuclear Information System (INIS)

    Gallaher, R.B.; Guymon, R.H.; Mays, G.T.; Poore, W.P.; Cagle, R.J.; Harrington, K.H.; Johnson, M.P.

    1985-04-01

    Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2

  7. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  8. Transient electromagnetic analysis in tokamaks using TYPHOON code

    International Nuclear Information System (INIS)

    Belov, A.V.; Duke, A.E.; Korolkov, M.D.; Kotov, V.L.; Kukhtin, V.P.; Lamzin, E.A.; Sytchevsky, S.E.

    1996-01-01

    The transient electromagnetic analysis of conducting structures in tokamaks is presented. This analysis is based on a three-dimensional thin conducting shell model. The finite element method has been used to solve the corresponding integrodifferential equation. The code TYPHOON has been developed to calculate transient processes in tokamaks. Calculation tests and the code verification have been carried out. The calculation results of eddy current and force distibution and a.c. losses for different construction elements for both ITER and TEXTOR tokamaks magnetic systems are presented. (orig.)

  9. Best Estimate Thermal-Hydraulic System Analysis using the MARS Code for the Steam Generator Tube Rupture Accident in the APR1400

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Lee, Seung Wook; Bae, Sung Won; Choi, Ki Yong; Baek, Won Pil

    2010-01-01

    A postulated SGTR (Steam Generator Tube Rupture) accident of the APR1400 was analysed using the best estimate safety analysis code, MARS (Multidimensional Analysis of Reactor Safety). The SGTR accident is one of the design basis accidents, which has a unique feature of the penetration of the barrier between the reactor coolant system (RCS) and the secondary system resulting from the failure of a steam generator U-tube. The SGTR has an importance in safety due to a concern of a containment bypass of radioactive inventory. In the course of the SGTR, the radioactivity leaking from a broken steam generator Utube mixes with the shell-side water in an affected steam generator. Leak flow from ruptured U-tubes can increase a water level and a pressure of the affected steam generator. Following a reactor trip and a turbine trip, the main steam safety valves (MSSVs) can be open to mitigate an increase in the secondary system pressure. Meanwhile, the SGTR can provide a direct flow path from the primary to the secondary system resulting in the release of fission products into the atmosphere. As one of the most limiting SGTR accidents, a leak flow equivalent to a double-ended rupture of five Utubes was analysed in this study. The main objective of this study is not only to provide physical insight into the system response of the APR1400 reactor during a SGTR but also to investigate the effect of reactor trip type of the HSGL (High Steam Generator Level) trip and the LPP (Low Pressurizer Pressure) trip on the thermal-hydraulic system response

  10. Development of disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi; Seki, Masahiro.

    1989-01-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author)

  11. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  12. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  13. Simulation of water hammer phenomena using the system code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Bratfisch, Christoph; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2017-07-15

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  14. Simulation of water hammer phenomena using the system code ATHLET

    International Nuclear Information System (INIS)

    Bratfisch, Christoph; Koch, Marco K.

    2017-01-01

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  15. Analysis of Void Fraction Distribution and Departure from Nucleate Boiling in Single Subchannel and Bundle Geometries Using Subchannel, System, and Computational Fluid Dynamics Codes

    Directory of Open Access Journals (Sweden)

    Taewan Kim

    2012-01-01

    Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.

  16. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  17. Coded aperture imaging using imperfect detector systems

    International Nuclear Information System (INIS)

    Byard, K.; Ramsden, D.

    1994-01-01

    The imaging properties of a gamma-ray telescope which employs a coded aperture in conjunction with a modular detection plane has been investigated. Gaps in the detection plane, which arise as a consequence of the design of the position sensitive detector used, produce artifacts in the deconvolved images which reduce the signal to noise ratio for the detection of point sources. The application of an iterative image processing algorithm is shown to restore the image quality to that expected from an ideal detector. The efficiency of image processing has enabled its subsequent application to a general coded aperture system in order to gain a significant improvement in the field of view without compromising the angular resolution. (orig.)

  18. The development of a severe accident analysis code

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Cho, S. W.; Park, J. H.; Hong, S. W.; Hwang, M. K.; Kim, D. H.; Park, S. Y.; Kim, S. D.; Nho, K. M.

    1997-07-01

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity in an effect to improve existing models and develop analytical tools for the assessment of severe accidents. For hydrogen control, the analysis of hydrogen concentration in the containment and visualization for the concentration in the cell were performed. The computer code to predict combustion flame characteristic was also developed. the analytical model for the expansion phase of vapor explosion was developed and verified with the experimental results. The corium release fraction model from the cavity with the capture volume was developed and applied to the power plants. Pre-test calculation was performed for molten corium concrete interaction study and the crust formation process, heat transfer characteristics of the crust, and the sensitivity study using MELCOR code was carried out. A stress analysis code using finite element method for the reactor vessel lower head failure analysis was developed and the effect by gap formation between molten corium and vessel was analyzed. Through the international program of PHEBUS-FP and participation in the software development, the study on fission products release and transportation in the software development, the study on fission products release and transportation and aerosol deposition were performed. The system for severe accident analysis codes, CONTAIN and MELCOR codes etc., under the cooperation with USNRC were also established by installing in workstation and applying to experimental results and real plants. (author). 116 refs., 31 tabs., 59 figs

  19. Safety analysis and the code development on radioactive waste disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    Regarding development of the safety analysis codes to be used for 'cross-check' (which is the evaluation of the validity of the safety analysis conducted by the licensee through cross comparison of the simulated result) of the sub-surface disposal conducted by the licensee, the codes are required to be capable of confirming the long term safety of the sub-surface disposal. The influence of the rainfall infiltration change on groundwater flow over the long term period due to climate change was studied. As a result, it was found that shoreline movement caused by the sea level change significantly influenced groundwater flow. Regarding development of the safety analysis codes to be used for 'cross-check' of the near surface disposal, it is important to efficiently simulate the groundwater flow with finely discretized mesh model. We therefore improved the memory allocation algorithm of the groundwater flow simulation code, TOUGH2 to be able to treat the large mesh model, such as several million cells. Modifications are made for the simulation support system, by adding the groundwater flow code 3D-SEEP which can treat land uplift and erosion and its associated modules. This modification not only improves efficiency but also allows to avoid human error. Moreover, sensitivity analysis of the unsaturated conditions such as infiltration rate on the migration of important nuclides of near surface disposal was conducted. As a result, influence of the unsaturated conditions on the exposed dose was evaluated. (author)

  20. Adaptation of the Specific Affect Coding System (SPAFF

    Directory of Open Access Journals (Sweden)

    Tomaž Erzar

    2013-06-01

    Full Text Available The article describes the Slovenian adaptation of the Specific Affect Coding System (SPAFF which was developed by Gottman and colleagues (Gottman and Coan, 2007 for the purpose of examining emotional expression. We present a short history and problems of coding emotions, codes of the system, coding procedure, training of coders, and rules of accurate observing. Also presented are the experiences with the new system, arguments for adaptation of codes to therapeutic processes and suggestions for further improvements.

  1. User's manual for ASTERIX-2: A two-dimensional modular code system for the steady state and xenon transient analysis of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)

  2. Probabilistic analysis of crack containing structures with the PARIS code

    International Nuclear Information System (INIS)

    Brueckner-Foit, A.

    1987-10-01

    The basic features of the PARIS code which has been developed for the calculation of failure probabilities of crack containing structures are explained. An important issue in the reliability analysis of cracked components is the probabilistic leak-before-break behaviour. Formulae for the leak and break probabilities are derived and it is shown how a leak detection system influences the results. An example taken from nuclear applications illustrates the details of the probabilistic leak-before-break analysis. (orig.) [de

  3. Integrated computer codes for nuclear power plant severe accident analysis

    International Nuclear Information System (INIS)

    Jordanov, I.; Khristov, Y.

    1995-01-01

    This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs

  4. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1979-03-01

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  5. JU_KS@SAIL_CodeMixed-2017: Sentiment Analysis for Indian Code Mixed Social Media Texts

    OpenAIRE

    Sarkar, Kamal

    2018-01-01

    This paper reports about our work in the NLP Tool Contest @ICON-2017, shared task on Sentiment Analysis for Indian Languages (SAIL) (code mixed). To implement our system, we have used a machine learning algo-rithm called Multinomial Na\\"ive Bayes trained using n-gram and SentiWordnet features. We have also used a small SentiWordnet for English and a small SentiWordnet for Bengali. But we have not used any SentiWordnet for Hindi language. We have tested our system on Hindi-English and Bengali-...

  6. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  7. SWAAM-LT: The long-term, sodium/water reaction analysis method computer code

    International Nuclear Information System (INIS)

    Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.

    1993-01-01

    The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data

  8. Analysis of LAPAN-IPB image lossless compression using differential pulse code modulation and huffman coding

    Science.gov (United States)

    Hakim, P. R.; Permala, R.

    2017-01-01

    LAPAN-A3/IPB satellite is the latest Indonesian experimental microsatellite with remote sensing and earth surveillance missions. The satellite has three optical payloads, which are multispectral push-broom imager, digital matrix camera and video camera. To increase data transmission efficiency, the multispectral imager data can be compressed using either lossy or lossless compression method. This paper aims to analyze Differential Pulse Code Modulation (DPCM) method and Huffman coding that are used in LAPAN-IPB satellite image lossless compression. Based on several simulation and analysis that have been done, current LAPAN-IPB lossless compression algorithm has moderate performance. There are several aspects that can be improved from current configuration, which are the type of DPCM code used, the type of Huffman entropy-coding scheme, and the use of sub-image compression method. The key result of this research shows that at least two neighboring pixels should be used for DPCM calculation to increase compression performance. Meanwhile, varying Huffman tables with sub-image approach could also increase the performance if on-board computer can support for more complicated algorithm. These results can be used as references in designing Payload Data Handling System (PDHS) for an upcoming LAPAN-A4 satellite.

  9. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation.

    Science.gov (United States)

    Zhang, Yan; Wang, Ping; Guo, Lixin; Wang, Wei; Tian, Hongxin

    2017-08-21

    The average bit error rate (ABER) performance of an orbital angular momentum (OAM) multiplexing-based free-space optical (FSO) system with multiple-input multiple-output (MIMO) architecture has been investigated over atmospheric turbulence considering channel estimation and space-time coding. The impact of different types of space-time coding, modulation orders, turbulence strengths, receive antenna numbers on the transmission performance of this OAM-FSO system is also taken into account. On the basis of the proposed system model, the analytical expressions of the received signals carried by the k-th OAM mode of the n-th receive antenna for the vertical bell labs layered space-time (V-Blast) and space-time block codes (STBC) are derived, respectively. With the help of channel estimator carrying out with least square (LS) algorithm, the zero-forcing criterion with ordered successive interference cancellation criterion (ZF-OSIC) equalizer of V-Blast scheme and Alamouti decoder of STBC scheme are adopted to mitigate the performance degradation induced by the atmospheric turbulence. The results show that the ABERs obtained by channel estimation have excellent agreement with those of turbulence phase screen simulations. The ABERs of this OAM multiplexing-based MIMO system deteriorate with the increase of turbulence strengths. And both V-Blast and STBC schemes can significantly improve the system performance by mitigating the distortions of atmospheric turbulence as well as additive white Gaussian noise (AWGN). In addition, the ABER performances of both space-time coding schemes can be further enhanced by increasing the number of receive antennas for the diversity gain and STBC outperforms V-Blast in this system for data recovery. This work is beneficial to the OAM FSO system design.

  10. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  11. SAS6. User`s guide. A two-dimensional depletion and criticality analysis code package based on the SCALE-4 system

    Energy Technology Data Exchange (ETDEWEB)

    Leege, P.F.A. de; Li, J.M.; Kloosterman, J.L.

    1995-04-01

    This users` guide gives a description of the functionality and the requested input of the SAS6 code sequence which can be used to perform burnup and criticality calculations based on functional modules from the SCALE-4 code system and libraries. The input file for the SAS6 control module is very similar to that of the other SAS and CSAS control modules available in the SCALE-4 system. Especially the geometry input of SAS6 is quite similar to that of SAS2H. However, the functionality of SAS6 is different from that of SAS2H. The geometry of the reactor lattice can be treated in more detail because use is made of the two-dimensional lattice code WIMS-D/IRI (An adapted version of WIMS-D/4) instead of the one-dimensional transport code XSDRNPM-S. Also the neutron absorption and production rates of nuclides not explicitly specified in the input can be accounted for by six pseudo nuclides. Furthermore, the centre pin can be subdivided into maximal 10 zones to improve the burnup calculation of the centre pin and to obtain more accurate k-infinite values for the assembly. Also the time step specification is more flexible than in the SAS2H sequence. (orig.).

  12. An Expert System for the Development of Efficient Parallel Code

    Science.gov (United States)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  13. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor

    International Nuclear Information System (INIS)

    Salazar C, J.H.; Nunez C, A.; Chavez M, C.

    2004-01-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  14. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    Science.gov (United States)

    2010-03-01

    Massively Parallel Signature Sequencing ( MPSS ) on Microbead Arrarys”, Nat. Biotechnol., 18, 2000, pp. 630-634. 11. Cai, H., P. White, D. Torney, A...for Sorting Polynucleotides Using Oligonucleotide Tags”, U.S. Patent No. 5,604,097, 1997 10. Brenner, S. et al., “ Gene Expression Analysis by...addresses how the massive parallelism of DNA hybridization reactions can be exploited to construct a DNA based associative memory. Single

  15. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  16. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  17. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  18. Development and assessment of best estimate integrated safety analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Young Jin; Hwang, Moon Kyu (and others)

    2007-03-15

    Improvement of the integrated safety analysis code MARS3.0 has been carried out and a multi-D safety analysis application system has been established. Iterative matrix solver and parallel processing algorithm have been introduced, and a LINUX version has been generated to enable MARS to run in cluster PCs. MARS variables and sub-routines have been reformed and modularised to simplify code maintenance. Model uncertainty analyses have been performed for THTF, FLECHT, NEPTUN, and LOFT experiments as well as APR1400 plant. Participations in international cooperation research projects such as OECD BEMUSE, SETH, PKL, BFBT, and TMI-2 have been actively pursued as part of code assessment efforts. The assessment, evaluation and experimental data obtained through international cooperation projects have been registered and maintained in the T/H Databank. Multi-D analyses of APR1400 LBLOCA, DVI Break, SLB, and SGTR have been carried out as a part of application efforts in multi-D safety analysis. GUI based 3D input generator has been developed for user convenience. Operation of the MARS Users Group (MUG) was continued and through MUG, the technology has been transferred to 24 organisations. A set of 4 volumes of user manuals has been compiled and the correction reports for the code errors reported during MARS development have been published.

  19. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  20. Health effects estimation code development for accident consequence analysis

    International Nuclear Information System (INIS)

    Togawa, O.; Homma, T.

    1992-01-01

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  1. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  2. Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base

    Science.gov (United States)

    Savage, B.; Snoke, J. A.

    2017-12-01

    The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years

  3. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  4. Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes

    Science.gov (United States)

    Huang, Chun-Ming; Huang, Jen-Fa; Yang, Chao-Chin

    2010-10-01

    One extended Welch-Costas (EWC) code family for the wavelength-division-multiplexing/spectral-amplitude coding (WDM/SAC; WS) optical code-division multiple-access (OCDMA) networks is proposed. This system has a superior performance as compared to the previous modified quadratic congruence (MQC) coded OCDMA networks. However, since the performance of such a network is unsatisfactory when the data bit rate is higher, one class of quasi-cyclic low-density parity-check (QC-LDPC) code is adopted to improve that. Simulation results show that the performance of the high-speed WS-EWC coded OCDMA network can be greatly improved by using the LDPC codes.

  5. Diffuser augmented wind turbine analysis code

    Science.gov (United States)

    Carroll, Jonathan

    Wind Energy is becoming a significant source of energy throughout the world. This ever increasing field will potentially reach the limit of availability and practicality with the wind farm sites and size of the turbine itself. Therefore, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one such innovation. DAWTs increase the power output of the rotor by increasing the wind speed into the rotor using a duct. Currently, developing these turbines is an involved process using time consuming Computational Fluid Dynamics codes. A simple and quick design tool is necessary for designers to develop efficient energy capturing devices. This work lays out the theory for a quick analysis tool for DAWTs using an axisymmetric surface vorticity method. This method allows for quick analysis of duct, hubs and rotors giving designers a general idea of the power output of the proposed hub, blade and duct geometry. The method would be similar to the way blade element momentum theory is used to design conventional HAWTs. It is determined that the presented method is viable for preliminary design of DAWTs.

  6. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  7. Implementation of the thermal-hydraulic transient analysis code RELAP4/MOD5 and MOD6 on the FACOM 230/75 computer system

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Ishigai, Takahiro; Kumakura, Toshimasa; Naraoka, Ken-itsu

    1979-03-01

    Development efforts have continued on the extensively used LOCA analysis code RELAP-4, as seen in its history; that is, from the prototype version MOD2 to the latest one MOD6 which is capable of one-through calculations from blowdown to reflood phase of PWR-LOCA. Many improvements and refinements of the models have enlarged the scopes and extents of phenomena to treat. Correspondingly the size of program has increased version to version, and special programming techniques have continuously been introduced to manage the program within limited capacity of core memory. For example, the Dynamic Storage Allocation of MOD5 and the PRELOAD Preprocessor newly incorporated in MOD6 are those designed for the CDC computer with relatively small core size. Described are these programming techniques in detail and experiences on implementation of the codes on FACOM 230/75, together with some results of confirmatory calculations. (author)

  8. Convergence Analysis of Turbo Decoding of Serially Concatenated Block Codes and Product Codes

    Directory of Open Access Journals (Sweden)

    Krause Amir

    2005-01-01

    Full Text Available The geometric interpretation of turbo decoding has founded a framework, and provided tools for the analysis of parallel-concatenated codes decoding. In this paper, we extend this analytical basis for the decoding of serially concatenated codes, and focus on serially concatenated product codes (SCPC (i.e., product codes with checks on checks. For this case, at least one of the component (i.e., rows/columns decoders should calculate the extrinsic information not only for the information bits, but also for the check bits. We refer to such a component decoder as a serial decoding module (SDM. We extend the framework accordingly, derive the update equations for a general turbo decoder of SCPC, and the expressions for the main analysis tools: the Jacobian and stability matrices. We explore the stability of the SDM. Specifically, for high SNR, we prove that the maximal eigenvalue of the SDM's stability matrix approaches , where is the minimum Hamming distance of the component code. Hence, for practical codes, the SDM is unstable. Further, we analyze the two turbo decoding schemes, proposed by Benedetto and Pyndiah, by deriving the corresponding update equations and by demonstrating the structure of their stability matrices for the repetition code and an SCPC code with information bits. Simulation results for the Hamming and Golay codes are presented, analyzed, and compared to the theoretical results and to simulations of turbo decoding of parallel concatenation of the same codes.

  9. Analytical validation of the CACECO containment analysis code

    International Nuclear Information System (INIS)

    Peak, R.D.

    1979-08-01

    The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. This report covers the verification of the CACECO code by problems that can be solved by hand calculations or by reference to textbook and literature examples. The verification concentrates on the accuracy of the material and energy balances maintained by the code and on the independence of the four cells analyzed by the code so that the user can be assured that the code analyses are numerically correct and independent of the organization of the input data submitted to the code

  10. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  11. Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes with Applications

    Directory of Open Access Journals (Sweden)

    O. Al Rasheed

    2014-06-01

    Full Text Available In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes. Using Monte Carlo simulation we investigate the effects of different code parameters on coding system performance, under a binary symmetric communication channel and independent transient faults model. One possible application of the presented analysis in designing memory architecture with unreliable components is considered.

  12. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  13. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    Science.gov (United States)

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  14. Parallelization of Subchannel Analysis Code MATRA

    International Nuclear Information System (INIS)

    Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk

    2014-01-01

    A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems

  15. Analysis of LWHCR-PROTEUS Phase 2 experiments performed using the AARE system with JEF-1 based data libraries, and comparison with other codes

    International Nuclear Information System (INIS)

    Pelloni, S.; Stepanek, J.

    1988-04-01

    In this report the capability of the AARE modular code system and JEF-1 based nuclear data libraries to analyse LWHCR lattices is investigated by calculating the wet and dry cells of the PROTEUS-LWHCR Phase 2 experiment. The results are compared to those obtained using several cell codes, including WIMS-D, BOXER, MICROX-2, KARBUS, GRUCAH, and SPEKTRA. In particular, the main features of AARE, such as the self-shielding of resonance cross sections in the whole energy range of importance for structural materials and actinides (including the low energy resonances of heavy actinides), the shielding of oxygen resonances in the MeV range, the generation of adequate fission source spectra, the accurate calculation of migration areas, and the efficiency of the removal correction are investigated. It is shown that AARE can predict the k ∞ void coefficient well with a 1 % deviation from experiment, even if a coarse 70 netron group library is used. KARBUS and the related 69 group KEDAK-4 library give as well a reliable estimate, but lead to less accurate prediction of reaction rates. The other codes give larger deviations. The JEF-1 evaluation for 242 Pu gives systematically about 25 % too high capture rates in the fast energy range (above 1 keV). (author) 39 refs., 24 figs., 13 tabs

  16. Analysis of visual coding variables on CRT generated displays

    International Nuclear Information System (INIS)

    Blackman, H.S.; Gilmore, W.E.

    1985-01-01

    Cathode ray tube generated safety parameter display systems in a nuclear power plant control room situation have been found to be improved in effectiveness when color coding is employed. Research has indicated strong support for graphic coding techniques particularly in redundant coding schemes. In addition, findings on pictographs, as applied in coding schemes, indicate the need for careful application and for further research in the development of a standardized set of symbols

  17. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.

    Science.gov (United States)

    Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai

    2015-12-01

    Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.

  18. Nuclear modules of ITER tokamak systems code

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.; Brooks, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs

  19. Development of a neutronic analysis code using data from Monju

    International Nuclear Information System (INIS)

    Rooijen, W.F.G. van; Yamano, N.; Shimazu, Y.

    2015-01-01

    In recent years three major sets of modern evaluated nuclear data have become available: JENDL-4.0, JEFF-3.1.2 and ENDF/B-VII.1. The authors were involved with a research project to establish analysis method for a future commercial-scale LMFBR. This project focused on JENDL-4.0 and conventional Japanese codes. As a cross check, we decided to also apply the fast reactor code ERANOS. This necessitated to produce nuclear data (cross sections, etc) for the ERANOS code system, discussed in this paper. We developed a nuclear data processing system to produce cross sections, probability tables, delayed neutron data, and covariance data from the evaluated nuclear data files for ERANOS. A benchmark calculation on the MZA/MZB benchmark showed very satisfying results. Subsequently, we analyzed the prototype LMFBR Monju with ERANOS and our own sets of nuclear data. The results are very satisfactory. The results from ERANOS indicate that the target accuracies for nuclear data have not been met, although the three sets of evaluated nuclear data all performed very well in our analysis. In the future, the covariance on nuclear data should be reduced to meet the target accuracies on criticality and feedback coefficients. (author)

  20. Development and verification of a coupled code system RETRAN-MASTER-TORC

    International Nuclear Information System (INIS)

    Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.

    2004-01-01

    Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The

  1. Coding Conversation between Intimates: A Validation Study of the Intimate Negotiation Coding System (INCS).

    Science.gov (United States)

    Ting-Toomey, Stella

    A study was conducted to test the reliability and validity of the Intimate Coding System (INCS)--an instrument designed to code verbal conversation in intimate relationships. Subjects, 34 married couples, completed Spanier's Dyadic Adjustment Scale, which elicited information about relational adjustment and satisfaction in intimate couples in…

  2. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    Science.gov (United States)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-05-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  3. ANACROM - A computer code for chromatogram analysis

    International Nuclear Information System (INIS)

    Gouveia, A.S. de; Mesquita, C.H. de.

    1981-01-01

    The computer code was developed for automatic research of peaks and evaluation of chromatogram parameters as : center, height, area, medium - height width (FWHM) and the rate FWHM/center of each peak. (Author) [pt

  4. Morse Monte Carlo Radiation Transport Code System

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)

  5. Secure Cooperative Regenerating Codes for Distributed Storage Systems

    OpenAIRE

    Koyluoglu, O. Ozan; Rawat, Ankit Singh; Vishwanath, Sriram

    2012-01-01

    Regenerating codes enable trading off repair bandwidth for storage in distributed storage systems (DSS). Due to their distributed nature, these systems are intrinsically susceptible to attacks, and they may also be subject to multiple simultaneous node failures. Cooperative regenerating codes allow bandwidth efficient repair of multiple simultaneous node failures. This paper analyzes storage systems that employ cooperative regenerating codes that are robust to (passive) eavesdroppers. The ana...

  6. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  7. Challenges on innovations of newly-developed safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City

    2016-05-15

    With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.

  8. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani

    2015-01-01

    This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two...... key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  9. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  10. Coupling of 3D neutronics models with the system code ATHLET

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    1999-01-01

    The system code ATHLET for plant transient and accident analysis has been coupled with 3D neutronics models, like QUABOX/CUBBOX, for the realistic evaluation of some specific safety problems under discussion. The considerations for the coupling approach and its realization are discussed. The specific features of the coupled code system established are explained and experience from first applications is presented. (author)

  11. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    Science.gov (United States)

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  12. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible.

  13. Comparison of criticality benchmark evaluations for U+Pu system. JACS code system and the other Monte Carlo codes

    International Nuclear Information System (INIS)

    Takada, Tomoyuki; Yoshiyama, Hiroshi; Miyoshi, Yoshinori; Katakura, Jun-ichi

    2003-01-01

    Criticality safety evaluation code system JACS was developed by JAERI. Its accuracy evaluation was performed in 1980's. Although the evaluation of JACS was performed for various critical systems, the comparisons with continuous energy Monte Carlo code were not performed because such code was not developed those days. The comparisons are presented in this paper about the heterogeneous and homogeneous system containing U+Pu nitrate solutions. (author)

  14. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  15. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  16. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  17. A Semantic Analysis Method for Scientific and Engineering Code

    Science.gov (United States)

    Stewart, Mark E. M.

    1998-01-01

    This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.

  18. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  19. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  20. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  1. Code for calculation of spreading of radioactivity in reactor containment systems

    International Nuclear Information System (INIS)

    Vertes, P.

    1992-09-01

    A detailed description of the new version of TIBSO code is given, with applications for accident analysis in a reactor containment system. The TIBSO code can follow the nuclear transition and the spatial migration of radioactive materials. The modelling of such processes is established in a very flexible way enabling the user to investigate a wide range of problems. The TIBSO code system is described in detail, taking into account the new developments since 1983. Most changes improve the capabilities of the code. The new version of TIBSO system is written in FORTRAN-77 and can be operated both under VAX VMS and PC DOS. (author) 5 refs.; 3 figs.; 21 tabs

  2. Deductive Evaluation: Formal Code Analysis With Low User Burden

    Science.gov (United States)

    Di Vito, Ben. L

    2016-01-01

    We describe a framework for symbolically evaluating iterative C code using a deductive approach that automatically discovers and proves program properties. Although verification is not performed, the method can infer detailed program behavior. Software engineering work flows could be enhanced by this type of analysis. Floyd-Hoare verification principles are applied to synthesize loop invariants, using a library of iteration-specific deductive knowledge. When needed, theorem proving is interleaved with evaluation and performed on the fly. Evaluation results take the form of inferred expressions and type constraints for values of program variables. An implementation using PVS (Prototype Verification System) is presented along with results for sample C functions.

  3. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  4. Severe accident analysis using MARCH 1.0 code

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1987-09-01

    The description and utilization of the MARCH 1.0 computer code, which aim to analyse physical phenomena associated with core meltdown accidents in PWR type reactors, are presented. The primary system is modeled as a single volume which is partitioned into a gas (steam and hydrogen) region and a water region. March predicts blowdown from the primary system in single phase. Based on results of the probabilistic safety analysis for the Zion and Indian Point Nuclear Power Plants, the S 2 HFX sequence accident for Angra-1 reactor is studied. The S 2 HFX sequence means that the loss of coolant accident occurs through small break in primary system with bot total failures of the reactor safety system and containment in yours recirculation modes, leading the core melt and the containment failure due to overpressurization. The obtained results were considered reasonable if compared with the results obtained for the Zion and Indian Point nuclear power plants. (Author) [pt

  5. The Analysis of SBWR Critical Power Bundle Using Cobrag Code

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2013-03-01

    Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.

  6. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  7. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  8. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  9. Integrated code development and analysis of implosion and hydrodynamic experiments

    International Nuclear Information System (INIS)

    Tabake, H.; Nagatomo, H.; Azechi, H.

    1999-01-01

    The computational simulations play an important role in the study of inertial confinement fusion physics. For the understanding of the physics, integrated implosion code which includes all physics important in the implosion has been developed. On the other hands, several computational codes have been developed in order to verify the physics models and analyze experimental results. The characteristics of these computational codes and recent progress of implosion, ignition, Rayleigh-Taylor instability, ripple shock propagation, and burn dynamics analysis are reported here. (author)

  10. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1982-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  11. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1983-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  12. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  13. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    International Nuclear Information System (INIS)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl

    2008-10-01

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained

  14. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  15. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.

    2009-01-01

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  16. A code for structural analysis of fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-08-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each tubular structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equilavent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  17. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  18. REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA

    International Nuclear Information System (INIS)

    Murao, Yoshio; Okubo, Tsutomu; Sugimoto, Jun; Iguchi, Tadashi; Sudoh, Takashi.

    1985-02-01

    This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)

  19. Safety analysis code SCTRAN development for SCWR and its application to CGNPC SCWR

    International Nuclear Information System (INIS)

    Wu, Pan; Gou, Junli; Shan, Jianqiang; Jiang, Yang; Yang, Jue; Zhang, Bo

    2013-01-01

    Highlights: ► A new safety analysis code named SCTRAN is developed for SCWRs. ► Capability of SCTRAN is verified by comparing with code APROS and RELAP5-3D. ► A new passive safety system is proposed for CGNPC SCWR and analyzed with SCTRAN. ► CGNPC SCWR is able to cope with two critical accidents for SCWRs, LOFA and LOCA. - Abstract: Design analysis is one of the main difficulties during the research and design of SCWRs. Currently, the development of safety analysis code for SCWR is still in its infancy all around the world, and very few computer codes could carry out the trans-critical calculations where significant changes in water properties would take place. In this paper, a safety analysis code SCTRAN for SCWRs has been developed based on code RETRAN-02, the best estimate code used for safety analysis of light water reactors. The ability of SCTRAN code to simulate transients where both supercritical and subcritical regimes are encountered has been verified by comparing with APROS and RELAP5-3D codes. Furthermore, the LOFA and LOCA transients for the CGNPC SCWR design were analyzed with SCTRAN code. The characteristics and performance of the passive safety systems applied to CGNPC SCWR were evaluated. The results show that: (1) The SCTRAN computer code developed in this study is capable to perform design analysis for SCWRs; (2) During LOFA and LOCA accidents in a CGNPC SCWR, the passive safety systems would significantly mitigate the consequences of these transients and enhance the inherent safety

  20. EquiFACS: The Equine Facial Action Coding System.

    Directory of Open Access Journals (Sweden)

    Jen Wathan

    Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  1. Thermohydraulic analysis of nuclear power plant accidents by computer codes

    International Nuclear Information System (INIS)

    Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.

    1982-01-01

    RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)

  2. PACC information management code for common cause failures analysis

    International Nuclear Information System (INIS)

    Ortega Prieto, P.; Garcia Gay, J.; Mira McWilliams, J.

    1987-01-01

    The purpose of this paper is to present the PACC code, which, through an adequate data management, makes the task of computerized common-mode failure analysis easier. PACC processes and generates information in order to carry out the corresponding qualitative analysis, by means of the boolean technique of transformation of variables, and the quantitative analysis either using one of several parametric methods or a direct data-base. As far as the qualitative analysis is concerned, the code creates several functional forms for the transformation equations according to the user's choice. These equations are subsequently processed by boolean manipulation codes, such as SETS. The quantitative calculations of the code can be carried out in two different ways: either starting from a common cause data-base, or through parametric methods, such as the Binomial Failure Rate Method, the Basic Parameters Method or the Multiple Greek Letter Method, among others. (orig.)

  3. Prognostic and clinicopathological role of long non-coding RNA taurine upregulated 1 in various human malignancies: A systemic review and meta-analysis.

    Science.gov (United States)

    Wang, Xiaoxiong; Chen, Xin; Zhang, Daming; Yang, Guang; Yang, Zhao; Yin, Zhiqin; Zhao, Shiguang

    2017-07-01

    The aberrant dysregulation of taurine upregulated 1, a novel discovered long non-coding RNA, was ubiquitous in different human solid tumors. Accumulating researches have indicated that taurine upregulated 1 is an independent prognostic indicator in cancer patients. This investigation aimed to further explore the prognostic and clinical significance of taurine upregulated 1 in various types of cancers. Eligible studies were systematically searched in PubMed, Embase, Medline, and Web of Science databases. A total of 12/14 studies with 1303/1228 individuals were included to evaluate the association of taurine upregulated 1 with overall survival and clinicopathological features by pooled hazard ratio and odds ratio in malignancies. The meta-analysis suggested overexpression of taurine upregulated 1 was significantly correlated with unfavorable overall survival in patients with cancer (pooled hazard ratio = 1.63, 95% confidence interval: 1.29-2.06). There was also a significantly positive correlation between high level of taurine upregulated 1 and high pathological grade carcinoma (pooled odds ratio = 4.41, 95% confidence interval: 3.07-6.43) and positive lymphatic metastasis (pooled odds ratio = 2.00, 95% confidence interval: 1.31-3.06). In summary, upregulated taurine upregulated 1 is correlated with more advanced clinicopathological characteristics and poor prognosis, suggesting that taurine upregulated 1 may serve as a novel predictive biomarker of patients with numerous tumors.

  4. Improvement of QR Code Recognition Based on Pillbox Filter Analysis

    Directory of Open Access Journals (Sweden)

    Jia-Shing Sheu

    2013-04-01

    Full Text Available The objective of this paper is to perform the innovation design for improving the recognition of a captured QR code image with blur through the Pillbox filter analysis. QR code images can be captured by digital video cameras. Many factors contribute to QR code decoding failure, such as the low quality of the image. Focus is an important factor that affects the quality of the image. This study discusses the out-of-focus QR code image and aims to improve the recognition of the contents in the QR code image. Many studies have used the pillbox filter (circular averaging filter method to simulate an out-of-focus image. This method is also used in this investigation to improve the recognition of a captured QR code image. A blurred QR code image is separated into nine levels. In the experiment, four different quantitative approaches are used to reconstruct and decode an out-of-focus QR code image. These nine reconstructed QR code images using methods are then compared. The final experimental results indicate improvements in identification.

  5. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [ODSP-3 code; OTEC Steady-State Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)

  6. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  7. Adaptable Value-Set Analysis for Low-Level Code

    OpenAIRE

    Brauer, Jörg; Hansen, René Rydhof; Kowalewski, Stefan; Larsen, Kim G.; Olesen, Mads Chr.

    2012-01-01

    This paper presents a framework for binary code analysis that uses only SAT-based algorithms. Within the framework, incremental SAT solving is used to perform a form of weakly relational value-set analysis in a novel way, connecting the expressiveness of the value sets to computational complexity. Another key feature of our framework is that it translates the semantics of binary code into an intermediate representation. This allows for a straightforward translation of the program semantics in...

  8. Modern Nuclear Data Evaluation with the TALYS Code System

    Science.gov (United States)

    Koning, A. J.; Rochman, D.

    2012-12-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: "Total" Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  9. Modern Nuclear Data Evaluation with the TALYS Code System

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2012-01-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  10. Evaluation of system codes for analyzing naturally circulating gas loop

    International Nuclear Information System (INIS)

    Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel

    2009-01-01

    Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.

  11. Neutron kinetics for system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1996-01-01

    There is general agreement that for many light water reactor (LWR) calculations for licensing safety analysis, probabilistic risk assessment, operational support, and training, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field, with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling multidimensional neutron kinetics models to the nuclear steam supply system thermal hydraulics. This is not new since some coupled codes have always been available. What is new is that the coupling can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. The U.S. Nuclear Regulatory Commission and other organizations are in the process of reviewing the state of the art and making recommendations for future development. This paper summarizes one contribution to this review process: a review of the multidimensional neutron kinetics modeling, and ancillary modeling, which would be used in conjunction with system thermal-hydraulic models to perform core dynamics calculations

  12. Development of GUI systems for the MIDAS code

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.

    2004-01-01

    MIDAS is being developed at KAERI based on MELCOR as an integrated severe accident analysis code with existing model modification and new model addition. MIDAS was restructured to avoid the pointer based variable referencing style of MELCOR, and enhanced the memory effectiveness using the dynamic allocation method of Fortran 90. This paper describes recent activities of developing the GUI environments for MIDAS code at KAERI. Up to now, we have developed the four PC-based subsystems, which are IEDIT, IPLOT, SATS and HyperKAMG. IEDIT is an input management system that can read MELCOR input files and display its information in the Window panels. Users can modify each item in the panel and the input file will be modified according to that changes. IPLOT is a simple plotting system that can draw MIDAS plot variables trend graphs. SATS is developed as a severe accident training simulator that can display nuclear plant behavior graphically. Moreover SATS provides several controllable pumps and valves which appeared in the severe accidence. Together with SATS and the online severe accident guidance HyperKAMG, combined properly, severe accident mitigation scenarios could be presented graphically and dramatically without any change of MELCOR inputs. GUI development as a part of a severe accident management program package, MIDAS. (author)

  13. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  14. The PASC-3 code system and the UNIPASC environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.

    1991-08-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and its associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified, Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  15. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  16. Multi-dimensional Code Development for Safety Analysis of LMR

    Energy Technology Data Exchange (ETDEWEB)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B

    2006-08-15

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150.

  17. Guide to Using Onionskin Analysis Code (U)

    Energy Technology Data Exchange (ETDEWEB)

    Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Statistical Sciences Group; Morzinski, Jerome Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Statistical Sciences Group

    2016-09-15

    This document is a guide to using R-code written for the purpose of analyzing onionskin experiments. We expect the user to be very familiar with statistical methods and the R programming language. For more details about onionskin experiments and the statistical methods mentioned in this document see Storlie, Fugate, et al. (2013). Engineers at LANL experiment with detonators and high explosives to assess performance. The experimental unit, called an onionskin, is a hemisphere consisting of a detonator and a booster pellet surrounded by explosive material. When the detonator explodes, a streak camera mounted above the pole of the hemisphere records when the shock wave arrives at the surface. The output from the camera is a two-dimensional image that is transformed into a curve that shows the arrival time as a function of polar angle. The statistical challenge is to characterize a baseline population of arrival time curves and to compare the baseline curves to curves from a new, so-called, test series. The hope is that the new test series of curves is statistically similar to the baseline population.

  18. User's manual for seismic analysis code 'SONATINA-2V'

    Energy Technology Data Exchange (ETDEWEB)

    Hanawa, Satoshi; Iyoku, Tatsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-08-01

    The seismic analysis code, SONATINA-2V, has been developed to analyze the behavior of the HTTR core graphite components under seismic excitation. The SONATINA-2V code is a two-dimensional computer program capable of analyzing the vertical arrangement of the HTTR graphite components, such as fuel blocks, replaceable reflector blocks, permanent reflector blocks, as well as their restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Moreover, the SONATINA-2V code is capable of analyzing the core vibration behavior under both simultaneous excitations of vertical and horizontal directions. The SONATINA-2V code is composed of the main program, pri-processor for making the input data to SONATINA-2V and post-processor for data processing and making the graphics from analytical results. Though the SONATINA-2V code was developed in order to work in the MSP computer system of Japan Atomic Energy Research Institute (JAERI), the computer system was abolished with the technical progress of computer. Therefore, improvement of this analysis code was carried out in order to operate the code under the UNIX machine, SR8000 computer system, of the JAERI. The users manual for seismic analysis code, SONATINA-2V, including pri- and post-processor is given in the present report. (author)

  19. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...

  20. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  1. Assessment on the characteristics of the analysis code for KALIMER PSDRS

    Energy Technology Data Exchange (ETDEWEB)

    Eoh, Jae Hyuk; Sim, Yoon Sub; Kim, Seong O.; Kim, Yeon Sik; Kim, Eui Kwang; Wi, Myung Hwan [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The PARS2 code was developed to analyze the RHR(Residual Heat Removal) system, especially PSDRS(Passive Safety Decay Heat Removal System), of KALIMER. In this report, preliminary verification and sensitivity analyses for PARS2 code were performed. From the results of the analyses, the PARS2 code has a good agreement with the experimental data of CRIEPI in the range of turbulent airside flow, and also the radiation heat transfer mode was well predicted. In this verification work, it was founded that the code calculation stopped in a very low air flowrate, and the numerical scheme related to the convergence of PARS2 code was adjusted to solve this problem. Through the sensitivity analysis on the PARS2 calculation results from the change of the input parameters, the pool-mixing coefficient related to the heat capacity of the structure in the system was improved such that the physical phenomenon can be well predicted. Also the initial conditions for the code calculation such as the hot and cold pool temperatures at the PSDRS commencing time were set up by using the transient analysis of the COMMIX code, and the surface emissivity of PSDRS was investigated and its permitted variation rage was set up. From this study, overall sensitivity characteristics of the PARS2 code were investigated and the results of the sensitivity analyses can be used in the design of the RHR system of KALIMER. 14 refs., 28 figs., 2 tabs. (Author)

  2. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  3. Implementing a mainframe coding/abstracting system.

    Science.gov (United States)

    Paige, L

    1992-08-01

    In conclusion, the successful implementation of a medical record abstracting system was realized due to the following factors: extensive planning, thorough organization of tasks, controlled implementation, and ongoing controls. While thorough planning and organization will result in an efficient implementation, ongoing controls will ensure continued success and produce high quality results for any medical record system.

  4. Moment Tensor code for the Antelope Environmental Monitoring System

    Science.gov (United States)

    Reyes, J.; Newman, R.; Vernon, F.; van den Hazel, G.

    2012-04-01

    The time domain seismic moment tensor inversion software package written by Dreger (2003) and updated by Minson & Dreger (2008) has been rewritten for inclusion into the open-source contributed code repository for the Boulder Real Time Technology (BRTT) Antelope Environmental Monitoring System. The new code-base was written natively in the Python language and utilizes the Python interface to Antelope (Lindquist et al., 2008) for data access, Scientific Tools for Python library (Eric Jones et al., 2001) for computation and analysis, and the ObsPy library (Beyreuther et al., 2010) for graphical representation. The new code archives all data products into a Center for Seismic Studies (CSS) 3.0 schema table for easy access and distribution of solutions. Stability of the analysis, verification of results and correlation of solutions with similar methods are discussed in this presentation. Analysis is focused on regional earthquakes recorded by Earthscope's USArray network and event parameters are taken from real time and post-event processed data analysis at the Array Network Facility (ANF). A calibrated velocity model representative of the south-west continental United States is used for the analysis. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010) ObsPy: A Python Toolbox for Seismology, Seismic Research Letters, 81(3), 530-533. Dreger, D. (2003) TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, Volume 81B, p 1627. Eric Jones, Travis Oliphant, Pearu Peterson (2001) SciPy: Open Source Scientific Tools for Python, "http://www.scipy.org/" Lindquist, K.G., Clemesha, A., Newman, R.L. and Vernon, F.L. (2008) The Python Interface to Antelope and Applications. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract G43A-0671 Minson, S. & Dreger, D. (2008) Stable inversions for complete moment tensors. Geophys. J. Int., 174, 585-592 Saikia, C. (1994) Modified frequency

  5. Analysis of Iterated Hard Decision Decoding of Product Codes with Reed-Solomon Component Codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2007-01-01

    Products of Reed-Solomon codes are important in applications because they offer a combination of large blocks, low decoding complexity, and good performance. A recent result on random graphs can be used to show that with high probability a large number of errors can be corrected by iterating mini...... minimum distance decoding. We present an analysis related to density evolution which gives the exact asymptotic value of the decoding threshold and also provides a closed form approximation to the distribution of errors in each step of the decoding of finite length codes.......Products of Reed-Solomon codes are important in applications because they offer a combination of large blocks, low decoding complexity, and good performance. A recent result on random graphs can be used to show that with high probability a large number of errors can be corrected by iterating...

  6. New York State Code Adoption Analysis: Lighting Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.

    2004-10-20

    The adoption of the IECC 2003 Energy code will include a set of Lighting Power Density (LPD) values that are effectively a subset of the values in Addendum g to the ASHRAE/IESNA/ANSI 90.1-2001 Standard which will soon be printed as part of the 90.1-2004 version. An analysis of the effectiveness of this adoption for New York State can be provided by a direct comparison of these values with existing LPD levels represented in the current IECC 2000 code, which are themselves a subset of the current ASHRAE/IESNA/ANSI 90.1-2001 Standard (without addenda). Because the complete ASHRAE 2001 and 2004 sets of LPDs are supported by a set of detailed models, they are best suited to provide the basis for an analysis comparison of the two code levels of lighting power density stringency. It is important to note that this kind of analysis is a point-to-point comparison where a fixed level of real world activity is assumed. It is understood that buildings are not built precisely to code levels and that actual percentage of compliance above and below codes will vary among individual buildings and building types. However, without specific knowledge of this real world activity for all buildings in existence and in the future (post-code adoption) it is not possible to analyze actual effects of code adoption. However, it is possible to compare code levels and determine the potential effect of changes from one code requirement level to another. This is the comparison and effectiveness assessment

  7. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  8. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.

    1990-01-01

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  9. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  10. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  11. Development of a safety analysis code for molten salt reactors

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui

    2009-01-01

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  12. A static analysis tool set for assembler code verification

    International Nuclear Information System (INIS)

    Dhodapkar, S.D.; Bhattacharjee, A.K.; Sen, Gopa

    1991-01-01

    Software Verification and Validation (V and V) is an important step in assuring reliability and quality of the software. The verification of program source code forms an important part of the overall V and V activity. The static analysis tools described here are useful in verification of assembler code. The tool set consists of static analysers for Intel 8086 and Motorola 68000 assembly language programs. The analysers examine the program source code and generate information about control flow within the program modules, unreachable code, well-formation of modules, call dependency between modules etc. The analysis of loops detects unstructured loops and syntactically infinite loops. Software metrics relating to size and structural complexity are also computed. This report describes the salient features of the design, implementation and the user interface of the tool set. The outputs generated by the analyser are explained using examples taken from some projects analysed by this tool set. (author). 7 refs., 17 figs

  13. Physical Layer Network Coding for FSK Systems

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Krigslund, Rasmus; Popovski, Petar

    2009-01-01

    In this work we extend the existing concept of De- Noise and Forward (DNF) for bidirectional relaying to utilise non-coherent modulation schemes. This is done in order to avoid the requirement of phase tracking in coherent detection. As an example BFSK is considered, and through analysis the deci...

  14. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  15. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  16. Overview of SAMPSON code development for LWR severe accident analysis

    International Nuclear Information System (INIS)

    Naitoh, Masanori

    2006-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has developed a severe accident analysis code 'SAMPSON'. SAMPSON's distinguishing features include inter-connected hierarchical modules and mechanistic models covering a wide spectrum of scenarios ranging from normal operation to hypothetical severe accident events. Each module included in the SAMPSON also runs independently for analysis of specific phenomena assigned. The OECD International Standard Problems (ISP-45 and 46) were solved by the SAMPSON for code verifications. The analysis results showed fairly good agreement with the test results. Then, severe accident phenomena in typical PWR and BWR plants were analyzed. The PWR analysis result showed 56 hours as the containment vessel failure timing, which was 9 hours later than one calculated by MELCOR code. The BWR analysis result showed no containment vessel failure during whole accident events, whereas the MELCOR result showed 10.8 hours. These differences were mainly due to consideration of heat release from the containment vessel wall to atmosphere in the SAMPSON code. Another PWR analysis with water injection as an accident management was performed. The analysis result showed that earlier water injection before the time when the fuel surface temperature reached 1,750 K was effective to prevent further core melt. Since fuel surface and fluid temperatures had spatial distribution, a careful consideration shall be required to determine the suitable location for temperature measurement as an index for the pump restart for water injection. The SAMPSON code was applied to the accident analysis of the Hamaoka-1 BWR plant, where the pipe ruptured due to hydrogen detonation. The SAMPSON had initially been developed to run on a parallel computer. Considering remarkable progress of computer hardware performance, as another version of the SAMPSON code, it has recently been modified so as to run on a single processor. The improvements of physical models, numerical

  17. Grid-code of Croatian power system

    International Nuclear Information System (INIS)

    Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.

    2003-01-01

    Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)

  18. Development of the containment transient analysis code for the passive reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Bae, Yoon Young; Chang, Moon Hi [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-05-01

    This study was performed to develop the analysis tools for the passively cooled steel containment and to construct the integrated code system which can analyze a thermal hydraulic behavior of the containment and reactor system during a loss of coolant accident. The computer code CONTEMPT4/MOD5/PCCS was developed by incorporating the passive containment cooling models to the containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5. The integrated reactor thermal hydraulic analysis code system for passive reactor was constructed by coupling the best estimate thermal hydraulic system analysis code RELAP5/MOD3 and CONTEMPT4/MOD5/PCCS through the process control method. In addition, to evaluate the applicability of the code the CONTEMPT4/MOD5/PCCS was applied to the SMART(System-Integrated Modular Advanced Reactor). The pressure and temperature transient following the small break LOCA of SMART was analysed by modeling the safeguard vessel using both the newly added passive containment cooling model and existing pool model. (author). 16 refs., 22 figs., 7 tabs.

  19. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  20. Methods and computer codes for probabilistic sensitivity and uncertainty analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1985-01-01

    This paper describes the methods and applications experience with two computer codes that are now available from the National Energy Software Center at Argonne National Laboratory. The purpose of the SCREEN code is to identify a group of most important input variables of a code that has many (tens, hundreds) input variables with uncertainties, and do this without relying on judgment or exhaustive sensitivity studies. Purpose of the PROSA-2 code is to propagate uncertainties and calculate the distributions of interesting output variable(s) of a safety analysis code using response surface techniques, based on the same runs used for screening. Several applications are discussed, but the codes are generic, not tailored to any specific safety application code. They are compatible in terms of input/output requirements but also independent of each other, e.g., PROSA-2 can be used without first using SCREEN if a set of important input variables has first been selected by other methods. Also, although SCREEN can select cases to be run (by random sampling), a user can select cases by other methods if he so prefers, and still use the rest of SCREEN for identifying important input variables

  1. Improvement of the computing speed of the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    Ito, Masahiro; Uwaba, Tomoyuki

    2005-04-01

    JNC has developed a coupled analysis system of a fuel pin bundle deformation analysis code 'BAMBOO' and a thermal hydraulics analysis code ASFRE-IV' for the purpose of evaluating the integrity of a subassembly under the BDI condition. This coupled analysis took much computation time because it needs convergent calculations to obtain numerically stationary solutions for thermal and mechanical behaviors. We improved the computation time of the BAMBOO code analysis to make the coupled analysis practicable. 'BAMBOO' is a FEM code and as such its matrix calculations consume large memory area to temporarily stores intermediate results in the solution of simultaneous linear equations. The code used the Hard Disk Drive (HDD) for the virtual memory area to save Random Access Memory (RAM) of the computer. However, the use of the HDD increased the computation time because Input/Output (I/O) processing with the HDD took much time in data accesses. We improved the code in order that it could conduct I/O processing only with the RAM in matrix calculations and run with in high-performance computers. This improvement considerably increased the CPU occupation rate during the simulation and reduced the total simulation time of the BAMBOO code to about one-seventh of that before the improvement. (author)

  2. Development of Coupled Interface System between the FADAS Code and a Source-term Evaluation Code XSOR for CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Son, Han Seong; Song, Deok Yong [ENESYS, Taejon (Korea, Republic of); Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    An accident prevention system is essential to the industrial security of nuclear industry. Thus, the more effective accident prevention system will be helpful to promote safety culture as well as to acquire public acceptance for nuclear power industry. The FADAS(Following Accident Dose Assessment System) which is a part of the Computerized Advisory System for a Radiological Emergency (CARE) system in KINS is used for the prevention against nuclear accident. In order to enhance the FADAS system more effective for CANDU reactors, it is necessary to develop the various accident scenarios and reliable database of source terms. This study introduces the construction of the coupled interface system between the FADAS and the source-term evaluation code aimed to improve the applicability of the CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors.

  3. Development of Coupled Interface System between the FADAS Code and a Source-term Evaluation Code XSOR for CANDU Reactors

    International Nuclear Information System (INIS)

    Son, Han Seong; Song, Deok Yong; Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon

    2006-01-01

    An accident prevention system is essential to the industrial security of nuclear industry. Thus, the more effective accident prevention system will be helpful to promote safety culture as well as to acquire public acceptance for nuclear power industry. The FADAS(Following Accident Dose Assessment System) which is a part of the Computerized Advisory System for a Radiological Emergency (CARE) system in KINS is used for the prevention against nuclear accident. In order to enhance the FADAS system more effective for CANDU reactors, it is necessary to develop the various accident scenarios and reliable database of source terms. This study introduces the construction of the coupled interface system between the FADAS and the source-term evaluation code aimed to improve the applicability of the CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors

  4. PCLOOK: an interactive code for spectral analysis

    International Nuclear Information System (INIS)

    Macchiavelli, A.O.; Tomasi, D.

    1993-01-01

    The present work describes an interactive programme for the analysis of spectra developed to run in a PC platform. PCLOOK has a graphic interface that allows the user to get access to different functions using the mouse or directly typing commands. In this way one can switch to a suitable required environment to manage the histograms reassembling in this way a spectrum calculator.The PCLOOK programme was mainly developed to use in nuclear physics applications, but it is also possible to modify it with relative little effort to adapt it to other applications. It was written in Microsoft's BASIC 7.1 installed in a 33MHz 486 Everex PC. For a proper operation an ordinary VGA display and mouse are needed. The memory requirements depend on the size and number of the user defined spectra; for instance, for twenty 2048 channels spectra the available memory space must be 320 KBytes. (author). 5 figs

  5. System Data Model (SDM) Source Code

    Science.gov (United States)

    2012-08-23

    Harmonization of Plug-and-Play Technology for Modular and Reconfigurable Rapid Response Nanosatellites ," European Space Agency Small Satellite Systems and...Nordenberg, R., “QuadSat/PnP: A Space-Plug-and-play Architecture (SPA) Compliant Nanosatellite ,” Paper No. AIAA-2011-1575, AIAA Infotech@Aerospace, St...AIAA Infotech@Aerospace Conference, Rohnert Park, CA, 7-9 May 2007. 43. McNutt C., Vick R., Whiting H., Lyke J., “Modular Nanosatellites – (Plug

  6. Implementation of a Model of Turbulence into a System Code, GAMMA+

    International Nuclear Information System (INIS)

    Kim, Hyeonil; Lim, Hong-Sik; No, Hee-Cheon

    2015-01-01

    The Launder-Sharma model was selected as the best model to predict the heat transfer performance while offsetting the lack of accuracy in even recently updated empirical correlations from both the extensive review of numerical analyses and the validation process. An application of the Launder-Sharma model into the system analysis code GAMMA+ for gas-cooled reactors is presented: 1) governing equations, discretization, and algebraic equations, 2) an application result of GAMMA''T, an integrated GAMMA+ code with CFD capability of low-Re resolution incorporated. The numerical foundation was formulated and implemented in a way such that the capability of the LS model was incorporated into GAMMA+, a system code for gas-cooled reactors, based on the same backbone of the ICE scheme on stagger mesh, that is, the code structure and numerical schemes used in the original code. The GAMMA''T code, an integrated system code with low-Re CFD capability on board, was suitably verified using an available set of data covering a turbulent flow and turbulent forced convection. In addition, a much better solution with the same quality of prediction with fewer meshes was given. This is a considerable advantage of the application into the system code

  7. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    Science.gov (United States)

    Bittker, D. A.

    1994-01-01

    which provides the relationships between the predictions of a kinetics model and the input parameters of the problem. LSENS provides for efficient and accurate chemical kinetics computations and includes sensitivity analysis for a variety of problems, including nonisothermal conditions. LSENS replaces the previous NASA general chemical kinetics codes GCKP and GCKP84. LSENS is designed for flexibility, convenience and computational efficiency. A variety of chemical reaction models can be considered. The models include static system, steady one-dimensional inviscid flow, reaction behind an incident shock wave including boundary layer correction, and the perfectly stirred (highly backmixed) reactor. In addition, computations of equilibrium properties can be performed for the following assigned states, enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static problems LSENS computes sensitivity coefficients with respect to the initial values of the dependent variables and/or the three rates coefficient parameters of each chemical reaction. To integrate the ODEs describing chemical kinetics problems, LSENS uses the packaged code LSODE, the Livermore Solver for Ordinary Differential Equations, because it has been shown to be the most efficient and accurate code for solving such problems. The sensitivity analysis computations use the decoupled direct method, as implemented by Dunker and modified by Radhakrishnan. This method has shown greater efficiency and stability with equal or better accuracy than other methods of sensitivity analysis. LSENS is written in FORTRAN 77 with the exception of the NAMELIST extensions used for input. While this makes the code fairly machine independent, execution times on IBM PC compatibles would be unacceptable to most users. LSENS has been successfully implemented on a Sun4 running SunOS and a DEC VAX running VMS. With minor modifications, it should also be easily implemented on other

  8. Impact testing and analysis for structural code benchmarking

    International Nuclear Information System (INIS)

    Glass, R.E.

    1989-01-01

    Sandia National Laboratories, in cooperation with industry and other national laboratories, has been benchmarking computer codes used to predict the structural, thermal, criticality, and shielding behavior of radioactive materials packages. The first step in the benchmarking of the codes was to develop standard problem sets and to compare the results from several codes and users. This step for structural analysis codes has been completed as described in Structural Code Benchmarking for the Analysis of Impact Response of Nuclear Material Shipping Casks, R.E. Glass, Sandia National Laboratories, 1985. The problem set is shown in Fig. 1. This problem set exercised the ability of the codes to predict the response to end (axisymmetric) and side (plane strain) impacts with both elastic and elastic/plastic materials. The results from these problems showed that there is good agreement in predicting elastic response. Significant differences occurred in predicting strains for the elastic/plastic models. An example of the variation in predicting plastic behavior is given, which shows the hoop strain as a function of time at the impacting end of Model B. These differences in predicting plastic strains demonstrated a need for benchmark data for a cask-like problem

  9. Report on nuclear industry quality assurance procedures for safety analysis computer code development and use

    International Nuclear Information System (INIS)

    Sheron, B.W.; Rosztoczy, Z.R.

    1980-08-01

    As a result of a request from Commissioner V. Gilinsky to investigate in detail the causes of an error discovered in a vendor Emergency Core Cooling System (ECCS) computer code in March, 1978, the staff undertook an extensive investigation of the vendor quality assurance practices applied to safety analysis computer code development and use. This investigation included inspections of code development and use practices of the four major Light Water Reactor Nuclear Steam Supply System vendors and a major reload fuel supplier. The conclusion reached by the staff as a result of the investigation is that vendor practices for code development and use are basically sound. A number of areas were identified, however, where improvements to existing vendor procedures should be made. In addition, the investigation also addressed the quality assurance (QA) review and inspection process for computer codes and identified areas for improvement

  10. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  11. European coding system for tissues and cells: a challenge unmet?

    Science.gov (United States)

    Reynolds, Melvin; Warwick, Ruth M; Poniatowski, Stefan; Trias, Esteve

    2010-11-01

    The Comité Européen de Normalisation (European Committee for Standardization, CEN) Workshop on Coding of Information and Traceability of Human Tissues and Cells was established by the Expert Working Group of the Directorate General for Health and Consumer Affairs of the European Commission (DG SANCO) to identify requirements concerning the coding of information and the traceability of human tissues and cells, and propose guidelines and recommendations to permit the implementation of the European Coding system required by the European Tissues and Cells Directive 2004/23/EC (ED). The Workshop included over 70 voluntary participants from tissue, blood and eye banks, national ministries for healthcare, transplant organisations, universities and coding organisations; mainly from Europe with a small number of representatives from professionals in Canada, Australia, USA and Japan. The Workshop commenced in April 2007 and held its final meeting in February 2008. The draft Workshop Agreement went through a public comment phase from 15 December 2007 until 15 January 2008 and the endorsement period ran from 9 April 2008 until 2 May 2008. The endorsed CEN Workshop Agreement (CWA) set out the issues regarding a common coding system, qualitatively assessed what the industry felt was required of a coding system, reviewed coding systems that were put forward as potential European coding systems and established a basic specification for a proposed European coding system for human tissues and cells, based on ISBT 128, and which is compatible with existing systems of donation identification, traceability and nomenclatures, indicating how implementation of that system could be approached. The CWA, and the associated Workshop proposals with recommendations, were finally submitted to the European Commission and to the Committee of Member States that assists its management process under article 29 of the Directive 2004/23/EC on May 25 2008. In 2009 the European Commission initiated an

  12. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  13. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  14. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  15. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  16. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  17. Progress on China nuclear data processing code system

    Science.gov (United States)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  18. Adaptive Morse code communication system for severely disabled individuals.

    Science.gov (United States)

    Yang, C H

    2000-01-01

    Morse code with an easy-to-operate, single switch input system has been shown to be an excellent communication adaptive device. Because maintaining a stable typing rate is not easy for the disabled, the automatic recognition of Morse code is difficult. Therefore, a suitable adaptive automatic recognition method is needed. This paper presents the application of a Least-Mean-Square algorithm to adaptive Morse code recognition for persons with impaired hand coordination and dexterity. Four processes are involved in this adaptive Morse code recognition method: space recognition, tone recognition, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method results in a better recognition rate for the participants tested in comparison to other methods from the literature.

  19. QR Codes in the Library: Are They Worth the Effort? Analysis of a QR Code Pilot Project

    OpenAIRE

    Wilson, Andrew M.

    2012-01-01

    The literature is filled with potential uses for Quick Response (QR) codes in the library. Setting, but few library QR code projects have publicized usage statistics. A pilot project carried out in the Eda Kuhn Loeb Music Library of the Harvard College Library sought to determine whether library patrons actually understand and use QR codes. Results and analysis of the pilot project are provided, attempting to answer the question as to whether QR codes are worth the effort for libraries.

  20. Computer controlled data measurement and analysis system used for measuring switching parameters of semiconductors. [Employs HP 2114B minicomputer; reports contain all applicable coding in assembly language

    Energy Technology Data Exchange (ETDEWEB)

    Culp, C.H.; Eckels, D.E.

    1976-01-01

    A computer-controlled data acquisition system which was employed to measure the threshold switching parameters of amorphous semiconductors is described. This system is capable of measuring the delay time required for a sample to switch, the electrical energy put into a sample and the charge passing through it during the delay time, and its ambient temperature. With this equipment an experimenter is able to control the magnitude and maximum duration of the voltage applied to a sample, the time interval between applications of voltage, and the load resistor in series with a sample. An HP 2114B minicomputer provides control and analysis capabilities for this system. Basically, this apparatus is a constant voltage pulse generator and signal processor. Major modules of this system are a transistorized high voltage switch, a digitally controlled high voltage resistor and power supply, a low-thermal-noise input-scanner, a precision timer, and two analog integrators. The amplitude of a voltage pulse can be varied from 0V to 1 kV and the maximum duration can be varied from 10 ..mu..s to 300 s. During the voltage pulse, a signal which represents the current through a sample is processed by analog integrators and signal multipliers. If the sample switches to a low-resistance state during a voltage pulse, this equipment automatically detects the event and removes the voltage from the sample to prevent sample deterioration. Following the voltage pulse, a teletypewriter prints the raw data from the integrators, power supply, and timer and the calculated values of the charge and energy input. 44 figures, 2 tables. (auth)

  1. FARO base case post-test analysis by COMETA code

    Energy Technology Data Exchange (ETDEWEB)

    Annunziato, A.; Addabbo, C. [Joint Research Centre, Ispra (Italy)

    1995-09-01

    The paper analyzes the COMETA (Core Melt Thermal-Hydraulic Analysis) post test calculations of FARO Test L-11, the so-called Base Case Test. The FARO Facility, located at JRC Ispra, is used to simulate the consequences of Severe Accidents in Nuclear Power Plants under a variety of conditions. The COMETA Code has a 6 equations two phase flow field and a 3 phases corium field: the jet, the droplets and the fused-debris bed. The analysis shown that the code is able to pick-up all the major phenomena occurring during the fuel-coolant interaction pre-mixing phase.

  2. Severe accident analysis code Sampson for impact project

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshi, Ujita; Takashi, Ikeda; Masanori, Naitoh [Nuclear Power Engineering Corporation, Advanced Simulation Systems Dept., Tokyo (Japan)

    2001-07-01

    Four years of the IMPACT project Phase 1 (1994-1997) had been completed with financial sponsorship from the Japanese government's Ministry of Economy, Trade and Industry. At the end of the phase, demonstration simulations by combinations of up to 11 analysis modules developed for severe accident analysis in the SAMPSON Code were performed and physical models in the code were verified. The SAMPSON prototype was validated by TMI-2 and Phebus-FP test analyses. Many of empirical correlation and conventional models have been replaced by mechanistic models during Phase 2 (1998-2000). New models for Accident Management evaluation have been also developed. (author)

  3. Computer codes for the analysis of flask impact problems

    International Nuclear Information System (INIS)

    Neilson, A.J.

    1984-09-01

    This review identifies typical features of the design of transportation flasks and considers some of the analytical tools required for the analysis of impact events. Because of the complexity of the physical problem, it is unlikely that a single code will adequately deal with all the aspects of the impact incident. Candidate codes are identified on the basis of current understanding of their strengths and limitations. It is concluded that the HONDO-II, DYNA3D AND ABAQUS codes which ar already mounted on UKAEA computers will be suitable tools for use in the analysis of experiments conducted in the proposed AEEW programme and of general flask impact problems. Initial attention should be directed at the DYNA3D and ABAQUS codes with HONDO-II being reserved for situations where the three-dimensional elements of DYNA3D may provide uneconomic simulations in planar or axisymmetric geometries. Attention is drawn to the importance of access to suitable mesh generators to create the nodal coordinate and element topology data required by these structural analysis codes. (author)

  4. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  5. Chaos Many-Body Engine v03: A new version of code C# for chaos analysis of relativistic many-body systems with reactions

    Science.gov (United States)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Felea, D.; Esanu, T.; Stan, E.; Bordeianu, C. C.

    2013-04-01

    In this paper we present a new version of the Chaos Many-Body Engine C# application (Grossu et al. 2012 [1]). In order to benefit from the latest technological advantages, we migrated the application from .Net Framework 2.0 to .Net Framework 4.0. New tools were implemented also. Trying to estimate the particle interactions dependence on initial conditions, we considered a new distance, which takes into account only the structural differences between two systems. We used this distance for implementing the “Structural Lyapunov” function. We propose also a new precision test based on temporal reversed simulations. New version program summaryProgram title: Chaos Many-Body Engine v03 Catalogue identifier: AEGH_v3_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGH_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 214429 No. of bytes in distributed program, including test data, etc.: 9512380 Distribution format: tar.gz Programming language: Visual C# .Net 2010 Computer: PC Operating system: .Net Framework 4.0 running on MS Windows RAM: 128 MB Classification: 24.60.Lz, 05.45.a Catalogue identifier of previous version: AEGH_v2_0 Journal reference of previous version: Computer Physics Communications 183 (2012) 1055-1059 Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm. Implementation of temporal reversed simulation precision test, and “Structural Lyapunov” function. In order to benefit from the advantages involved in the latest technologies (e.g. LINQ Queries [2]), Chaos Many-Body Engine was migrated from .Net Framework 2.0 to .Net Framework 4.0. In addition to existing energy conservation

  6. Validation of fuel rod performance analysis code COPERNIC

    International Nuclear Information System (INIS)

    Han Yebin; Wang Jun; Ren Qisen; Liu Tong; Zhou Yuemin

    2012-01-01

    IAEA has sponsored the FUMEX Ⅲ (FUel Modeling at Extended Burnup) coordinated research project to improve computer code used for fuel behaviour simulation. As one of over thirty international participants, CGNPC has been engaged in testing and developing the fuel modelling code COPERNIC against data and cases provided by the IAEA and OECD/NEA. Investigations focused on high burnup and transient analysis, and include dimensional change model- ling. Data from several 6 calculation cases have been compared with COPERNIC predictions by far. Due to different purposes of tests, these cases had different designs including rod refabrication and annular pellet and were under different operation conditions including normal operation and ramp test. The comparison and preliminary analysis between predicted and measured results in such as fuel temperature, cladding outer diameter, cladding corrosion layer thickness, and fission gas release have been conducted, which demonstrated that the COPERNIC code was applicable to different rod designs under different operation conditions with an accurate prediction. (authors)

  7. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  8. Comparison study of inelastic analysis codes for high temperature structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Park, C. K.; Geon, G. P.; Lee, J. H

    2004-02-01

    LMR high temperature structures subjected to operating and transient loadings may exhibit very complex deformation behaviors due to the use of ductile material such as 316SS and the systematic analysis technology of high temperature structure for reliable safety assessment is essential. In this project, comparative study with developed inelastic analysis program NONSTA and the existing analysis codes was performed applying various types of loading including non-proportional loading. The performance of NONSTA was confirmed and the effect of inelastic constants on the analysis result was analyzed. Also, the applicability of the inelastic analysis was enlarged as a result of applying both the developed program and the existing codes to the analyses of the enhanced creep behavior and the elastic follow-up behavior of high temperature structures and the necessary items for improvements were deduced. Further studies on the improvement of NONSTA program and the decision of the proper values of inelastic constants are necessary.

  9. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    DEFF Research Database (Denmark)

    Sun, Fan

    2011-01-01

    -layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  10. [Bioethical analysis of the Brazilian Dentistry Code of Ethics].

    Science.gov (United States)

    Pyrrho, Monique; do Prado, Mauro Machado; Cordón, Jorge; Garrafa, Volnei

    2009-01-01

    The Brazilian Dentistry Code of Ethics (DCE), Resolution CFO-71 from May 2006, is an instrument created to guide dentists' behavior in relation to the ethical aspects of professional practice. The purpose of the study is to analyze the above mentioned code comparing the deontological and bioethical focuses. In order to do so, an interpretative analysis of the code and of twelve selected texts was made. Six of the texts were about bioethics and six on deontology, and the analysis was made through the methodological classification of the context units, textual paragraphs and items from the code in the following categories: the referentials of bioethical principlism--autonomy, beneficence, nonmaleficence and justice -, technical aspects and moral virtues related to the profession. Together the four principles represented 22.9%, 39.8% and 54.2% of the content of the DCE, of the deontological texts and of the bioethical texts respectively. In the DCE, 42% of the items referred to virtues, 40.2% were associated to technical aspects and just 22.9% referred to principles. The virtues related to the professionals and the technical aspects together amounted to 70.1% of the code. Instead of focusing on the patient as the subject of the process of oral health care, the DCE focuses on the professional, and it is predominantly turned to legalistic and corporate aspects.

  11. Easy web interfaces to IDL code for NSTX Data Analysis

    International Nuclear Information System (INIS)

    Davis, W.M.

    2012-01-01

    Highlights: ► Web interfaces to IDL code can be developed quickly. ► Dozens of Web Tools are used effectively on NSTX for Data Analysis. ► Web interfaces are easier to use than X-window applications. - Abstract: Reusing code is a well-known Software Engineering practice to substantially increase the efficiency of code production, as well as to reduce errors and debugging time. A variety of “Web Tools” for the analysis and display of raw and analyzed physics data are in use on NSTX [1], and new ones can be produced quickly from existing IDL [2] code. A Web Tool with only a few inputs, and which calls an IDL routine written in the proper style, can be created in less than an hour; more typical Web Tools with dozens of inputs, and the need for some adaptation of existing IDL code, can be working in a day or so. Efficiency is also increased for users of Web Tools because of the familiar interface of the web browser, and not needing X-windows, or accounts and passwords, when used within our firewall. Web Tools were adapted for use by PPPL physicists accessing EAST data stored in MDSplus with only a few man-weeks of effort; adapting to additional sites should now be even easier. An overview of Web Tools in use on NSTX, and a list of the most useful features, is also presented.

  12. Choreographer Pre-Testing Code Analysis and Operational Testing.

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, David J. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Harrison, Christopher B. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Perr, C. W. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hurd, Steven A [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2014-07-01

    Choreographer is a "moving target defense system", designed to protect against attacks aimed at IP addresses without corresponding domain name system (DNS) lookups. It coordinates actions between a DNS server and a Network Address Translation (NAT) device to regularly change which publicly available IP addresses' traffic will be routed to the protected device versus routed to a honeypot. More details about how Choreographer operates can be found in Section 2: Introducing Choreographer. Operational considerations for the successful deployment of Choreographer can be found in Section 3. The Testing & Evaluation (T&E) for Choreographer involved 3 phases: Pre-testing, Code Analysis, and Operational Testing. Pre-testing, described in Section 4, involved installing and configuring an instance of Choreographer and verifying it would operate as expected for a simple use case. Our findings were that it was simple and straightforward to prepare a system for a Choreographer installation as well as configure Choreographer to work in a representative environment. Code Analysis, described in Section 5, consisted of running a static code analyzer (HP Fortify) and conducting dynamic analysis tests using the Valgrind instrumentation framework. Choreographer performed well, such that only a few errors that might possibly be problematic in a given operating situation were identified. Operational Testing, described in Section 6, involved operating Choreographer in a representative environment created through EmulyticsTM . Depending upon the amount of server resources dedicated to Choreographer vis-á-vis the amount of client traffic handled, Choreographer had varying degrees of operational success. In an environment with a poorly resourced Choreographer server and as few as 50-100 clients, Choreographer failed to properly route traffic over half the time. Yet, with a well-resourced server, Choreographer handled over 1000 clients without missrouting. Choreographer

  13. Methodology for coding the energy emergency management information system. [Facility ID's and energy codes

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.; Fredrickson, C.P.; Van Valkenburg, K.

    1979-11-01

    The coding methodology for creating facility ID's and energy codes from information existing in EIA data systems currently being mapped into the EEMIS data structure is presented. A comprehensive approach is taken to facilitate implementation of EEMIS. A summary of EIA data sources which will be a part of the final system is presented in a table showing the intersection of 19 EIA data systems with the EEMIS data structure. The methodology for establishing ID codes for EIA sources and the corresponding EEMIS facilities in this table is presented. Detailed energy code translations from EIA source systems to the EEMIS energy codes are provided in order to clarify the transfer of energy data from many EIA systems which use different coding schemes. 28 tables.

  14. 76 FR 56413 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-13

    ... Definitions, Maps, and Comparisons. ASHRAE Transactions, Vol. 109, Part 1. Atlanta, Georgia. Note that the... effective. Any code change that results in a net LCC less than or equal to zero (i.e., monetary benefits... analysis. DOE intends to use the former approach on the theory that recent rates are a better indicator of...

  15. ISODEP, A Fuel Depletion Analysis Code for Predicting Isotopic ...

    African Journals Online (AJOL)

    The trend of results was found to be consistent with those obtained by analytical and other numerical methods. Discovery and Innovation Vol. 13 no. 3/4 December (2001) pp. 184-195. KEY WORDS: depletion analysis, code, research reactor, simultaneous equations, decay of nuclides, radionuclitides, isotope. Résumé

  16. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  17. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    Energy Technology Data Exchange (ETDEWEB)

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  18. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    International Nuclear Information System (INIS)

    Miron, Adrian; Valentine, Joshua; Christenson, John; Hawwari, Majd; Bhatt, Santosh; Dunzik-Gougar, Mary Lou; Lineberry, Michael

    2009-01-01

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), University of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  19. Development of the next generation code system as an engineering modeling language. (2). Study with prototyping

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Uto, Nariaki; Kasahara, Naoto; Ishikawa, Makoto

    2003-04-01

    In the fast reactor development, numerical simulation using analytical codes plays an important role for complementing theory and experiment. It is necessary that the engineering models and analysis methods can be flexibly changed, because the phenomena to be investigated become more complicated due to the diversity of the needs for research. And, there are large problems in combining physical properties and engineering models in many different fields. Aiming to the realization of the next generation code system which can solve those problems, the authors adopted three methods, (1) Multi-language (SoftWIRE.NET, Visual Basic.NET and Fortran) (2) Fortran 90 and (3) Python to make a prototype of the next generation code system. As this result, the followings were confirmed. (1) It is possible to reuse a function of the existing codes written in Fortran as an object of the next generation code system by using Visual Basic.NET. (2) The maintainability of the existing code written by Fortran 77 can be improved by using the new features of Fortran 90. (3) The toolbox-type code system can be built by using Python. (author)

  20. Outline of radiation shielding (streaming) code system used in Kawasaki Heavy Industries, Ltd. (KHI)

    International Nuclear Information System (INIS)

    Suzuki, Ikunori

    1980-01-01

    The most troublesome problem in designing nuclear reactor shielding is streaming. The paper introduces the shield computing code system of Kawasaki Heavy Industries, Ltd. (KHI) centering around the streaming. This code system is roughly composed of 9 sections, each of which is explained. Of these, the transmission computing section and the streaming computing section have no significant difference as both handle radiation transport problems. These computing code groups are divided into the one used for neutrons only, the one for gamma emission only and the one for both neutrons and gamma radiation. In the second half of the paper, the codes RASC2D and DOT3.5 are specifically described in detail, which are frequently used in KHI as the codes for streaming analysis. The RASC2D has been developed by KHI, started in 1970 in commission of the Power Reactor and Nuclear Fuel Development Corporation. The DOT code was developed in ORNL, U.S., and the present DOT3.5 is the latest one of the DOT codes usable in Japan. The code DOT3.5 is more convenient to use than the RASC2D if both are compared, and thus KHI employs DOT3.5 more frequently than RASC2D at present. (Wakatsuki, Y.)

  1. Room Heat-Up Analysis with GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Olza, J. M.

    2010-07-01

    The GOTHIC{sup T}M computer code is a state-of-the art program for modeling multiphase, multicomponent fluid flow. GOTHIC is rapidly becoming the industry-standard code for performing both containment design basis accident (DBA) analyses and analyses to support equipment qualification. GOTHIC has a flexible nodding structure that allows both lumped parameter and 3-D modeling capabilities. Multidimensional analysis capabilities greatly enhance the study of noncondensable gases and stratification and permit the calculation of flow field details within any given volume.

  2. RADTRAN 5: A computer code for transportation risk analysis

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1991-01-01

    RADTRAN 5 is a computer code developed at Sandia National Laboratories (SNL) in Albuquerque, NM, to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI Standard FORTRAN 77 and contains significant advances in the methodology for route-specific analysis first developed by SNL for RADTRAN 4 (Neuhauser and Kanipe, 1992). Like the previous RADTRAN codes, RADTRAN 5 contains two major modules for incident-free and accident risk amlysis, respectively. All commercially important transportation modes may be analyzed with RADTRAN 5: highway by combination truck; highway by light-duty vehicle; rail; barge; ocean-going ship; cargo air; and passenger air

  3. Room Heat-Up Analysis with GOTHIC code

    International Nuclear Information System (INIS)

    Jimenez, G.; Olza, J. M.

    2010-01-01

    The GOTHIC T M computer code is a state-of-the art program for modeling multiphase, multicomponent fluid flow. GOTHIC is rapidly becoming the industry-standard code for performing both containment design basis accident (DBA) analyses and analyses to support equipment qualification. GOTHIC has a flexible nodding structure that allows both lumped parameter and 3-D modeling capabilities. Multidimensional analysis capabilities greatly enhance the study of noncondensable gases and stratification and permit the calculation of flow field details within any given volume.

  4. FARO and KROTOS code simulation and analysis at JRC Ispra

    Energy Technology Data Exchange (ETDEWEB)

    Annunziato, A.; Yerkess, A.; Addabbo, C. [European Commission-Joint Research Centre, Inst. for Systems, Informatics and Safety, 21020 Ispra (Italy)

    1998-01-01

    The paper summarizes relevant results from the pre and post test calculations of fuel coolant interaction and quenching tests performed in the FARO and KROTOS test facilities. The main analytical tools adopted at JRC Ispra are the COMETA and the TEXAS codes. COMETA pre and post test calculations of FARO Test L-20 as well as an application of the code to KROTOS test facility are presented. The analysis provides the need to account for H{sub 2} generation models into the pre-mixing calculations. In addition salient results from the application of TEXAS to FARO and KROTOS tests are shown. (author)

  5. Development of BERMUDA: a radiation transport code system, 1

    International Nuclear Information System (INIS)

    Suzuki, Tomoo; Hasegawa, Akira; Tanaka, Shun-ichi; Nakashima, Hiroshi

    1992-05-01

    A radiation transport code system BERMUDA has been developed for one-, two- and three-dimensional geometries. The time-independent transport equation is numerically solved using a direct integration method in a multigroup model, to obtain spatial, angular and energy distributions of neutron, gamma rays or adjoint neutron flux. As to group constants, a library with an any structure of energy groups is capable to be produced from a data base JSSTDL, or by a processing code PROF-GROUCH-G/B, selecting objective nuclear data through a retrieval system EDFSRS. Validity of the present code system has been tested by analyzing the shielding benchmark experiments. The test has shown that accurate results are obtainable with this system especially in deep penetration calculation. Described are the devised calculation method and the results of validity tests. Input data specification, job control languages and output data are also described as a user's manual for the following four neutron transport codes: BERMUDA-1DN : sphere, slab(S 20 ), BERMUDA-2DN : cylinder (S 8 ), BERMUDA-2DN-S16 : cylinder (S 16 ), and BERMUDA-3DN : rectangular parallelpiped (S 8 ). (J.P.N.)

  6. Two-Factor Authentication System based on QR-Codes

    Directory of Open Access Journals (Sweden)

    Andrey Yunusovich Iskhakov

    2014-09-01

    Full Text Available The opportunity of two-factor authentication usage in the control systems and access management on the basis of Quick Response codes with one-time passwords is analyzed in the work. The mobile application is proposed to use as a software token.

  7. Adaptive Wavelet Coding Applied in a Wireless Control System

    Science.gov (United States)

    Gama, Felipe O. S.; O. Salazar, Andrés

    2017-01-01

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus Eb/N0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop. PMID:29236048

  8. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  9. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  10. Benchmarking Analysis between CONTEMPT and COPATTA Containment Codes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun; Song, Wan Jung [ENERGEO Inc. Sungnam, (Korea, Republic of); Song, Dong Soo; Byun, Choong Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The containment is the requirement that the releases of radioactive materials subsequent to an accident do not result in doses in excess of the values specified in 10 CFR 100. The containment must withstand the pressure and temperature of the DBA(Design Basis Accident) including margin without exceeding the design leakage rate. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPTLT/ 028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. During benchmarking analysis between two codes, it is known two codes have model differences. This paper show the performance evaluation results because of the main model differences.

  11. Benchmarking Analysis between CONTEMPT and COPATTA Containment Codes

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Song, Wan Jung; Song, Dong Soo; Byun, Choong Sup

    2006-01-01

    The containment is the requirement that the releases of radioactive materials subsequent to an accident do not result in doses in excess of the values specified in 10 CFR 100. The containment must withstand the pressure and temperature of the DBA(Design Basis Accident) including margin without exceeding the design leakage rate. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPTLT/ 028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. During benchmarking analysis between two codes, it is known two codes have model differences. This paper show the performance evaluation results because of the main model differences

  12. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  13. PCS a code system for generating production cross section libraries

    International Nuclear Information System (INIS)

    Cox, L.J.

    1997-01-01

    This document outlines the use of the PCS Code System. It summarizes the execution process for generating FORMAT2000 production cross section files from FORMAT2000 reaction cross section files. It also describes the process of assembling the ASCII versions of the high energy production files made from ENDL and Mark Chadwick's calculations. Descriptions of the function of each code along with its input and output and use are given. This document is under construction. Please submit entries, suggestions, questions, and corrections to (ljc at sign llnl.gov) 3 tabs

  14. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (porting). Progress report fiscal 1997

    International Nuclear Information System (INIS)

    Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawai, Wataru; Watanabe, Hideo; Tanabe, Hidenobu; Kawasaki, Nobuo; Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo

    1999-05-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system and/or the AP3000 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 14 codes in fiscal 1997. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the porting. In this porting part, the porting of transient reactor analysis code TRAC-BF1 and Monte Carlo radiation transport code MCNP4A on the AP3000 are described. In addition, a modification of program libraries for command-driven interactive data analysis plotting program IPLOT is described. In the vectorization part, the vectorization of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations, statistical decay code SD and three-dimensional thermal analysis code for in-core test section (T2) of HENDEL SSPHEAT are described. In the parallelization part, the parallelization of cylindrical direct numerical simulation code CYLDNS44N, worldwide version of system for prediction of environmental emergency dose information code WSPEEDI, extension of quantum molecular dynamics code EQMD and three-dimensional non-steady compressible fluid dynamics code STREAM are described. (author)

  15. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1997

    International Nuclear Information System (INIS)

    Kawasaki, Nobuo; Ogasawara, Shinobu; Adachi, Masaaki; Kume, Etsuo; Ishizuki, Shigeru; Tanabe, Hidenobu; Nemoto, Toshiyuki; Kawai, Wataru; Watanabe, Hideo

    1999-05-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system and/or the AP3000 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 14 codes in fiscal 1997. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations, statistical decay code SD and three-dimensional thermal analysis code for in-core test section (T2) of HENDEL SSPHEAT are described. In the parallelization part, the parallelization of cylindrical direct numerical simulation code CYLDNS44N, worldwide version of system for prediction of environmental emergency dose information code WSPEEDI, extension of quantum molecular dynamics code EQMD and three-dimensional non-steady compressible fluid dynamics code STREAM are described. In the porting part, the porting of transient reactor analysis code TRAC-BF1 and Monte Carlo radiation transport code MCNP4A on the AP3000 are described. In addition, a modification of program libraries for command-driven interactive data analysis plotting program IPLOT is described. (author)

  16. Comparative Criticality Analysis of Two Monte Carlo Codes on Centrifugal Atomizer: MCNPS and SCALE

    International Nuclear Information System (INIS)

    Kang, H-S; Jang, M-S; Kim, S-R; Park, J-M; Kim, K-N

    2015-01-01

    There are two well-known Monte Carlo codes for criticality analysis, MCNP5 and SCALE. MCNP5 is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical system as a main analysis code. SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. SCALE was conceived and funded by US NRC to perform standardized computer analysis for licensing evaluation and is used widely in the world. We performed a validation test of MCNP5 and a comparative analysis of Monte Carlo codes, MCNP5 and SCALE, in terms of the critical analysis of centrifugal atomizer. In the criticality analysis using MCNP5 code, we obtained the statistically reliable results by using a large number of source histories per cycle and performing of uncertainty analysis

  17. FRANTIC: a computer code for time dependent unavailability analysis

    International Nuclear Information System (INIS)

    Vesely, W.E.; Goldberg, F.F.

    1977-03-01

    The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process

  18. MMA, A Computer Code for Multi-Model Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Eileen P. Poeter and Mary C. Hill

    2007-08-20

    This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations.

  19. Color image coding based on recurrent iterated function systems

    Science.gov (United States)

    Kim, Kwon; Park, Rae-Hong

    1998-02-01

    This paper proposes a color image coding method based on recurrent iterated function systems (RIFSs). To encode a set of multispectral images, we apply a RIFS to multiset data consisting of three images. In the proposed method, the mappings not only between blocks within an individual spectral image but also between blocks of different spectral images are performed with contraction constraint. Simulation results show that the fractal coding based on the RIFS is useful for encoding concurrently a set of images by describing the similarity existing between a pair of images. In addition, the proposed color coding method can be applied to subband images and moving image sequences consisting of a set of images having similar gray patterns.

  20. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  1. Testing geochemical modeling codes using New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of selected portions of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will: (1) ensure that we are providing adequately for all significant processes occurring in natural systems; (2) determine the adequacy of the mathematical descriptions of the processes; (3) check the adequacy and completeness of thermodynamic data as a function of temperature for solids, aqueous species and gases; and (4) determine the sensitivity of model results to the manner in which the problem is conceptualized by the user and then translated into constraints in the code input. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions. The kinetics of silica precipitation in EQ6 will be tested using field data from silica-lined drain channels carrying hot water away from the Wairakei borefield

  2. Code portability and data management considerations in the SAS3D LMFBR accident-analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1981-01-01

    The SAS3D code was produced from a predecessor in order to reduce or eliminate interrelated problems in the areas of code portability, the large size of the code, inflexibility in the use of memory and the size of cases that can be run, code maintenance, and running speed. Many conventional solutions, such as variable dimensioning, disk storage, virtual memory, and existing code-maintenance utilities were not feasible or did not help in this case. A new data management scheme was developed, coding standards and procedures were adopted, special machine-dependent routines were written, and a portable source code processing code was written. The resulting code is quite portable, quite flexible in the use of memory and the size of cases that can be run, much easier to maintain, and faster running. SAS3D is still a large, long running code that only runs well if sufficient main memory is available

  3. Analysis of LOCA experiments with RELAP4J code

    International Nuclear Information System (INIS)

    Mochizuki, Yooji; Sobajima, Makoto; Suzuki, Mitsuhiro.

    1978-09-01

    The results of analysis with RELAP4J Code are presented for two typical experiments of cold leg break (Runs 413 and 312), in the ROSA-II (Rig of Safety Assessment II) test program. The objectives of analysis are to evaluate validity of the RELAP4J Code, to improve analytical models and to get a better understanding of experimental phenomena. The two tests were performed under actual reactor initial pressure and temperature, in the respective different LPCI locations. Typical factors influencing the pressure history were examined analytically. In conclusion, the predictions of macroscopic-hydraulic phenomena such as pressure transient in each location are good, and the predictions of microscopic-hydraulic phenomena such as steam-water slip velocity, multi-dimentional flow in plenums or core, quenching velocity, cooling of fuel rods by small coolant flow are not good. Experimental phenomena not clarified yet with test data are predicted with the analysis. (author)

  4. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  5. Kuosheng BWR/6 containment safety analysis with gothic code

    International Nuclear Information System (INIS)

    Lin Ansheng; Wang Jongrong; Yuann Rueyyng; Shih Chunkuan

    2011-01-01

    Kuosheng Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/6 plant, each unit rated at 2894 MWt. In this study, we presented the calculated results of the containment pressure and temperature responses after the main steam line break accident, which is the design basis for the containment system. During the simulation, a power of SPU range (105.1%) was used and a model of the Mark III type containment was built using the containment thermal-hydraulic program GOTHIC. The simulation consists of short and long-term responses. The drywell pressure and temperature responses which display the maximum values in the early state of the LOCA were investigated in the short-term response; the primary containment pressure and temperature responses in the long-term response. The blowdown flow was provided by FSAR and used as boundary conditions in the short-term model; in the long-term model, the blowdown flow was calculated using a GOTHIC built-in homogeneous equilibrium model. In the long-term analysis, a simplifier RPV model was employed to calculate the blowdown flow. Finally, the calculated results, similar to the FSAR results, indicate the GOTHIC code has the capability to simulate the pressure/temperature response of Mark III containment to the main steam line break LOCA. (author)

  6. Implantation and use of a version of the GAMALTA computer code in the 3.500 M Lecroy system

    International Nuclear Information System (INIS)

    Auler, L.T.

    1984-05-01

    The GAMALTA computer code was implanted in the 3.500 M Le Croy system, for creating an optional analysis function which is charged in RAM memory from a discket. The mode to construct functions to make part of the menu of the system is explained and a procedure to use the GAMALTA code is done. (M.C.K.) [pt

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  8. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files

  9. Definition of the basic DEMO tokamak geometry based on systems code studies

    International Nuclear Information System (INIS)

    Meszaros, Botond; Bachmann, Christian; Kemp, Richard; Federici, Gianfranco

    2015-01-01

    Highlights: • The definition of the DEMO 2D geometry has been introduced. • A methodology to derive the DEMO radial and vertical builds from the PROCESS systems code results has been defined. • Other 2D and 3D geometrical assumptions required to create a sensible 3D configuration model of DEMO have been defined. - Abstract: This paper describes the methodology that has been developed and applied to derive the principal geometry of the main DEMO tokamak systems, in particular the radial and vertical cross section based on the systems code output parameters, while exact parameters are described elsewhere [1]. This procedure reviews the analysis of the radial and vertical build provided by the system code to verify critical integration interfaces, e.g. missing or too large gaps and/or insufficient thickness of components, and updates these dimensions based on results of more detailed analyses (e.g. neutronics, plasma scenario modelling, etc.) that were carried out outside of the system code in the past years. As well as providing a 3D configuration model of the DEMO tokamak for integrated engineering analysis, the results can also be used to refine the systems code model. This method, subject to continuous refinement, controls the derivation of the main machine parameters and ensures their coherence vis-à-vis a number of agreed controlled physics and engineering assumptions.

  10. Definition of the basic DEMO tokamak geometry based on systems code studies

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Botond, E-mail: botond.meszaros@efda.org [EFDA Power Plant Physics and Technology, Garching (Germany); Bachmann, Christian [EFDA Power Plant Physics and Technology, Garching (Germany); Kemp, Richard [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Federici, Gianfranco [EFDA Power Plant Physics and Technology, Garching (Germany)

    2015-10-15

    Highlights: • The definition of the DEMO 2D geometry has been introduced. • A methodology to derive the DEMO radial and vertical builds from the PROCESS systems code results has been defined. • Other 2D and 3D geometrical assumptions required to create a sensible 3D configuration model of DEMO have been defined. - Abstract: This paper describes the methodology that has been developed and applied to derive the principal geometry of the main DEMO tokamak systems, in particular the radial and vertical cross section based on the systems code output parameters, while exact parameters are described elsewhere [1]. This procedure reviews the analysis of the radial and vertical build provided by the system code to verify critical integration interfaces, e.g. missing or too large gaps and/or insufficient thickness of components, and updates these dimensions based on results of more detailed analyses (e.g. neutronics, plasma scenario modelling, etc.) that were carried out outside of the system code in the past years. As well as providing a 3D configuration model of the DEMO tokamak for integrated engineering analysis, the results can also be used to refine the systems code model. This method, subject to continuous refinement, controls the derivation of the main machine parameters and ensures their coherence vis-à-vis a number of agreed controlled physics and engineering assumptions.

  11. Application of the MELCOR code to design basis PWR large dry containment analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jesse; Notafrancesco, Allen (USNRC, Office of Nuclear Regulatory Research, Rockville, MD); Tills, Jack Lee (Jack Tills & Associates, Inc., Sandia Park, NM)

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  12. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.

    2012-01-01

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)

  13. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  14. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs

  15. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-07-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.

  16. MMA, A Computer Code for Multi-Model Analysis

    Science.gov (United States)

    Poeter, Eileen P.; Hill, Mary C.

    2007-01-01

    This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations. Many applications of MMA will

  17. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  18. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  19. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    ) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet......In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller...

  20. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  1. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  2. Finite-SNR analysis for partial relaying cooperation with channel coding and opportunistic relay selection

    Science.gov (United States)

    Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn

    2017-12-01

    This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.

  3. Computer code for qualitative analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Yule, H.P.

    1979-01-01

    Computer code QLN1 provides complete analysis of gamma-ray spectra observed with Ge(Li) detectors and is used at both the National Bureau of Standards and the Environmental Protection Agency. It locates peaks, resolves multiplets, identifies component radioisotopes, and computes quantitative results. The qualitative-analysis (or component identification) algorithms feature thorough, self-correcting steps which provide accurate isotope identification in spite of errors in peak centroids, energy calibration, and other typical problems. The qualitative-analysis algorithm is described in this paper

  4. SALT4: a two-dimensional displacement discontinuity code for thermomechanical analysis in bedded salt deposits

    International Nuclear Information System (INIS)

    1983-04-01

    SALT4 is a two-dimensional analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. This code was developed by the University of Minnesota. This documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of the computer code, SALT4. The SALT4 code takes into account: (1) viscoelastic behavior in the pillars adjacent to excavations; (2) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (2) excavation sequence. Major advantages of the SALT4 code are: (1) computational efficiency; (2) the small amount of input data required; and (3) a creep law consistent with laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of SALT4, i.e., temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT4 code can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT4 can also be used to verify fully numerical codes. This is similar to the use of analytic solutions for code verification. Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  5. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  6. Development of thermal hydraulic analysis code for IHX of FBR

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Naohara, Nobuyuki

    1991-01-01

    In order to obtain flow resistance correlations for thermal-hydrauric analysis code concerned with an intermediate heat exchanger (IHX) of FBR, the hydraulic experiment by air was carried out through a bundle of tubes arranged in an in-line and staggard fashion. The main results are summarized as follows. (1) On pressure loss per unit length of a tube bundle, which is densely a regular triangle arrangement, the in-line fashion is almost the same as the staggard one. (2) In case of 30deg sector model for IHX tube bundle, pressure loss is 1/3 in comparison with the in-line or staggard arrangement. (3) By this experimental data, flow resistance correlations for thermalhydrauric analysis code are obtained. (author)

  7. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  8. Formalizing ICD coding rules using Formal Concept Analysis.

    Science.gov (United States)

    Jiang, Guoqian; Pathak, Jyotishman; Chute, Christopher G

    2009-06-01

    With the 11th revision of the International Classification of Disease (ICD) being officially launched by the World Health Organization (WHO), the significance of a formal representation for ICD coding rules has emerged as a pragmatic concern. To explore the role of Formal Concept Analysis (FCA) on examining ICD10 coding rules and to develop FCA-based auditing approaches for the formalization process. We propose a model for formalizing ICD coding rules underlying the ICD Index using FCA. The coding rules are generated from FCA models and represented in the Semantic Web Rule Language (SWRL). Two auditing approaches were developed focusing upon non-disjoint nodes and anonymous nodes manifest in the FCA model. The candidate domains (i.e. any three character code with their sub-codes) of all 22 chapters of the ICD10 2006 version were analyzed using the two auditing approaches. Case studies and a preliminary evaluation were performed for validation. A total of 2044 formal contexts from the candidate domains of 22 ICD chapters were generated and audited. We identified 692 ICD codes having non-disjoint nodes in all chapters; chapters 19 and 21 contained the highest proportion of candidate domains with non-disjoint nodes (61.9% and 45.6%). We also identified 6996 anonymous nodes from 1382 candidate domains. Chapters 7, 11, 13, and 17, have the highest proportion of candidate domains having anonymous nodes (97.5%, 95.4%, 93.6% and 93.0%) while chapters 15 and 17 have the highest proportion of anonymous nodes among all chapters (45.5% and 44.0%). Case studies and a limited evaluation demonstrate that non-disjoint nodes and anonymous nodes arising from FCA are effective mechanisms for auditing ICD10. FCA-based models demonstrate a practical solution for formalizing ICD coding rules. FCA techniques could not only audit ICD domain knowledge completeness for a specific domain, but also provide a high level auditing profile for all ICD chapters.

  9. Development of an analysis code for pressure wave propagation, (1)

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa

    1974-11-01

    We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)

  10. COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems

  11. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  12. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  13. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  14. Structure and operation of the ITS code system

    International Nuclear Information System (INIS)

    Halbleib, J.

    1988-01-01

    The TIGER series of time-independent coupled electron-photon Monte Carlo transport codes is a group of multimaterial and multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron-photon cascade by combining microscopic photon transport with a macroscopic random walk for electron transport. Major contributors to its evolution are listed. The author and his associates are primarily code users rather than code developers, and have borrowed freely from existing work wherever possible. Nevertheless, their efforts have resulted in various software packages for describing the production and transport of the electron-photon cascade that they found sufficiently useful to warrant dissemination through the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory. The ITS system (Integrated TIGER Series) represents the organization and integration of this combined software, along with much additional capability from previously unreleased work, into a single convenient package of exceptional user friendliness and portability. Emphasis is on simplicity and flexibility of application without sacrificing the rigor or sophistication of the physical model

  15. Neural map formation and sensory coding in the vomeronasal system.

    Science.gov (United States)

    Brignall, Alexandra C; Cloutier, Jean-François

    2015-12-01

    Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.

  16. Preliminary study for unified management of CANDU safety codes and construction of database system

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae

    2003-03-01

    It is needed to develop the Graphical User Interface(GUI) for the unified management of CANDU safety codes and to construct database system for the validation of safety codes, for which the preliminary study is done in the first stage of the present work. The input and output structures and data flow of CATHENA and PRESCON2 are investigated and the interaction of the variables between CATHENA and PRESCON2 are identified. Furthermore, PC versions of CATHENA and PRESCON2 codes are developed for the interaction of these codes and GUI(Graphic User Interface). The PC versions are assessed by comparing the calculation results with those by HP workstation or from FSAR(Final Safety Analysis Report). Preliminary study on the GUI for the safety codes in the unified management system are done. The sample of GUI programming is demonstrated preliminarily. Visual C++ is selected as the programming language for the development of GUI system. The data for Wolsong plants, reactor core, and thermal-hydraulic experiments executed in the inside and outside of the country, are collected and classified following the structure of the database system, of which two types are considered for the final web-based database system. The preliminary GUI programming for database system is demonstrated, which is updated in the future work

  17. Performance Comparison of Containment PT analysis between CAP and CONTEMPT Code

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yeon Jun; Hong, Soon Joon; Hwang, Su Hyun; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [KHNP-CENTERAL RESEARCH INSTITUTE, Daejeon (Korea, Republic of)

    2013-10-15

    CAP, in the form that is linked with SPACE, computed the containment back-pressure during LOCA accident. In previous SAR (safety analysis report) report of Shin-Kori Units 3 and 4, the CONTEMPT series of codes(hereby referred to as just 'CONTEMPT') is used to evaluate the containment safety during the postulated loss-of-coolant accident (LOCA). In more detail, CONTEMPT-LT/028 was used to calculate the containment maximum PT, while CONTEMPT4/MOD5 to calculate the minimum PT. Actually, in minimum PT analysis, CONTEMPT4/MOD5, which provide back pressure condition of containment, was linked with RELAP5/MOD3.3 which calculate the amount of blowdown into containment. In this analysis, CONTEMPT4/MOD5 was modified based on KREM. CONTEMPT code was developed to predict the long term behavior of water-cooled nuclear reactor containment systems subjected to LOCA conditions. It calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments, leakage on containment response. Models are provided for fan cooler and cooling spray as engineered safety systems. Any compartment may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. As mentioned above, CONTEMP has the similar code features and it therefore is expected to show the similar analysis performance with CAP. In this study, the differences between CAP and two CONTEMPT code versions (CONTEMPT-LT/028 for maximum PT and CONTEMPT4/MOD5 for minimum PT) are, in detail, identified and the code performances were compared for the same problem. Code by code comparison was carried out to identify the difference of LOCA analysis between a series of COMTEMPT and CAP code. With regard to important factors that affect the transient behavior of compartment thermodynamic

  18. Performance Comparison of Containment PT analysis between CAP and CONTEMPT Code

    International Nuclear Information System (INIS)

    Choo, Yeon Jun; Hong, Soon Joon; Hwang, Su Hyun; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon

    2013-01-01

    CAP, in the form that is linked with SPACE, computed the containment back-pressure during LOCA accident. In previous SAR (safety analysis report) report of Shin-Kori Units 3 and 4, the CONTEMPT series of codes(hereby referred to as just 'CONTEMPT') is used to evaluate the containment safety during the postulated loss-of-coolant accident (LOCA). In more detail, CONTEMPT-LT/028 was used to calculate the containment maximum PT, while CONTEMPT4/MOD5 to calculate the minimum PT. Actually, in minimum PT analysis, CONTEMPT4/MOD5, which provide back pressure condition of containment, was linked with RELAP5/MOD3.3 which calculate the amount of blowdown into containment. In this analysis, CONTEMPT4/MOD5 was modified based on KREM. CONTEMPT code was developed to predict the long term behavior of water-cooled nuclear reactor containment systems subjected to LOCA conditions. It calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments, leakage on containment response. Models are provided for fan cooler and cooling spray as engineered safety systems. Any compartment may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. As mentioned above, CONTEMP has the similar code features and it therefore is expected to show the similar analysis performance with CAP. In this study, the differences between CAP and two CONTEMPT code versions (CONTEMPT-LT/028 for maximum PT and CONTEMPT4/MOD5 for minimum PT) are, in detail, identified and the code performances were compared for the same problem. Code by code comparison was carried out to identify the difference of LOCA analysis between a series of COMTEMPT and CAP code. With regard to important factors that affect the transient behavior of compartment thermodynamic state in

  19. A multi-platform linking code for fuel burnup and radiotoxicity analysis

    Science.gov (United States)

    Cunha, R.; Pereira, C.; Veloso, M. A. F.; Cardoso, F.; Costa, A. L.

    2014-02-01

    A linking code between ORIGEN2.1 and MCNP has been developed at the Departamento de Engenharia Nuclear/UFMG to calculate coupled neutronic/isotopic results for nuclear systems and to produce a large number of criticality, burnup and radiotoxicity results. In its previous version, it evaluated the isotopic composition evolution in a Heat Pipe Power System model as well as the radiotoxicity and radioactivity during lifetime cycles. In the new version, the code presents features such as multi-platform execution and automatic results analysis. Improvements made in the code allow it to perform simulations in a simpler and faster way without compromising accuracy. Initially, the code generates a new input for MCNP based on the decisions of the user. After that, MCNP is run and data, such as recoverable energy per prompt fission neutron, reaction rates and keff, are automatically extracted from the output and used to calculate neutron flux and cross sections. These data are then used to construct new ORIGEN inputs, one for each cell in the core. Each new input is run on ORIGEN and generates outputs that represent the complete isotopic composition of the core on that time step. The results show good agreement between GB (Coupled Neutronic/Isotopic code) and Monteburns (Automated, Multi-Step Monte Carlo Burnup Code System), developed by the Los Alamos National Laboratory.

  20. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  1. TRAC-CFD code integration and its application to containment analysis

    International Nuclear Information System (INIS)

    Tahara, M.; Arai, K.; Oikawa, H.

    2004-01-01

    Several safety systems utilizing natural driving force have been recently adopted for operating reactors, or applied to next-generation reactor design. Examples of these safety systems are the Passive Containment Cooling System (PCCS) and the Drywell Cooler (DWC) for removing decay heat, and the Passive Auto-catalytic Recombiner (PAR) for removing flammable gas in reactor containment during an accident. DWC is used in almost all Boiling Water Reactors (BWR) in service. PAR has been introduced for some reactors in Europe and will be introduced for Japanese reactors. PCCS is a safety device of next-generation BWR. The functional mechanism of these safety systems is closely related to the transient of the thermal-hydraulic condition of the containment atmosphere. The performance depends on the containment atmospheric condition, which is eventually affected by the mass and energy changes caused by the safety system. Therefore, the thermal fluid dynamics in the containment vessel should be appropriately considered in detail to properly estimate the performance of these systems. A computational fluid dynamics (CFD) code is useful for evaluating detailed thermal hydraulic behavior related to this equipment. However, it also requires a considerable amount of computational resources when it is applied to whole containment system transient analysis. The paper describes the method and structure of the integrated analysis tool, and discusses the results of its application to the start-up behavior analysis of a containment cooling system, a drywell local cooler. The integrated analysis code was developed and applied to estimate the DWC performance during a severe accident. The integrated analysis tool is composed of three codes, TRAC-PCV, CFD-DW and TRAC-CC, and analyzes the interaction of the natural convection and steam condensation of the DWC as well as analyzing the thermal hydraulic transient behavior of the containment vessel during a severe accident in detail. The

  2. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  3. Development of non-linear vibration analysis code for CANDU fuelling machine

    International Nuclear Information System (INIS)

    Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.

    1988-01-01

    This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)

  4. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  5. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    International Nuclear Information System (INIS)

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-01-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training

  6. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  7. ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis

    Science.gov (United States)

    Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.

    2018-01-01

    We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.

  8. Benchmark calculations of the solution-fuel criticality experiments by SRAC code system

    International Nuclear Information System (INIS)

    Senuma, Ichiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao

    1984-06-01

    Benchmark calculations were performed by using newly developed SRAC (Standard Reactor Analysis Code) system and nuclear data library based upon JENDL-2. The 34 benchmarks include variety of composition, concentration and configuration of Pu homogeneous and U/Pu homogeneous systems (nitrate, mainly), also include UO 2 /PuO 2 rods in fissile solution: a simplified model of the dissolver process of the fuel reprocessing plant. Calculation results shows good agreement with Monte Carlo method. This code-evaluation work has been done for the the part of the Detailed Design of CSEF (Critical Satety Experimental Facility), which is now in Progress. (author)

  9. TRAWA, a transient analysis code for water reactions

    International Nuclear Information System (INIS)

    Rajamaeki, M.

    1976-06-01

    TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)

  10. Development Of The Computer Code For Comparative Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Purwadi, Mohammad Dhandhang

    2001-01-01

    The qualitative and quantitative chemical analysis with Neutron Activation Analysis (NAA) is an importance utilization of a nuclear research reactor, and this should be accelerated and promoted in application and its development to raise the utilization of the reactor. The application of Comparative NAA technique in GA Siwabessy Multi Purpose Reactor (RSG-GAS) needs special (not commercially available yet) soft wares for analyzing the spectrum of multiple elements in the analysis at once. The application carried out using a single spectrum software analyzer, and comparing each result manually. This method really degrades the quality of the analysis significantly. To solve the problem, a computer code was designed and developed for comparative NAA. Spectrum analysis in the code is carried out using a non-linear fitting method. Before the spectrum analyzed, it was passed to the numerical filter which improves the signal to noise ratio to do the deconvolution operation. The software was developed using the G language and named as PASAN-K The testing result of the developed software was benchmark with the IAEA spectrum and well operated with less than 10 % deviation

  11. Incorporating Non-Coding Annotations into Rare Variant Analysis.

    Directory of Open Access Journals (Sweden)

    Tom G Richardson

    Full Text Available The success of collapsing methods which investigate the combined effect of rare variants on complex traits has so far been limited. The manner in which variants within a gene are selected prior to analysis has a crucial impact on this success, which has resulted in analyses conventionally filtering variants according to their consequence. This study investigates whether an alternative approach to filtering, using annotations from recently developed bioinformatics tools, can aid these types of analyses in comparison to conventional approaches.We conducted a candidate gene analysis using the UK10K sequence and lipids data, filtering according to functional annotations using the resource CADD (Combined Annotation-Dependent Depletion and contrasting results with 'nonsynonymous' and 'loss of function' consequence analyses. Using CADD allowed the inclusion of potentially deleterious intronic variants, which was not possible when filtering by consequence. Overall, different filtering approaches provided similar evidence of association, although filtering according to CADD identified evidence of association between ANGPTL4 and High Density Lipoproteins (P = 0.02, N = 3,210 which was not observed in the other analyses. We also undertook genome-wide analyses to determine how filtering in this manner compared to conventional approaches for gene regions. Results suggested that filtering by annotations according to CADD, as well as other tools known as FATHMM-MKL and DANN, identified association signals not detected when filtering by variant consequence and vice versa.Incorporating variant annotations from non-coding bioinformatics tools should prove to be a valuable asset for rare variant analyses in the future. Filtering by variant consequence is only possible in coding regions of the genome, whereas utilising non-coding bioinformatics annotations provides an opportunity to discover unknown causal variants in non-coding regions as well. This should allow

  12. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    International Nuclear Information System (INIS)

    Sperling, M.; Shreve, D.C.

    1978-01-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code

  13. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, M.; Shreve, D.C.

    1978-12-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code.

  14. Symmetries in Genetic Systems and the Concept of Geno-Logical Coding

    Directory of Open Access Journals (Sweden)

    Sergey V. Petoukhov

    2016-12-01

    Full Text Available The genetic code of amino acid sequences in proteins does not allow understanding and modeling of inherited processes such as inborn coordinated motions of living bodies, innate principles of sensory information processing, quasi-holographic properties, etc. To be able to model these phenomena, the concept of geno-logical coding, which is connected with logical functions and Boolean algebra, is put forward. The article describes basic pieces of evidence in favor of the existence of the geno-logical code, which exists in p­arallel with the known genetic code of amino acid sequences but which serves for transferring inherited processes along chains of generations. These pieces of evidence have been received due to the analysis of symmetries in structures of molecular-genetic systems. The analysis has revealed a close connection of the genetic system with dyadic groups of binary numbers and with other mathematical objects, which are related with dyadic groups: Walsh functions (which are algebraic characters of dyadic groups, bit-reversal permutations, logical holography, etc. These results provide a new approach for mathematical modeling of genetic structures, which uses known mathematical formalisms from technological fields of noise-immunity coding of information, binary analysis, logical holography, and digital devices of artificial intellect. Some opportunities for a development of algebraic-logical biology are opened.

  15. BER performance comparison of optical CDMA systems with/without turbo codes

    Science.gov (United States)

    Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.

    2002-08-01

    In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.

  16. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  17. VACOSS - variable coding seal system for nuclear material control

    International Nuclear Information System (INIS)

    Kennepohl, K.; Stein, G.

    1977-12-01

    VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de

  18. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  19. Demonstration of Emulator-Based Bayesian Calibration of Safety Analysis Codes: Theory and Formulation

    Directory of Open Access Journals (Sweden)

    Joseph P. Yurko

    2015-01-01

    Full Text Available System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC sampling feasible. This work uses Gaussian Process (GP based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.

  20. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  1. Comprehensive Micromechanics-Analysis Code - Version 4.0

    Science.gov (United States)

    Arnold, S. M.; Bednarcyk, B. A.

    2005-01-01

    Version 4.0 of the Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) has been developed as an improved means of computational simulation of advanced composite materials. The previous version of MAC/GMC was described in "Comprehensive Micromechanics-Analysis Code" (LEW-16870), NASA Tech Briefs, Vol. 24, No. 6 (June 2000), page 38. To recapitulate: MAC/GMC is a computer program that predicts the elastic and inelastic thermomechanical responses of continuous and discontinuous composite materials with arbitrary internal microstructures and reinforcement shapes. The predictive capability of MAC/GMC rests on a model known as the generalized method of cells (GMC) - a continuum-based model of micromechanics that provides closed-form expressions for the macroscopic response of a composite material in terms of the properties, sizes, shapes, and responses of the individual constituents or phases that make up the material. Enhancements in version 4.0 include a capability for modeling thermomechanically and electromagnetically coupled ("smart") materials; a more-accurate (high-fidelity) version of the GMC; a capability to simulate discontinuous plies within a laminate; additional constitutive models of materials; expanded yield-surface-analysis capabilities; and expanded failure-analysis and life-prediction capabilities on both the microscopic and macroscopic scales.

  2. Hierarchical sparse coding in the sensory system of Caenorhabditis elegans.

    Science.gov (United States)

    Zaslaver, Alon; Liani, Idan; Shtangel, Oshrat; Ginzburg, Shira; Yee, Lisa; Sternberg, Paul W

    2015-01-27

    Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal expresses a genetically encoded calcium indicator in individual sensory neurons. This library includes the vast majority of the sensory system in C. elegans. Imaging from individual sensory neurons while subjecting the worms to various stimuli allowed us to compile a comprehensive functional map of the sensory system at single neuron resolution. The functional map reveals that despite the dense wiring, chemosensory neurons represent the environment using sparse codes. Moreover, although anatomically closely connected, chemo- and mechano-sensory neurons are functionally segregated. In addition, the code is hierarchical, where few neurons participate in encoding multiple cues, whereas other sensory neurons are stimulus specific. This encoding strategy may have evolved to mitigate the constraints of a compact sensory system.

  3. User's guide for the GSMP/OCMHD system code

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, C. B.; Berry, G. F.

    1980-12-01

    The Systems Analysis group of the ANL Engineering Division conducts overall system studies for various power plant concepts, utilizing a computer simulation code. Analytical investigations explore a range of possible performance variables, in order to determine the sensitivity of a specific plant design to variation in key system parameters and, ultimately, to establish probable system performance limits. To accomplish this task, a Generalized System Modeling Program (GSMP) has been developed that will analyze and simulate the particular system of interest for any number of different configurations, automatically holding constraints while conducting either sensitivity studies or optimizations. One system investigated, while developing the ANL/GSMP code, is an open-cycle magneto-hydrodynamic (OCMHD) power plant. By linking mathematical models representing these OCMHD power plant components to the executive level GSMP driver the resulting system code, GSMP/OCMHD, can be used to simulate any OCMHD power plant configuration. This report, a user's guide for GSMP/OCMHD, describes the process for setting up an OCMHD configuration, preparing the input defining that configuration, running the computer code and interpreting the results generated.

  4. Energy meshing techniques for processing ENDF/B-VI cross sections using the AMPX code system

    International Nuclear Information System (INIS)

    Dunn, M.E.; Greene, N.M.; Leal, L.C.

    1999-01-01

    Modern techniques for the establishment of criticality safety for fissile systems invariably require the use of neutronic transport codes with applicable cross-section data. Accurate cross-section data are essential for solving the Boltzmann Transport Equation for fissile systems. In the absence of applicable critical experimental data, the use of independent calculational methods is crucial for the establishment of subcritical limits. Moreover, there are various independent modern transport codes available to the criticality safety analyst (e.g., KENO V.a., MCNP, and MONK). In contrast, there is currently only one complete software package that processes data from the Version 6 format of the Evaluated Nuclear Data File (ENDF) to a format useable by criticality safety codes. To facilitate independent cross-section processing, Oak Ridge National Laboratory (ORNL) is upgrading the AMPX code system to enable independent processing of Version 6 formats using state-of-the-art procedures. The AMPX code system has been in continuous use at ORNL since the early 1970s and is the premier processor for providing multigroup cross sections for criticality safety analysis codes. Within the AMPX system, the module POLIDENT is used to access the resonance parameters in File 2 of an ENDF/B library, generate point cross-section data, and combine the cross sections with File 3 point data. At the heart of any point cross-section processing code is the generation of a suitable energy mesh for representing the data. The purpose of this work is to facilitate the AMPX upgrade through the development of a new and innovative energy meshing technique for processing point cross-section data

  5. Introduction on the thermal-hydraulic analysis codes for nuclear steam generator

    International Nuclear Information System (INIS)

    Yao Yangui; Zu Hongbiao; Yao Weida

    2015-01-01

    This paper describes several typical steam generator thermal-hydraulic analysis programs. Three thermal hydraulic code analysis model, principles and functions of the application are introduced. GENF is a one-dimensional code for steady state analysis, and another one-dimensional code TRANFLOW is used for transients, while ATHOS is a three-dimensional code which can be used to deal with steady as wall as transient analysis. And the code test verification and actual operating parameters verify situations are described. At last, the status and development of SG thermal-hydraulic analysis codes in China are analyzed. (authors)

  6. Safety analysis code input automation using the Nuclear Plant Data Bank

    International Nuclear Information System (INIS)

    Kopp, H.; Leung, J.; Tajbakhsh, A.; Viles, F.

    1985-01-01

    The Nuclear Plant Data Bank (NPDB) is a computer-based system that organizes a nuclear power plant's technical data, providing mechanisms for data storage, retrieval, and computer-aided engineering analysis. It has the specific objective to describe thermohydraulic systems in order to support: rapid information retrieval and display, and thermohydraulic analysis modeling. The Nuclear Plant Data Bank (NPBD) system fully automates the storage and analysis based on this data. The system combines the benefits of a structured data base system and computer-aided modeling with links to large scale codes for engineering analysis. Emphasis on a friendly and very graphically oriented user interface facilitates both initial use and longer term efficiency. Specific features are: organization and storage of thermohydraulic data items, ease in locating specific data items, graphical and tabular display capabilities, interactive model construction, organization and display of model input parameters, input deck construction for TRAC and RELAP analysis programs, and traceability of plant data, user model assumptions, and codes used in the input deck construction process. The major accomplishments of this past year were the development of a RELAP model generation capability and the development of a CRAY version of the code

  7. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  8. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA system using Zero Cross Correlation (ZCC code and multiband Orthogonal Frequency Division Multiplexing (OFDM called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  9. Study on the code system for the off-site consequences assessment of severe nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sora; Mn, Byung Il; Park, Ki Hyun; Yang, Byung Mo; Suh, Kyung Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

  10. RADTRAN 5 - A computer code for transportation risk analysis

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Kanipe, F.L.

    1993-01-01

    The RADTRAN 5 computer code has been developed to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI standard FORTRAN 77; the code contains significant advances in the methodology first pioneered with the LINK option of RADTRAN 4. A major application of the LINK methodology is route-specific analysis. Another application is comparisons of attributes along the same route segments. Nonradiological risk factors have been incorporated to allow users to estimate nonradiological fatalities and injuries that might occur during the transportation event(s) being analyzed. These fatalities include prompt accidental fatalities from mechanical causes. Values of these risk factors for the United States have been made available in the code as optional defaults. Several new health effects models have been published in the wake of the Hiroshima-Nagasaki dosimetry reassessment, and this has emphasized the need for flexibility in the RADTRAN approach to health-effects calculations. Therefore, the basic set of health-effects conversion equations in RADTRAN have been made user-definable. All parameter values can be changed by the user, but a complete set of default values are available for both the new International Commission on Radiation Protection model (ICRP Publication 60) and the recent model of the U.S. National Research Council's Committee on the Biological Effects of Radiation (BEIR V). The meteorological input data tables have been modified to permit optional entry of maximum downwind distances for each dose isopleth. The expected dose to an individual in each isodose area is also calculated and printed automatically. Examples are given that illustrate the power and flexibility of the RADTRAN 5 computer code. (J.P.N.)

  11. Simplified modeling and code usage in the PASC-3 code system by the introduction of a programming environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.L.; Slobben, J.

    1991-06-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  12. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    Science.gov (United States)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  13. System Design Considerations In Bar-Code Laser Scanning

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  14. Analysis of Edge Detection in Bar Code Symbols: An Overview and Open Problems

    Directory of Open Access Journals (Sweden)

    Saša Krešić-Jurić

    2012-01-01

    Full Text Available Accurate edge localization is essential in bar code decoding. Since speckle noise is the most dominant form of noise in laser bar code scanners, it is important to fully understand its effects on edge detection. Starting with the basic statistical properties of speckle patterns, we present stochastic analysis of speckle noise. We derive the autocorrelation function and power spectral density (PSD of the noise in terms of intensity distribution of the scanning beam. We then study the signal-to-noise ratio for signals that result from scanning different configurations of edges. Next, we consider statistical properties of edge localization error caused by speckle noise. We show that the standard deviation of the error is determined by the PSD of the noise and relative positions of edges in a bar code symbol. Based on the analysis presented here, we propose new criteria for system design.

  15. NOAA/DOE CWP structural analysis package. [CWPFLY, CWPEXT, COTEC, and XOTEC codes

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, J.A.; Lunz, D.F. (eds.)

    1979-09-01

    The theoretical development and computer code user's manual for analysis of the Ocean Thermal Energy Conversion (OTEC) plant cold water pipe (CWP) are presented. The analysis of the CWP includes coupled platform/CWP loadngs and dynamic responses. This report with the exception of the Introduction and Appendix F was orginally published as Hydronautics, Inc., Technical Report No. 7825-2 (by Barr, Chang, and Thasanatorn) in November 1978. A detailed theoretical development of the equations describing the coupled platform/CWP system and preliminary validation efforts are described. The appendices encompass a complete user's manual, describing the inputs, outputs and operation of the four component programs, and detail changes and updates implemented since the original release of the code by Hydronautics. The code itself is available through NOAA's Office of Ocean Technology and Engineering Services.

  16. Statistical analysis for coded aperture γ-ray telescope

    International Nuclear Information System (INIS)

    Ducros, G.; Ducros, R.

    1984-01-01

    We have developed a statistical analysis of the image recorded by a position sensitive detector associated with a coded mask for the French gamma ray satellite SIGMA, in the energy range (20-2 000 keV). The aperture of the telescope is not limited to the size of the mask. In the first part, we described the principle of the image analysis based on the least squares method with a fit function generated and tested term after term. The statistical test is performed on the F distribution followed by the relative improvement of chi 2 when the fit function has an additional term. The second part deals with digital processing aspects: the adjustment of the method to reduce computation time, and the analysis results of two simulated images. (orig.)

  17. RMC - A Monte Carlo Code for Reactor Core Analysis

    Science.gov (United States)

    Wang, Kan; Li, Zeguang; She, Ding; Liang, Jin'gang; Xu, Qi; Qiu, Yishu; Yu, Jiankai; Sun, Jialong; Fan, Xiao; Yu, Ganglin

    2014-06-01

    A new Monte Carlo transport code RMC has been being developed by Department of Engineering Physics, Tsinghua University, Beijing as a tool for reactor core analysis on high-performance computing platforms. To meet the requirements of reactor analysis, RMC now has such functions as criticality calculation, fixed-source calculation, burnup calculation and kinetics simulations. Some techniques for geometry treatment, new burnup algorithm, source convergence acceleration, massive tally and parallel calculation, and temperature dependent cross sections processing are researched and implemented in RMC to improve the effciency. Validation results of criticality calculation, burnup calculation, source convergence acceleration, tallies performance and parallel performance shown in this paper prove the capabilities of RMC in dealing with reactor analysis problems with good performances.

  18. Source Code Analysis to Remove Security Vulnerabilities in Java Socket Programs: A Case Study

    OpenAIRE

    Natarajan Meghanathan

    2013-01-01

    This paper presents the source code analysis of a file reader server socket program (connection-oriented sockets) developed in Java, to illustrate the identification, impact analysis and solutions to remove five important software security vulnerabilities, which if left unattended could severely impact the server running the software and also the network hosting the server. The five vulnerabilities we study in this paper are: (1) Resource Injection, (2) Path Manipulation, (3) System Informati...