WorldWideScience

Sample records for analysis atmospheric deposition

  1. Sampling of atmospheric precipitation and deposits for analysis of atmospheric pollution.

    Science.gov (United States)

    Skarzyńska, K; Polkowska, Z; Namieśnik, J

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  2. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  3. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  4. Atmospheric deposition of nutrients to north Florida rivers: A multivariate statistical analysis. Final report. Master's thesis

    International Nuclear Information System (INIS)

    Fu, J.

    1991-01-01

    Atmospheric nutrient input to the Apalachicola Bay estuary was studied because it has been demonstrated that atmospheric deposition can be a major source of nutrients to eastern U.S. estuaries. Besides the Apalachicola River, the Sopchoppy and the Ochlockonee were also selected for a comparative analysis. Receptor model, absolute principal of component analysis (APCA), and mass balance methods were applied in the study. The results of the study show that nitrogen is probably not a limiting nutrient in the three rivers because their N:P mole ratios are nearly 3 times higher than the Redfield ratio for photosynthesis. The total atmospheric nitrogen depositions in the three river watershed are at least as great as their river fluxes. In the Apalachicola River, the atmospheric source of nitrogen is found to be several times higher than the largest possible input of urban sewage. Atmospheric deposition, therefore, might be the dominant nitrogen source entering the estuary. The results of APCA show that Apalachicola River water is mainly a mixture of components that correspond in their compositions to aged rain, ground water, and fresh rain. Atmospheric nitrate deposition is the result of the air pollution, i.e., acid rain. The studies also show that the annual average deposition of nitrate has a narrow range, mainly from 5.8 to 11.5 kg/ha/yr in most of the NADP sites in the 8 southeastern states. Since all the software and data sets employed in the study are accessible nationwide, the methods could be applied in other watersheds

  5. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  6. Atmospheric metal deposition in France: Estimation based on moss analysis. First results

    International Nuclear Information System (INIS)

    Galsomies, L.; Letrouit-Galinou, M.A.; Avnaim, M.; Duclaux, G.; Deschamps, C.; Savanne, D.

    2000-01-01

    The aim of this programme set up by University Pierre and Marie Curie-Paris VI and ADEME (French Agency for the Environment and Energy Management) is to obtain information on the atmospheric deposition of 36 elements (most being heavy metals) all over France, using 5 common mosses as bioaccumulators: Pleurozium schreberi, Hylocomium splendens, Hypnum cupressiforme, Scleropodium purum and Thuidium tamariscinum. Sampling was performed in 1996 from April to November thanks to 43 collectors. One sample of moss at least has been collected in 512 sites distributed over France, with an average density of one site each 1000 km 2 . Procedures for sampling, drying, cleaning, sorting are strictly codified based on Scandinavian guidelines. Analyses are performed according to two procedures: ICP-MS (Inductively Coupled Plasma, Mass Spectrometry) for Pb, Ni specialty and INAA (instrumental Neutron Activation Analysis for other elements. Data concerning As, Cd, Cr, Cu, Fe, Hg, Pb. Ni, V, Zn will be incorporated into the 1995-1996 European Programme 'Atmospheric Heavy Metal Deposition in Europe - estimation based on moss analysis' coordinated by the Nordic Council. The analyses are in progress, but preliminary results from Ile-de-France have been achieved for 34 elements in INAA. A preliminary study has shown that interspecies calibration could be possible for some heavy metals and that saturation effects in one species could be present when the intercalibration between species is not possible. Such a programme is made possible thanks to the financial support of the French Ministry of Environment and ADEME and with the active cooperation of several national organisations, especially the Laboratory Pierre Sue (CNRS-CEA). (author)

  7. Atmospheric deposition study in the area of Kardzhali lead-zinc plant based on moss analysis

    International Nuclear Information System (INIS)

    Hristozova, G.; Marinova, S.; Strelkova, L.P.; Goryajnova, Z.; Frontas'eva, M.V.; Stafilov, T.

    2015-01-01

    For the first time the moss biomonitoring technique was used to assess the environmental situation in the area affected by the lead-zinc plant as one of the most hazardous enterprises in Bulgaria. 77 Hypnum cupressiforme moss samples were collected in the Kardzhali municipality in the summer and autumn of 2011. The concentrations of a total of 47 elements were determined by means of instrumental epithermal neutron activation analysis (ENAA), atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Multivariate statistics was applied to characterize the sources of elements detected in the samples. Four groups of elements were found. In comparison to the data averaged for the area outside of the town, the atmospheric deposition loads for the elements of industrial origin in Kardzhali, where the smelter chimney is located, were found to be much higher. Median levels of the measured concentrations of the most toxic metals (Pb, Zn, Cd, As, Cu, In, Sb) were extremely high in this hot spot when compared to the median Bulgarian cross-country data from the 2010-2011 European moss survey. GIS technology was used to produce element distribution maps illustrating deposition patterns of element pollutants in the study area. The results obtained contribute to the Bulgarian environmental research used to study and control the manufacturing processes of the lead-zinc plant in the town of Kardzhali.

  8. Probabilistic Accident Consequence Uncertainty Analysis of the Atmospheric Dispersion and Deposition Module in the COSYMA Package (invited paper)

    International Nuclear Information System (INIS)

    Pasler-Sauer, J.; Jones, J.A.

    2000-01-01

    The uncertainty analysis is described of the atmospheric dispersion and deposition module of COSYMA, describing both the methods of obtaining distributions on the input parameters and the results of the analysis. The uncertainty distributions on the input parameter values were obtained using formal techniques of expert judgement elicitation. The aim of the module analysis was to identify those parameters whose uncertainty makes major contributions to the overall uncertainty, and which should be included in the final analysis of the whole COSYMA system. (author)

  9. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    Science.gov (United States)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  10. Atmospheric organic nitrogen deposition: analysis of nationwide data and a case study in Northeast China.

    Science.gov (United States)

    Jiang, C M; Yu, W T; Ma, Q; Xu, Y G; Zou, H; Zhang, S C; Sheng, W P

    2013-11-01

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH4(+)-N and NO3(-)-N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Temporal and spatial trends studied by lichen analysis: atmospheric deposition of trace elements in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aspiazu, J.; Cervantes, L.; Ramirez, J.; Lopez, J.; Villasenor, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Ramos, R.; Munoz, R. [Secretaria del Medio Ambiente, Gestion Ambiental del Aire, Mexico City (Mexico)

    2007-07-01

    Ball moss on Tillandsia recurvata (Bromeliaceae), collected in an area previously identified as unpolluted, was transplanted to thirteen bio-monitoring sites in the downtown and metropolitan areas of Mexico City (which cover a surface of 9,560 km{sup 2}) during the periods August 2002 - January 2003 and July 2003 - October 2003. A total of 52 lichens (weighing 300 g) were transplanted to each place. Two were analysed as zero or reference, El Chico National Park, a location 100 Km upwind from the city and the remaining 26 were hung in nylon net bags in order to be able to collect two transplanted tree month, out of every season over a one-year period. The concentrations were measured by the quantitative PIXE method based on an extemal beam facility. The atmospheric deposition for trace elements was inferred by its concentration in lichen samples collected in 2002 from 13 sites in Mexico and compared with data from a similar survey in 2003. The concentration of Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn and other elements was determined for each sample. Maps for each element were drawn after a geostatistical estimate of the metal concentration in the sample was made. Maps were drawn for all elements with the estimated values. Geographical distribution patterns were obtained for the different metals, reflecting the contribution of natural and anthropogenic emission sources. The deposition patterns of V, As, Se, Cd and Pb are substantially influenced by long-range transport from other parts of Mexico City. For Cr, Fe, Co, Ni, and Cu, the deposition patterns are largely determined by contribution from point sources within Mexico and in the metropolitan area. The lichen data for Br and, in part, Se reflect an airborne supply from the environment. Contributions to trace element concentrations in lichen sources other than atmospheric deposition are identified and discussed. The Spatial and temporal variations in the distribution of metal concentration are discussed. (Author)

  12. Temporal and spatial trends studied by lichen analysis: atmospheric deposition of trace elements in Mexico

    International Nuclear Information System (INIS)

    Aspiazu, J.; Cervantes, L.; Ramirez, J.; Lopez, J.; Villasenor, P.; Ramos, R.; Munoz, R.

    2007-01-01

    Ball moss on Tillandsia recurvata (Bromeliaceae), collected in an area previously identified as unpolluted, was transplanted to thirteen bio-monitoring sites in the downtown and metropolitan areas of Mexico City (which cover a surface of 9,560 km 2 ) during the periods August 2002 - January 2003 and July 2003 - October 2003. A total of 52 lichens (weighing 300 g) were transplanted to each place. Two were analysed as zero or reference, El Chico National Park, a location 100 Km upwind from the city and the remaining 26 were hung in nylon net bags in order to be able to collect two transplanted tree month, out of every season over a one-year period. The concentrations were measured by the quantitative PIXE method based on an extemal beam facility. The atmospheric deposition for trace elements was inferred by its concentration in lichen samples collected in 2002 from 13 sites in Mexico and compared with data from a similar survey in 2003. The concentration of Cr, Cu, Co, Fe, Mn, Ni, Pb and Zn and other elements was determined for each sample. Maps for each element were drawn after a geostatistical estimate of the metal concentration in the sample was made. Maps were drawn for all elements with the estimated values. Geographical distribution patterns were obtained for the different metals, reflecting the contribution of natural and anthropogenic emission sources. The deposition patterns of V, As, Se, Cd and Pb are substantially influenced by long-range transport from other parts of Mexico City. For Cr, Fe, Co, Ni, and Cu, the deposition patterns are largely determined by contribution from point sources within Mexico and in the metropolitan area. The lichen data for Br and, in part, Se reflect an airborne supply from the environment. Contributions to trace element concentrations in lichen sources other than atmospheric deposition are identified and discussed. The Spatial and temporal variations in the distribution of metal concentration are discussed. (Author)

  13. Analysis of Co, Cr and Mn Concentrations in Atmospheric Dry Deposition in Hamadan City

    Directory of Open Access Journals (Sweden)

    P. Shokri Ragheb

    2016-07-01

    Full Text Available Introduction & Objective: Heavy metals are major pollutants that can spread in the atmosphere with particulate matter and dust and because of the toxic and carcinogenic effects, their meas-urement and control is very important. Therefore, this study was conducted to assess Co, Cr and Mn concentration in the atmospheric dry deposition collected from Hamadan city in 2014. Materials & Methods: After collection of 12 dust samples from 3 sampling stations and their laboratory preparation, metals concentrations were determined using ICP–OES. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations of Co were 0.19 and 0.29 mg/kg for high and low traffic intensity sampling stations, respectively. The min and max mean concentrations of Cr were 0.65and 1.02 mg/kg for high traffic intensity and suburb sampling stations, respectively and the min and max mean concentrations of Mn were 7.23and 8.82 mg/kg for high and low traffic intensity sampling stations , respectively. Also comparing the mean concentrations of assessed metals with WHO permissible limits showed a significant difference (P< 0.05. The mean concentrations of metals were signifi-cantly lower than the maximum permissible limits. Conclusion: Although the mean concentrations of Co, Cr and Mn are lower than the standard levels, lack of continuous monitoring of heavy metals concentrations in the dust and particu-late matters in the air can lead to the entrance of various types of toxic pollutants such as heavy metals into the air and result in adverse health effects. (Sci J Hamadan Univ Med Sci 2016; 23 (2:149-156

  14. Methods of trend analysis for atmospheric deposition into the sea; Trendabschaetzung atmosphaerischer Stoffeintraege in die Meere

    Energy Technology Data Exchange (ETDEWEB)

    Kuhbier, P.; Uhlig, S.; Fraenzel, A.; Schick, N.

    2001-02-01

    In order to prevent a considerable deterioration in the detectability of time trends in depositions as a result of fluctuations in the climatic conditions, an adjustment whereby the entry data are recomputed into an 'average' weather conditions appears inevitable. Accordingly, the aim of the project was the development of a concept for the adjustment and trend analysis of depositions including the examination of a number of statistical methods, with the form of the adjustment being the focus of the work. As per this concept, adjustment takes place on the basis of monthly data. The adjusted depositions are then summarized before trend analysis follows on the basis of these adjusted annual depositions. Finally the trend sensitivity of the method is examined as part of a power analysis. A data bank-based software was developed as part of the project in order to carry out the extensive calculations. With this software, the most diverse trend analysis and adjustment methods were realised and tested. It may first of all be noted that the evaluations conducted confirm the practicality of the adjustment concept developed, with various methods being deployable for fixing the adjustment parameter according to the measurement site and parameter concerned. The average reduction in the scatter of the annual depositions vis-'a-vis the non-adjusted depositions is over 40%. This amounts to a substantial improvement in trend sensitivity and makes for a clear reduction in the length of the requisite time series. However, there is no method among the adjustment methods investigated which, considering all the prerequisites, may be regarded as being superior to the other methods. The question as to which form of adjustment yields the most favourable results depends on the pollutants and the site-related conditions in each case. (orig.) [German] Um zu verhindern, dass durch klimatische Schwankungen die Nachweisbarkeit zeitlicher Trends in Depositionen wesentlich

  15. UFOMOD - atmospheric dispersion and deposition

    International Nuclear Information System (INIS)

    Panitz, H.J.; Matzerath, C.; Paesler-Sauer, J.

    1989-10-01

    The report gives an introduction into the modelling of atmospheric dispersion and deposition which has been implemented in the new program system UFOMOD for assessing the consequences after nuclear accidents. According to the new structure of UFOMOD, different trajectory models with ranges of validity near to the site and at far distances are applied. Emphasis is laid on the description of the segmented plume model MUSEMET and its affilated submodels, being the removal of activity from the cloud by dry and wet deposition, and special effects like plume rise and the behaviour of plumes released into building wakes. In addition, the evaluation of γ-dose correction factors to take account of the finite extent of the radioactive plume in the near range (up to about 20 km) are described. Only brief introductions are given into the principles of the other models available: the puff model RIMPUFF, the long-range puff model MESOS, and the special straight-line Gaussian model ISOLA which are used if low-level long-duration releases are considered. To define starting times of weather sequences and the probabilities of occurrence of these sequences, it is convenient to perform stratified sampling. Therefore, the preprocessing program package METSAM has been developed to perform for generic ACAs a random sampling of weather sequences out off a population of classified weather conditions. The sampling procedure and a detailed input/output (I/O) description is presented and an additional appendix, respectively. A general overview on the I/O structure of MUSEMET as well as a brief user guide to run the KfK version of the MESOS code are also given in the appendix. (orig.) [de

  16. MEAD Marine Effects of Atmospheric Deposition

    Science.gov (United States)

    Jickells, T.; Spokes, L.

    2003-04-01

    atmospheric deposition to be an important source of nitrogen and where various eutrophication problems are evident. Fieldwork has involved atmospheric and water column measurements using ships, automated buoys and coastal stations. The results obtained have then been used in computer models which allow us to determine how atmospheric pollutants are transported in the atmosphere, deposited to the ocean and how this affects the growth of algae. These models have then been used to predict whether changing the amounts and types of pollutants entering the atmosphere will affect algal growth in coastal waters. We have also used existing monitoring data on phytoplankton abundance in the Kattegat in a retrospective analysis to identify incidences of blooms and test for any relation between these and atmospheric deposition. The final product of the MEAD project has been an improved scientific understanding of the transport and deposition of nitrogen in coastal waters and the effect of such deposition on phytoplankton ecosystems. These results will, we hope, allow policy makers to make rational decisions as to whether increased regulation of atmospheric nitrogen emissions are necessary.

  17. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District: carbonaceous species dry deposition analysis

    Directory of Open Access Journals (Sweden)

    Szramowiat Katarzyna

    2016-01-01

    Full Text Available Organic and elemental carbon content in PM10 was studied at three sites in Malopolska District representing the city centre (Krakow, rural/residential (Bialka and residential/industrial environments (Krakow. The PM10 samples were collected during the winter time study. The highest concentrations of carbonaceous species were observed in Skawina (36.9 μg·m-3 of OC and 9.6 μg·m-3 of EC. The lowest OC and EC concentrations were reported in Krakow (15.2 μg·m-3 and 3.9 μg·m-3, respectively. The highest concentration of carbonaceous species and the highest wind velocities in Skawina influenced the highest values of the dry deposition fluxes. Correlations between OC, EC and chemical constituents and meteorological parameters suggest that a Krakow was influenced by local emission sources and temperature inversion occurrence; b Bialka was under the influence of local emission sources and long-range transport of particles; c Skawina was impacted by local emission sources.

  18. Atmospheric Deposition of Heavy Metals in Serbia Studied by Moss Biomonitoring, Neutron Activation Analysis and GIS Technology

    CERN Document Server

    Frontasyeva, M V; Kumar, M; Matavuly, M; Pavlov, S S; Radnovic, D; Steinnes, E

    2002-01-01

    The results of a pilot study on atmospheric deposition of heavy metals and other trace elements using the moss biomonitoring technique in the northern part of Serbia and some areas of Bosnia are presented. Samples of Hypnum cupressiforme along with some other moss types were collected at 92 sites during the summer of 2000. A total of 44 elements were determined by instrumental neutron activation analysis using epithermal neutrons. The observed levels of Cu, Zn, As, Ag, Cd, In, Sb, etc. in the area surrounding the town of Bor (Serbia) are comparable to those reported from similar industrial areas in other countries such as the Copper Basin in Poland and the South Urals of Russia. In the same region the maximum Se and Mo concentrations are the highest ever recorded in biomonitoring studies using mosses. High median concentrations of Fe and Ni in Serbian mosses are associated with a crustal component as apparent from factor analysis of the moss data. This component could be a result of windblown soil dust (most ...

  19. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  20. Atmospheric bulk deposition of mercury in Denmark

    International Nuclear Information System (INIS)

    Jensen, A.

    1992-01-01

    Atmospheric bulk deposition of mercury has been measured in 1990/91 at 7 localities in Denmark at four coastal stations and three forest stations. At five localities duplicate samplers were set up to study the reproducibility of the samplers. At the localities with duplicate samplers one sample was analyzed by the Danish laboratory (FORCE Institutes) by radiochemical neutron activation analysis (RNAA) and by the Swedish Environmental Research Institute (IVL) with application of plasma emission spectrometry (AES) or atomic fluorescence spectrometry (AFS). The results showed no significant difference between the results of RNAA and AES at the 97.5% probability level. No significant difference was found for the methods RNAA and AFS. The reproducibility of the new samplers which were constructed by IVL for collection of precipitation and measurement of bulk deposition of mercury were excellent with no significant difference between the two parameters for the duplicate samplers. The yearly atmospheric bulk deposition rate of mercury was nearly identical at three of the coastal stations, between 7.4 - 9.2 μg/m 2 ,yr, and with higher values for the forest stations, 10.5 - 13.1 μg/m 2 ,yr. One coastal station had a higher depostion of 14.8 μg/m 2 ,yr which is in agreement with earlier findings based on a small number of precipitations events. Much lower values are found in this study in comparison with a Danish study from 1976/78 where 40 - 65 μg/m 2 ,yr were found. It is not possible to decide whether this difference is caused by reductions in inputs and/or different sampling techniques. (au)

  1. Source-Receptor Relationship Analysis of the Atmospheric Deposition of PAHs Subject to Long-Range Transport in Northeast Asia.

    Science.gov (United States)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Kurokawa, Junichi; Tang, Ning; Ohara, Toshimasa; Hayakawa, Kazuichi; Ueda, Hiromasa

    2017-07-18

    The source-receptor relationship analysis of PAH deposition in Northeast Asia was investigated using an Eulerian regional-scale aerosol chemical transport model. Dry deposition (DD) of PAH was controlled by wind flow patterns, whereas wet deposition (WD) depended on precipitation in addition to wind flow patterns. The contribution of WD was approximately 50-90% of the total deposition, except during winter in Northern China (NCHN) and Eastern Russia (ERUS) because of the low amount of precipitation. The amount of PAH deposition showed clear seasonal variation and was high in winter and low in summer in downwind (South Korea, Japan) and oceanic-receptor regions. In the downwind region, the contributions from NCHN (WD 28-52%; DD 54-55%) and Central China (CCHN) (WD 43-65%; DD 33-38%) were large in winter, whereas self-contributions (WD 20-51%; DD 79-81%) were relatively high in summer. In the oceanic-receptor region, the deposition amount decreased with distance from the Asian continent. The amount of DD was strongly influenced by emissions from neighboring domains. The contributions of WD from NCHN (16-20%) and CCHN (28-35%) were large. The large contributions from China in summer to the downwind region were linked to vertical transport of PAHs over the Asian continent associated with convection.

  2. Atmospheric Deposition of Copper and Zinc in Maramures County (Romania)

    OpenAIRE

    Buteana Claudia; Berinde Zoita M.; Mihali Cristina; Michnea Angela M.; Gavra Anamaria; Simionescu Mirela

    2014-01-01

    The need to reduce pollution to levels that minimize adverse effects on human health involve the monitoring of air quality, including dry depositions and their metal content. The analysis of these parameters aims to investigate the air quality in Maramures County (with nonferrous mining activities) and in the Romanian - Ukraine transboundary area. The paper presents the experimental results obtained for dry atmospheric deposition of copper and zinc using flame atomic absorption spectrometry (...

  3. Atmospheric deposition and environmental quality in Italy

    International Nuclear Information System (INIS)

    Mosello, R.

    1993-01-01

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. Relevant to studies on water quality and acidification in the Po River Basin, this paper reviews some aspects of research on atmospheric deposition, i.e., geographical variability, long term trends, and effects on surface waters

  4. Atmospheric deposition fluxes to Monetary Bay

    Science.gov (United States)

    Gray, E.; Paytan, A.; Ryan, J.

    2008-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances. Sources of these components include both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources, which may contribute to harmful health and environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. This study looks at the flux of aerosol deposition (TSP - total suspended particle load) to Monterey Bay, California. Samples are collected on a cascade impactor aerosol sampler (size fractions PM 2.5 and PM 10) every 48 hours continuously. Preliminary results indicate that the TSP for PM 10 ranged from 0.026 to 0.104 mg m-3 of air and for PM 2.5 from 0.014 to 0.046 mg m-3 of air. Using a deposition velocity of 2 cm s-1 for the large fraction (PM10 - PM 2.5) and a deposition velocity of 0.7 cm s-1 for the fine fraction (PM 2.5) deposition rates are 13 and 86 mg m-2 d-1 respectively.

  5. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  6. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  7. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  8. Atmospheric depositions of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology

    International Nuclear Information System (INIS)

    Allajbeu, Sh.; Lazo, P.; Yushin, N.S.; Frontasyeva, M.V.; Qarri, F.; Duliu, O.G.

    2015-01-01

    Rare earth elements (REE) are conservative elements, scarcely derived from anthropogenic sources. The mobilization of REE in the environment requires their monitoring in environmental matrices, where they are mainly present at trace levels. The results on determination of the content of 11 elements by epithermal neutron activation analysis (ENAA) at the IBR-2 reactor in Dubna in carpet-forming moss species Hypnum cupressiforme collected from 44 sampling sites over the whole Albanian territory are presented and discussed. The paper is focused on Sc and lanthanides, as well as Fe and Th, the last ones showing correlations with the investigated REE. With the exception of Fe, all other elements were never determined in the air deposition of Albania. The STATISTICA TM 10 software was used for data analysis. The median values for the content of elements under investigation were compared to those in Bulgaria, Macedonia, Romania and Serbia, as well as Norway selected as a pristine area. Therefore, it was shown that the accumulation of REE in mosses is associated with the wind blown metal-enriched soils that are pointed out as the main emitting factor. [ru

  9. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    Science.gov (United States)

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  10. Polychlorinated biphenyl concentrations, accumulation rates in soil from atmospheric deposition and analysis of their affecting landscape variables along an urban-rural gradient in Shanghai, China.

    Science.gov (United States)

    Fang, Shubo; Cui, Qu; Matherne, Brian; Hou, Aixin

    2017-11-01

    This study initiated an in-situ soil experimental system to quantify the annual dynamics of polychlorinated biphenyl (PCB) congener's concentrations and accumulation rates in soil from atmosphere deposition in a rural-urban fringe, and correlated them by landscape physical and demographic variables in the area. The results showed that the concentrations of all PCB congeners significantly increased with the sampling time (p soil PCB concentrations with a threshold effect (p < 0.05). Regression analysis showed that the thresholds were 10-20 km, 1 km/km 2 , 30%, and 20% for distance, road density, population change index, and built-up area percentage, respectively. It was concluded that factors related to industrial development, traffic, and urban sprawling (i.e. built-up areas expanding) were the sources of PCBs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cosmogenic 7Be. Atmospheric concentration and deposition in Japan

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Fujitaka, Kazunobu

    2009-01-01

    Interactions between cosmic rays and atmospheric components produce various nuclear fragments. Cosmogenic 7 Be distributes uniformly in the atmosphere which covers all over the earth. Thus, the vertical and horizontal transport of 7 Be in the stratosphere as well as troposphere will work as an effective tracer with half life of 53.3 days. Many studies have been conducted on 7 Be atmospheric concentration and deposition onto the ground. Generally, the atmospheric 7 Be concentration and the 7 Be deposition show seasonal and yearly variations which are controlled by solar activity, cosmic ray intensity, atmospheric circulation and other mechanisms such as 'washout' and 'rainout'. This paper presents atmospheric 7 Be concentration and 7 Be deposition data obtained by the authors as well as other investigators. The variations of atmospheric 7 Be concentration and 7 Be deposition and their influential factors are also reviewed. (author)

  12. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    all the campaigns, except for the 2006 campaign. This points to a low efficiency in the wet deposition of oxidized nitrogen for these models, especially with regards to the scavenging of nitric acid, which is the main driver of oxidized N deposition for all the models. CHIMERE, LOTOS-EUROS and EMEP agree better with the observations for both wet deposition and air concentration of oxidized nitrogen, although CHIMERE seems to overestimate wet deposition in the summer period. This requires further investigation, as the gas-particle equilibrium seems to be biased towards the gas phase (nitric acid) for this model. In the case of MINNI, the frequent underestimation of wet deposition combined with an overestimation of atmospheric concentrations for the three pollutants indicates a low efficiency of the wet deposition processes. This can be due to several reasons, such as an underestimation of scavenging ratios, large vertical concentration gradients (resulting in small concentrations at cloud height) or a poor parameterization of clouds. Large differences between models were also found for the estimates of dry deposition. However, the lack of suitable measurements makes it impossible to assess model performance for this process. These uncertainties should be addressed in future research, since dry deposition contributes significantly to the total deposition for the three deposited species, with values in the same range as wet deposition for most of the models, and with even higher values for some of them, especially for reduced nitrogen.

  13. Assessment of atmospheric deposition of heavy metals and other elements in Belgrade using the moss biomonitoring technique and neutron activation analysis

    International Nuclear Information System (INIS)

    Anicic, M.; Tomasevic, M.; Frontas'eva, M.V.; Popovic, A.

    2006-01-01

    The study aimed at assessing atmospheric deposition of heavy metals and other elements using the moss genera Brachythecium sp. (B. rutabulum and B. salebrosum) and Eurhynchium sp. (E. hians and E. striatum) collected in autumn 2004 in the urban area of Belgrade. The concentrations of 36 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Dy, Hf, Ta, W, Hg, Th, U) were determined in moss and local topsoil samples by instrumental neutron activation analysis. The concentration of elements in moss positively correlated to those obtained for topsoil. High enrichment factors for As, Zn, Mo, Br, Sb, Se, Hg, and Cl, calculated to continental crust composition, gave an evidence for anthropogenic impact on urban area, mainly due to intensive vehicular traffic and fossil fuel combustion. The concentrations of elements in moss, characteristic for fossil fuel combustion, obtained in this study, were substantially lower than in the previous investigation (2000) conducted in the area of Belgrade. The level of concentrations for V, Cr, Ni, and As in moss from this study correlated to those measured for neighboring countries, and were several times higher than the base-level data from low polluted areas. The level of accumulated elements in both investigated moss genera were similar and all studied species could be combined for biomonitoring purposes in urban areas

  14. Atmospheric Deposition of Copper and Zinc in Maramures County (Romania

    Directory of Open Access Journals (Sweden)

    Buteana Claudia

    2014-12-01

    Full Text Available The need to reduce pollution to levels that minimize adverse effects on human health involve the monitoring of air quality, including dry depositions and their metal content. The analysis of these parameters aims to investigate the air quality in Maramures County (with nonferrous mining activities and in the Romanian - Ukraine transboundary area. The paper presents the experimental results obtained for dry atmospheric deposition of copper and zinc using flame atomic absorption spectrometry (FAAS. The samples were collected from four location/cities of Maramures County (Baia Mare, Sighetu Marmatiei, Viseu de Sus and Borsa during May-October 2014. The highest average values of copper concentration in the dry depositions were found in Baia Mare (199.88 μg/g, that is the most important industrial centre in Maramures County, followed by Borsa (111.49 μg/g, that used to be a nonferrous mining centre. In Viseu de Sus and Sighetu Marmatiei the average concentrations of copper in the dry depositions were lower: 75.63 μg/g and 64.26 μg/g, respectively. Zn average concentrations in dry depositions were 6.4-12 times higher than Cu concentrations. In Viseu de Sus and Borsa relative high values of Pearson correlation coefficients between the logarithm of Cu and Zn content in the dry deposition were found (0.702 and 0.737, respectively estimating that both pollutants in the ambient air have the same sources, probably the re-suspension of the dust from the tailing ponds. This study is implemented within the frame of ENPI Cross-border Cooperation Programme Hungary-Slovakia-Romania-Ukraine 2007-2013, in the project Clean Air Management in the Romania-Ukraine Transboundary Area - (CLAMROUA, financed by the European Union

  15. Atmospheric nitrogen compounds: Occurrence, composition and deposition

    DEFF Research Database (Denmark)

    Nielsen, T.; Pilegaard, K.; Egeløv, A.H.

    1996-01-01

    Traffic in cities and on highways is an important contributor to NOy atmospheric pollution in open areas. In this situation both the concentration and composition of NOy compounds show a wide variation and are dependent on meteorological and atmospheric chemical conditions. The proportion of NOz ...

  16. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global gridded estimates of atmospheric deposition of total inorganic nitrogen (N), NHx (NH3 and NH4+), and NOy (all oxidized forms of...

  17. Multi-elements atmospheric deposition study in Albania.

    Science.gov (United States)

    Qarri, Flora; Lazo, Pranvera; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry; Bekteshi, Lirim; Baceva, Katerina; Goryainova, Zoya

    2014-02-01

    For the first time, the moss biomonitoring technique and inductively coupled plasma-atomic emission spectrometric (ICP-AES) analytical technique were applied to study multi-element atmospheric deposition in Albania. Moss samples (Hypnum cupressiforme) were collected during the summer of 2011 and September-October 2010 from 62 sites, evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention-ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. ICP-AES analysis made it possible to determine concentrations of 19 elements including key toxic metals such as Pb, Cd, As, and Cu. Cluster and factor analysis with varimax rotation was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values of the elements in moss samples of Albania were high for Al, Cr, Ni, Fe, and V and low for Cd, Cu, and Zn compared to other European countries, but generally were of a similar level as some of the neighboring countries such as Bulgaria, Croatia, Kosovo, Macedonia, and Romania. This study was conducted in the framework of ICP Vegetation in order to provide a reliable assessment of air quality throughout Albania and to produce information needed for better identification of contamination sources and improving the potential for assessing environmental and health risks in Albania, associated with toxic metals.

  18. Heavy metal atmospheric deposition study in the South Ural Mountains

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Smirnov, L.I.; Lyapunov, S.M.

    2004-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Urals, one of the most heavily polluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Au, Th, U) in soil and 33 elements Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) were determined by epithermal neutron activation analysis. The elements Cu, Cd and Pb (in moss samples only) were obtained by atomic absorption spectrometry. VARIMAX rotated principal component analysis was used to identify and characterize different pollution sources and to point out the most polluted areas. (author)

  19. Projections of Atmospheric Nutrient Deposition to the Chesapeake Bay Watershed

    Science.gov (United States)

    Atmospheric deposition remains one of the largest loadings of nutrients to the Chesapeake Bay watershed. The interplay between future land use, climate, and emission changes, however, will cause shifts in the future nutrient deposition regime (e.g., oxidized vs. reduced nitrogen...

  20. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis.

    Science.gov (United States)

    Rühling, Ake; Tyler, Germund

    2004-10-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates.

  1. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis

    International Nuclear Information System (INIS)

    Ruehling, Aake; Tyler, Germund

    2004-01-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates

  2. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  3. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed.

    Science.gov (United States)

    Sheeder, Scott A; Lynch, James A; Grimm, Jeffrey

    2002-01-01

    Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.

  4. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  5. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.

    Science.gov (United States)

    Palani, Sundarambal; Tkalich, Pavel; Balasubramanian, Rajasekhar; Palanichamy, Jegathambal

    2011-06-01

    The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    International Nuclear Information System (INIS)

    Dowling, D P; Law, V J; Ardhaoui, M; Stallard, C; Maher, S; Keenan, A

    2016-01-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV–VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer. (paper)

  7. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available The atmosphere is a carrier on which some natural and anthropogenic organic and inorganic chemicals are transported, and the wet and dry deposition events are the most important processes that remove those chemicals, depositing it on soil and water. A wide variety of different collectors were tested to evaluate site-specificity, seasonality and daily variability of settleable particle concentrations. Deposition fluxes of POPs showed spatial and seasonal variations, diagnostic ratios of PAHs on deposited particles, allowed the discrimination between pyrolytic or petrogenic sources. Congener pattern analysis and bulk deposition fluxes in rural sites confirmed long-range atmospheric transport of PCDDs/Fs. More and more sophisticated and newly designed deposition samplers have being used for characterization of deposited mercury, demonstrating the importance of rain scavenging and the relatively higher magnitude of Hg deposition from Chinese anthropogenic sources. Recently biological monitors demonstrated that PAH concentrations in lichens were comparable with concentrations measured in a conventional active sampler in an outdoor environment. In this review the authors explore the methodological approaches used for the assessment of atmospheric deposition, from the analysis of the sampling methods, the analytical procedures for chemical characterization of pollutants and the main results from the scientific literature.

  8. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films

    Science.gov (United States)

    Boscher, Nicolas D.; Blackman, Christopher S.; Carmalt, Claire J.; Parkin, Ivan P.; Prieto, A. Garcia

    2007-05-01

    Atmospheric pressure chemical vapour deposition (APCVD) of vanadium diselenide thin films on glass substrates was achieved by reaction of [V(NMe 2) 4] and tBu 2Se. X-ray diffraction showed that the VSe 2 films were crystalline with preferential growth either along the (1 0 1) or the (1 1 0) direction. Energy-dispersive analysis by X-rays (EDAX) gave a V:Se ratio close to 1:2 for all films. The films were matt black in appearance, were adhesive, passed the Scotch tape test but could be scratched with a steel scalpel. SEM showed that the films were composed of plate-like crystallites orientated parallel to the substrate which become longer and thicker with increasing deposition temperature. Attempts to produce vanadium selenide films were also performed using tBu 2Se and two different vanadium precursors: VCl 4 and VOCl 3. Both were found to be unsuitable for producing VSe 2 from the APCVD reaction with tBu 2Se. The VSe 2 showed charge density wave transition at 110-115 K.

  9. Trace organic compounds in wet atmospheric deposition: an overview

    Science.gov (United States)

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  10. Atmospheric Deposition of Phosphorus to the Everglades: Concepts, Constraints, and Published Deposition Rates for Ecosystem Management

    Directory of Open Access Journals (Sweden)

    Garth W. Redfield

    2002-01-01

    Full Text Available This paper summarizes concepts underlying the atmospheric input of phosphorus (P to ecosystems, published rates of P deposition, measurement methods, and approaches to future monitoring and research. P conveyed through the atmosphere can be a significant nutrient source for some freshwater and marine ecosystems. Particle sources and sinks at the land-air interface produce variation in P deposition from the atmosphere across temporal and spatial scales. Natural plant canopies can affect deposition rates by changing the physical environment and surface area for particle deposition. Land-use patterns can alter P deposition rates by changing particle concentrations in the atmosphere. The vast majority of P in dry atmospheric deposition is conveyed by coarse (2.5 to 10 μm and giant (10 to 100 μm particles, and yet these size fractions represent a challenge for long-term atmospheric monitoring in the absence of accepted methods for routine sampling. Most information on P deposition is from bulk precipitation collectors and wet/dry bucket sampling, both with questionable precision and accuracy. Most published annual rates of P deposition are gross estimates derived from bulk precipitation sampling in locations around the globe and range from about 5 to well over 100 mg P m–2 year–1, although most inland ecosystems receive between 20 and 80 mg P m–2 year–1. Rates below 30 mg P m–2 year–1 are found in remote areas and near coastlines. Intermediate rates of 30 to 50 mg P m–2 year–1 are associated with forests or mixed land use, and rates of 50 to 100 mg P m–2 year–1 or more are often recorded from urban or agricultural settings. Comparison with other methods suggests that these bulk precipitation estimates provide crude boundaries around actual P deposition rates for various land uses. However, data screening cannot remove all positive bias caused by contamination of bucket or bulk collectors. As a consequence, continued sampling

  11. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations.

    Science.gov (United States)

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto; de la Barrera, Erick

    2018-01-01

    Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha -1 year -1 , well above the threshold for physiological damage of 12-20 kg of N ha -1 year -1 , depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha -1 year -1 . The isotopic signature, δ 15 N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive

  12. Acid atmospheric deposition in a forested mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Palán, L.; Stuchlík, Evžen

    2017-01-01

    Roč. 10, č. 4 (2017), s. 680-686 ISSN 1971-7458 Institutional support: RVO:60077344 Keywords : mountain watershed * spruce forests * acid atmospheric deposition * water resources recharge Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.623, year: 2016

  13. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments

    Science.gov (United States)

    Drevnick, Paul E.; Yang, Handong; Lamborg, Carl H.; Rose, Neil L.

    2012-11-01

    In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5 ± 3.3 μg m-2 y-1 and 7.0 ± 3.0 μg m-2 y-1, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs.

  14. Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2017-11-01

    Full Text Available In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models of dust simulation, a network of automatic deposition collectors (CARAGA has been installed throughout the western Mediterranean Basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at five sites including four on western Mediterranean islands (Frioul and Corsica, France; Mallorca, Spain; and Lampedusa, Italy and one in the southern French Alps (Le Casset, and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there are few data on trace-metal deposition in the literature, since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed to test their relevance in estimating elemental fluxes in addition to total mass fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES and mass spectrometry (MS in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg and Ti, nutrients (P and Fe and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd

  15. Tracing Fallout Radionuclide Behavior During Atmospheric Deposition and Pedogenesis

    Science.gov (United States)

    Landis, J. D.

    2017-12-01

    Short-lived fallout radionuclides 7Be (54 day half-life) and 210Pbexcess (22.3 year half-life) inform problems in geomorphology covering timespans of days to decades. Linking these radionuclides together is a powerful strategy, since the ratio 7Be:210Pb can control for changes in the activity of each, provided that the tracers have similar behavior through relevant chemical and physical processes such as interception, sorption, dilution, transport, etc. To investigate the extent to which 7Be and 210Pbxs share a common behavior, I measured these radionuclides in atmospheric deposition, vegetation, and stable soil, sediment and peat profiles. Bulk deposition of 7Be and 210Pb was measured in weekly intervals for 6 years of continuous record. Samples of red oak leaves (Quercus rubra) were collected regularly over 4 years at a site co-located with precipitation collection. Soil pits were sampled by high resolution methods at regional, undisturbed sites. In all samples 7Be, 210Pb, and other nuclides were measured by high-precision gamma spectrometry. Depositional fluxes of 7Be and 210Pb were highly correlated, with 7Be:210Pb converging to the long-term mean activity ratio of ca. 10.5 over intervals of 7 to 14 days. Red oak foliage accumulated 7Be and 210Pb at a linear rate during both growth and senescence, and appeared to maintain a dynamic equilibrium with atmospheric deposition. Canopies of both forest and grass intercepted on the order of 50% of deposition; the remainder reached underlying soil, where 7Be activity showed an exponential decline due to rapid hydrologic penetration of soil surface. Features of 210Pbxs soil profiles, including a subsurface maximum, reflect the same penetration pattern integrated over decades of deposition. Application of the Linked Radionuclide aCcumulation (LRC) model demonstrated that 210Pb moves through soil, peat and fluvial sediment profiles at rates on the order of 1 mm per year, similar to other atmospherically-derived metals

  16. Atmospheric deposition exposes Qinling pandas to toxic pollutants.

    Science.gov (United States)

    Chen, Yi-Ping; Zheng, Ying-Juan; Liu, Qiang; Song, Yi; An, Zhi-Sheng; Ma, Qing-Yi; Ellison, Aaron M

    2017-03-01

    The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals in the world, and it is recognized worldwide as a symbol for conservation. A previous study showed that wild and captive pandas, especially those of the Qinling subspecies, were exposed to toxicants in their diet of bamboo; the ultimate origin of these toxicants is unknown. Here we show that atmospheric deposition is the most likely origin of heavy metals and persistent organic pollutants (POPs) in the diets of captive and wild Qinling pandas. Average atmospheric deposition was 199, 115, and 49 g·m -2 ·yr -1 in the center of Xi'an City, at China's Shaanxi Wild Animal Research Center (SWARC), and at Foping National Nature Reserve (FNNR), respectively. Atmospheric deposition of heavy metals (As, Cd, Cr, Pb, Hg, Co, Cu, Zn, Mn, and Ni) and POPs was highest at Xi'an City, intermediate at SWARC, and lowest at FNNR. Soil concentrations of the aforementioned heavy metals other than As and Zn also were significantly higher at SWARC than at FNNR. Efforts to conserve Qinling pandas may be compromised by air pollution attendant to China's economic development. Improvement of air quality and reductions of toxic emissions are urgently required to protect China's iconic species. © 2017 by the Ecological Society of America.

  17. Comparison of mercury in atmospheric deposition and in Illinois and USA soils

    Directory of Open Access Journals (Sweden)

    E.C. Krug

    2004-01-01

    Full Text Available It has been reported that most mercury (Hg in USA soils is from atmospheric Hg deposition, mostly from anthropogenic sources. This paper compares the rates of atmospheric Hg deposition to amounts of Hg in Illinois and USA soils. The amounts of Hg in these soils are too great to be attributed mainly to anthropogenic atmospheric Hg deposition. Keywords: mercury, atmospheric deposition, soil, geology, Illinois, USA

  18. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  19. Atmospheric heavy metal deposition in agro-ecosystems in China.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Shixiang; Zhu, Fengpeng; Wang, Aiguo; Dai, Huaxin; Cheng, Sen; Wang, Jianwei; Tang, Lina

    2018-02-01

    Atmospheric deposition has become one of the main sources of heavy metals in crops in developed and industrial zones in China for the past several years. However, lack of data of the agro-ecosystems on the vast areas of China makes it difficult to assess the impacts of air pollution on the heavy metal accumulation in crops. In this study, with deposit samples from 67 sites located at different agro-ecosystems (typical, factory nearby, town nearby, roadside, and remote) of four natural regions [Huanghuai (HH), Southeast (SE), Southwest (SW) and upper-mid Yangzi River (Up-mid YR)], atmospheric heavy metal deposition in agro-ecosystems on a large scale in China was studied. The results showed that during the growing season, the deposition fluxes of Cr, Ni, As, Cd, and Pb in typical agro-ecosystems were 0.60-36.86, 0.65-25.37, 0.05-8.88, 0.12-5.81, and 0.43-35.63 μg m -2  day -1 , respectively, which varied greatly between the four different regions. The average deposition fluxes of Cr, Ni, Cd, and Pb in the HH region, as well as the fluxes of As in the SW region, were significantly higher than those in the SE region. Heavy metal deposition rates among agro-ecosystems were very similar, except for the sites around cement factory in flat HH region. In mountainous SW region, however, deposition rates varied widely with sites nearby towns relatively higher and remote regions much lower. Higher correlation coefficients were observed between Cr, As, Pb, and Ni deposition rates, suggesting that they had similar sources. Samples from the SW and SE regions exhibited higher 207 Pb/ 206 Pb and 208 Pb/ 206 Pb ratios than those from the HH and Up-mid YR regions. Airborne Pb in SW agro-ecosystems were mainly derived from vehicle exhaust and local smelting, whereas that in the HH region from burning of northern Chinese coal.

  20. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    Science.gov (United States)

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.

  1. Spatial variation in atmospheric nitrogen deposition on low canopy vegetation

    International Nuclear Information System (INIS)

    Verhagen, Rene; Diggelen, Rudy van

    2006-01-01

    Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha -1 yr -1 was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions. - Areas with low canopy vegetation are affected over much larger distances by nitrogen deposition than woodlands

  2. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component

    International Nuclear Information System (INIS)

    Cornell, Sarah E.

    2011-01-01

    The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles. - Highlights: → Organic-nitrogen deposition is globally ubiquitous. → Geographic patterns can now be seen in the near-global dataset. → Organic N can be formed through interactions of biogenic and anthropogenic compounds. → Neglecting organic N in deposition assessments increases critical loads uncertainty - Routinely including the organic component of atmospheric deposition (known to be around 25-35% worldwide) would make the understanding and prediction of nitrogen biogeochemistry more robust. This paper makes a preliminary global synthesis based on literature reports.

  3. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    Science.gov (United States)

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  4. Atmospheric deposition of cadmium in the northeastern USA

    International Nuclear Information System (INIS)

    Norton, Stephen A.; Wilson, Tiffany; Handley, Michael; Osterberg, Erich C.

    2007-01-01

    Lake sediment cores, dated by 210 Pb, were collected from Spectacle Pond (SP), Massachusetts, and Side Pistol Lake (SPL) and Sargent Mountain Pond (SMP), Maine, USA. SP is a kettle seepage lake in granitic sand and gravel. SMP is a drainage pond on granite with little soil in the small watershed. SPL is a drainage lake in granitic till. The three cores were analyzed for total Cd. For SP and SMP, maximum concentrations of 1.7 and 3.9 mg/kg, four and eight times background concentrations, respectively, occur in the late 1960s. Accumulation rates reach maximum values concurrently with concentration and are 0.054 and 0.016 μg/cm 2 /a, more than 10 times background. Concentration and accumulation rate age relationships in SMP and SP are similar for background values, timing and magnitude of increase to peak values, and the decrease nearly to background values since about 1975. The chemical response to decreased atmospheric deposition lags in SPL sediment. Kettle-like lakes more clearly indicate changes in atmospheric deposition than drainage lakes

  5. Interlaboratory model comparisons of atmospheric concentrations with and without deposition

    International Nuclear Information System (INIS)

    Kern, C.D.; Cooper, R.E.

    1978-01-01

    To calculate the dose to the regional and U.S. populations, the pollutant concentration both with and without deposition and the amount of material deposited on the ground and watersheds around such a facility must be known. The following report (Article 50) of this document contains some initial estimates of population exposure from atmospheric effluents. The expertise of laboratories supported by U.S. Department of Energy funds ensures that the latest methods and data are available. Lawrence Livermore Laboratory (LLL) performed regional calculations (out to distances of the order of 200 km from a hypothetical fuel reprocessing plant). The Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric Administration (NOAA), and Battelle Pacific Northwest Laboratories (PNL) performed U.S. scale calculations, and ARL also did the global calculations. Data from a winter and summer period were used to make comparisons of calculations by LLL, ARL, and PNL to determine which model should be used for the final calculations and to determine if a 200-km square area centered on the site would be large enough for dose calculations via the water and food pathways

  6. Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas

    Science.gov (United States)

    Park, June-Soo; Wade, Terry L.; Sweet, Stephen

    Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB ( tPCB) concentrations in air ranged from 0.21 to 4.78 ng m -3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l -1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4'-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m -2 yr -1) was significantly higher than that of pesticides by a factor of 5-10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m -2 yr -1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.

  7. Atmospheric particle characterization, distribution, and deposition in Xi'an, Shaanxi Province, Central China

    International Nuclear Information System (INIS)

    Cao Zongze; Yang Yuhua; Lu, Julia; Zhang Chengxiao

    2011-01-01

    Physical characterization and chemical analysis of settled dusts collected in Xi'an from November 2007 to December 2008 show that (1) dust deposition rates ranged from 14.6 to 350.4 g m -2 yr -1 . The average deposition rate (76.7 g m -2 yr -1 ) ranks the 11th out of 56 dust deposition rates observed throughout the world. The coal-burning power was the major particle source; (2) on average (except site 4), ∼10% of the settled dusts having size 70% having size <30 μm; (3) the concentrations for 20 out of 27 elements analyzed were upto 18 times higher than their soil background values in China. With such high deposition rates of dusts that contain elevated levels of toxic elements, actions should be taken to reduce emission and studies are needed to assess the potential impacts of settled particles on surface ecosystem, water resource, and human health in the area. - Research highlights: → High atmospheric dust deposition rate in Xi'an, Shaanxi, China. → Coal-burning power plan being a major source of particulate matter in Xi'an area. → High levels of toxic elements in the settled dusts. → Enrichment of heavy metals (e.g., Pb, Ni, Cu) in fine particles. - Atmospheric dust deposition rate is high and the levels of toxic elements associated with the settled dusts are elevated in Xi'an, Shaanxi, China.

  8. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  9. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Science.gov (United States)

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  10. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    NARCIS (Netherlands)

    Vivanco, M.G.; Bessagnet, B.; Cuvelier, C.; Theobald, M.R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M.T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-01-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in

  11. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy...... and heavy metal concentration in lichens and bryophytes. An exponential correlation was found between bulk precipitation and heavy metal concentration in soil. Regional variation of the heavy metal levels in the Copenhagen area was described and three sub-areas with high metal burdens were distinguished....... The heavy metal gradients from a secondary smelter in one of these sub-areas were steepest in soil compared with lichens and bryophytes....

  12. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    Directory of Open Access Journals (Sweden)

    Man Young Chun

    2014-07-01

    Full Text Available Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba, Pine (Pinus densiflora, Platanus (Platanus, and Metasequoia (Metasequoia glyptostroboides. These were used as passive air sampler (PAS of atmospheric polybrominated diphenyl ethers (PBDEs. Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry, whereas pine (4.85 mg/g dry, Platanus (3.61 mg/g dry, and Metasequoia (0.97 mg/g dry had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry, followed by Ginkgo (53,538.4 pg/g dry, Pine (20,266.4 pg/g dry, and Platanus (12,572.0 pg/g dry. There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682. Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6% of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  13. Biodiversity Risks from Atmospheric Nitrogen Deposition in California

    Science.gov (United States)

    Weiss, S. B.

    2004-12-01

    Atmospheric nitrogen deposition alters structure and function of terrestrial ecosystems, because nitrogen availability is often limits overall productivity. These alterations can drive losses of biodiversity, as nitrophilous species increase in abundance and outcompete species adapted to more oligotrophic conditions. California is recognized as a "biodiversity hotspot," with a high fraction of endemic taxa with narrow ranges. A state-wide risk screening includes: 1) a 36 x 36 km map of total N-deposition for 2002, developed from the Community Multiscale Air Quality Model (CMAQ); 2) identification of sensitive habitat types from literature and local expertise; 3) overlay of a statewide vegetation map (FRAP); 4) overlay of species occurrence data from the California Natural Diversity Data Base (CNDDB); and 5)species life-history and habitat requirements. The CMAQ model indicates that 55,000 km2 (total area 405,205 km2) are exposed to >5 kg-N ha -1 year -1, and 10,000 km2 are exposed to >10 kg-N ha -1 year -1. Deposition hotspots include coastal urban areas (Los Angeles-San Diego, and the San Francisco Bay Area), the agricultural Central Valley, and parts of the Sierra Nevada foothills. The major known impact of N-deposition in California is increased growth and dominance of invasive annual grasses in low biomass ecosystems, such as coastal sage scrub, serpentine grassland, desert scrub, and vernal pools. For example, 800 km2 out of a total 6300 km2 of coastal sage scrub are exposed to more than 10 kg-N ha -1 year -1, primarily in Southern California. Of 225 federal and state "Threatened" and "Endangered" plant taxa, 101 are exposed on average to >5 kg-N ha -1 year -1. Of an additional 1022 plant taxa listed as "rare," 288 are exposed to >5 kg-N ha -1 year -1. Many of these highly exposed taxa are associated with sensitive habitat types and are vulnerable to annual grass invasions. This broad-scale screening outlines potential impacts on California's biodiversity, and

  14. The integrated forest study on effects of atmospheric deposition; A status report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Lindberg, S.E.; Bondietti, E.A. (Oak Ridge National Lab., TN (USA)); Cole, D.W. (Washington Univ., Seattle, WA (USA)); Lovett, G.M. (Cary Aboretum, Millbrook, NY (US)); Mitchell, M. (State Univ. of New York, Syracuse, NY (USA)); Ragsdale, L.H. (Emory Univ., Atlanta, GA (USA))

    1987-01-01

    The principal objective of the Integrated Forest Study on Effects of Atmospheric Deposition is to determine the effects of atmospheric deposition at sulfur and nitrogen on forest nutrient cycling. The study integrates a field monitoring component, involving quantification of atmospheric deposition and nutrient cycling in a variety of forest sites, and experimental research, including laboratory and field studies to investigate selected atmospheric and soil processes in great detail. The research is being conducted at forested sites in the northwestern, northeastern, and southeastern United States and in Norway. The sites selected for this study represent a range of conditions in climate, air quality, soils, and vegetation, which will facilitate testing hypotheses about the effects of atmospheric sulfur and nitrogen deposition on forest nutrient cycles. Preliminary results show a wide range in atmospheric sulfur and nitrogen deposition and in ecosystem responses to such deposition, some of which are consistent with previous predictions.

  15. Atmospheric deposition of methanol over the Atlantic Ocean.

    Science.gov (United States)

    Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher

    2013-12-10

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

  16. Atmospheric deposition of methanol over the Atlantic Ocean

    Science.gov (United States)

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  17. Impacts of Dry Atmospheric Deposition on Aquatic Systems - Nutrients, Trace Metals and Lead Isotopes

    OpenAIRE

    Chien, Chia-Te

    2017-01-01

    Atmospheric deposition is a source of new N, P and trace metals to the ocean and water bodies on land. Nutrient and trace metal inputs from atmospheric deposition have been shown to induce phytoplankton growth and impact water chemistry. The three chapters presented in this thesis examine dry atmospheric deposition impacts on phytoplankton and water chemistry including: (1) How African dust impact phytoplankton growth at the low nutrient low chlorophyll (LNLC) ocean off Barbados; (2) Evaluate...

  18. Atmospheric deposition, operational report for air pollution 2003. NOVA 2003; Atmosfaerisk deposition, driftsrapport for Luftforurening i 2003 NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Ambelas Skjoeth, C.; Kemp, K.; Monies, C.

    2004-12-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2003. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorous and sulphur compounds related to eutrofication and acidification and selected heavy metals. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. The measurements in the monitoring programme are supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surfaces as well as marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data input. (BA)

  19. Atmospheric deposition of 7Be by rain events, incentral Argentina

    Science.gov (United States)

    Ayub, J. Juri; Di Gregorio, D. E.; Huck, H.; Velasco, H.; Rizzotto, M.

    2008-08-01

    Beryllium-7 is a natural radionuclide that enters into the ecosystems through wet and dry depositions and has numerous environmental applications in terrestrial and aquatic ecosystems. Atmospheric wet deposition of 7Be was measured in central Argentina. Rain traps were installed (1 m above ground) and individual rain events have been collected. Rain samples were filtered and analyzed by gamma spectrometry. The gamma counting was undertaken using a 40%-efficient p-type coaxial intrinsic high-purity natural germanium crystal built by Princeton Gamma-Tech. The cryostat was made from electroformed high-purity copper using ultralow-background technology. The detector was surrounded by 50 cm of lead bricks to provide shielding against radioactive background. The detector gamma efficiency was determined using a water solution with known amounts of chemical compounds containing long-lived naturally occurring radioisotopes, 176Lu, 138La and 40K. Due to the geometry of the sample and its position close to the detector, the efficiency points from the 176Lu decay, had to be corrected for summing effects. The measured samples were 400 ml in size and were counted curing one day. The 7Be detection limit for the present measurements was as low as 0.2 Bq l-1. Thirty two rain events were sampled and analyzed (November 2006-May 2007). The measured values show that the events corresponding to low rainfall (<20 mm) are characterized by significantly higher activity concentrations (Bq l-1). The activity concentration of each individual event varied from 0.8 to 3.5 Bq l-1, while precipitations varied between 4 and 70 mm. The integrated activity by event of 7Be was fitted with a model that takes into account the precipitation amount and the elapsed time between two rain events. The integrated activities calculated with this model show a good agreement with experimental values.

  20. The investigation of atmospheric deposition distribution of organochlorine pesticides (OCPs) in Turkey

    Science.gov (United States)

    Cindoruk, S. Sıddık; Tasdemir, Yücel

    2014-04-01

    Atmospheric deposition is a significant pollution source leading to contamination of remote and clean sites, surface waters and soils. Since persistent organic pollutants (POPs) stay in atmosphere without any degradation, they can be transported and deposited to clean surfaces. Organochlorine pesticides are an important group of POPs which have toxic and harmful effects to living organisms and environment. Therefore, atmospheric deposition levels and characteristics are of importance to determine the pollution quantity of water and soil surfaces in terms of POPs. This study reports the distribution quantities of atmospheric deposition including bulk, dry, wet and air-water exchange of particle and gas phase OCPs as a result of 1-year sampling campaign. Atmospheric deposition distribution showed that the main mechanism for OCPs deposition is wet processes with percentage of 69 of total deposition. OCP compounds' deposition varied according to atmospheric concentration and deposition mechanism. HCH compounds were dominant pesticide species for all deposition mechanisms. HCH deposition constituted the 65% of Σ10OCPs.

  1. Modeling and mapping of atmospheric mercury deposition in adirondack park, new york.

    Science.gov (United States)

    Yu, Xue; Driscoll, Charles T; Huang, Jiaoyan; Holsen, Thomas M; Blackwell, Bradley D

    2013-01-01

    The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg) deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 [Formula: see text]g m[Formula: see text] yr[Formula: see text] with a range of -3.7-46.0 [Formula: see text]g m[Formula: see text] yr[Formula: see text]. Atmospheric Hg dry deposition (370 kg yr[Formula: see text]) was found to be more important than wet deposition (210 kg yr[Formula: see text]) to the entire Adirondacks (2.4 million ha). The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m(-2) yr(-1), while the southwestern and the northern areas received Hg deposition ranging from 25-30 μg m(-2) yr(-1).

  2. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Science.gov (United States)

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  3. Biomonitoring of atmospheric trace element deposition around an industrial town in Ghana

    Science.gov (United States)

    Nyarko, B. J. B.; Adomako, D.; Serfor-Armah, Y.; Dampare, S. B.; Adotey, D.; Akaho, E. H. K.

    2006-09-01

    Parmelia sulcata lichen species have been used to study the atmospheric deposition of heavy metals and other toxic elements around an industrial area in Ghana. Natural soil samples were collected at all the sampling points and analysed in order to investigate surface accumulation of the heavy metals. The sampling points used for the study were: Afienya, Doryemu Cemetery and Doryemu River. The surface accumulation of the heavy metals would be used to examine the correlation of the elements in the lichen and soil samples in order to separate contributions from atmospheric deposition and from that of soil minerals. Thermal neutron activation analysis techniques employing a 30 kW tank-in-pool research reactor operating at a thermal neutron flux of 5×10 11 s -1 cm -2 was used to determine Al, Cr, Mn, Fe, Ti, Th and V in both the lichen and soil samples. The level of contamination was quantified using the enrichment factor approach. This approach was adopted in order to ascertain whether these elements are enriched in the soil or in the atmosphere. The sampling points were enriched in the atmosphere with Cr, Mn, Fe, Ti, Th and V in the decreasing order of Afienya, Doryemu Cemetery and Doryemu River.

  4. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    Science.gov (United States)

    Najafi, Navid; Rozati, S. M.

    2018-03-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  5. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    Science.gov (United States)

    Samuel M. Simkin; Edith B. Allen; William D. Bowman; Christopher M. Clark; Jayne Belnap; Matthew L. Brooks; Brian S. Cade; Scott L. Collins; Linda H. Geiser; Frank S. Gilliam; Sarah E. Jovan; Linda H. Pardo; Bethany K. Schulz; Carly J. Stevens; Katharine N. Suding; Heather L. Throop; Donald M. Waller

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these...

  6. The Use of Biomonitors to Monitor Atmospheric Deposition of 210Pb

    International Nuclear Information System (INIS)

    Jeran, Z.; Jacimovic, R.

    1998-01-01

    The main source of 210 Pb in the environment is the exhalation of 222 Rn gas from the ground to the atmosphere during the radioactive decay of natural uranium - radium chain. In the atmosphere this radionuclide is rapidly attached to small particles - aerosols, predominantly on those particles below 0.3 mm. The half-life of 210 Pb is longer than the atmospheric residence time of the aerosols on which it resides (1). By sedimentation and washout of aerosols this nuclide is then transferred to the soil or vegetation. The other main sources include burning of fossil fuels and phosphate fertilizers. The usual way to determine the levels of 210 Pb and other radionuclides in the atmosphere is the use of a high volume filter system, which should operate for a long time to collect enough material for analysis. An other approach to determining the outdoor levels of radionuclides is the use of suitable biomonitors such as lichens or mosses. These organisms, although neither evolutionarie nor taxonomically related, have some common characteristics which enable them to be used as monitors for atmospheric pollution. They lack roots and protective organs against the substances derived from the atmosphere (stomata and cuticle) and are very efficient accumulators of atmospheric particulate material and chemical substances such as radionuclides or heavy metals (2). The levels of these substances in lichens and mosses are usually much higher than in air particulates or precipitation and for these reason the analysis is much easier. Another advantage of biomonitors over conventional sampling of air particulates or precipitation is that the collection of lichens or mosses is very cheap therefore allows a very large number of sites to be included in the same survey and permits detailed geographical deposition patterns to be drawn (3). It must be emphasised that concentration data on elements or radionuclides in lichens or mosses represent the relative deposition patterns over a certain

  7. Integrated Assessment of Ecosystem Effects of Atmospheric Deposition

    Science.gov (United States)

    Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...

  8. Atmospheric deposition of trace elements around Ulan Bator city studied by moss and lichen biomonitoring technique and INAA

    International Nuclear Information System (INIS)

    Ganbold, G.; Gehrbish, Sh.; Tsehndehehkhuu, Ts.; Gundorina, S.F.; Frontas'eva, M.V.; Ostrovnaya, T.M.; Pavlov, S.S.

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (Rhytidium rugosum, Thuidium abietinum, Entodon concinnus) and lichens (Cladonia stellaris, Parmelia separata) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries

  9. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    CERN Document Server

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  10. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  11. Modelling and tracer studies of atmospheric dispersion and deposition in regions of complex topography

    International Nuclear Information System (INIS)

    Norden, C.E.

    1981-11-01

    An indium tracer aerosol generating apparatus based on an alcohol/oxygen burner, and an analytical procedure by which filter samples containing tracer material could be analysed quantitatively by means of neutron activation analysis, were developed for use in atmospheric dispersion and deposition studies. A number of series of atmospheric dispersion experiments were conducted in the Richards Bay and Koeberg- Cape Town areas. The results are given, comparing the airbone tracer concentrations measured at ground level with values predicted by means of a numerical model, utilising two to three schemes, varying in sophistication, for calculating the dispersion coefficients. Recommendations are given regarding a dispersion model and dispersion coefficients for regular use in the Koeberg area, and ways for estimating plume trajectories

  12. Multielement atmospheric deposition study in Croatia using moss biomonitoring, NAA, AAS and GIS technologies

    International Nuclear Information System (INIS)

    Spiric, Z.; Frontas'eva, M.V.; Gundorina, S.F.; Ostrovnaya, T.M.; Stafilov, T.; Enimiteva, V.; Steinnes, E.; Bukovec, D.

    2009-01-01

    For the first time the moss biomonitoring technique and two complementary analytical techniques - neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) - were applied to study multielement atmospheric deposition in the Republic of Croatia. Moss samples were collected during the summer 2006 from 98 sites evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention - ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. Conventional and epithermal neutron activation analyses made it possible to determine concentrations of 41 elements including key heavy metals such as Pb, Cd, Hg, and Cu determined by AAS. Principal component analysis (factor analysis with VARIMAX rotation) was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values for Croatia are consistent with the corresponding values for all Europe for most elements. It was shown that the Adriatic coastline of Croatia may be considered as an environmentally pristine area. This study was conducted for providing reliable assessment of air quality throughout Croatia and producing information needed for better identification of pollution sources and improving the potential for assessing environmental and health risks in Croatia associated with toxic metals

  13. Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison.

    Science.gov (United States)

    Feng, Daolun; Liu, Ying; Gao, Yi; Zhou, Jinxing; Zheng, Lirong; Qiao, Gang; Ma, Liming; Lin, Zhifen; Grathwohl, Peter

    2017-11-01

    Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012-2014. Total fluxes of 17 PAHs were 587-32,300 ng m -2 day -1 , with a geometric mean of 2600 ng m -2 day -1 . The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km -2 ) with a range of 2.5-10 tons (0.4-1.6 kg km -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    Science.gov (United States)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  15. Atmospheric wet and dry deposition of trace elements at ten sites in Northern China

    Science.gov (United States)

    Pan, Y. P.; Wang, Y. S.

    2014-08-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in

  16. External quality assurance project report for the National Atmospheric Deposition Program’s National Trends Network and Mercury Deposition Network, 2013–14

    Science.gov (United States)

    Wetherbee, Gregory A.; Martin, RoseAnn

    2016-07-05

    The U.S. Geological Survey Branch of Quality Systems operated five distinct programs to provide external quality assurance monitoring for the National Atmospheric Deposition Program’s (NADP) National Trends Network and Mercury Deposition Network during 2013–14. The National Trends Network programs include (1) a field audit program to evaluate sample contamination and stability, (2) an interlaboratory comparison program to evaluate analytical laboratory performance, and (3) a colocated sampler program to evaluate bias from precipitation sampler upgrades. The Mercury Deposition Network programs include the (4) system blank program and (5) an interlaboratory comparison program. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends for chemical constituents in wet deposition.

  17. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  18. MEAD: an interdisciplinary study of the marine effects of atmospheric deposition in the Kattegat.

    Science.gov (United States)

    Spokes, L; Jickells, T; Weston, K; Gustafsson, B G; Johnsson, M; Liljebladh, B; Conley, D; Ambelas-Skjødth, C; Brandt, J; Carstensen, J; Christiansen, T; Frohn, L; Geernaert, G; Hertel, O; Jensen, B; Lundsgaard, C; Markager, S; Martinsen, W; Møller, B; Pedersen, B; Sauerberg, K; Sørensen, L L; Hasager, C C; Sempreviva, A M; Pryor, S C; Lund, S W; Larsen, S; Tjernström, M; Svensson, G; Zagar, M

    2006-04-01

    This paper summarises the results of the EU funded MEAD project, an interdisciplinary study of the effects of atmospheric nitrogen deposition on the Kattegat Sea between Denmark and Sweden. The study considers emissions of reactive nitrogen gases, their transport, transformations, deposition and effects on algal growth together with management options to reduce these effects. We conclude that atmospheric deposition is an important source of fixed nitrogen to the region particularly in summer, when nitrogen is the limiting nutrient for phytoplankton growth, and contributes to the overall eutrophication pressures in this region. However, we also conclude that it is unlikely that atmospheric deposition can, on its own, induce algal blooms in this region. A reduction of atmospheric nitrogen loads to this region will require strategies to reduce emissions of ammonia from local agriculture and Europe wide reductions in nitrous oxide emissions.

  19. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia

    DEFF Research Database (Denmark)

    Hovmand, Mads Frederik; Kemp, Kaare; Kystol, J.

    2008-01-01

    Thirty-three years of measurements of atmospheric heavy metal (HM) deposition (bulk precipitation) in Denmark combined with European emission inventories form the basis for calculating a 50-year accumulated atmospheric input to a remote forest plantation on the island of Laesoe. Soil samples taken...... in two depths, 0-10 cm and 10-20 cm, at eight forest sites at the island were used to determine the increase in HM content in the eolian deposited top soils of the plantation. Concentrations of lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), vanadium (V), nickel (Ni) and arsenic (As) were determined...... in atmospheric deposition and in soils. The accumulated atmospheric deposition is of the same magnitude as the increase of these metals in the top soil....

  20. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition

    Science.gov (United States)

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we p...

  1. A heavy metal atmospheric deposition study in the South Ural mountains

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Smirnov, L.I.; Steinnes, E.; Lyapunov, S.M.; Cherchintsev, V.D.

    2002-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Ural, one of the most heavily poluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Tf, W, Au, Th, U) in soil and 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) in mosses were determined by epithermal neutron activation analysis, The elements Cu, Cd and Pb (in moss samples only) were obtained by atomic absorption spectrometry. The element concentrations were compared to those for copper basins in Poland and Serbia as well as to baseline concentrations in Norway. VARIMAX rotated principal component analysis was used to identify and characterise different pollution sources and to point out the most polluted areas

  2. Atmospheric deposition of trace elements in Santiago de Querétaro city

    Science.gov (United States)

    Camacho Díaz, J. G.; González Sosa, E.; García Martínez, R.; Mondragón Olguín, V.; Miranda Castañeda, G.

    2013-05-01

    Atmospheric pollution and environment are one of the main problems around the planet. That's the reason which is important to understand the way pollution interact with weather. This work researches the contamination process from biological organisms or bio-indicators to identify and quantify those elements which are dangerous for humans. On one hand, because bio-indicators reduce cost for in situ monitoring systems and sample methods, and by the other hand because they can combine with isotopic analysis. Tilandsia Recurvata Liquens (Bromeliaceae) were collected in urban zone from Santiago de Querétaro, establishing 2 sample periods, which are April - June 2011 and March - April 2012. Total number of samples was 190 from 14 sites, 100 corresponding for first period and 90 for the second. Also, reference samples were collected from a place located at 30 km from metropolitan area. Element concentrations were determined through isotopy for 13C y 15N and metal elements by using and ICP-MS. Maps were drawn to explain distribution and deposition in the city to distinguish natural contribution and anthropogenic deposition. 13C y 15N results showed that distribution of carbon and nitrogen compound is conditioned due vehicular traffic activity, wind frequency and rain patterns. Key Words: Bio-monitoring, bio-indicator, liquen, atmospheric pollution, isotopy, ICP-MS Analysis.

  3. Atmospheric nitrogen deposition promotes carbon loss from peat bogs

    Czech Academy of Sciences Publication Activity Database

    Bragazza, L.; Freeman, Ch.; Jones, T.; Rydin, H.; Limpens, J.; Fenner, N.; Ellis, T.; Gerdol, R.; Hájek, Michal; Hájek, Tomáš; Iacumin, P.; Kutnar, L.; Tahvanainen, T.; Toberman, H.

    2006-01-01

    Roč. 103, č. 51 (2006), s. 19386-19389 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z60050516 Keywords : peatlands * nitrogen * deposition Subject RIV: EF - Botanics Impact factor: 9.643, year: 2006

  4. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  5. Atmospheric Arsenic Deposition in the Pearl River Delta Region, South China: Influencing Factors and Speciation.

    Science.gov (United States)

    Huang, Minjuan; Sun, Haoran; Liu, Hongtao; Wang, Xuemei; Wang, Baomin; Zheng, Dan

    2018-03-06

    This is a comprehensive study on mobilization/speciation and temporal/spatial variation of atmospheric arsenic (As) deposition in the Pearl River Delta (PRD) region. A set of experimental procedures was established for measuring the deposition fluxes of individual As species. The deposition carrying inorganic As III % was significantly higher than that contained in atmospheric particles. Compared with dry deposition, wet deposition was much more harmful to the regional ecosystem, as it contributed the majority of bulk deposition (>75%) and carried most of the mobilized iAs III compounds. A stepwise linear regression model was utilized to identify the factors influencing total As deposition (wet: precipitation and PM 2.5 , dry: relative humidity, wind speed, and PM 10 , bulk: precipitation, PM 2.5 , and wind speed). By examining the representativeness of the study sites and comparison with the literature data, the statistic models were verified to explain the temporal/spatial variation of total As deposition in the entire PRD region, where significant seasonal variation was only found for wet deposition (wet season > dry season). The annual As load contributed from regional atmospheric deposition increased from 2013 to 2015, when the contributions of individual cities varied annually.

  6. Novel thin films deposited on electrospun PCL scaffolds by atmospheric pressure plasma jet for L929 fibroblast cell cultivation

    Science.gov (United States)

    Gozutok, M.; Baitukha, A.; Arefi-Khonsari, F.; Turkoglu Sasmazel, H.

    2016-11-01

    This paper reports on the deposition of PCL homopolymers and poly ɛ-caprolactone-polyethylene glycol (PCL-PEG) copolymers by atmospheric pressure plasma jet (APPJ) onto electrospun PCL scaffolds for improving L929 fibroblast cell growth. Polymer deposited scaffolds showed better stability as well as lower CA as compared to those treated with APPJ in Ar alone used as the carrier gas to introduce the precursors due to the formation of polar groups generated during the plasma treatment, such as -OH and/or -COO. Average fiber and porosity sizes were calculated by using SEM photographs and the ImageJ Launcher Software program and higher values were observed for both PCL and PCL-PEG deposited scaffolds than the untreated electrospun PCL scaffolds. XPS analysis showed that C1s% content decreased for PCL deposited (from 82.4% to 71.0%) and PCL-PEG deposited (from 82.4% to 57.7%) and O1s% composition increased for PCL deposited (from 17.6% to 29.0%) and PCL-PEG deposited (from 17.6% to 42.3%) compared to the untreated one. XPS results proved more incorporation of oxygen moieties on the deposited surfaces than the untreated samples giving rise to more hydrophilic surfaces to the deposited ones. Standard in vitro MTT test, Giemsa staining, fluorescence and CLSM imaging techniques were used for the determination of cell viability, adhesion and proliferation. Cell culture experiments showed that PCL-PEG deposited electrospun PCL scaffolds had the most promising cell adhesion, proliferation and growth among the treated scaffolds. The increased average fiber diameter caused by deposition as well as oxygen containing polar groups formed on the surfaces due to the radicals present in the plasma atmosphere provided higher surface area and functionality, respectively, for cells to attach, yielding better biocompatibility performance.

  7. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland..). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  8. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland...). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  9. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  10. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  11. Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America

    Science.gov (United States)

    M.E. Fenn; J.O. Sickman; A. Bytnerowicz; D.W. Clow; N.P. Molotch; J.E. Pleim; G.S. Tonnesen; K.C. Weathers; P.E. Padgett; D.H. Campbell.

    2009-01-01

    Measuring atmospheric deposition in arid and snow-dominated regions presents unique challenges. Throughfall, the flux of nutrients transported in solution to the forest floor, is generally the most practical method of estimating below-canopy deposition, particularly when monitoring multiple forest sites or over multiple years. However, more studies are needed to relate...

  12. Source receptor relations for the calculation of atmospheric deposition to the North Sea: Nitrogen and Cadmium

    NARCIS (Netherlands)

    van Jaarsveld JA; de Leeuw FAAM

    1993-01-01

    In this report a simplified atmospheric transport model for estimating the deposition of nitrogen (both NOx and NHx) and cadmium to the North Sea is presented. In this so-called meta-model a linear relationship between the emissions from a source area and the resulting deposition at receptor points

  13. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    Science.gov (United States)

    Xu, W.; Luo, X. S.; Pan, Y. P.; Zhang, L.; Tang, A. H.; Shen, J. L.; Zhang, Y.; Li, K. H.; Wu, Q. H.; Yang, D. W.; Zhang, Y. Y.; Xue, J.; Li, W. Q.; Li, Q. Q.; Tang, L.; Lu, S. H.; Liang, T.; Tong, Y. A.; Liu, P.; Zhang, Q.; Xiong, Z. Q.; Shi, X. J.; Wu, L. H.; Shi, W. Q.; Tian, K.; Zhong, X. H.; Shi, K.; Tang, Q. Y.; Zhang, L. J.; Huang, J. L.; He, C. E.; Kuang, F. H.; Zhu, B.; Liu, H.; Jin, X.; Xin, Y. J.; Shi, X. K.; Du, E. Z.; Dore, A. J.; Tang, S.; Collett, J. L., Jr.; Goulding, K.; Zhang, F. S.; Liu, X. J.

    2015-07-01

    Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3-) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3-47.0 μg N m-3) and dry plus wet deposition fluxes (2.9-75.2 kg N ha-1 yr-1) of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha-1 yr-1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  14. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    Science.gov (United States)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  15. Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

    NARCIS (Netherlands)

    Hagens, M.|info:eu-repo/dai/nl/357426274; Hunter, K.A.; Liss, P.S.; Middelburg, J.J.|info:eu-repo/dai/nl/079665373

    2014-01-01

    Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay, and dependency on water column biogeochemistry are not well understood. Using a simple

  16. Effects of atmospheric deposition of pesticides on terrestrial organisms in the Netherlands

    NARCIS (Netherlands)

    Jong FMW de; Luttik R; SEC

    2004-01-01

    At present there is much focus on the atmospheric dispersal of pesticides. However, there is very little known about the effects of atmospheric deposition, especially in terrestrial ecosystems. In the study described here, a start has been made to clarify the possible effects on terrestrial

  17. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  18. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    Science.gov (United States)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    South Africa is the economic hub of southern Africa and is regarded as an important source region of atmospheric pollutants. A nitrogen dioxide (NO2) hotspot is clearly visible from space over the South African Mpumalanga Highveld, while South Africa is also regarded as the 9th largest anthropogenic sulphur (S) emitting country. Notwithstanding the importance of South Africa with regard to nitrogen (N) and S emissions, very limited data has been published on the chemical composition of wet deposition for this region. This paper presents the concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate (NO3-), chloride (Cl-), sulphate (SO42-) and water-soluble organic acids (OA) in the wet deposition samples collected between 2009 and 2014 at four South African IDAF (IGAC DEBITS Africa) sites, which are regarded as regional representatives of the north-eastern interior. Also, wet deposition fluxes of the ten ions are calculated and presented in this paper. The results show that the total ionic concentrations and fluxes of wet deposition were much higher at the two sites closer to anthropogenic emissions, while the pH of wet deposition at these two sites were lower compared to that of the two sites that were less impacted by anthropogenic emissions. . The major sources of the ten ions included marine, terrigenous (crust), fossil fuel combustion, agriculture and biomass burning. Significant contributions from fossil fuel combustion were determined for the two sites in close proximity to anthropogenic source regions. The results of back trajectory analysis, however, did indicate that the two remote sites are also affected by air masses passing over the source region through anti-cyclonic recirculation. The largest contributions at the two sites distant from the anthropogenic source regions were marine sources, while the impact of biomass burning was also more significant at the remote sites. Comparison to previous wet

  19. A Heavy Metal Atmospheric Deposition Study in the South Ural Mountains

    CERN Document Server

    Frontasyeva, M V; Steinnes, E; Lyapunov, S M; Cherchintsev, V D

    2002-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Ural, one of the most heavily polluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Au, Th, U) in soil and 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) in mosses were determined by epithermal neutron activation analysis. The elem...

  20. History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada

    Science.gov (United States)

    Gélinas, Yves; Lucotte, Marc; Schmit, Jean-Pierre

    The history of the atmospheric deposition of major and trace elements over southwestern Quebec, Canada, was reconstructed using multielemental analysis of lacustrine sediments sampled in a small and undisturbed lake located on top of a mountain in the heart of the industrialized St. Lawrence Valley. Acid leachable and residual elements were extracted from a 37-cm long core (1-cm resolution) using clean techniques and analyzed by inductively coupled plasma mass spectrometry. Organic matter and sulfur concentrations were high and played a major role in the low postdepositional diagenetic remobilization of many trace elements. Sulfur, manganese, iron, arsenic, molybdenum and barium displayed a high mobility making it exceedingly difficult to infer unambiguously time-dependent changes in atmospheric deposition for these elements. Atmospheric deposition rates for the less mobile elements (e.g., potassium, vanadium, chromium, cobalt, nickel, copper, zinc, rubidium, cadmium, tin, antimony, mercury, thallium, lead, and bismuth) increased regularly between 1942 and 1960-1975 in the Lake Hertel area and then stabilized for most of these elements, with the exception of nickel, copper, zinc and tin. Lead deposition rate was reduced by about 25% between 1982 and 1995, and a slight decreasing trend was also found for cobalt, mercury, and thallium during the same period. Present-day atmospheric deposition of metals directly on the lake surface represents a small percentage of the sedimentary deposition rates at this location. Deposition followed by surface runoff and outwash of terrestrial organic and inorganic matter most likely is the driving mechanism leading to the non-diagenetic enrichment of metals in Lake Hertel sediments.

  1. External quality-assurance results for the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2004

    Science.gov (United States)

    Wetherbee, Gregory A.; Latysh, Natalie E.; Greene, Shannon M.

    2006-01-01

    The U.S. Geological Survey (USGS) used five programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and two programs to provide external quality-assurance monitoring for the NADP/Mercury Deposition Network (NADP/MDN) during 2004. An intersite-comparison program was used to estimate accuracy and precision of field-measured pH and specific-conductance. The variability and bias of NADP/NTN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using the sample-handling evaluation (SHE), field-audit, and interlaboratory-comparison programs. Overall variability of NADP/NTN data was estimated using a collocated-sampler program. Variability and bias of NADP/MDN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using a system-blank program and an interlaboratory-comparison program. In two intersite-comparison studies, approximately 89 percent of NADP/NTN site operators met the pH measurement accuracy goals, and 94.7 to 97.1 percent of NADP/NTN site operators met the accuracy goals for specific conductance. Field chemistry measurements were discontinued by NADP at the end of 2004. As a result, the USGS intersite-comparison program also was discontinued at the end of 2004. Variability and bias in NADP/NTN data due to sample handling and shipping were estimated from paired-sample concentration differences and specific conductance differences obtained for the SHE program. Median absolute errors (MAEs) equal to less than 3 percent were indicated for all measured analytes except potassium and hydrogen ion. Positive bias was indicated for most of the measured analytes except for calcium, hydrogen ion and specific conductance. Negative bias for hydrogen ion and specific conductance indicated loss of hydrogen ion and decreased specific conductance from contact of the sample with

  2. Atmospheric deposition of 137Cs between 1994 and 2002 at Cienfuegos, Cuba

    International Nuclear Information System (INIS)

    Alonso-Hernandez, C.M.; Cartas-Aguila, H.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Martin-Perez, J.; Sibello-Hernandez, R.

    2006-01-01

    Levels of 137 Cs in total atmospheric deposition have been measured in the Cienfuegos region (Cuba) between 1994 and 2002. Samples were collected every three months, evaporated to dryness to obtain residual samples, and measured by gamma spectrometry. The 137 Cs mean concentration in total deposition was 0.24 Bq m -2 and data ranged between -2 . Precipitation rates and raintime have proved to be the most important factors controlling the concentration and depositional flux of 137 Cs in the atmosphere over Cienfuegos, showing a high correlation coefficient (R = 0.93)

  3. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    Science.gov (United States)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  4. Declining Atmospheric Sulfate Deposition in an Agricultural Watershed in Central Pennsylvania, USA

    Directory of Open Access Journals (Sweden)

    Kyle R. Elkin

    2016-11-01

    Full Text Available Sulfur emissions in the northeastern United States are only 20% of levels measured in 1987 due to the enactment of the US federal Clean Air Act. While there are numerous reports of forested ecosystems recovering from acidification as a result of the decline in sulfur deposition, few studies describe such recovery in agricultural watersheds. We used long-term (30+ yr atmospheric and watershed data from a USDA experimental watershed to investigate whether daily agricultural practices masked the declining sulfur (as sulfate-sulfur trends seen in mainly forested watersheds. Over the study period, atmospheric wet deposition of sulfate-sulfur decreased 75% while sulfate-sulfur at the watershed decreased by approximately 30%. While the deposition of sulfur is detrimental to stream quality, the reduction of sulfur deposition in recent years has caused many soils in the watershed to develop sulfur deficiencies. Long-term declines in watershed sulfur export reveal emerging concerns about reducing atmospheric sulfur levels.

  5. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    Science.gov (United States)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  6. Standard test method for determining atmospheric chloride deposition rate by wet candle method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers a wet candle device and its use in measuring atmospheric chloride deposition (amount of chloride salts deposited from the atmosphere on a given area per unit time). 1.2 Data on atmospheric chloride deposition can be useful in classifying the corrosivity of a specific area, such as an atmospheric test site. Caution must be exercised, however, to take into consideration the season because airborne chlorides vary widely between seasons. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Correlation of atmospheric deposition and diseases in the Euroregion Neisse

    International Nuclear Information System (INIS)

    Wappelhorst, O.; Kuehn, I.; Oehlmann, J.; Korhammer, S.; Markert, B.

    2001-01-01

    A biomonitoring system using the mosses Pleurozium schreberi and Polytrichum formosum as biomonitors has been used to determine the degree of pollution in the Euroregion Neisse (ERN). This region, located in Central Europe where the borders Germany, Poland and Czech Republic meet, was one of the most highly polluted areas in Europe until the early 1990s. For clarity and ease of access the results have been presented visually using a Geographical Information System (GIS) (Markert et al., 1999; Wappelhorst, 1999; Wappelhorst et al., 1999). The deposition of 37 elements in the Euroregion as found in the moss study is compared with the incidence of various diseases, using data from regional hospitals. Connections between diseases of the respiratory tract and Ce, Fe, Ga and Ge deposition as well as between cardiovascular diseases and Tl were determined. The results will be validated by further studies with an even greater amount of data. (author)

  8. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  9. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  10. Atmospheric concentrations and deposition of organochlorine pesticides in the US Mid-Atlantic region

    Science.gov (United States)

    Gioia, Rosalinda; Offenberg, John H.; Gigliotti, Cari L.; Totten, Lisa A.; Du, Songyan; Eisenreich, Steven J.

    Organochlorine pesticides (OCPs) were measured in the atmosphere over the period January 2000-May 2001 at six locations as part of New Jersey Atmospheric Deposition Network (NJADN). Gas phase, particle phase and precipitation concentrations of 22 OCP species, including chlordanes, DDTs, HCHs, endosulfan I and II, aldrin and diedrin, were measured. OCPs are found predominantly in the gas phase in all seasons, representing over 95% of the total air concentrations. Most of the pesticides measured display highest concentrations at urban sites (Camden and New Brunswick), although in many cases the differences in geometric mean concentrations are not statistically significant. The relationship of gas-phase partial pressure with temperature was examined using the Clausius-Clapeyron equation; significant temperature dependencies were found for all OCPs, except aldrin. Atmospheric depositional fluxes (gas absorption into water+dry particle deposition+wet deposition) to the New York-New Jersey Harbor Estuary of selected OCPs were estimated at NJADN sites. Atmospheric concentrations of dieldrin, aldrin and the HCHs are similar to those measured by the Integrated Atmospheric Deposition Network (IADN) in the Great Lake Region. In contrast, concentrations of DDTs, chlordanes and heptachlor are higher in the Mid-Atlantic compared to the Great Lakes, suggesting that the New York-New Jersey Harbor Estuary receives higher fluxes of these chemicals than the Great Lakes.

  11. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  12. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  13. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA......, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks...... in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly...

  14. Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Kim, Tae-Wook; Lee, Kitack; Najjar, Raymond G.; Jeong, Hee-Dong; Jeong, Hae Jin

    2011-10-01

    The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited.

  15. Atmospheric dispersal and deposition of radioactive material from Chernobyl

    International Nuclear Information System (INIS)

    Wheeler, D.A.

    1988-01-01

    This paper reports on the results of studies undertaken in the wake of the fire at the Chernobyl nuclear power station. Published upper air charts and the findings of scientists engaged in monitoring the fallout are used to reconstruct the clouds' trajectories. The results reveal the role of the various features of weather systems in determining the dispersal, transportation and ultimate fallout of radioactive matter. Most importantly, the situation over Europe at the time of the fire was such as to disperse the radioactive clouds northwards to Scandinavia and later westwards to Britain; directions counter to the dominant westerlies of these latitudes. However, eastwards global dispersal took place rapidly in the weeks following the fire. The paper also emphasizes the importance of rainfall in explaining the geographical variation in the deposition of radioactive material. (author)

  16. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    Science.gov (United States)

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  17. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    Science.gov (United States)

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  18. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona

    International Nuclear Information System (INIS)

    Zschau, T.; Getty, S.; Gries, C.; Ameron, Y.; Zambrano, A.; Nash, T.H.

    2003-01-01

    Spatial variation of elemental deposition to lichen receptors across Maricopa County, Arizona, USA is documented for 1998 and historical trends relative to 1974 are documented. - Spatial patterns of atmospheric deposition of trace elements to an epilithic lichen were assessed using a spatial grid of 28 field sites in 1998 throughout Maricopa County, Arizona, USA. In addition, samples of Xanthoparmelia spp. from Arizona State University lichen herbarium material (1975-1976) was utilized for a limited number of sites in order to explore temporal trends. The lichen material was cleaned, wet digested and analyzed by ICP-MS for a suite of elemental concentrations [antimony (Sb), cadmium (Cd), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), europium (Eu), gadolinium (Gd), gold (Au), holmium (Ho), lead (Pb), lutetium (Lu), neodymium (Nd), nickel (Ni), palladium (Pd), platinum (Pt), praseodymium (Pr), samarium (Sm), scandium (Sc), silver (Ag), terbium (Tb), thulium (Tm), tin (Sn), uranium (U), ytterbium (Yb), yttrium (Y), and zinc (Zn)]. Cluster analysis and principal component analysis suggest three major factors, which, depending on regional aerosol fractionation, explain most of the variation in elemental signatures: (1) a group of widely distributed rare earth elements (2) a highly homogenous Co, Cr, Ni, and Sc component representing the influence of mafic rocks, and (3) anthropogenic emissions. Elemental concentrations in Maricopa County lichens were generally comparable to those reported for relatively unpolluted areas. Only highly urbanized regions, such as the greater Phoenix Metropolitan Area and the NW corner of the county, exhibited elevated concentrations for Zn, Cu, Pb, and Cd. Lead levels in lichens have fallen over the last 30 years by 71%, while Zn concentrations for some regions have increased by as much as 245%. From the spatial pattern of elemental deposition for Cd, Cu, Ni, Pr, Pb, and Cu, we infer that agriculture, mining

  19. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Zschau, T.; Getty, S.; Gries, C.; Ameron, Y.; Zambrano, A.; Nash, T.H

    2003-09-01

    Spatial variation of elemental deposition to lichen receptors across Maricopa County, Arizona, USA is documented for 1998 and historical trends relative to 1974 are documented. - Spatial patterns of atmospheric deposition of trace elements to an epilithic lichen were assessed using a spatial grid of 28 field sites in 1998 throughout Maricopa County, Arizona, USA. In addition, samples of Xanthoparmelia spp. from Arizona State University lichen herbarium material (1975-1976) was utilized for a limited number of sites in order to explore temporal trends. The lichen material was cleaned, wet digested and analyzed by ICP-MS for a suite of elemental concentrations [antimony (Sb), cadmium (Cd), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), europium (Eu), gadolinium (Gd), gold (Au), holmium (Ho), lead (Pb), lutetium (Lu), neodymium (Nd), nickel (Ni), palladium (Pd), platinum (Pt), praseodymium (Pr), samarium (Sm), scandium (Sc), silver (Ag), terbium (Tb), thulium (Tm), tin (Sn), uranium (U), ytterbium (Yb), yttrium (Y), and zinc (Zn)]. Cluster analysis and principal component analysis suggest three major factors, which, depending on regional aerosol fractionation, explain most of the variation in elemental signatures: (1) a group of widely distributed rare earth elements (2) a highly homogenous Co, Cr, Ni, and Sc component representing the influence of mafic rocks, and (3) anthropogenic emissions. Elemental concentrations in Maricopa County lichens were generally comparable to those reported for relatively unpolluted areas. Only highly urbanized regions, such as the greater Phoenix Metropolitan Area and the NW corner of the county, exhibited elevated concentrations for Zn, Cu, Pb, and Cd. Lead levels in lichens have fallen over the last 30 years by 71%, while Zn concentrations for some regions have increased by as much as 245%. From the spatial pattern of elemental deposition for Cd, Cu, Ni, Pr, Pb, and Cu, we infer that agriculture, mining

  20. Mosses Indicating Atmospheric Nitrogen Deposition and Sources in the Yangtze River Drainage Basin, China

    Science.gov (United States)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-07-01

    Characterizing the level and sources of atmospheric N deposition in a large-scale area is not easy when using physical monitoring. In this study, we attempted to use epilithic mosses (Haplocladium microphyllum (Hedw.)) as a bioindicator. A gradient of atmospheric N deposition from 13.8 kg N ha-1 yr-1 to 47.7 kg N ha-1 yr-1 was estimated on the basis of moss tissue N concentrations and the linear equation between them. The estimated results are reliable because the highest atmospheric N deposition occurred in the middle parts of the Yangtze River, where the highest TN concentrations were also observed. Moss δ15N values in cities and forests were found in distinctly different ranges of approximately -10‰ to -6‰ and approximately -2‰ to 2‰, respectively, indicating that the main N sources in most of these cities were excretory wastes and those in forests were soil emissions. A negative correlation between moss δ15N values and the ratios of NH4-N/NO3-N in deposition (y = -1.53 x + 1.78) has been established when the ratio increased from 1.6 to 6.5. On the basis of the source information, the negative moss δ15N values in this study strongly indicate that NHy-N is the dominant N form in N deposition in the whole drainage basin. These findings are supported by the existing data of chemical composition of local N deposition.

  1. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus, E-mail: magnus.bergknut@chem.umu.se [Umea University, Department of Chemistry, SE-901 87 Umea (Sweden); Laudon, Hjalmar [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, SE-901 83 Umea (Sweden); Jansson, Stina [Umea University, Department of Chemistry, SE-901 87 Umea (Sweden); Larsson, Anna [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, SE-901 83 Umea (Sweden); Gocht, Tilman [University of Tuebingen, Center for Applied Geoscience, 72076 Tuebingen (Germany); Wiberg, Karin [Umea University, Department of Chemistry, SE-901 87 Umea (Sweden); Swedish University of Agricultural Sciences (SLU), Department of Aquatic Sciences and Assessment, SE-750 07 Uppsala (Sweden)

    2011-06-15

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. - Graphical abstract: Display Omitted Highlights: > The fluxes of organic pollutants in a pristine boreal catchment were measured. > Most of the input and export occurred during winter and spring flood. > 96.0-99.9% of received bulk deposition was retained by the landscape. > Organic pollutants will impact boreal stream waters for an extended period of time. - The boreal landscape is effective in retaining diffuse atmospheric deposition of dioxins and PCBs, slowly releasing these pollutants into nearby streams.

  2. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin

    2011-01-01

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. - Graphical abstract: Display Omitted Highlights: → The fluxes of organic pollutants in a pristine boreal catchment were measured. → Most of the input and export occurred during winter and spring flood. → 96.0-99.9% of received bulk deposition was retained by the landscape. → Organic pollutants will impact boreal stream waters for an extended period of time. - The boreal landscape is effective in retaining diffuse atmospheric deposition of dioxins and PCBs, slowly releasing these pollutants into nearby streams.

  3. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011

    Science.gov (United States)

    Morino, Y.; Ohara, T.; Nishizawa, M.

    2011-12-01

    To understand the atmospheric behavior of radioactive materials emitted from the Fukushima Daiichi nuclear power plant after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011, we simulated the transport and deposition of iodine-131 and cesium-137 using a chemical transport model. The model roughly reproduced the observed temporal and spatial variations of deposition rates over 15 Japanese prefectures (60-400 km from the plant), including Tokyo, although there were some discrepancies between the simulated and observed rates. These discrepancies were likely due to uncertainties in the simulation of emission, transport, and deposition processes in the model. A budget analysis indicated that approximately 13% of iodine-131 and 22% of cesium-137 were deposited over land in Japan, and the rest was deposited over the ocean or transported out of the model domain (700 × 700 km2). Radioactivity budgets are sensitive to temporal emission patterns. Accurate estimation of emissions to the air is important for estimation of the atmospheric behavior of radionuclides and their subsequent behavior in land water, soil, vegetation, and the ocean.

  4. Annual input fluxes and source identification of trace elements in atmospheric deposition in Shanxi Basin: the largest coal base in China.

    Science.gov (United States)

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Yu, Tao; Hou, Qingye; Li, Desheng; Wang, Jianwu

    2014-11-01

    Industrialization and urbanization have led to a great deterioration of air quality and provoked some serious environmental concerns. One hundred and five samples of atmospheric deposition were analyzed for their concentrations of 13 trace elements (As, Cd, Cu, Fe, Al, Co, Cr, Hg, Mn, Mo, Pb, Se, and Zn) in Shanxi Basin, which includes six isolate basins. The input fluxes of the trace elements in atmospheric deposition were observed and evaluated. Geostatistical analysis (EF, PCA, and CA ) were conducted to determine the spatial distribution, possible sources, and enrichment degrees of trace elements in atmospheric deposition. Fe/Al and K/Al also contribute to identify the sources of atmospheric deposition. The distribution of trace elements in atmospheric deposition was proved to be geographically restricted. The results show that As, Cd, Pb, Zn, and Se mainly come from coal combustion. Fe, Cu, Mn, Hg, and Co originate mainly from interactions between local polluted soils and blowing dust from other places, while the main source of Al, Cr, and Mo are the soil parent materials without pollution. This work provides baseline information to develop policies to control and reduce trace elements, especially toxic elements, from atmospheric deposition. Some exploratory analytical methods applied in this work are also worth considering in similar researches.

  5. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    Science.gov (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  6. A 3D parameterization of iron atmospheric deposition to the global ocean

    Science.gov (United States)

    Myriokefalitakis, Stelios; Krol, Maarten C.; van Noije, Twan P. C.; Le Sager, Philippe

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe, associated with dusts and combustion processes. The impact of atmospheric acidity on mineral solubility is parameterized based on updated experimental and theoretical findings, and model results are evaluated against available observations. The link between the soluble Fe atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient containing aerosols to atmospheric composition changes is demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs: Modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  7. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, Linda H., E-mail: lgeiser@fs.fed.u [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Jovan, Sarah E. [US Forest Service Forest Inventory and Analysis Program, Pacific Northwest Research Station, 620 SW Main St, Suite 400, Portland, OR 97205 (United States); Glavich, Doug A. [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Porter, Matthew K. [Laboratory for Atmospheric Research, Washington State University, Pullman, WA 99164 (United States)

    2010-07-15

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha{sup -1} y{sup -1} in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. - Lichen-based critical loads for N deposition in western Oregon and Washington forests ranged from 3 to 9 kg ha{sup -1} y{sup -1}, increasing with mean annual precipitation.

  8. Optimization of solar cell performance using atmospheric pressure chemical vapour deposition deposited TCOs

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Hodgkinson, J.L.; Sheel, P.; Dagkaldiran, U.; Gordijn, A.; Finger, F.; Remeš, Zdeněk; Vaněček, Milan

    2009-01-01

    Roč. 25, č. 8 (2009), s. 789-796 ISSN 1938-5862. [International Chemical Vapor Deposition Symposium (CVD-XVII) /17./. Wien, 04.10.2009-09.10.2009] Grant - others:European Community(XE) Project (STREP) of the 6. FP Institutional research plan: CEZ:AV0Z10100521 Keywords : solar cells * TCO * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition

    NARCIS (Netherlands)

    Hoosbeek, M.R.; Breemen, van N.; Vasander, H.; Buttlers, A.; Berendse, F.

    2002-01-01

    The free air carbon dioxide enrichment (FACE) and N deposition experiments on four ombrotrophic bogs in Finland, Sweden, the Netherlands and Switzerland, revealed that after three years of treatment: (1) elevated atmospheric CO2 concentration had no significant effect on the biomass growth of

  10. Atmospheric spatial atomic layer deposition of in-doped ZnO

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Roozeboom, F.; Poodt, P.

    2014-01-01

    Indium-doped zinc oxide (ZnO:In) has been grown by spatial atomic layer deposition at atmospheric pressure (spatial-ALD). Trimethyl indium (TMIn), diethyl zinc (DEZ) and deionized water have been used as In, Zn and O precursor, respectively. The metal content of the films is controlled in the range

  11. Contemporary rates of atmospheric inorganic nitrogen (N) deposition to Latin American cities

    Science.gov (United States)

    Recent efforts to develop and evaluate regional and global chemical transport models reveal major gaps in atmospheric deposition monitoring. First, in contrast to northern North America, western Europe, and Asia, vast land areas in Latin America, Africa, and Australia remain unde...

  12. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  13. Impact of acid atmospheric deposition on soils : quantification of chemical and hydrologic processes

    NARCIS (Netherlands)

    Grinsven, van J.J.M.

    1988-01-01

    Atmospheric deposition of SO x , NOx and NHx will cause major changes in the chemical composition of solutions in acid soils, which may affect the biological functions of the soil. This thesis deals with quantification of soil acidification by means of chemical

  14. Atmospheric deposition, CO2, and change in the land carbon sink.

    Science.gov (United States)

    Fernández-Martínez, M; Vicca, S; Janssens, I A; Ciais, P; Obersteiner, M; Bartrons, M; Sardans, J; Verger, A; Canadell, J G; Chevallier, F; Wang, X; Bernhofer, C; Curtis, P S; Gianelle, D; Grünwald, T; Heinesch, B; Ibrom, A; Knohl, A; Laurila, T; Law, B E; Limousin, J M; Longdoz, B; Loustau, D; Mammarella, I; Matteucci, G; Monson, R K; Montagnani, L; Moors, E J; Munger, J W; Papale, D; Piao, S L; Peñuelas, J

    2017-08-29

    Concentrations of atmospheric carbon dioxide (CO 2 ) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO 2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO 2 -fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO 2 , to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.

  15. The Effects of Atmospheric Nitrogen Deposition on Terrestrial and Freshwater Biodiversity

    NARCIS (Netherlands)

    Baron, J.S.; Barber, M.; Adams, M.; Dobben, van H.F.

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in

  16. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    Science.gov (United States)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  17. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  18. Assessment of atmospheric trace metal deposition in urban environments using direct and indirect measurement methodology and contributions from wet and dry depositions

    Science.gov (United States)

    Omrani, Mehrazin; Ruban, Véronique; Ruban, Gwenaël; Lamprea, Katerine

    2017-11-01

    Bulk Atmospheric Deposition (BAD), Wet Atmospheric Deposition (WAD) and Dry Atmospheric Deposition (DAD) were all measured within an urban residential area in Nantes (France) over a 9-month period (27 February - 10 December 2014). The objectives of this study were to compare 2 methods for measuring dry and wet atmospheric depositions in the urban environment (DAD and WAD: direct method; BAD and WAD: indirect one), and to characterize as well the variations and relative contributions of these depositions. Trace metals (As, Cd, Cr, Cu, Ni, Pt and V) were used to carry out these comparison and quantification. BAD was collected with two open polyethylene containers (72 × 54 × 21 cm), while WAD was collected by means of an automated rainwater collector and DAD was determined from both air measurements (recorded by an air sampler) and 7Be deposition velocities. The comparison based on a detailed evaluation of uncertainties showed a significant difference between the direct and indirect methods. Dry and wet depositions varied widely from one month to the next. Zn and Cu were the most abundant elements in both dry and wet depositions. The mean contribution of DAD to the bulk atmospheric deposition during this 9-month study was significant for Zn, Cu and V (about 25%) as well as for Pb (approx. 60%). For this relatively unpolluted urban residential catchment, the contribution of atmospheric deposition to global load at the catchment outlet was low, between 10% and 20% for Zn, Cu, V and Pb, 25% for Cr and about 30% for Ni. For other urban sites exhibiting high atmospheric pollution however, the atmospheric contribution to the global pollution load could be much greater. An accurate and representative estimation of DAD thus proves critical.

  19. Atmospheric deposition patterns of (210)Pb and (7)Be in Cienfuegos, Cuba.

    Science.gov (United States)

    Alonso-Hernández, Carlos M; Morera-Gómez, Yasser; Cartas-Águila, Héctor; Guillén-Arruebarrena, Aniel

    2014-12-01

    The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Spatial patterns and temporal changes in atmospheric-mercury deposition for the midwestern USA, 2001–2016

    Science.gov (United States)

    Risch, Martin R.; Kenski, Donna M.

    2018-01-01

    Spatial patterns and temporal changes in atmospheric-mercury (Hg) deposition were examined in a five-state study area in the Midwestern USA where 32% of the stationary sources of anthropogenic Hg emissions in the continental USA were located. An extensive monitoring record for wet and dry Hg deposition was compiled for 2001–2016, including 4666 weekly precipitation samples at 13 sites and 27 annual litterfall-Hg samples at 7 sites. This study is the first to examine these Hg data for the Midwestern USA. The median annual precipitation-Hg deposition at the study sites was 10.4 micrograms per square meter per year (ug/m2/year) and ranged from 5.8 ug/m2/year to 15.0 ug/m2/year. The median annual Hg concentration was 9.4 ng/L. Annual litterfall-Hg deposition had a median of 16.1 ug/m2/year and ranged from 9.7 to 23.4 ug/m2/year. Isopleth maps of annual precipitation-Hg deposition indicated a recurring spatial pattern similar to one revealed by statistical analysis of weekly precipitation-Hg deposition. In that pattern, high Hg deposition in southeastern Indiana was present each year, frequently extending to southern Illinois. Most of central Indiana and central Illinois had similar Hg deposition. Areas with comparatively lower annual Hg deposition were observed in Michigan and Ohio for many years and frequently included part of northern Indiana. The area in southern Indiana where high Hg deposition predominated had the highest number of extreme episodes of weekly Hg deposition delivering up to 15% of the annual Hg load from precipitation in a single week. Modeled 48-h back trajectories indicated air masses for these episodes often arrived from the south and southwest, crossing numerous stationary sources of Hg emissions releasing from 23 to more than 300 kg Hg per year. This analysis suggests that local and regional, rather than exclusively continental or global Hg emissions were likely contributing to the extreme episodes and at least in part, to the spatial

  1. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors

    Science.gov (United States)

    Héctor García-Gomez; Sheila Izquieta-Rojano; Laura Aguillaume; Ignacio González-Fernández; Fernando Valiño; David Elustondo; Jesús M. Santamaría; Anna Àvila; Mark E. Fenn; Rocío Alonso

    2016-01-01

    Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work...

  2. Deuterium retention in the carbon co-deposition layers deposited by magnetron sputtering in D2/He atmosphere

    Science.gov (United States)

    Tang, X. H.; Shi, L. Q.; Qi, Q.; Zhang, B.; Zhang, W. Y.; Hu, J. S.; O'Connor, D. J.; King, B.

    2013-05-01

    Carbon was deposited on Si and W substrates using a D2/He plasma in a radio frequency magnetron sputtering system. The deposited layers were examined with ion beam analysis (IBA), Raman spectra analysis (RS) and scanning electron microscopy (SEM). The growth rate of the layers deposited at 2.5 Pa total pressure and 300 K decreased with increasing He fraction in the D2/He gas mixture. The deuterium concentration in the layers deposited on the Si substrate increased from 14% to 28% when the flow rate of the He gas relative to the D2 gas was varied from 0.125 to 0.5, but the deuterium concentration in the layers on a W substrate decreased from 24% to 14%. Deuterium or helium retention and the layer thickness all significantly decreased when the substrate temperature was increased from 423 K to 773 K. Raman analysis showed that the deposited layers were amorphous deuterated-carbon layers (named a-C: D layer) and the extent of bond disorder increased dramatically with the increasing helium content in the film. Blisters and bubbles occurred in the films for high helium content in the films, and surface cracking and exfoliation were also observed.

  3. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China

    Directory of Open Access Journals (Sweden)

    X. Fu

    2016-09-01

    Full Text Available Mercury (Hg concentrations and deposition fluxes in precipitation and litterfall were measured at multiple sites (six rural sites and an urban site across a broad geographic area in China. The annual deposition fluxes of Hg in precipitation at rural sites and an urban site were 2.0 to 7.2 and 12.6 ± 6.5 µg m−2 yr−1, respectively. Wet deposition fluxes of Hg at rural sites showed a clear regional difference with elevated deposition fluxes in the subtropical zone, followed by the temporal zone and arid/semi-arid zone. Precipitation depth is the primary influencing factor causing the variation of wet deposition. Hg fluxes through litterfall ranged from 22.8 to 62.8 µg m−2 yr−1, higher than the wet deposition fluxes by a factor of 3.9 to 8.7 and representing approximately 75 % of the total Hg deposition at the forest sites in China. This suggests that uptake of atmospheric Hg by foliage is the dominant pathway to remove atmospheric Hg in forest ecosystems in China. Wet deposition fluxes of Hg at rural sites of China were generally lower compared to those in North America and Europe, possibly due to a combination of lower precipitation depth, lower GOM concentrations in the troposphere and the generally lower cloud base heights at most sites that wash out a smaller amount of GOM and PBM during precipitation events.

  4. Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York

    Science.gov (United States)

    Lawrence, G.B.; Lovett, Gary M.; Baevsky, Y.H.

    2000-01-01

    Cumulative effects of atmospheric N deposition may increase N export from watersheds and contribute to the acidification of surface waters, but natural factors (such as forest productivity and soil drainage) that affect forest N cycling can also control watershed N export. To identify factors that are related to stream-water export of N, elevational gradients in atmospheric deposition and natural processes were evaluated in a steep, first-order watershed in the Catskill Mountains of New York, from 1991 to 1994. Atmospheric deposition of SO4/2-, and probably N, increased with increasing elevation within this watershed. Stream-water concentrations of SO4/2- increased with increasing elevation throughout the year, whereas stream-water concentrations of NO3/- decreased with increasing elevation during the winter and spring snowmelt period, and showed no relation with elevation during the growing season or the fall. Annual export of N in stream water for the overall watershed equaled 12% to 17% of the total atmospheric input on the basis of two methods of estimation. This percentage decreased with increasing elevation, from about 25% in the lowest subwatershed to 7% in the highest subwatershed; a probable result of an upslope increase in the thickness of the surface organic horizon, attributable to an elevational gradient in temperature that slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevations than lower elevations, may also affect the gradient of subwatershed N export by altering nitrification rates in the soil. Variations in climate and vegetation must be considered to determine how future trends in atmospheric deposition will effect watershed export of nitrogen.

  5. Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.

    Science.gov (United States)

    Li, Kaihui; Liu, Xuejun; Song, Wei; Chang, Yunhua; Hu, Yukun; Tian, Changyan

    2013-01-01

    Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 (+) and pNO3 (-)) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m(-3) and 1.3, 1.0 mg N L(-1) at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha(-1) yr(-1) while wet deposition of N fluxes were 6.0 and 8.8 kg N ha(-1) yr(-1) at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha(-1) yr(-1)at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.

  6. The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity

    Science.gov (United States)

    Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah

    2014-01-01

    This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.

  7. Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area.

    Science.gov (United States)

    Nanus, L; McMurray, J A; Clow, D W; Saros, J E; Blett, T; Gurdak, J J

    2017-04-01

    Current and historic atmospheric nitrogen (N) deposition has impacted aquatic ecosystems in the Greater Yellowstone Area (GYA). Understanding the spatial variation in total atmospheric deposition (wet + dry) of N is needed to estimate air pollution deposition critical loads for sensitive aquatic ecosystems. This is particularly important for areas that have an increasing contribution of ammonia dry deposition to total N (TN), such as the GYA. High resolution geostatistical models and maps of TN deposition (wet + dry) were developed using a variety of techniques including ordinary kriging in a geographic information system, to evaluate spatial variability and identify areas of elevated loading of pollutants for the GYA. TN deposition estimates in the GYA range from models and maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess atmospheric N deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Use of mosses as biomonitors of atmospheric deposition of trace elements

    International Nuclear Information System (INIS)

    Steinnes, E.

    2000-01-01

    Some basic facts about the use of mosses as biomonitors of atmospheric trace element deposition are reviewed, and advantages and limitations of this approach are discussed, largely on the basis of experience from regular use of this technique in Norway over the last 20 years. Topics discussed include different versions of the moss technique, mechanisms and efficiencies of trace element uptake, conversion of concentrations in moss to bulk deposition rates, and contribution from sources other than air pollution to the elemental composition of different elements. Suggestions are presented for further work in order to extend the use of mosses as biomonitors. (author)

  9. Atmospheric Deposition And MediterraneAN sea water productiviTy (Thales - ADAMANT) An overview

    Science.gov (United States)

    Christodoulaki, Sylvia; Petihakis, George; Triantafyllou, George; Pitta, Paraskevi; Papadimitriou, Vassileios; Tsiaras, Konstantinos; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    In the marine environment the salinity and biological pumps sequester atmospheric carbon dioxide. The biological pump is directly related to marine primary production which is controlled by nutrient availability mainly of iron, nitrogen and phosphorus. The Mediterranean Sea, especially the eastern basin is one of the most oligotrophic seas. The nitrogen (N) to phosphorus (P) ratio is unusually high, especially in the eastern basin (28:1) and primary production is limited by phosphorus availability. ADAMANT project contributes to new knowledge into how nutrients enter the marine environment through atmospheric deposition, how they are assimilated by organisms and how this influences carbon and nutrient fluxes. Experimental work has been combined with atmospheric and marine models. Important knowledge is obtained on nutrients deposition through mesocosm experiments on their uptake by the marine systems and their effects on the marine carbon cycle and food chain. Kinetic parameters of adsorption of acidic and organic volatile compounds in atmospheric samples of dust and marine salts are estimated in conjunction with solubility of N and P in mixtures contained in dust. Atmospheric and oceanographic models are coupled to create a system that is able to holistically simulate the effects of atmospheric deposition on the marine environment over time, beginning from the pre-industrial era until the future years (hind cast, present and forecast simulations). This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: THALES, Investing in knowledge society through European Social Fund.

  10. U.S. Geological Survey external quality-assurance project report for the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2011-2012

    Science.gov (United States)

    Wetherbee, Gregory A.; Martin, RoseAnn

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program (NADP) / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2011–2012. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory and Mercury Analytical Laboratory (HAL). A blind-audit program was implemented for the MDN during 2011 to evaluate analytical bias in HAL total mercury concentration data. The co-located–sampler program was used to identify and quantify potential shifts in NADP data resulting from the replacement of original network instrumentation with new electronic recording rain gages and precipitation collectors that use optical precipitation sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Co-located rain gage results indicate -3.7 to +6.5 percent bias in NADP precipitation-depth measurements. Co-located collector results suggest that the retrofit of the NADP networks with the new precipitation collectors could cause +10 to +36 percent shifts in NADP annual deposition values for ammonium, nitrate, and sulfate; -7.5 to +41 percent shifts for hydrogen-ion deposition; and larger shifts (-51 to +52 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector typically catches more precipitation than the NADP-approved Aerochem Metrics Model 301 collector.

  11. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis).

    Science.gov (United States)

    Gruwez, R; De Frenne, P; De Schrijver, A; Leroux, O; Vangansbeke, P; Verheyen, K

    2014-02-01

    Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.

  12. Atmospheric Deposition Effects on Plankton Communities in the Eastern Mediterranean: A Mesocosm Experimental Approach

    Directory of Open Access Journals (Sweden)

    Tatiana M. Tsagaraki

    2017-07-01

    Full Text Available The effects of atmospheric deposition on plankton community structure were examined during a mesocosm experiment using water from the Cretan Sea (Eastern Mediterranean, an area with a high frequency of atmospheric aerosol deposition events. The experiment was carried out under spring-summer conditions (May 2012. The main objective was to study the changes induced from a single deposition event, on the autotrophic and heterotrophic surface microbial populations, from viruses to zooplankton. To this end, the effects of Saharan dust addition were compared to the effects of mixed aerosol deposition on the plankton community over 9 days. The effects of the dust addition seemed to propagate throughout the food-web, with changes observed in nearly all of the measured parameters up to copepods. The dust input stimulated increased productivity, both bacterial and primary. Picoplankton, both autotrophic and heterotrophic capitalized on the changes in nutrient availability and microzooplankton abundance also increased due to increased availability of prey. Five days after the simulated deposition, copepods also responded, with an increase in egg production. The results suggest that nutrients were transported up the food web through autotrophs, which were favored by the Nitrogen supplied through both treatments. Although, the effects of individual events are generally short lived, increased deposition frequency and magnitude of events is expected in the area, due to predicted reduction in rainfall and increase in temperature, which can lead to more persistent changes in plankton community structure. Here we demonstrate how a single dust deposition event leads to enhancement of phytoplankton and microzooplankton and can eventually, through copepods, transport more nutrients up the food web in the Eastern Mediterranean Sea.

  13. Indirect N2O emission due to atmospheric N deposition for the Netherlands

    International Nuclear Information System (INIS)

    Denier van der Gon, H.; Bleeker, A.

    2005-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas produced in soils and aquatic systems. The UNFCCC requires participants to report 'indirect' N2O emissions, following from agricultural N losses to ground- and surface water and N deposition on (other) ecosystems due to agricultural sources. Indirect N2O emission due to atmospheric N deposition is presently not reported by the Netherlands. In this paper, we quantify the consequences of various tiers to estimate indirect N2O due to deposition for a country with a high agricultural N use and discuss the reliability and potential errors in the IPCC methodology. A literature review suggests that the current IPCC default emission factor for indirect N2O from N deposition is underestimated by a factor 2. Moreover, considering anthropogenic N emissions from agriculture only and not from e.g., traffic and industry, results in further underestimation of indirect N2O emissions. We calculated indirect N2O emissions due to Dutch anthropogenic N emissions to air by using official Dutch N emission data as input in an atmospheric transport and deposition model in combination with land use databases. Next, land use-specific emission factors were used to estimate the indirect N2O emission. This revealed that (1) for some countries, like the Netherlands, most agricultural N emitted will be deposited on agricultural soils, not on natural ecosystems and, (2) indirect N2O emissions are at least 20% higher because more specific emission factors can be applied that are higher than the IPCC default. The results suggest that indirect N2O emission due to deposition is underestimated in current N2O budgets

  14. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  15. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  16. Validation of chemical analyses of atmospheric deposition in forested European sites

    Directory of Open Access Journals (Sweden)

    Erwin ULRICH

    2005-08-01

    Full Text Available Within the activities of the Integrated Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests and of the EU Regulation 2152/2003, a Working Group on Quality Assurance/Quality Control of analyses has been created to assist the participating laboratories in the analysis of atmospheric deposition, soil and soil solution, and leaves/needles. As part of the activity of the WG, this study is a statistical analysis in the field of water analysis of chemical concentrations and relationships between ions, and between conductivity and ions for different types of samples (bulk or wet-only samples, throughfall, stemflow considered in forest studies. About 5000 analyses from seven laboratories were used to establish relationships representative of different European geographic and climatic situations, from northern Finland to southern Italy. Statistically significant differences between the relationships obtained from different types of solutions, interacting with different types of vegetation (throughfall and stemflow samples, broad-leaved trees and conifers and with varying influence of marine salt were tested. The ultimate aim is to establish general relationships between ions, and between conductivity and ions, with relative confidence limits, which can be used as a comparison with those established in single laboratories. The use of such techniques is strongly encouraged in the ICPF laboratories to validate single chemical analyses, to be performed when it is still possible to replicate the analysis, and as a general overview of the whole set of analyses, to obtain an indication of the laboratory performance on a long-term basis.

  17. Assessing atmospheric nitrogen deposition to natural and semi-natural ecosystems

    DEFF Research Database (Denmark)

    Hertel, Ole; Geels, Camilla; Frohn, Lise Marie

    2013-01-01

    Local agricultural emissions contribute significantly to the atmospheric reactive nitrogen loads of Danish terrestrial ecosystems. In the vicinity of the sources this may be up to 6-8 kg N ha(-1) yr(-1) depending on location and ecosystem type. This contribution arises from dry deposition of gas...... and ammonium (reaction products of nitrogen oxides and ammonia), but also dry deposition of other reactive nitrogen compounds (mainly nitrogen oxides in the form of gas phase nitric acid and nitrogen dioxide). In Denmark's environmental management of the sensitive terrestrial ecosystems modelling tools...... phase ammonia derived from local livestock production. Long-range transport, however, often constitutes the largest contribution to the overall atmospheric terrestrial reactive nitrogen loadings in Denmark. This is often in the range 10-15 kg N ha(-1) yr(-1) and consists mainly of aerosol phase nitrate...

  18. Atmospheric Deposition of Pb, Zn, Cu, and Cd in Amman, Jordan

    International Nuclear Information System (INIS)

    Momani, K.A.; Jiries, A.G.; Jaradat, Q.M.

    1999-01-01

    Atmospheric samples were collected by high-volume air sampler and dust fall containers during the summer of 1995 at different sites in Amman City, Jordan. Heavy metal contents in settle able (dust fall) as well as in air particulates (suspended) were analyzed by graphite furnace atomic absorption spectrophotometry. The atmospheric concentrations of Zn, Cu, Pb, and Cd were 344, 170, 291, and 3.8 ng/m 3 , respectively. On the other hand, the levels of these elements in dust fall deposition were 505, 94, 74, and 3.1 μg/g, respectively. The fluxes and dry deposition velocities of these heavy metals were determined and compared with the findings of other investigators worldwide. Significant enrichment coefficients of heavy metals in dust fall were observed. The enrichment coefficients were 12.1, 6.1, 11.7, and 1.1 for Zn, Cu, Pb, and Cd, respectively

  19. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  20. Characterization of atmospheric deposition and runoff water on a small suburban catchment

    OpenAIRE

    LAMPREA, Diana Katerine; RUBAN, Véronique

    2011-01-01

    A study of air quality and atmospheric deposition on a small urban catchment (Pin Sec catchment) has been carried out in Nantes, France, in 2007 and 2008 in the frame of a federative project aimed at understanding the origin of pollution in urban environments. Carbon monoxide, nitrogen monoxide, nitrogen dioxide, ozone, sulphur dioxide and particles less than 10 µm (PM 10) were monitored for air quality, whereas heavy metals, Polycyclic aromatic hydrocarbons (PAHs) and pesticides were analyze...

  1. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain)

    Science.gov (United States)

    Corella, J. P.; Valero-Garcés, B. L.; Wang, F.; Martínez-Cortizas, A.; Cuevas, C. A.; Saiz-Lopez, A.

    2017-04-01

    Geochemical analyses in varved lake sediment cores (Lake Montcortès, Pre-Pyrenees) allowed reconstruction of mercury (Hg) and lead (Pb) atmospheric deposition over the past seven centuries in the Pyrenees (NE Spain). Accumulation Rates (AR) from the Middle Ages to the Industrial Period ranged from 2500 to 26130 μg m2.y-1 and 15-152 μg m2.y-1 for Pb and Hg respectively. Significant metal pollution started ca CE 1550 during a period of increased exploitation of ore resources in Spain. Colder and humid conditions in the Pyrenees during the Little Ice Age may have also favoured Hg and Pb atmospheric deposition in the lake. Therefore, the interplay between increased rainfall (wet deposition) and mining activities in the Iberian Peninsula has driven Hg and Pb AR during the Pre-industrial Period. More recently, the use of leaded gasoline in Europe in the mid-20th century may explain the highest Pb AR between CE 1953 and 1971. The highest Hg AR occurred in CE 1940 synchronous with the highest Hg production peak in Almadén mining district (southern Spain) and the Second World War. The record of Hg enrichment in Lake Montcortès shows a decrease during the last decades in Western Europe similar to other regional records and global emission models. This study highlights the exceptional quality of varved sequences to tease apart pollutants depositional mechanisms, identify historical periods of increased atmospheric pollution and provide a historical context for pollutant baseline values to make correct assessments of recent (atmospheric) pollution in lake ecosystems.

  2. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    Science.gov (United States)

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A fragment-cloud model for asteroid breakup and atmospheric energy deposition

    Science.gov (United States)

    Wheeler, Lorien F.; Register, Paul J.; Mathias, Donovan L.

    2017-10-01

    As asteroids break up during atmospheric entry, they deposit energy that can be seen in flares of light and, if substantial enough, can produce damaging blast waves. Analytic models of asteroid breakup and energy deposition processes are needed in order to assess potential airburst hazards, and to enable inferences about asteroid properties or breakup physics to be made from comparisons with observed meteors. This paper presents a fragment-cloud model (FCM) that is able to represent a broad range of breakup behaviors and the resulting variations in energy deposition in ways that make it a useful tool for both applications. Sensitivity studies are performed to investigate how variations the model's fragmentation parameters affect the energy deposition results for asteroids 20-500 m in diameter. The model is also used to match observational data from the Chelyabinsk meteor and infer potential asteroid properties and representative modeling parameter ranges. Results illustrate how the model's fragmentation parameters can introduce different energy deposition features, and how much they affect the overall energy deposition rates, magnitudes, and altitudes that would drive ground damage for risk assessment applications.

  4. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xiao Huayun; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Youyi; Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049 (China)

    2010-06-15

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta{sup 13}C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta{sup 13}C{sub moss} became less negative. With measurements of atmospheric CO{sub 2} and delta{sup 13}CO{sub 2}, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta{sup 13}C{sub moss} to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic {sup 13}C discrimination of bryophytes might increase with elevated N deposition.

  5. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals.

    Science.gov (United States)

    Nickel, Stefan; Schröder, Winfried

    2017-05-01

    Atmospheric deposition of heavy metals (HM) can be determined by use of numeric models, technical devices and biomonitors. Mainly focussing on Germany, this paper aims at evaluating data from deposition modelling and biomonitoring programmes. The model LOTOS-EUROS (LE) yielded data on HM deposition at a spatial resolution of 25 km by 25 km throughout Europe. The European Monitoring and Evaluation Programme (EMEP) provided model calculations on 50 km by 50 km grids. Corresponding data on HM concentration in moss, leaves and needles and soil were derived from the European Moss Survey (EMS), the German Environmental Specimen Bank (ESB) and the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (iCP Forests). The modelled HM deposition and respective concentrations in moss (EMS), leaves and needles (ESB, iCP Forests) and soil (iCP Forests) were investigated for their statistical relationships. Regression equations were applied on geostatistical surface estimations of HM concentration in moss and then the residuals were interpolated by use of kriging interpolation. Both maps were summed up to a map of cadmium (Cd) and lead (Pb) deposition across Germany. Biomonitoring data were strongly correlated to LE than to EMEP. For HM concentrations in moss, the highest correlations were found for the association between geostatistical surface estimations of HM concentration in moss and deposition (LE).

  6. Deposition and retention of air pollutants on vegetation and other atmospheric interfaces

    International Nuclear Information System (INIS)

    Jonas, R.

    1984-09-01

    The question of the deposition of aerosols and gases are applied to biological and ecological problems concerning the filtering aspect of atmospheric interfaces, especially vegetation, with respect to air pollution, and also the resulting pollutant effect. In order to determine the deposition of aerosols, numerous field experiments were carried out. The deposition of gases was treated on the basis of current literature data. The experiments indicate that the deposition of aerosols on grass largely depends on aerosol diameter, dry weight per unit area and the wind velocity or turbulence of the air layer near the ground. Of the interfaces studied, namely soil without vegetation, water, filter paper, smooth and structured metals, grass, clover and trees, the latter had the greatest dust collecting capability. It is recommended that in the afforestation of areas in the close proximity of industrial regions the common beech, silver birch and Japanese larch should be taken into particular consideration due to their great deposition effectiveness with respect to dusts and their comparatively high resistance to pollutant gases. Silver birch and moreover red horse chestnut should be considered for filtering the air in urban regions because of the high aerosol deposition. (orig./HP) [de

  7. Rapid atmospheric transport and large-scale deposition of recently synthesized plant waxes

    Science.gov (United States)

    Nelson, Daniel B.; Ladd, S. Nemiah; Schubert, Carsten J.; Kahmen, Ansgar

    2018-02-01

    Sedimentary plant wax 2H/1H ratios are important tools for understanding hydroclimate and environmental changes, but large spatial and temporal uncertainties exist about transport mechanisms from ecosystem to sediments. To assess atmospheric pathways, we collected aerosol samples for two years at four locations within a ∼60 km radius in northern Switzerland. We measured n-alkane distributions and 2H/1H ratios in these samples, and from local plants, leaf litter, and soil, as well as surface sediment from six nearby lakes. Increased concentrations and 2H depletion of long odd chain n-alkanes in early summer aerosols indicate that most wax aerosol production occurred shortly after leaf unfolding, when plants synthesize waxes in large quantities. During autumn and winter, aerosols were characterized by degraded n-alkanes lacking chain length preferences diagnostic of recent biosynthesis, and 2H/1H values that were in some cases more than 100‰ higher than growing season values. Despite these seasonal shifts, modeled deposition-weighted average 2H/1H values of long odd chain n-alkanes primarily reflected summer values. This was corroborated by n-alkane 2H/1H values in lake sediments, which were similar to deposition-weighted aerosol values at five of six sites. Atmospheric deposition rates for plant n-alkanes on land were ∼20% of accumulation rates in lakes, suggesting a role for direct deposition to lakes or coastal oceans near similar production sources, and likely a larger role for deposition on land and transport in river systems. This mechanism allows mobilization and transport of large quantities of recently produced waxes as fine-grained material to low energy sedimentation sites over short timescales, even in areas with limited topography. Widespread atmospheric transfer well before leaf senescence also highlights the importance of the isotopic composition of early season source water used to synthesize waxes for the geologic record.

  8. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    Science.gov (United States)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  9. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia

    International Nuclear Information System (INIS)

    Anicic, M.; Tasic, M.; Frontasyeva, M.V.; Tomasevic, M.; Rajsic, S.; Mijic, Z.; Popovic, A.

    2009-01-01

    Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites. - Accumulated trace elements in the moss Sphagnum girgensohnii reflect atmospheric deposition

  10. Impact of atmospheric wet deposition on phytoplankton community structure in the South China Sea

    Science.gov (United States)

    Cui, Dong-Yang; Wang, Jiang-Tao; Tan, Li-Ju; Dong, Ze-Yi

    2016-05-01

    The South China Sea (SCS), which is the largest marginal sea in East Asia, plays a significant role in regional climate change. However, research on the phytoplankton community structure (PCS) response to atmospheric wet deposition remains inadequate. In this study, field incubation experiments were performed to survey the impact of atmospheric wet deposition on the PCS in the SCS in December 2013. Results indicate that the mean dissolved inorganic nitrogen/dissolved inorganic phosphorous (DIN/DIP) ratio in rainwater was 136, which was higher than that in seawater. Under low initial nutrient concentrations, rainwater inputs not only significantly increased total chlorophyll a (Chl a) concentrations but also potentially altered the PCS. The total Chl a concentration increased 1.7-, 1.9-, and 1.6-fold; microphytoplankton increased 2.6-, 3.2-, and 1.7-fold with respect to their initial values in the 5%, 10% addition, and 10% addition (filtered) treatment samples, respectively. Finally, microphytoplankton contributed 61% to the total Chl a concentration in 10% addition treatment samples. Differences in the nutrients induced by atmospheric wet deposition resulted in a shift in the advantage from picophytoplankton to microphytoplankton. Diatoms became the predominant species, accounting for 55% of the total abundance after rainwater addition.

  11. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  12. Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment

    Science.gov (United States)

    Shin, Jeong Woo; Kang, Myung Hoon; Oh, Seongkook; Yang, Byung Chan; Seong, Kwonil; Ahn, Hyo-Sok; Lee, Tae Hoon; An, Jihwan

    2018-05-01

    Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.

  13. Influence of broadleaf forest vegetation on atmospheric deposition of airborne radionuclides.

    Science.gov (United States)

    Krmar, Miodrag; Radnović, Dragan; Hansman, Jan; Repić, Predrag

    2017-10-01

    The activities of airborne radionuclides 7 Be and unsupported 210 Pb ( 210 Pb us ) were measured in moss samples taken from 17 different locations. The objective was to estimate the influence of the broadleaf forest vegetation on atmospheric deposition of airborne radionuclides attached to aerosols. Two moss samples were collected at each location: within the forest stand (inside the area of the tree canopy projection) and within forest openings (outside the area of the tree canopy projection). Samples were taken in the spring season, before the leaves of trees came forth and in the autumn season, right before fall defoliation. A measurement indicates an absence of variation in 210 Pb us concentration, however spring/autumn ratios of 7 Be concentrations in mosses showed the expected seasonal difference in 7 Be deposition. It was also noted that atmospheric deposition of 7 Be at the forest openings was about two times higher than deposition in the forest. Using very simplified models, these measurements can be used to get estimation at how long 7 Be and aerosols can reside on the leaves before precipitation eventually wash it to the ground mosses. It was estimated that the mean residence time of aerosols in the leaves was up to 50 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Atmospheric deposition chemistry in a subalpine area of the Julian Alps, NW Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Muri

    2013-04-01

    Full Text Available Wet-only precipitation was collected in Rateče, a remote village in the outskirts of the Julian Alps (Nort-West Slovenia during 2003-2011, in order to characterise atmospheric deposition chemistry. The samples were collected on a daily basis and combined into weekly samples that were analysed for pH, conductivity and major anions and cations. Ammonium, nitrate and sulphate were the most abundant ions, exhibiting volume-weighted mean values (2003-2011 of 22, 17 and 17 µeq L–1, respectively. Furthermore, the trends of the major parameters in the precipitation were assessed using a simple linear regression. A significant downward trend of both nitrate and sulphate was observed, explained by evident reductions in NOx and SOx emissions in the region. The decline of nitrate and sulphate was also reflected in a significant and downward trend of conductivity. While the trend of ammonium could also be downward, the trends of other major ions were not significant. Atmospheric nitrogen deposition, representing inorganic forms of nitrogen (i.e., ammonium and nitrate, was calculated to examine potential threats that the deposition of nitrogen may cause on lake ecosystems. Nitrogen deposition in Rateče ranged from 5.5 to 9.5 kg N ha–1 yr–1. Although this was below the critical threshold that might cause an impact on surface waters, nitrogen deposition in the nearby Julian Alps, where sensitive mountain lakes are situated, might be higher and its impact on the ecosystem greater. In fact, several studies performed on water chemistry, sedimentary organic matter and stable isotopes in Slovenian mountain lakes have shown progressive changes in their water columns and sediments that can be attributed to nitrogen deposition.

  15. The Abundance of Atmospheric CO_2 in Ocean Exoplanets: a Novel CO_2 Deposition Mechanism

    International Nuclear Information System (INIS)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-01-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO_2, the amount of CO_2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO_2. We find that, in a steady state, the abundance of CO_2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO_2 exchange mechanism, an atmosphere of tens of bars of CO_2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO_2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO_2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO_2 into the atmosphere to increase the greenhouse effect.

  16. Atmospheric deposition of PAHs, PCBs, and organochlorine pesticides to Corpus Christi Bay, Texas

    Science.gov (United States)

    Park, June-Soo; Wade, Terry L.; Sweet, Stephen T.

    Air and rain samples were collected at an atmospheric sampling site on Corpus Christi Bay from 20 August 1998 to 16 September 1999. Water samples were periodically collected from Corpus Christi Bay concurrently with air samples for calculation of the air-water gas exchange. Wet deposition, dry deposition and air-water gas exchange rates of polycyclic aromatic hydrocarbons (PAHs) to Corpus Christi Bay were estimated as 182, 68, and -38.4 μg m -2 yr - 1 (negative values indicate loss from surface water to the air), and those of polychlorinated biphenyls (PCBs) were estimated as 3.93, 0.98, and -67.2 μg m -2 yr - 1. Total input of PAHs and PCBs directly to the surface of Corpus Christi Bay were estimated to be 298 and -87.9 kg yr -1, respectively. The estimation indicates that Corpus Christi Bay is currently acting as a net sink for PAHs and as a net source for PCBs to the atmosphere. Total atmospheric input of PAHs to Corpus Christi Bay is not as large as inputs from land runoff and periodic oil spills. The daily and annual gas exchange fluxes of most pesticides appear to be approaching equilibrium between the atmosphere and bay water (flux in is nearly equal to flux out).

  17. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  18. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  19. Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens

    Energy Technology Data Exchange (ETDEWEB)

    Boamponsem, L.K. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana); Adam, J.I. [Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, University Post Office, Kumasi (Ghana); Dampare, S.B., E-mail: dampare@cc.okayama-u.ac.j [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 1-1, Tsushima-Naka 3-Chome, Okayama 700-8530 (Japan); Nyarko, B.J.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Essumang, D.K. [Department of Laboratory Technology, School of Physical Sciences, University of Cape Coast, Cape Coast (Ghana)

    2010-05-01

    In situ lichens (Parmelia sulcata) have been used to assess atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana. Total heavy metal concentrations obtained by instrumental neutron activation analysis (INAA) were processed by positive matrix factorization (PMF), principal component (PCA) and cluster (CA) analyses. The pollution index factor (PIF) and pollution load index (PLI) criteria revealed elevated levels of Sb, Mn, Cu, V, Al, Co, Hg, Cd and As in excess of the background values. The PCA and CA classified the examined elements into anthropogenic and natural sources, and PMF resolved three primary sources/factors: agricultural activities and other non-point anthropogenic origins, natural soil dust, and gold mining activities. Gold mining activities, which are characterized by dominant species of Sb, Th, As, Hg, Cd and Co, and significant contributions of Cu, Al, Mn and V, are the main contributors of heavy metals in the atmosphere of the study area.

  20. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  1. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  2. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem 15 N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m −2 yr −1 , applied as 15 NH 4 15 NO 3 in Svalbard (79 ° N), during the summer. Separate applications of 15 NO 3 − and 15 NH 4 + were also made to determine the importance of N form in their retention. More than 95% of the total 15 N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of 15 N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater 15 NO 3 − than 15 NH 4 + , suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a very

  3. External quality-assurance project report for the National Atmospheric Deposition Program/National Trends Network and Mercury Deposition Network, 2009-2010

    Science.gov (United States)

    Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.

  4. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    Science.gov (United States)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  5. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review

    International Nuclear Information System (INIS)

    Burns, Douglas A.

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha -1 yr -1 , and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is 3 - concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. - The effects of nitrogen deposition will become more evident as growth increases

  6. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  7. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M. [Houston Univ., TX (United States); Atagi, L.M. [Houston Univ., TX (United States)]|[Los Alamos National Lab., NM (United States); Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang [Houston Univ., TX (United States); Rubiano, R.R. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Springer, R.W.; Smith, D.C. [Los Alamos National Lab., NM (United States)

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  8. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    International Nuclear Information System (INIS)

    Gunawardena, Janaka; Ziyath, Abdul M.; Bostrom, Thor E.; Bekessy, Lambert K.; Ayoko, Godwin A.; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-01-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources

  9. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardena, Janaka, E-mail: j.gunawardena@qut.edu.au; Ziyath, Abdul M., E-mail: mohamed.ziyath@qut.edu.au; Bostrom, Thor E., E-mail: t.bostrom@qut.edu.au; Bekessy, Lambert K., E-mail: l.bekessy@qut.edu.au; Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au; Egodawatta, Prasanna, E-mail: p.egodawatta@qut.edu.au; Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources.

  10. Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Louchouarn, Patrick; Kuo, Li-Jung; Crecelius, Eric A.; Cullinan, Valerie I.; Gill, Gary A.; Garland, Charity R.; Williamson, J. B.; Dhammapala, R.

    2010-07-05

    The results of the Phase 1 Toxics Loading study suggested that runoff from the land surface and atmospheric deposition directly to marine waters have resulted in considerable loads of contaminants to Puget Sound (Hart Crowser et al. 2007). The limited data available for atmospheric deposition fluxes throughout Puget Sound was recognized as a significant data gap. Therefore, this study provided more recent or first reported atmospheric deposition fluxes of PAHs, PBDEs, and select trace elements for Puget Sound. Samples representing bulk atmospheric deposition were collected during 2008 and 2009 at seven stations around Puget Sound spanning from Padilla Bay south to Nisqually River including Hood Canal and the Straits of Juan de Fuca. Revised annual loading estimates for atmospheric deposition to the waters of Puget Sound were calculated for each of the toxics and demonstrated an overall decrease in the atmospheric loading estimates except for polybrominated diphenyl ethers (PBDEs) and total mercury (THg). The median atmospheric deposition flux of total PBDE (7.0 ng/m2/d) was higher than that of the Hart Crowser (2007) Phase 1 estimate (2.0 ng/m2/d). The THg was not significantly different from the original estimates. The median atmospheric deposition flux for pyrogenic PAHs (34.2 ng/m2/d; without TCB) shows a relatively narrow range across all stations (interquartile range: 21.2- 61.1 ng/m2/d) and shows no influence of season. The highest median fluxes for all parameters were measured at the industrial location in Tacoma and the lowest were recorded at the rural sites in Hood Canal and Sequim Bay. Finally, a semi-quantitative apportionment study permitted a first-order characterization of source inputs to the atmosphere of the Puget Sound. Both biomarker ratios and a principal component analysis confirmed regional data from the Puget Sound and Straits of Georgia region and pointed to the predominance of biomass and fossil fuel (mostly liquid petroleum products such

  11. Atmospheric dispersion and deposition of iodine-131 released from the Hanford Site

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.; Stage, S.A.

    1994-06-01

    Approximately 2.6x10 4 TBq (700,000 curies) of iodine-131 were released to the air from reactor fuel processing plants on the Hanford Site in southcentral Washington State from December 1944 through December 1949. The Hanford Environmental Dose Reconstruction (HEDR) Project developed a suite of codes to estimate the doses that might have resulted from these releases. The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) computer code is part of this suite. The RATCHET code implements a Lagrangian-trajectory, Gaussian-puff dispersion model that uses hourly meteorological and release rate data to estimate daily time-integrated air concentrations and surface contamination for use in dose estimates. In this model, iodine is treated as a mixture of three species (nominally, inorganic gases, organic gases, and particles). Model deposition parameters are functions of the mixture and meteorological conditions. A resistance model is used to calculate dry deposition velocities. Equilibrium between concentrations in the precipitation and the air near the ground is assumed in calculating wet deposition of gases, and irreversible washout of the particles is assumed. RATCHET explicitly treats the uncertainties in model parameters and meteorological conditions. Uncertainties in iodine-131 release rates and partitioning among the nominal species are treated by varying model input. The results of 100 model runs for December 1944 through December 1949 indicate that monthly average air concentrations and deposition have uncertainties ranging from a factor of two near the center of the time-integrated plume to more than an order of magnitude near the edge. These results indicate that -10% of the iodine-131 released to the atmosphere decayed during transit in the study area, -56% was deposited within the study area, and the remaining 34% was transported out of the study area while still in the air

  12. Atmospheric deposition of pesticides to an agricultural watershed of the Chesapeake Bay.

    Science.gov (United States)

    Kuang, Zhihua; McConnell, Laura L; Torrents, Alba; Meritt, Donald; Tobash, Stephanie

    2003-01-01

    The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use, which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity and off-site losses of pesticides may contribute to toxic effects on sensitive species of plants and animals. High-volume air samples (n = 31) and event-based rain samples (n = 71) were collected from a single location in the watershed representing regional background conditions. Surface water samples were collected from eight stations in the tidal portion of the river on five occasions during 2000. Chlorothalonil, metolachlor, atrazine, simazine, endosulfan, and chlorpyrifos were frequently detected in the air and rain, with maximal concentrations during the period when local or regional crops were planted. The wet deposition load to the watershed was estimated at 150 +/- 16, 61 +/- 7, and 51 +/- 6 kg yr(-1) for chlorothalonil, metolachlor, and atrazine, respectively. The high wet deposition load compared with the estimated annual usage for chlorothalonil (13%) and endosulfan (14-90%) suggests an atmospheric source from outside the watershed. Net air-water gas exchange fluxes for metolachlor varied from -44 +/- 19 to 9.3 +/- 4.1 ng m(-2) d(-1) with negative values indicating net deposition. Wet deposition accounted for 3 to 20% of the total metolachlor mass in the Choptank River and was a more important source to the river than gas exchange. Estimates of herbicide flux presented here are probably a low estimate and actual rates may be significantly higher in areas closer to pesticide application.

  13. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    Science.gov (United States)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  14. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    Science.gov (United States)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  15. Performance of sulfation and nitration plates used to monitor atmospheric pollutant deposition in a real environment

    Energy Technology Data Exchange (ETDEWEB)

    Noel, D.; Hechler, J.; Roberge, H.

    1989-01-01

    Sulfation and nitration plates were exposed outdoors for various periods of time to evaluate their performance in a real environment. These passive monitors are used to estimate the deposition of pollutants on metallic surfaces, and thus to evaluate the influence of the atmosphere on the corrosion. Single-column ion chromatography was used to determine the quantity of anions absorbed on the plates. This technique is better than other analytical procedures such as turbidimetry or colorimetry because passive monitors exposed in an atmosphere with a low degree of pollution can be analyzed without preconcentration. However, the pH of the sample to be injected on the chromatographic column must be adjusted to between 6.0 and 12.0 in order to obtain reproducible sulfate values. For sulfation plates, the additivity of the deposition process is excellent for a period of exposure up to 3 months, with a reproducibility of about 2%. For nitration plates, the deposition process is not cumulative due to a physical change of the monitor during exposure. The correlation between the amounts of sulfate found on sulfation snd nitration plates was also examined. 16 refs., 6 figs., 5 tabs.

  16. Performance of sulfation and nitration plates used to monitor atmospheric pollutant deposition in a real environment

    Science.gov (United States)

    Noël, Denis; Hechler, Jean-Jacques; Roberge, Hélène

    Sulfation and nitration plates were exposed outdoors for various periods of time to evaluate their performance in a real environment. These passive monitors are used to estimate the deposition of pollutants on metallic surfaces, and thus to evaluate the influence of the atmosphere on the corrosion. Single-column ion chromatography was used to determine the quantity of anions absorbed on the plates. This technique is better than other analytical procedures such as turbidimetry or colorimetry because passive monitors exposed in an atmosphere with a low degree of pollution can be analyzed without preconcentration. However, the pH of the sample to be injected on the Chromatographic column must be adjusted to between 6.0 and 12.0 in order to obtain reproducible sulfate values. For sulfation plates, the additivity of the deposition process is excellent for a period of exposure up to 3 months, with a reproducibility of about 2%. For nitration plates, the deposition process is not cumulative due to a physical change of the monitor during exposure. The correlation between the amounts of sulfate found on sulfation and nitration plates was also examined.

  17. Analysis of atmospheric particulate samples via instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Greenberg, R.R.

    1990-01-01

    Instrumental neutron activation analysis (INAA) is a powerful analytical technique for the elemental characterization of atmospheric particulate samples. It is a true multielement technique with adequate sensitivity to determine 30 to 40 elements in a sample of atmospheric particulate material. Its nondestructive nature allows sample reanalysis by the same or a different analytical technique. In this paper as an example of the applicability of INAA to the study of atmospheric particulate material, a study of the emissions from municipal incinerators is described

  18. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  19. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    Science.gov (United States)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-01-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980–2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = −0.35 and p = 0.001 in the North and R = −0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (−0.009 mg N L−1 yr−1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (−7.3% yr−1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of

  20. Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks.

    Science.gov (United States)

    Huston, R; Chan, Y C; Gardner, T; Shaw, G; Chapman, H

    2009-04-01

    To characterise atmospheric input of chemical contaminants to urban rainwater tanks, bulk deposition (wet+dry deposition) was collected at sixteen sites in Brisbane, Queensland, Australia on a monthly basis during April 2007-March 2008 (N=175). Water from rainwater tanks (22 sites, 26 tanks) was also sampled concurrently. The deposition/tank water was analysed for metals, soluble anions and selected samples were additionally analysed for PAHs, pesticides, phenols, organic & inorganic carbon. Flux (mg/m(2)/d) of total solids mass was found to correlate with average daily rainfall (R(2)=0.49) indicating the dominance of the wet deposition contribution to total solids mass. On average 97% of the total mass of analysed components was accounted for by Cl(-) (25.0%), Na (22.6%), organic carbon (20.5%), NO(3)(-) (10.5%), SO(4)(2-) (9.8%), inorganic carbon (5.7%), PO(4)(3-) (1.6%) and NO(2)(-) (1.5%). For other minor elements the average flux from highest to lowest was in the order of Fe>Al>Zn>Mn>Sr>Pb>Ba>Cu>Se. There was a significant effect of location on flux of K, Sb, Sn, Li, Mn, Fe, Cu, Zn, Ba, Pb and SO(4)(2-) but not other metals or anions. Overall the water quality resulting from the deposition (wet+dry) was good but 10.3%, 1.7% and 17.7% of samples had concentrations of Pb, Cd and Fe respectively greater than the Australian Drinking Water Guidelines (ADWG). This generally occurred in the drier months. In comparison 14.2% and 6.1% of tank samples had total Pb and Zn concentrations exceeding the guidelines. The cumulative mean concentration of lead in deposition was on average only 1/4 of that in tank water over the year at a site with high concentrations of Pb in tank water. This is an indication that deposition from the atmosphere is not the major contributor to high lead concentrations in urban rainwater tanks in a city with reasonable air quality, though it is still a significant portion.

  1. Application of PIXE analysis to atmospheric environmental studies

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1997-01-01

    Physical and chemical properties of the atmospheric aerosols is a fundamental to understand the behavior of aerosols in the atmosphere. The analysis of atmospheric aerosols is the most preferable fields of the PIXE. In this paper, the characteristics of atmospheric aerosols are reviewed at first, and the sampling method of atmospheric aerosols for the PIXE samples and the characterization of atmospheric aerosols using the PIXE analysis are discussed. (author)

  2. Critical loads of atmospheric deposition to Adirondack lake watersheds: A guide for policymakers

    Science.gov (United States)

    Burns, Douglas A.; Sullivan, Timothy J.

    2015-01-01

    Acid deposition is sometimes referred to as “acid rain,” although part of the acid load reaches the surface by means other than rainfall. In the eastern U.S., acid deposition consists of several forms of sulfur and nitrogen that largely originate as emissions to the atmosphere from sources such as electricity-generating facilities (coal, oil, and natural gas), diesel- and gasoline-burning vehicles, some agricultural activities, and smokestack industries. Acid deposition is known to cause deleterious effects to sensitive ecosystems of which the Adirondack region of New York State provides several well-known and well-studied examples. This largely forested region includes abundant lakes, streams, and wetlands and possesses several landscape features that result in high ecosystem sensitivity to acid deposition. These features include bedrock that weathers slowly, steep slopes, and thin, naturally acidic soils. An ecosystem is described as sensitive to, or affected by, acid deposition if prolonged exposure to acid deposition has resulted in detrimental ecosystem effects. Soils, streams, and lakes that are less sensitive are better able to buffer acid deposition. A principal reason that acidification is a concern for resource managers is because of the changes induced in native biota and their habitat on land and in water. As the chemistry of soils and surface waters in sensitive landscapes changes in response to prolonged exposure to acid deposition, organisms that cannot tolerate high acidity, such as sugar maple trees and many species of fish and aquatic insects, may be gradually eliminated from the ecosystem. Other biota such as red spruce may experience increased stress and reduced growth rates as a result of acidification, exposing these species to increased susceptibility to disease and other natural stressors and perhaps increased mortality. The ecological effects of acid deposition have been documented by extensive research that began in the U.S. in the

  3. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  4. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  6. Lichens as biomonitors of atmospheric ammonium/ammonia deposition in Portugal

    International Nuclear Information System (INIS)

    Capelao, A.L.; Maguas, C.; Branquinho, C.; Cruz, C.; Martins-Loucao, M.A.

    2000-01-01

    The aim of the present work was to evaluate the potentiality of lichens as biomonitors of NH 4 + /NH 3 (ammonium/ammonia) and NO 3 - (nitrate) atmospheric deposition. For that, we used as a field station a rice plantation which is submitted, once a year, to air spraying fertilization with a mixture of nitrogen sources. Samples of an epiphytic lichen, Ramalina fastigiata, were collected from an ash-tree bordering the rice-plantation by the Sorraia River Valley (Central Portugal). The study started one month before fertilization and sampling was carried out for five months. The concentration of ammonium in the lichen was highly and significantly correlated with the number of days without precipitation before sampling, and had an inverse correlation with fluorescence values. Under these conditions, the amount of NH 4 + found in the lichen appears to reflect ammonium/ammonia dry deposition. (author)

  7. Forest damage research programme. Research on atmospheric pollutant deposition in American forests

    International Nuclear Information System (INIS)

    Hertel, G.; Brandt, J.

    1989-01-01

    The possible impact of atmospheric pollutant deposition or 'acid rain' on forest is a major environmental issue in the USA. The National Acid Precipitation Assessment Program (NAPAP) forms important part of an interagency scheme and was evolved on the basis of the activity of a special task force. In NAPAP, the investigation of the question of whether United States forests are damaged by air pollutants is seen as a central task. The individual aims pursued under the program are as follows: (1) Assessment of the impact of roughly environmentally equivalent acid deposition quantities and other oxidants in tree foliage on the productivity and health of the most important tree species. (2) Assessment of the long-term impact of roughly environmentally equivalent acid deposition quantities in different forest soils on the productivity and health of forests. (3) Pinpointing of the crucial factors responsible for externally visible tree injury in the higher ranges of the eastern part of the USA. (4) Stimulation of projects in the fields of biochemistry, physiology and ecology investigating causal relationships between acid deposition and other pollutants. (5) Institution of a programme for the continued documentation and recording of novel phenomena in tree health. (orig.) [de

  8. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation.

    Science.gov (United States)

    Carmichael, Penelope; Hazafy, David; Bhachu, Davinder S; Mills, Andrew; Darr, Jawwad A; Parkin, Ivan P

    2013-10-21

    Boron-doped titanium dioxide (B-TiO2) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO2 at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm(-2). Hydrogen production rates of B-TiO2 at 24 μL cm(-2) h(-1) far exceeded undoped TiO2 at 2.6 μL cm(-2) h(-1). The B-TiO2 samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent.

  9. Atmospheric Breakup and Energy Deposition Modeling for Asteroid Impact Risk Assessmen

    Science.gov (United States)

    Wheeler, L.; Mathias, D.

    2016-12-01

    The Asteroid Threat Assessment Project (ATAP) team at NASA Ames Research Center is developing physics-based models to assess the risk posed by potential asteroid strikes on Earth. As part of this effort, an analytic asteroid fragmentation model has been developed to model the atmospheric energy deposition of asteroids with a range of compositional properties and entry conditions. The resulting energy deposition profiles are used to estimate airburst altitudes and blast overpressure damage on the ground. The model approach combines successive fragmentation of larger independent pieces with the release of aggregate clouds of debris. A wide range of potential breakup behaviors can be assessed by varying the number and masses of fragments produced, the fraction of mass released as debris clouds, and the size-strength scaling used to increase the durability of smaller fragments. The initial asteroid body can also be seeded with a distribution of independent fragment sizes and remaining debris mass to represent a variety of structural types, from rubble piles to coherent monoliths. The model is able to reproduce key energy deposition features, such as multiple flares, high-altitude regolith blow-off, or initial disruption of loosely bound conglomerations followed by more energetic breakup of the constituent boulders. These capabilities provide a means to investigate sensitivities of energy deposition to potential variations in asteroid structure, while also maintaining a level of fidelity appropriate for the large numbers of cases needed for statistical risk assessment.

  10. An evaluation of dry deposition from the long range atmospheric dispersion

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, E.H.; Hwang, W.T.; Han, M.H.; Lee, H.S.; Lee, C.W.

    2003-01-01

    The dry deposition of pollutants released into the atmosphere must be evaluated to estimate the radiological dose of terrestrial plants and foodstuffs in the ecosystem. Especially, the atmospheric dispersion and dry deposition models have been widely developed to predict and minimize the radiological damage for the surrounding environment after the TMI-2 and the Chernobyl accidents. A Lagrangian particle model for the evaluation the long-range dispersion has been firstly developed in Korea since 2001. The particle tracking method was used for the estimation of the concentration distribution of the radioactive materials released into the atmosphere. The model is designed to estimate air concentration and ground deposition at distances up to some thousands of kilometers from the source point in the horizontal direction. The turbulent motion is considered to separate the treatment of particles within the mixing layer and above the mixing layer. Also, the dispersion model is designed to receive the results of the MM5 model being operated by KMA (Korea Meteorological Administration). The test run of the long-range dispersion model has been performed in the area which covered extends from 102.47deg E to 173.34deg E and from 12.27deg N to 53.72deg N in Northeast Asia. The release point of Cs-137 assumed in the east part of the China. The long range dispersion model has been firstly developed to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the ETEX experiments. (author)

  11. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    NARCIS (Netherlands)

    Hoye, R.L.Z.; Muñoz-Rojas, D.; Nelson, S.F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; Macmanus-Driscoll, J.L.

    2015-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants

  12. How well do environmental archives of atmospheric mercury deposition in the Arctic reproduce rates and trends depicted by atmospheric models and measurements?

    Science.gov (United States)

    Goodsite, M E; Outridge, P M; Christensen, J H; Dastoor, A; Muir, D; Travnikov, O; Wilson, S

    2013-05-01

    This review compares the reconstruction of atmospheric Hg deposition rates and historical trends over recent decades in the Arctic, inferred from Hg profiles in natural archives such as lake and marine sediments, peat bogs and glacial firn (permanent snowpack), against those predicted by three state-of-the-art atmospheric models based on global Hg emission inventories from 1990 onwards. Model veracity was first tested against atmospheric Hg measurements. Most of the natural archive and atmospheric data came from the Canadian-Greenland sectors of the Arctic, whereas spatial coverage was poor in other regions. In general, for the Canadian-Greenland Arctic, models provided good agreement with atmospheric gaseous elemental Hg (GEM) concentrations and trends measured instrumentally. However, there are few instrumented deposition data with which to test the model estimates of Hg deposition, and these data suggest models over-estimated deposition fluxes under Arctic conditions. Reconstructed GEM data from glacial firn on Greenland Summit showed the best agreement with the known decline in global Hg emissions after about 1980, and were corroborated by archived aerosol filter data from Resolute, Nunavut. The relatively stable or slowly declining firn and model GEM trends after 1990 were also corroborated by real-time instrument measurements at Alert, Nunavut, after 1995. However, Hg fluxes and trends in northern Canadian lake sediments and a southern Greenland peat bog did not exhibit good agreement with model predictions of atmospheric deposition since 1990, the Greenland firn GEM record, direct GEM measurements, or trends in global emissions since 1980. Various explanations are proposed to account for these discrepancies between atmosphere and archives, including problems with the accuracy of archive chronologies, climate-driven changes in Hg transfer rates from air to catchments, waters and subsequently into sediments, and post-depositional diagenesis in peat bogs

  13. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  14. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  15. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  16. Atmospheric aerosol in an urban area: Comparison of measurement instruments and methodologies and pulmonary deposition assessment

    International Nuclear Information System (INIS)

    Berico, M.; Luciani, A.; Formignani, M.

    1996-07-01

    In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model

  17. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  18. U.S. Geological Survey external quality-assurance project report to the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2007-08

    Science.gov (United States)

    Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.

    2010-01-01

    The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.

  19. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    Science.gov (United States)

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  20. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  1. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  2. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  3. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT)

    Science.gov (United States)

    Baker, Alex R.; Jickells, Tim D.

    2017-11-01

    We briefly review the role of atmospheric deposition measurements within the Atlantic Meridional Transect (AMT) programme and then go on to present new data on the soluble concentrations of a range of trace metals (Fe, Al, Mn, Ti, Zn, V, Ni and Cu) and major ions in aerosols collected along the AMT transect. The results allow us to identify emission sources of the trace metals particularly in terms of the relative importance of anthropogenic versus crustal sources. We identify strong gradients in concentrations and deposition for both crustal and anthropogenically sourced metals with much higher inputs to the North Atlantic compared to the South Atlantic, reflecting stronger land based emission sources in the Northern Hemisphere. We suggest anthropogenic sources of Ni and V may include an important component from shipping. We consider the extent to which these gradients are reflected in surface water concentrations of these metals based on the GEOTRACES water column trace metal data. We find there is a clear difference in the concentrations of surface water dissolved Al and Fe between the north and south Atlantic gyres reflecting atmospheric inputs. However for Mn, V or Ni, higher inputs to the North Atlantic compared to the South Atlantic are not clearly reflected in their water column concentrations.

  4. Atmospheric deposition having been one of the major source of Pb in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Zhang, Xiaolong; Wang, Qi; Li, Haixia

    2018-03-01

    Many marine bays have been polluted by Pb due to the rapid development of industry, and identifying the major source of Pb is essential to pollution control. This paper analyzed the distribution and pollution source of Pb in Jiaozhou Bay in 1988. Results showed that Pb contents in surface waters in Jiaozhou Bay in April, July and October 1988 were 5.52-24.61 μg L‑1, 7.66-38.62 μg L‑1 and 6.89-19.30 μg L‑1, respectively. The major Pb sources in this bay were atmospheric deposition, and marine current, whose source strengths were 19.30-24.61μg L‑1 and 38.62 μg L‑1, respectively. Atmospheric deposition had been one of the major Pb sources in Jiaozhou Bay, and the source strengths were stable and strong. The pollution level of Pb in this bay in 1988 was moderate to heavy, and the source control measurements were necessary.

  5. Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula

    Science.gov (United States)

    Galbán-Malagón, Cristóbal; Cabrerizo, Ana; Caballero, Gemma; Dachs, Jordi

    2013-12-01

    Despite the distance of Antarctica and the Southern Ocean to primary source regions of organochlorine pesticides, such as hexachlorobenzene (HCB) and hexachlorocyclohexanes (HCHs), these organic pollutants are found in this remote region due to long range atmospheric transport and deposition. This study reports the gas- and aerosol-phase concentrations of α-HCH, γ-HCH, and HCB in the atmosphere from the Weddell, South Scotia and Bellingshausen Seas. The atmospheric samples were obtained in two sampling cruises in 2008 and 2009, and in a third sampling campaign at Livingston Island (2009) in order to quantify the potential secondary sources of HCHs and HCB due to volatilization from Antarctic soils and snow. The gas phase concentrations of HCHs and HCB are low, and in the order of very few pg m-3 α-HCH and γ-HCH concentrations were higher when the air mass back trajectory was coming from the Antarctic continent, consistent with net volatilization fluxes of γ-HCH measured at Livingston Island being a significant secondary source to the regional atmosphere. In addition, the Southern ocean is an important net sink of HCHs, and to minor extent of HCB, due to high diffusive air-to-water fluxes. These net absorption fluxes for HCHs are presumably due to the role of bacterial degradation, depleting the water column concentrations of HCHs in surface waters and driving an air-water disequilibrium. This is the first field study that has investigated the coupling between the atmospheric occurrence of HCHs and HCB, the simultaneous air-water exchange, soil/snow-air exchange, and long range transport of organic pollutants in Antarctica and the Southern Ocean.

  6. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  7. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces.

    Science.gov (United States)

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D

    2012-01-01

    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required

  8. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  9. Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and ecosystem factors

    Science.gov (United States)

    Wiener, J.G.; Knights, B.C.; Sandheinrich, M.B.; Jeremiason, Jeffrey D.; Brigham, M.E.; Engstrom, D.R.; Woodruff, L.G.; Cannon, W.F.; Balogh, S.J.

    2006-01-01

    Concentrations of methylmercury in game fish from many interior lakes in Voyageurs National Park (MN, U.S.A.) substantially exceed criteria for the protection of human health. We assessed the importance of atmospheric and geologic sources of mercury to interior lakes and watersheds within the Park and identified ecosystem factors associated with variation in methylmercury contamination of lacustrine food webs. Geologic sources of mercury were small, based on analyses of underlying bedrock and C-horizon soils, and nearly all mercury in the O- and A-horizon soils was derived from atmospheric deposition. Analyses of dated sediment cores from five lakes showed that most (63% ?? 13%) of the mercury accumulated in lake sediments during the 1900s was from anthropogenic sources. Contamination of food webs was assessed by analysis of whole, 1-year-old yellow perch (Perca flavescens), a regionally important prey fish. The concentrations of total mercury in yellow perch and of methylmercury in lake water varied substantially among lakes, reflecting the influence of ecosystem processes and variables that affect the microbial production and abundance of methylmercury. Models developed with the information-theoretic approach (Akaike Information Criteria) identified lake water pH, dissolved sulfate, and total organic carbon (an indicator of wetland influence) as factors influencing methylmercury concentrations in lake water and fish. We conclude that nearly all of the mercury in fish in this seemingly pristine landscape was derived from atmospheric deposition, that most of this bioaccumulated mercury was from anthropogenic sources, and that both watershed and lacustrine factors exert important controls on the bioaccumulation of methylmercury. ?? 2006 American Chemical Society.

  10. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  11. Observations of atmospheric Hg species and depositions in remote areas of China

    Directory of Open Access Journals (Sweden)

    Feng X.

    2013-04-01

    Full Text Available From September 2007, we conducted continuous measurements of speciated atmospheric mercury (Hg and atmospheric mercury depositions at five remote sites in China. Four of these sites were involved in the Global Mercury Observation System (GMOS as ground-based stations. These stations were located in the northwest, southwest, northeast, and east part of China, respectively, which represent the regional atmospheric Hg budgets in different areas of China. The preliminary results showed that mean TGM concentrations were in the range of 1.60 – 2.88 ng m-3, with relatively higher levels observed at sites in Eastern China and Southwestern China and lower levels at sites in Northeastern and Northwestern China. TGM concentrations at remote sites of China were also higher than those reported from background sites in North America and Europe, and this is corresponding very well with the Chinese great anthropogenic Hg emissions. Gaseous oxidized mercury (GOM and particulate bounded mercury (PBM were in the ranges of 3.2 – 7.4 pg m−3 and 19.4 – 43.5 pg m-3, respectively. The preliminary result on precipitation showed mean precipitation THg concentrations were in the range of 2.7 – 18.0 ng L-1.

  12. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-08-01

    Full Text Available Mercury (Hg is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission. Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015 in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.

  13. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  14. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; hide

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  15. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  16. Analysis of workstation: tritium atmospheric contamination

    International Nuclear Information System (INIS)

    Rigaud, S.; Lemontey, F.; Lecrique-Gelhay, C.; Chanal, S.; Maynadier, B.; Gaudet, F.; Colas, O.; Raufast, V.

    2012-01-01

    Radioactive contamination, whether it is on the surface or in the atmosphere, could be the reason for individual internal exposure. The Practical Air Contamination Limit values enable the occupational health doctors as well as the 'Personne Competente en Radioprotection' (PCR: competent person in radioprotection) to pre-evaluate the risks resulting from atmospheric contamination. These values are used to determine the course of action regarding the workstation, but also as an optimisation tool for staff protection, within the framework of the application of the ALARA (As Low As Reasonably Achievable) principal. During the analysis of workstations, the PCRs at Pierre Fabre Laboratories were confronted with effective dose values which seemed to be, in their opinion, abnormally high. These values were in contradiction with the results of the urinary radio-toxicological exams, which are done within the framework of the reinforced medical monitoring of the technicians, and which have always been negative (whether the exams were done periodically or from time to time at the end of a radioactive experiment series). This is why it was considered relevant to rent bubble chamber systems, used for low-level concentrations of tritium and carbon-14. The measurements showed insignificant tritium atmospheric contamination levels in the laboratories, in particular for some experimental steps that were considered a priori problematic. This study, carried out within the framework of the workstation, enabled us to decrease the volatility factor value of tritiated compounds intervening in the effective dose calculation. (authors)

  17. Mass spectroscopic analysis of atmospheric particulate matter

    International Nuclear Information System (INIS)

    Wippel, R.

    1997-02-01

    Particulate matter (PM) in the atmosphere vary greatly in origin, in their physical and chemical properties and their effects on climate, atmospheric chemistry and health. Aerosol particles with an aerodynamic diameter less than two μm can enter the respiratory tract of humans when inhaled. Bulk analysis of ambient dust particles was performed using an inductively coupled plasma mass spectrometer (ICP-MS). The size-fractionated collected samples were analyzed after a leaching procedure that simulates the solution reactions occurring in the lungs. A disadvantage of bulk analysis is that it gives no information about the distribution of a certain element within the particles under investigation. A Laser-Microprobe-Mass-Analyzer (LAMMA-500) was used to obtain this information. At sampling sites in Austria and in Zimbabwe, Africa, single particles were sampled using a self-made impactor. One of the final aims in environmental analysis is to successfully apply receptor models that relate the chemical and physical properties of a receptor site to a source. The knowledge of the sources of atmospheric particulate matter is essential for environmental policy makers as well as for epidemiological studies. Artificial neural networks (ANN) have a remarkable ability to handle LAMMA-data. Three ANNs were used as a pattern recognition tool for LAMMA mass spectral data: a back-propagation net, a Kohonen network,and a counter-propagation net. Standard source profiles from the United States Environmental Protection Agency were used as training and test data of the different nets. The elemental patterns of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 80 %) was obtained. (author)

  18. Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California

    Science.gov (United States)

    Zamora, Celia; Majewski, Michael S.; Foreman, William T.

    2013-01-01

    The U.S. Geological Survey monitored atmospheric deposition of pesticides in the Central Valley of California during two studies in 2001 and 2002–04. The 2001 study sampled wet deposition (rain) and storm-drain runoff in the Modesto, California, area during the orchard dormant-spray season to examine the contribution of pesticide concentrations to storm runoff from rainfall. In the 2002–04 study, the number and extent of collection sites in the Central Valley were increased to determine the areal distribution of organophosphate insecticides and other pesticides, and also five more sample types were collected. These were dry deposition, bulk deposition, and three sample types collected from a soil box: aqueous phase in runoff, suspended sediment in runoff, and surficial-soil samples. This report provides concentration data and describes methods and quality assurance of sample collection and laboratory analysis for pesticide compounds in all samples collected from 16 sites. Each sample was analyzed for 41 currently used pesticides and 23 pesticide degradates, including oxygen analogs (oxons) of 9 organophosphate insecticides. Analytical results are presented by sample type and study period. The median concentrations of both chloryprifos and diazinon sampled at four urban (0.067 micrograms per liter [μg/L] and 0.515 μg/L, respectively) and four agricultural sites (0.079 μg/L and 0.583 μg/L, respectively) during a January 2001 storm event in and around Modesto, Calif., were nearly identical, indicating that the overall atmospheric burden in the region appeared to be fairly similar during the sampling event. Comparisons of median concentrations in the rainfall to those in the McHenry storm-drain runoff showed that, for some compounds, rainfall contributed a substantial percentage of the concentration in the runoff; for other compounds, the concentrations in rainfall were much greater than in the runoff. For example, diazinon concentrations in rainfall were about

  19. Critical Loads of Atmospheric Nitrogen Deposition for Aquatic Ecosystems in Yosemite and Sequoia and Kings Canyon National Parks

    Science.gov (United States)

    Nanus, L.; Clow, D. W.; Sickman, J. O.

    2016-12-01

    High-elevation aquatic ecosystems in Yosemite (YOSE) and Sequoia and Kings Canyon (SEKI) National Parks are impacted by atmospheric nitrogen (N) deposition associated with local and regional air pollution. Documented effects include elevated surface water nitrate concentrations, increased algal productivity, and changes in diatom species assemblages. Annual wet inorganic N deposition maps, developed at 1-km resolution for YOSE and SEKI to quantify N deposition to sensitive high-elevation ecosystems, range from 1.0 to over 5.0 kg N ha-1 yr-1. Critical loads of N deposition for nutrient enrichment of aquatic ecosystems were quantified and mapped using a geostatistical approach, with N deposition, topography, vegetation, geology, and climate as potential explanatory variables. Multiple predictive models were created using various combinations of explanatory variables; this approach allowed us to better quantify uncertainty and more accurately identify the areas most sensitive to atmospherically deposited N. The lowest critical loads estimates and highest exceedances identified within YOSE and SEKI occurred in high-elevation basins with steep slopes, sparse vegetation, and areas of neoglacial till and talus. These results are consistent with previous analyses in the Rocky Mountains, and highlight the sensitivity of alpine ecosystems to atmospheric N deposition.

  20. Atmospheric deposition of heavy metals in Norway. Nationwide survey 2010.; Atmosfareisk nedfall av tungmetaller i Norge. Landsomfattende undersoekelse i 2010,

    Energy Technology Data Exchange (ETDEWEB)

    Steinnes, Eiliv; Berg, Torunn; Uggerud, Hilde Thelle; Pfaffhuber, Katrine Aspmo

    2011-07-01

    The geographical distribution of atmospheric deposition of heavy metals in Norway was mapped in 2010 by analysis of moss samples from 464 sites all over the country. This report provides a presentation of the results and a comparison with data from a series of corresponding moss surveys starting 1977. The survey is part of an international program comprising large parts of Europe. The survey primarily concerns the ten metals of priority in the European program: vanadium, chromium, iron, nickel, copper, zinc, arsenic, cadmium, mercury, and lead. In addition data are reported for another 42 elements in the moss. The discussion of the obtained data mainly refers to contributions from air pollution. In addition influence from natural processes to the elemental composition of the moss and how it may influence the interpretation of the data is discussed. (Author)

  1. Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing

    International Nuclear Information System (INIS)

    Bose, Arumugam Chandra; Shimizu, Yoshiki; Mariotti, Davide; Sasaki, Takeshi; Terashima, Kazuo; Koshizaki, Naoto

    2006-01-01

    Nanoparticles of crystalline molybdenum oxide were prepared by changing the flow rate of plasma gas (2% oxygen balanced by Ar) using an atmospheric-pressure microplasma technique. The morphology and crystalline structure of the nanoparticles were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The FESEM results revealed that the shape of the deposited nanoparticles depended on the plasma gas flow rate. The TEM results supported the FESEM observations. The transmission electron diffraction (TED) pattern revealed that the obtained nanoparticles changed from MoO 2 to MoO 3 with the flow-rate increase, and correspondingly the nanoparticle size drastically decreased. A process mechanism is proposed from the observations of optical emission spectroscopy (OES) during the process and consumed wire surface analysis from x-ray photoelectron spectroscopy (XPS) and FESEM studies

  2. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  3. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  4. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  5. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2012-10-01

    Full Text Available This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium, cobalt, copper, iron, manganese and nickel in the incubation water. Over the three-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon (POC increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived cobalt (Co, manganese, and nickel were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Copper (Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1 atmospheric deposition contributes biologically important metals to seawater, (2 these metals are consumed over time scales commensurate with cell growth, and (3 growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite relatively close geographic proximity and taxonomic

  6. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau.

    Science.gov (United States)

    Chen, Laiguo; Feng, Qianhua; He, Qiusheng; Huang, Yumei; Zhang, Yu; Jiang, Guo; Zhao, Wei; Gao, Bo; Lin, Kui; Xu, Zhencheng

    2017-01-15

    Because of mountain cold-trapping, the soil in the Tibetan Plateau may be an important global sink of organochlorine pesticides (OCPs). However, there are limited data on OCPs in the soils of the Tibetan Plateau. In addition, the atmospheric transport and deposition mechanisms of OCPs also need to be further studied. In this study, the sampling area covered most regions of the Tibetan Plateau. The detection frequencies of ΣChlordane (sum of trans-chlordane, cis-chlordane and oxychlordane), HCB, ΣNonachlor (sum of trans- and cis-nonachlor), DDTs, ΣEndo (sum of endosulfan-I, endosulfan-II and endosulfate), aldrin, HCHs, ΣHeptachlor (sum of heptachlor and heptachlor epoxide), mirex and dieldrin were 100%, 98.3%, 96.6%, 94.8%, 89.7%, 87.9%, 62.1%, 55.2%, 32.8% and 6.9%, respectively. DDTs (with arithmetic mean values of 1050ngkg -1 dw) and HCHs (393ngkg -1 ) were the principal OCPs in cultivated soils, whereas ΣEndo (192ngkg -1 ) and ΣChlordane (152ngkg -1 ) were the principal OCPs in non-cultivated soils. Local use of DDTs, dicofol and HCHs may be an important source of OCP accumulation in the soil of the Tibetan Plateau. Aldrin and endosulfan are considered to be good indicators for studying atmospheric transport and deposition of OCPs from South Asia and Southeast Asia. Two zones with high OCP levels were found in the southeast and northwest of the Tibetan Plateau. The zones have dissimilar pollution sources of OCPs and are influenced by different factors that affect their precipitation scavenging efficiency. The amount of precipitation was the dominant factor in the southeast, whereas large differences in temperature and wind speed were the dominant factors in the northwest. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles

    Science.gov (United States)

    Nikiforov, Anton Yu.; Deng, Xiaolong; Onyshchenko, Iuliia; Vujosevic, Danijela; Vuksanovic, Vineta; Cvelbar, Uros; De Geyter, Nathalie; Morent, Rino; Leys, Christophe

    2016-08-01

    A simple method for preparation of nanoparticle incorporated non-woven fabric with high antibacterial efficiency has been proposed based on atmospheric pressure plasma process. In this work direct current plasma jet stabilized by fast nitrogen flow was used as a plasma deposition source. Three different types of the nanoparticles (silver, copper and zinc oxide nanoparticles) were employed as antimicrobial agents. X-ray photoelectron spectroscopy (XPS) measurements have shown a positive chemical shift observed for Ag 3d 5/2 (at 368.1 eV) suggests that silver nanoparticles (AgNPs) are partly oxidized during the deposition. The surface chemistry and the antibacterial activity of the samples against Staphylococcus aureus and Escherichia coli were investigated and analyzed. It is shown that the samples loaded with nanoparticles of Ag and Cu and having the barrier layer of 10 nm characterized by almost 97% of bacterial reduction whereas the samples with ZnO nanoparticles provide 86% reduction of Staphylococcus aureus. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  8. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring.

    Science.gov (United States)

    Maxhuni, Albert; Lazo, Pranvera; Kane, Sonila; Qarri, Flora; Marku, Elda; Harmens, Harry

    2016-01-01

    Bryophytes act as bioindicators and bioaccumulators of metal deposition in the environment. The atmospheric deposition of Cd, Cr, Cu, Fe, Hg, Ni, Mn, Pb, and Zn in Kosovo was investigated by using carpet-forming moss species (Pseudocleropodium purum and Hypnum cupressiforme) as bioindicators. This research is part of the European moss survey coordinated by the ICP Vegetation, an International Cooperative Programme reporting on the effects of air pollution on vegetation to the UNECE Convention on Long-range Transboundary Air Pollution. Sampling was performed during the summer of 2011 at 25 sampling sites homogenously distributed over Kosovo. Unwashed, dried samples were digested by using wet digestion in Teflon tubes. The concentrations of metal elements were determined by atomic absorption spectrometry (AAS) equipped with flame and/or furnace systems. The heavy metal concentration in mosses reflected local emission sources. The data obtained in this study were compared with those of similar studies in neighboring countries and Europe (2010-2014 survey). The geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. The concentrations of Cr, Ni, Pb, and Zn were higher than the respective median values of Europe, suggesting that the zones with heavy vehicular traffic and industry emission input are important emitters of these elements. Selected zones are highly polluted particularly by Cd, Pb, Hg, and Ni. The statistical analyses revealed that a strong correlation exists between the Pb and Cd content in mosses, and the degree of pollution in the studied sites was assessed.

  9. Deposition of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002

    International Nuclear Information System (INIS)

    Fujiwara, Hideshi; Fukuyama, Taijiro; Shirato, Yasuhito; Ohkuro, Toshiya; Taniyama, Ichiro; Zhang, Tong-Hui

    2007-01-01

    Considerable deposition of 137 Cs was observed in the northwestern coastal area of Japan in March 2002. Since there were no nuclear explosions or serious nuclear accidents in the early 2000s, transport of previously contaminated dust appears to be the only plausible explanation for this event. In March 2002, there was a massive sandstorm on the East Asian continent, and the dust raised by the storm was transported across the sea to Japan. This dust originated in Mongolia and northeastern China, in an area distant from the Chinese nuclear test site at Lop Nor or any other known possible sources of 137 Cs. Our radioactivity measurements showed 137 Cs enrichment in the surface layer of grassland soils in the area of the sandstorm, which we attributed to accumulation as a result of past nuclear testing. We suggest that the grassland is a potential source of 137 Cs-bearing soil particles. Since the late 1990s, this area has experienced drought conditions, resulting in a considerable reduction of vegetation cover. We attribute the prodigious release of 137 Cs-bearing soil particles into the atmosphere during the sandstorm and the subsequent deposition of 137 Cs in Japan to this change

  10. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  11. Assessing the Sources of Atmospheric Mercury Wet Deposited in Florida, USA

    Directory of Open Access Journals (Sweden)

    Dvonch J. T.

    2013-04-01

    Full Text Available From October 2008 through August 2010, event-based precipitation samples for mercury (Hg, trace elements, and major ions analysis were collected at six monitoring sites in Florida, USA. The objectives of these measurements were to quantify the levels of Hg wet deposition across the state, and to assess the contributions to Hg in precipitation from major local and regional emission sources in support of a Hg Total Maximum Daily Load (TMDL project. The measurement sites were located in Pensacola, Jacksonville, Orlando, Tampa, Davie, and Everglades National Park. For the period April 2009 through August 2010, Hg wet deposition rates ranged from 26.8 to 38.7 μg/m2 across the six sites. We observed a strong seasonal pattern, with increases in measured Hg concentrations and Hg wet deposition occurring during the summer months, which was further pronounced at the southern sites. We also observed a clear overall spatial gradient in Hg wet deposition, increasing across sites from north to south.

  12. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  13. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, R. [Water Research Institute, Brugherio (Italy); Tagliaferri, A. [Regional Forestry Board (Italy)

    2001-07-01

    Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg{sup 2+}, while the throughfall concentrations differed in the measured values of H{sup +}, N-NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO{sub 3}{sup -}, N-NH{sub 4}{sup +} and H{sup +} at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca{sup 2+}, K{sup +} and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO{sub 4}{sup 2-} deposition fluxes (21.3kg ha{sup -1}yr{sup -1} at Val Masino and 23.6kgha{sup -1}yr{sup -1} at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1kgha{sup -1}yr{sup -1} in the bulk input, and 15.0 and 18.0kgha{sup -1}yr{sup -1} in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kgNha{sup -1} at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. (author)

  14. Reconstruction of historical atmospheric deposition of DDT in the Zempoala Lagoon, in the center of Mexico

    Science.gov (United States)

    van, Afferden M.; Hansen, A.M.; Fuller, C.C.

    2005-01-01

    Historical trend in deposition of DDT and its metabolites has been reconstructed by analyzing sediment cores of the Zempoala Lagoon, in the center of Mexico. The small watershed of this mountain lagoon is closed, and it is located between 2.800 and 3.700 masl. It ls neither affected by agriculture nor by permanent populations. The Zempoala Lagoon has an average depth of 3.9 mand a maximum depth of 8.8 m. Sediments were extracted with a eore sampler and analyzed by isotope methods (137CS and 2'OPb) for dating. Average sedimentation rate was determined in 0.129 9 cm" yr', corresponding to a maximum age of the 44 cm eore of approximately 60 years. The first presence of total-DDT oecurs in a depth between 28 and 32 cm of the sediment profile, corresponding to the 1960's, with a concentration of 5.3 I1g kg-'. The maximum eoncentration of total-DDT (13.0I1g kg-') occurs in sediment layers representing the late 1970's and beginning 1980's. More recently the concentration decreases towards the present concentration of 1.6 I1g kg-'. This concentration is below most DDT levels reported in recent sediment studies in the USA. The results indicate that the Zempoala Lagoon represents a natural reeipient for studies of the reconstruction of historical trends of atmospheric contaminant deposition in this region. The limitations of the methodology applied, due to the influenee of biodegradation on the definition of correct historical coneentrations of DDT depositions, are demonstrated.

  15. Distributed emergency response system to model dispersion and deposition of atmospheric releases

    International Nuclear Information System (INIS)

    Taylor, S.S.

    1985-04-01

    Aging hardware and software and increasing commitments by the Departments of Energy and Defense have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability (ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agencies to assess the environmental health hazards resulting from an accidental release of radioactive material into the atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direction), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system also calculates deposition and dose and displays them graphically over base maps of the local geography for use by on-site authorities. This paper discusses the limitations of the existing ARAC system. It also discusses the components and functionality of the new system, the technical difficulties encountered and resolved in its design and implementation, and the software methodologies and tools employed in its development

  16. Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition

    Science.gov (United States)

    Suzuki, Seiya; Nagamori, Takashi; Matsuoka, Yuki; Yoshimura, Masamichi

    2014-09-01

    Chemical vapor deposition (CVD) is a promising method of producing a large single-crystal graphene on a catalyst, especially on copper (Cu), and a further increase in domain size is desirable for electro/optic applications. Here, we report on threefold atmospheric-pressure (ATM) annealing for suppressing graphene nucleation in atmospheric CVD. Threefold ATM annealing formed a step and terrace surface of the underlying Cu, in contrast to ATM annealing. Atomic force microscopy and Auger electron mapping revealed that Si-containing particles existed on threefold-ATM- and ATM-annealed surfaces; particles on Cu had a lower density after threefold ATM annealing than after ATM annealing. The formation of a step and terrace surface and the lower density of particles following the threefold ATM annealing would play a role in reducing graphene nucleation. By combining threefold ATM annealing and electropolishing of Cu, the nucleation of graphene was effectively suppressed, and a submillimeter-sized hexagonal single-crystal graphene was successfully obtained.

  17. Atmospheric deposition and lake chemistry trends at a high mountain site in the eastern Alps

    Directory of Open Access Journals (Sweden)

    Bertha THALER

    2000-02-01

    Full Text Available Records of atmospheric precipitation chemistry starting in 1983 and a series of limnological investigations at two high mountain reference lakes starting in 1988 enable us to describe the response of lake water chemistry to changes in precipitation chemistry and climate. The lakes are located at an altitude well above the timberline in a watershed composed of acidic rocks. Despite the observed reduction in the sulphur atmospheric deposition, the reference lakes showed no corresponding decline in sulphate concentrations, but a marked increase in the acid neutralising capacity was apparent. Changes of the seasonal distribution pattern of the precipitation amounts and a general increase of the air temperature have likely produced an increased weathering which increased the concentration of many inlake solutes and drove the lakes toward more buffered conditions. This phenomenon superimposed to changes like other physical factors (radiation, nutritional conditions and biological factors (enhanced production, competition, predation has produced in the last years greater modifications than merely those to be expected from the decreased acidic input.

  18. Comprehensive analysis of atmospheric radionuclides just after the Fukushima accident

    Science.gov (United States)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2017-04-01

    Even six years passed after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident, we still have large uncertainty for atmospheric transport and deposition models, the estimate of release rate of source terms and of internal exposure from inhalation. For our better understanding and to reduce the uncertainty, we thoroughly analyzed all the published data of radionuclides such as Cs-137, I-131 and Xe-133, and of radiation dose rates at many monitoring sites in eastern Japan. We also retrieved the spatio-temporal distributions of Cs-137 just after the accident by using the unique dataset of hourly radionuclides in atmospheric aerosols collected on the used filter-tapes installed in the suspended particulate matter (SPM) monitors operated at more than 100 stations in the air pollution monitoring network of Japan. The most important findings are summarized as follows. Analyzing the hourly Cs-137 concentrations at two SPM stations located within 20 km from the FD1NPP, we revealed the complicated behavior of plumes and atmospheric radionuclides near the FD1NPP just after the accident. The transport pathways to the northwestern and northern areas from the FD1NPP are clarified especially on March 12-21, 2011. Analysis of the published data clearly shows that atmospheric ratio of I-131/Cs-137 (=R) was mainly divided into two groups, one (R≦10) is for the plumes before March 21, 2011, and the other (R>100) is after that day. These two groups are consistent in all the measured sites, whether the sites are in the Fukushima prefecture or in the Tokyo Metropolitan area. These results are expected partially to identify the source term for each plume.

  19. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    Science.gov (United States)

    Brown, R.G.

    1984-01-01

    Atmospheric deposition and subsequent runoff concentrations of total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, total phosphorus, total sulfate (only for atmospheric deposition), total chloride, and total lead were studied from April 1 to October 31, 1980, in one rural and three urban watersheds in the Twin Cities Metropolitan Area, Minnesota. Seasonal patterns of wetfall and dryfall generally were similar for all constituents except chloride in both rural and urban watersheds. Similarity between constituents and between rural and urban watersheds suggested that regional air masses transported from the Gulf of Mexico by frontal storm movements influence seasonal patterns of atmospheric deposition in the metropolitan area. Local influences such as industrial, agricultural, and vehicular air pollutants were found to influence the magnitude or rate of atmospheric deposition rather than the seasonal pattern. Chloride was primarily influenced by northwest frontal storms laden with coastal chloride. Local influences such as dust from road deicing salt dust are thought to have caused an increase in atmospheric chloride during June.

  20. Atmospheric deposition process for enhanced hybrid organic-inorganic multilayer barrier thin films for surface protection

    Science.gov (United States)

    Rehman, Mohammad Mutee ur; Kim, Kwang Tae; Na, Kyoung Hoan; Choi, Kyung Hyun

    2017-11-01

    In this study, organic polymer poly-vinyl acetate (PVA) and inorganic aluminum oxide (Al2O3) have been used together to fabricate a hybrid barrier thin film for the protection of PET substrate. The organic thin films of PVA were developed through roll to roll electrohydrodynamic atomization (R2R-EHDA) whereas the inorganic thin films of Al2O3 were grown by roll to roll spatial atmospheric atomic layer deposition (R2R-SAALD) for mass production. The use of these two technologies together to develop a multilayer hybrid organic-inorganic barrier thin films under atmospheric conditions is reported for the first time. These multilayer hybrid barrier thin films are fabricated on flexible PET substrate. Each layer of Al2O3 and PVA in barrier thin film exhibited excellent morphological, chemical and optical properties. Extremely uniform and atomically thin films of Al2O3 with average arithmetic roughness (Ra) of 1.64 nm and 1.94 nm respectively concealed the non-uniformity and irregularities in PVA thin films with Ra of 2.9 nm and 3.6 nm respectively. The optical transmittance of each layer was ∼ 80-90% while the water vapor transmission rate (WVTR) of hybrid barrier was in the range of ∼ 2.3 × 10-2 g m-2 day-1 with a total film thickness of ∼ 200 nm. Development of such hybrid barrier thin films with mass production and low cost will allow various flexible electronic devices to operate in atmospheric conditions without degradation of their properties.

  1. Atmospheric pressure chemical vapor deposition mechanism of Al 2O 3 film from AlCl 3 and O 2

    Science.gov (United States)

    Nasution, Indra; Velasco, Angelito; Kim, Hee-joon

    2009-01-01

    Aluminum oxide (Al 2O 3) films were deposited by atmospheric pressure chemical vapor deposition (AP-CVD) method from aluminum trichloride (AlCl 3), argon, and oxygen gas mixtures at temperatures ranging from 800 to 1000 °C. Alumina films with crystalline phases of γ- or θ-, and α-alumina were obtained starting at 800 °C. Increase in the relative amount of the α-phase as well as improvement in crystallinity is observed as temperature is increased to 1000 °C. The films have low chlorine content, which continued to decrease with increasing temperature. Analysis of the film growth rate on tubular substrates of varying diameters revealed a diffusion-limited growth from 800 to 950 °C and gas-phase reaction-limited growth at 1000 °C. The growth species is a cluster with size 1.2 nm at 800 °C and 0.9 nm at 950 °C. The gas-phase reaction constant at 1000 °C is 1.1/s.

  2. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2012-03-01

    Full Text Available On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe and the aerosol-bound caesium-137 (137Cs, which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2–18.3 EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137

  3. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant. Determination of the source term, atmospheric dispersion, and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Burkhart, J.F.; Eckhardt, S. [NILU - Norwegian Institute for Air Research, Kjeller (Norway); Seibert, P. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Wotawa, G. [Central Institute for Meteorology and Geodynamics, Vienna (Austria); Arnold, D. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Tapia, C. [Technical Univ. of Catalonia, Barcelona (Spain). Dept. of Physics and Nucelar Engineering; Vargas, A. [Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Yasunari, T.J. [Univs. Space Research Association, Columbia, MD (United States). Goddard Earth Sciences and Technology and Research

    2012-07-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 ({sup 133}Xe) and the aerosol-bound caesium-137 ({sup 137}Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for {sup 137}Cs, measurements of bulk deposition. Regarding {sup 133}Xe, we find a total release of 15.3 (uncertainty range 12.2-18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated {sup 133}Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into {sup 133}Xe. There is strong evidence that the {sup 133}Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For {sup 137}Cs, the inversion results give a total emission of 36

  4. Measurement and analysis of atmospheric optics parameters In northwest ward

    Science.gov (United States)

    Sun, Gang; Weng, Ning-quan; Liu, Qing; Zhang, Cai-yun; Cheng, Ming

    2014-02-01

    When light-wave propagates in the turbulent atmosphere, it will be affected by atmospheric turbulence and brought various effect , such as flicker, phase fluctuation. So the investigation of atmosphere optics parameters always must be important. Because of the differences in geographical conditions and climate, atmospheric optical parameters in different regions have different spatial and time distribution. In this paper, various atmosphere optics parameters are measured by atmosphere optics parameters measure system in the Delingha area of Qinghai province and Xinjiang Korla area, through statistical analysis of atmospheric optical parameters corresponding area, we know clearly different geographical climate character of the northwest area of atmospheric optical parameters of structure characteristics, the results provide a valuable reference for further practical engineering application of optical remote sensing location and atmospheric optical transmission and atmospheric properties.

  5. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  6. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Impacts of large-scale atmospheric circulation changes in winter on black carbon transport and deposition to the Arctic

    Science.gov (United States)

    Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta

    2017-10-01

    Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.

  8. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  9. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.

    Science.gov (United States)

    Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne

    2014-05-01

    The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1)  yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to

  10. Analysis of software for modeling atmospheric dispersion

    International Nuclear Information System (INIS)

    Grandamas, O.; Hubert, Ph.; Pages, P.

    1989-09-01

    During last few years, a number software packages for microcomputes have appeared with the aim to simulate diffusion of atmospheric pollutants. These codes, simplifying the models used for safety analyses of industrial plants are becoming more useful, and are even used for post-accidental conditions. The report presents for the first time in a critical manner, principal models available up to this date. The problem arises in adapting the models to the demanded post-accidental interventions. In parallel to this action an analysis of performance was performed. It means, identifying the need of forecasting the most appropriate actions to be performed having in mind short available time and lack of information. Because of these difficulties, it is possible to simplify the software, which will not include all the options but could deal with a specific situation. This would enable minimisation of data to be collected on the site [fr

  11. Development of Atmospheric Kr-85 Analysis Technology

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Lee, Han Soo; Choi, Hei Hu; Kang, Hee Seok; Lee, Wan Ro; Lee, Chang Woo

    2004-12-15

    In order to establish effectively the atmospheric Kr-85 analysis system. the preliminary study, including the analysis of state of the art, the construction of a Kr collection system and its performance test, and the set up of future plan have been performed. As the result of the performance test of the collection system. the concentration of Kr in air was concentrated by about 700 times, compared to that before the collection, and the collected Kr gas volume was about 2.1 cc, which was about 10 times larger than the minimum Kr gas volume (about 0.2cc) required for the measurement of the radioactivity using GM tube. Three-stage action plan for the establishment of the Kr-85 analysis system is presented. In the next stage, the focused works include the completion of the design technology for the Kr collection system via a practical application and the development of critical unit technology for the separation and purification of sample.

  12. Global Atmosphere Watch Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD)

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...

  13. Atmospheric concentrations, occurrence and deposition of persistent organic pollutants (POPs) in a Mediterranean coastal site (Etang de Thau, France)

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Jimenez, J., E-mail: javier.castro-jimenez@idaea.csic.es [European Commission-Joint Research Centre, Institute for Environment and Sustainability, via E. Fermi 2749, 21027 Ispra (Italy); Mariani, G.; Vives, I.; Skejo, H.; Umlauf, G. [European Commission-Joint Research Centre, Institute for Environment and Sustainability, via E. Fermi 2749, 21027 Ispra (Italy); Zaldivar, J.M. [European Commission-Joint Research Centre, Institute for Health and Consumer Protection, via E. Fermi 2749, 21027 Ispra (Italy); Dueri, S. [CRH, UMR 212 EME, Institut de Recherche pour le Developpement, Avenue Jean Monnet BP 171, 34203 Sete Cedex (France); Messiaen, G.; Laugier, T. [Ifremer, Environment and Resources Laboratory, Avenue Jean Monnet BP 171, 34203 Sete Cedex (France)

    2011-07-15

    Atmospheric concentrations and deposition fluxes of PCDD/F and PCB have been evaluated over a 1-year period in a Mediterranean coastal lagoon (Etang de Thau, France). Indicative PBDE air concentrations in the hot season are also reported in this work. {Sigma}2,3,7,8-PCDD/Fs and {Sigma}18PCBs (gas + particulate) air concentrations ranged from 67 to 1700 fg m{sup -3} and from 13 to 95 pg m{sup -3}, respectively whereas {Sigma}8PBDEs (gas + particulate) summer time levels varied from 158 to 230 pg m{sup -3}. The PCDD/F and PCB atmospheric occurrence over Thau lagoon and subsequent inputs to the surface waters are determined by an assemble of factors, being the seasonality of atmospheric concentration, the air mass origin and meteorological conditions important drivers. Total (wet + dry) {Sigma}2,3,7,8-PCDD/Fs and {Sigma}18PCBs deposition fluxes to Thau Lagoon waters are 117 and 715 pg m{sup -2} d{sup -1}, respectively. - Highlights: > PCDD/F and PCB atmospheric concentrations in Thau lagoon are typical from rural/semi-rural areas. > PBDE atmospheric concentrations in Thau lagoon are typical from urban/industrial sites. > PCDD/F and PCB atmospheric concentrations over Thau lagoon and inputs to surface waters are very variable, even changing between the same week of the month in two consecutive years. > Metallurgical industry may be a possible local source of PCDD/Fs in the Thau lagoon basin. > Annual PCBs and PCDD/Fs atmospheric inputs are dominated by dry deposition - PCDD/F and PCB atmospheric concentrations over Thau lagoon and inputs to surface waters are very variable, even changing between the same week of the month in two consecutive years.

  14. Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM and Hg Deposition in the Silesian Region, Poland – Concept of the Mercury Deposition Coefficient

    Directory of Open Access Journals (Sweden)

    Nowak Bartosz

    2014-12-01

    Full Text Available The aim of this work was to identify concentration levels of different chemical forms of mercury (TGM, TPM in the ambient air in selected areas of the Silesian Region, characterized by low and high mercury emission. Based on the obtained data TGM and TPM concentration levels were determined. The project also focused on determination of dry and wet deposition of mercury compounds. Data concerning TGM and TPM flux rates in the ambient air and data on mercury deposition were used to determine a deposition coefficient. The coefficient was calculated as a share of mercury deposition on the land surface (dry and wet to the amount of this contaminant transported with loads of air in the form of TGM and TPM in a given measurement station. At both monitoring stations the deposition coefficient did not exceed 0.2 %. The idea of calculating the deposition coefficient based on the analysis of TGM and TPM flux rate is a new solution. The proposed deposition coefficient allows to quantify information on a selected contaminant concentration and its potential impact resulting from deposition. Further studies on the deposition coefficient may contribute to the development of methods for estimating the impact of contaminants contained in the ambient air on other environmental components based on the analyses of the contaminant flux rate.

  15. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China

    Science.gov (United States)

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-04-01

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region.

  16. ENVIRONMENTAL MONITORING USING LINDEN TREE LEAVES AS NATURAL TRAPS OF ATMOSPHERIC DEPOSITION: A PILOT STUDY IN TRANSILVANIA, ROMANIA

    Directory of Open Access Journals (Sweden)

    MIHÁLY BRAUN

    2007-12-01

    Full Text Available Atmospheric pollution caused by toxic elements is an emerging problem of concern. Tree leaves have been widely used as indicator of atmospheric pollutions and they are effective alternatives to the moreusual biomonitoring methods. Tree leaves can be used as natural traps of atmospheric deposition. Elemental composition of dust deposited onto leaf surfaces can be used to characterize the urban environment. A pilot survey including 16 Romanian settlements was carried out in order to evaluate the characteristics and sources of air pollutants. Tree leaves (Tilia tomentosa, Tilia cordata, Tilia platyphyllos were collected and used for the measurements. Elemental analyses were carried out by ICP-OES and ICP-MS. Principal component and discriminant analyses were used to characterizing and estimating the level of pollution. Settlements were grouped on the basis of discriminant function values. Multivariate comparison of chemical data ordered the settlements into 3 main groups, which showed a systematic geographic distribution.

  17. Variations of weekly atmospheric deposition for multiple collectors at a site on the shore of Lake Okeechobee, Florida

    Science.gov (United States)

    Peters, Norman E.; Reese, Ronald S.

    Eight wet/dry precipitation collectors were modified to house four additional dryfall collectors and one bulk precipitation collector to sample atmospheric deposition for 12 weeks in a small area on the southwestern shore of Lake Okeechobee; sample contamination, primarily by insects, reduced the comparison to the last nine weeks. The deposition was determined for Ca 2+, Na +, Cl -, and SO 42- and nutrients including total phosphorus, orthophosphate, total ammonia plus organic nitrogen, and nitrite plus nitrate. In general, deposition was lower and less variable in wet precipitation than in bulk precipitation. The higher variability of the bulk precipitation was attributed to local contamination, particularly by dust and insects. Each wet/dry precipitation collector was fitted with dryfall collectors that consisted of the dry-side bucket on a wet/dry collector, which was preloaded with distilled and deionized water, and four glass dish collectors; two of the glass dishes were preloaded with water and the other two remained dry. The deposition to the dry dish collectors was not comparable in adjacent collectors for any constituent; however, the deposition in the adjacent water-loaded dishes was comparable for most major constituents, except nutrients. A comparison of Ortho-P deposition with Total-P indicated that the P collected by the dryfall collectors was predominantly reactive, which also was reflected in the bulk deposition, whereas that in the wet deposition was mostly nonreactive. The large variability in deposition of P among the bulk and dryfall collectors suggests that alternative methods must be used to evaluate the P sources and processes of atmospheric transfer.

  18. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  19. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts

    Science.gov (United States)

    L.E. Rao; D.R. Parker; Andrzej Bytnerowicz; E.B. Allen

    2009-01-01

    Dry nitrogen deposition is common in arid ecosystems near urban and agricultural centers, yet its impacts on natural environments are relatively understudied. We examined the effects of N deposition on soil N mineralization across a depositional gradient at Joshua Tree National Park. We hypothesized that N deposition affects N mineralization by promoting...

  20. Atmospheric deposition at four forestry sites in the Alpine Region of Trentino- South Tyrol, Italy

    Directory of Open Access Journals (Sweden)

    Stefano MINERBI

    2002-09-01

    Full Text Available The Trentino-South Tyrol Region is located in the southern part of the Alpine Chain. The territory is largely mountainous with crystalline rock formations dominant in the north and limestone in the south-east. Most of the land is open to the climatic and atmospheric influence of the River Po, via the mainly N-S oriented valley of the River Adige. The forestry authorities of the region have since the 80s been making an annual assessment of forest decline, particularly as regards parasite attacks, defoliation and crown discoloration, and have found the situation to be better than in most other parts of Europe. The region's forest protection policy is administered by the two provinces of Bolzano/Bozen and Trento in the framework of the European convention on Long Range Transboundary Air Pollution (UN-ECE LRTAP; each province operates two forestry sampling permanent plots. The sites are all constituted according to the standard recommendations, and are located in the central part of the region along the Adige Valley, where most of population live and where most of the agriculture and industry is. Two of the areas are in coniferous stands of the typical Alpine forest, mainly composed of Norway spruce; the other two are located in deciduous stands (both high forest and coppice and are closer to the urban centres than the first two. Concentration and deposition values for the main ionic components in bulk, wet, throughfall, stemflow and soil water are given separately for the four monitoring sites, with reference to the period 1996- 1999. The major acidifying component in atmospheric precipitation is still sulphate, but as other investigations confirm, the relative importance of the nitrate input is increasing all the time. The effect of these changes is probably positive for terrestrial ecosystems in the short term because of the decrease in total acidifying input and the increase in inorganic fertilisation. The absence of major "forest" damage

  1. Analysis on the atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2012-01-01

    JAEA has been developing a new prediction system of comprehensive movement, SPEEDI-MP (SPEEDI Multi-model Package), which can treat continuously and strictly with the migration behavior of radioactive materials at atmosphere, sea, and land region. JAEA has been further promoting the detail analysis of atmospheric migration of radioactive materials dispersed by an accident. Then, using a part of this system, the atmospheric-diversion prediction system, WSPEEDI-II, the atmospheric diversion mass and the atmospheric diffusion analysis were carried out. This issue reports the summary. (M.H.)

  2. Atmospheric radionuclide deposits biomonitoring in the neighbourhood of NPP Temelin in the year 2000

    International Nuclear Information System (INIS)

    Cechak, T.; Kluson, J.; Smejkalova, M.; Thinova, L.; Trojek, T.

    2001-01-01

    In this paper the results of bio-monitoring of atmospheric radionuclide deposits in the neighbourhood of NPP Temelin in the year 2000 are presented.Monitored area contained 27 sampled locations along eight radial profiles interesting the area of interest up to distance of 20 km from NPP Temelin (the measuring points are located 2-5-10-20 km form NPP). The samples were taken from forest humus, surface pine bark, Shreber moss, edible mushrooms and forest berries.The pine bark and moss were sampled at the selected sites twice yearly , at spring and fall of 2000, forest humus once in spring month of 2000, mushrooms and berries once in a growing season of 2000. In total 203 samples were collected. For the determination of radionuclide presence and their activity in samples was selected a method of Iaboratory gamma spectroscopy. The measured values corresponded to nominal values on natural background, depending mainly of geological substrata (soil contents), concentration of radon in soil or air etc. The methodology selected enables identification of individual contaminants and their contribution or occurrence. With the exception of the identified 137 Cs it is not possible to identify among the measured spectra any significant contribution of any other radionuclides

  3. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  4. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  5. NKS NordRisk. Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Baklanov, A.; Mahura, A.; Lauritzen, Bent; Mikkelsen, Torben

    2008-07-01

    Within the NKS NordRisk project, 'Nuclear risk from atmospheric dispersion in Northern Europe', the NKS NordRisk Atlas has been developed. The atlas describes risks from hypothetical long-range atmospheric dispersion and deposition of radionuclides from selected nuclear risk sites in the Northern Hemisphere. A number of case studies of long-term long-range atmospheric transport and deposition of radionuclides has been developed, based on two years of meteorological data. Radionuclide concentrations in air and radionuclide depositions have been evaluated and examples of long-term averages of the dispersion and deposition and of the variability around these mean values are provided. (au)

  6. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  7. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr-1 from nitrogen oxide emissions, 60 Tg(N) yr-1 from ammonia emissions, and 83 Tg(S) yr-1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N) m-2 yr-1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30-50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new

  8. Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere

    Science.gov (United States)

    Yudar, H. Hakan; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan; Pat, Suat

    2016-08-01

    This study focused on the characterization and properties of transparent and conductive indium tin oxide (ITO) thin films deposited in argon atmosphere. ITO thin films were coated onto glass substrates by radio frequency (RF) magnetron sputtering technique at 75 and 100 W RF powers. Structural characteristics of producing films were investigated through X-ray diffraction analysis. UV-Vis spectrophotometer and interferometer were used to determine transmittance, absorbance and reflectance values of samples. The surface morphology of the films was characterized by atomic force microscope. The calculated band gaps were 3.8 and 4.1 eV for the films at 75 and 100 W, respectively. The effect of RF power on crystallinity of prepared films was explored using mentioned analysis methods. The high RF power caused higher poly crystallinity in the produced samples. The thickness and refractive index values for all samples increased respect to an increment of RF power and were calculated as 20, 50 nm and 1.71, 1.86 for samples at 75 and 100 W, respectively. Finally, the estimated grain sizes for all prepared films decreased with increasing of 2 θ degrees, and the number of crystallite per unit volume was calculated. It was found that nearly all properties including sheet resistance and resistivity depend on the RF power.

  9. Laser spectroscopic analysis in atmospheric pollution research

    CSIR Research Space (South Africa)

    Forbes, PBC

    2008-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs) occur in oil, coal and tar deposits, and are produced as byproducts of fuel burning (whether fossil fuel or biomass). At elevated levels, these pollutants are of concern due to their potential carcinogenicity...

  10. Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center

    Science.gov (United States)

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zhang, Lei-Ming; Staebler, Ralf; Zeng, Eddy Y.

    2012-09-01

    Atmospheric gaseous and size-segregated particle samples were collected from urban Guangzhou at the heights of 100 and 150 m above the ground in daytime and at night in August and December 2010, and were analyzed for polycyclic aromatic hydrocarbons (PAHs). Particulate PAHs were more abundant at night than in daytime, and significantly higher in winter than in summer. The observed vertical, diurnal, and seasonal variability in the occurrences of PAH were attributed to varying meteorological conditions and atmospheric boundary layers. More than 60% of the particulate PAHs were contained in particles in the accumulation mode with an aerodynamic diameter (Dp) in the range of 0.1-1.8 μm. Different mass transfer velocities by volatilization and condensation are considered the main causes for the different particle size distributions among individual PAHs, while combustion at different temperatures and atmospheric transport were probable causes of the observed seasonal variation in the size distribution of PAHs. Based on the modeled size-dependent dry deposition velocities, daily mean dry deposition fluxes of particulate PAHs ranged from 604 to 1190 ng m-2 d-1, with PAHs in coarse particles (Dp > 1.8 μm) accounting for 55-95% of the total fluxes. In addition, gaseous PAHs were estimated to contribute 0.6-3.1% to the total dry deposition fluxes if a conservative dry deposition velocity for gaseous species (2 × 10-4 m s-1) were used. Finally, disequilibrium phase partitioning, meteorological conditions and atmospheric transport were regarded as the main reasons for the variances in dry deposition velocities of individual PAHs.

  11. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  12. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  13. Deposition and surface characterization of nanoparticles of zinc oxide using dense plasma focus device in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Malhotra, Yashi; Srivastava, M P; Roy, Savita

    2010-01-01

    Nanoparticles of zinc oxide from zinc oxide pellets in the nitrogen plasma atmosphere are deposited on n and p type silicon substrates using Dense Plasma Focus device. The hot and dense nitrogen plasma formed during the focus phase ionizes the ZnO pellet, which then move upward in a fountain like shape and gets deposited on substrates which are placed above the top of the anode. Structural and surface properties of the deposited ZnO are investigated using X-ray diffraction and Atomic force microscope (AFM). X-ray spectra shows the diffraction plane (002) of ZnO nanoparticles deposited on Si with few shots in nitrogen atmosphere. AFM investigations revealed that there are nanoparticles of size between 15-80 nm on n-Si and p-Si substrates. The deposition on n-type Si is better than the p-type Si can be seen from AFM images, this may be due to different orientation of silicon.

  14. Deposition

    International Nuclear Information System (INIS)

    1984-01-01

    Monitoring of radionuclide contents in rainwater is a useful way to keep a check on any change in the external radiation dose caused by the deposited material. Thus analuses of 3 H, 89 Sr and 90 Sr as well as 137 Cs and other gamma radionuclide contents in deposition were continued both nationwide and in the vicinities of the nuclear power stations at Loviisa and Olkiluoto. The deposition of 90 Sr and 137 Cs was lower than in previous years, being only a small fraction of the highest deposition values measured in 1983. The tritium concentrations were also lower than in 1982. The total annual deposition of tritium at different sampling stations varied from 1.7 kBq/m 2 to 2.9 kBq/m 2

  15. Atmospheric Deposition of Inorganic Elements and Organic Compounds at the Inlets of the Venice Lagoon

    Directory of Open Access Journals (Sweden)

    E. Morabito

    2014-01-01

    Full Text Available The Venice Lagoon is subjected to long-range transport of contaminants via aerosol from the near Po Valley. Moreover, it is an area with significant local anthropogenic emissions due to the industrial area of Porto Marghera, the urban centres, and the glass factories and with emissions by ships traffic within the Lagoon. Furthermore, since 2005, the Lagoon has also been affected by the construction of the MOSE (Modulo Sperimentale Elettromeccanico—Electromechanical Experimental Module mobile dams, as a barrier against the high tide. This work presents and discusses the results from chemical analyses of bulk depositions, carried out in different sites of the Venice Lagoon. Fluxes of pollutants were also statistically analysed on PCA with the aim of investigating the spatial variability of depositions and their correlation with precipitations. Fluxes of inorganic pollutants depend differently on precipitations, while organic compounds show a more seasonal trend. The statistical analysis showed that the site in the northern Lagoon has lower and almost homogeneous fluxes of pollutants, while the other sites registered more variable concentrations. The study also provided important information about the annual trend of pollutants and their evolution over a period of about five years, from 2005 to 2010.

  16. The role of forest type in the variability of DOC in atmospheric deposition at forest plots in Italy.

    Science.gov (United States)

    Arisci, S; Rogora, M; Marchetto, A; Dichiaro, F

    2012-06-01

    Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.

  17. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  18. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  19. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying

  20. Increasing and decreasing trends of the atmospheric deposition of organochlorine compounds in European remote areas during the last decade

    Science.gov (United States)

    Arellano, L.; Fernández, P.; Fonts, R.; Rose, N. L.; Nickus, U.; Thies, H.; Stuchlík, E.; Camarero, L.; Catalan, J.; Grimalt, J. O.

    2015-06-01

    Bulk atmospheric deposition samples were collected between 2004 and 2007 at four high-altitude European sites encompassing east (Skalnaté Pleso), west (Lochnagar), central (Gossenköllesee) and south (Redòn) regions, and analysed for legacy and current-use organochlorine compounds (OCs). Polychlorobiphenyls (PCBs) generally showed the highest deposition fluxes in the four sites, between 112 and 488 ng m-2 mo-1, and hexachlorobenzene (HCB) the lowest, a few ng m-2 mo-1. Among pesticides, endosulfans were found at higher deposition fluxes (11-177 ng m-2 mo-1) than hexachlorocyclohexanes (HCHs) (17-66 ng m-2 mo-1) in all sites except Lochnagar that was characterized by very low fluxes of this insecticide. Comparison of the present measurements with previous determinations in Redòn (1997-1998 and 2001-2002) and Gossenköllesee (1996-1998) provided for the first time an assessment of the long-term temporal trends in OC atmospheric deposition in the European background areas. PCBs showed increasing deposition trends while HCB deposition fluxes remained nearly constant. Re-emission of PCBs from soils or as a consequence of glacier melting and subsequent precipitation and trapping of the volatilized compounds may explain the observed PCB trends. This process does not occur for HCB due to its high volatility which keeps most of this pollutant in the gas phase. A significant decline of pesticide deposition was observed during this studied decade (1996-2006) which is consistent with the restriction in the use of these compounds in most of the European countries. In any case, degassing of HCHs or endosulfans from ice melting to the atmosphere should be limited because of the low Henry's law constants of these compounds that will retain them dissolved in the melted water. Investigation of the relationship between air mass trajectories arriving at each site and OC deposition fluxes showed no correlation for PCBs, which is consistent with diffuse pollution from unspecific

  1. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation historical and projected changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-03-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr-1 from nitrogen oxide emissions, 60 Tg(N) yr-1 from ammonia emissions, and 83 Tg(S) yr-1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching > 1300 mg(N) m-2 yr-1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50 % larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  2. Atmospheric dry deposition fluxes of trace elements measured in Queretaro City, Mexico

    Science.gov (United States)

    Garcia, R.; Hernandez, R.; Solis, S.; Perez, R.; Hernandez, G.; Morton, O.; Hernandez, E.; Torres, M. C.; Baez, A.

    2012-04-01

    Sampling was made in the southern section of downtown Mexico City. Samples were collected with an Mini-Vol PM10 . Eight different sources were identified for PM10 aerosols: secondary sulfate, wood combustion, fireworks, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The ions SO42-, NO3-, Cl-, Na+, K+, Ca2+, Mg2+ and NH4+,were analyzed by ion chromatography and the trace metals using an atomic absorption spectrometer. The result indicated that SO42- was the most abundant ion and with respect to trace metal. All the trace elements except Mn and V show statistically significant differences between monitoring sites. The Pearson's correlation applied to all data, showed a high correlation among SO42-, NO3- and NH4+, indicating a common anthropogenic origin. In addition the correlation found between Ca2+ and Al indicated a crustal origin. On the other hand, in considering the total sampling period for particles as well as for all the metals, it is appreciable the significant differences between sites and meteorological seasons. The cluster analysis of air back-trajectories employed in the paper is a technique widely used to identify transport patterns and potential sources of both anthropogenic pollution and natural constituents of the atmosphere, including atmospheric aerosols. It is also used to determine how aerosol optical properties observed over the station differ depending on source region and transport pathways In order to gain a better insight into the origin of trace metal and major inorganic ions, a Principal Component Analysis was applied to the results for 6 elements and 8 ions, from the years 2009 and 2010. Further, the statistical analysis demonstrated the adequate selection of the monitoring areas, confirming that main emission source of these atmospheric pollutants is anthropogenic origin. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The

  3. A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations.

    Science.gov (United States)

    Bieser, J; De Simone, F; Gencarelli, C; Geyer, B; Hedgecock, I; Matthias, V; Travnikov, O; Weigelt, A

    2014-01-01

    This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m(3) are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50% decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM

  4. An Inverse Modeling Approach to Investigate Past Lead Atmospheric Deposition in Southern Greenland

    Science.gov (United States)

    Massa, C.; Monna, F.; Bichet, V.; Gauthier, E.; Richard, H.

    2013-12-01

    The aim of this study is to model atmospheric pollution lead fluxes using two different paleoenvironmental records, covering the last 2000 years, located in southern Greenland. Fifty five sediment samples from the Lake Igaliku sequence (61°00.403'N, 45°26.494'W) were analyzed for their Pb and Al contents, and for lead isotopic compositions. The second archive consists in a previously published dataset (Shotyk et al., 2003), including Zr and Pb concentrations, and lead isotopic compositions, obtained from a minerogenic peat deposit located 16 km northwest of Lake Igaliku (61°08.314'N, 45°33.703'W). As natural background concentrations are high and obliterate most of the airborne anthropogenic lead, it is not possible to isolate this anthropogenic contribution through time with classical methods (i.e. Pb is normalized to a lithogenic and conservative element). Moreover, the background 206Pb/207Pb ratio is rather noisy because of the wide geological heterogeneity of sediment sources, which further complicated unambiguous detection of the lead pollution. To overcome these difficulties, an inverse modeling approach based on assumptions about past lead inputs was applied. This method consists of simulating a range of anthropogenic fluxes to determine the best match between measured and simulated data, both for Pb concentrations and isotopic compositions. The model is validated by the coherence of the results obtained from the two independent datasets that must reflect a similar pollution history. Although notable 206Pb/207Pb ratio shifts suggest that the first signs of anthropogenic inputs may have occurred in the 15th century, the signal-to-noise ratio was too low to significantly influence the sediment composition. Nevertheless we were able to estimate that anthropogenic lead fluxes did not exceed 2700 μg m-2 yr-1, a maximum value recorded during the 1960s. The comparison with other records from the North Atlantic Islands reveals a spatial gradient most likely due

  5. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  6. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau.

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Chen, Pengfei; Zhang, Guoshuai; Tripathee, Lekhendra

    2013-08-01

    In May 2009, snowpit samples were collected from a high-elevation glacier in the Mt. Nyainqêntanglha region on the southern Tibetan Plateau. A set of elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg and Pb) was analyzed to investigate the concentrations, deposition fluxes of trace elements, and the relative contributions from anthropogenic and natural sources deposited on the southern Tibetan Plateau. Concentrations of most of the trace elements in snowpit samples from the Zhadang glacier are significantly lower than those examined from central Asia (e.g., eastern Tien Shan), with higher concentrations during the non-monsoon season than during the monsoon season. The elements of Al, V, Cr, Mn, Co, and Ni display low crustal enrichment factors (EFs), while Cu, Zn, Cd, Hg, and Pb show high EF values in the snow samples, suggesting anthropogenic inputs are potentially important for these elements in the remote, high-elevation atmosphere on the southern Tibetan Plateau. Together with the fact that the concentration levels of such elements in the Mt. Nyainqêntanglha region are significantly higher than those observed on the south edge of the Tibetan Plateau, our results suggest that the high-elevation atmosphere on the southern Tibetan Plateau may be more sensitive to variations in the anthropogenic emissions of atmospheric trace elements than that in the central Himalayas. Moreover, the major difference between deposition fluxes estimated in our snow samples and those recently measured at Nam Co Station for elements such as Cr and Cu may suggest that atmospheric deposition of some of trace elements reconstructed from snowpits and ice cores could be grossly underestimated on the Tibetan Plateau. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition

    OpenAIRE

    Çelik, Yasemin; Escoffier, Walter; Yang, Ming; Flahaut, Emmanuel; Suvacı, Ender

    2016-01-01

    International audience; Low-pressure chemical vapor deposition synthesis of graphene films on two different Cu foils, with different surface oxygen and carbon contents, was performed by controlling H2 and/or Ar flow rates during heating. The influences of heating atmosphere on the final impurity level, quality of the synthesized graphene films and thickness uniformity were investigated depending on Cu foil impurities. Heating of carbon-rich, but oxygen-poor Cu foil in H2 environment resulted ...

  8. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: Impact of continental outflow

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, B.; Sarin, M.M.; Sarma, V.V.S.S.

    focus of air-sea exchange studies (eg: SEAREX) on reactive nitrogen to the ocean surface had dealt with the deposition of soluble inorganic nitrogen. Some of these studies had also highlighted that all forms of soluble reactive nitrogen species... nitrogen (N Org ) in atmospheric aerosols. The soluble organic nitrogen in aerosols 3 comprises of different chemical species that include secondary organic nitrates, reduced amines or urea and terrestrial (land) derived organic nitrogen (Neff et al...

  9. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network, 2002-03

    Science.gov (United States)

    Wetherbee, Gregory A.; Latysh, Natalie E.; Burke, Kevin P.

    2005-01-01

    Six external quality-assurance programs were operated by the U.S. Geological Survey (USGS) External Quality-Assurance (QA) Project for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) from 2002 through 2003. Each program measured specific components of the overall error inherent in NADP/NTN wet-deposition measurements. The intersite-comparison program assessed the variability and bias of pH and specific conductance determinations made by NADP/NTN site operators twice per year with respect to accuracy goals. The percentage of site operators that met the pH accuracy goals decreased from 92.0 percent in spring 2002 to 86.3 percent in spring 2003. In these same four intersite-comparison studies, the percentage of site operators that met the accuracy goals for specific conductance ranged from 94.4 to 97.5 percent. The blind-audit program and the sample-handling evaluation (SHE) program evaluated the effects of routine sample handling, processing, and shipping on the chemistry of weekly NADP/NTN samples. The blind-audit program data indicated that the variability introduced by sample handling might be environmentally significant to data users for sodium, potassium, chloride, and hydrogen ion concentrations during 2002. In 2003, the blind-audit program was modified and replaced by the SHE program. The SHE program was designed to control the effects of laboratory-analysis variability. The 2003 SHE data had less overall variability than the 2002 blind-audit data. The SHE data indicated that sample handling buffers the pH of the precipitation samples and, in turn, results in slightly lower conductivity. Otherwise, the SHE data provided error estimates that were not environmentally significant to data users. The field-audit program was designed to evaluate the effects of onsite exposure, sample handling, and shipping on the chemistry of NADP/NTN precipitation samples. Field-audit results indicated that exposure of NADP/NTN wet-deposition samples

  10. Deposition of silica protected luminescent layers of Eu:GdVO{sub 4} nanoparticles assisted by atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Pizzol, Giorgia [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Fantin, Marina; Enrichi, Francesco; Scopece, Paolo [Nanofab-Veneto Nanotech, Via delle Industrie 5, 30175 Marghera, Venezia (Italy); Nuñez, Nuria O.; Ocaña, Manuel [Instituto de Ciencia de Materiales de Sevilla, CSIC-US, Americo Vespucio 49, 41092, Isla de la Cartuja, Sevilla (Spain); Benedetti, Alvise [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Polizzi, Stefano [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Centro di Microscopia Elettronica “Giovanni Stevanato”, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre, Venezia (Italy)

    2016-01-01

    Eu:GdVO{sub 4} nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO{sub 4} nanophosphors. • Plasma jet deposition of SiO{sub 2} fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  11. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka.

    Science.gov (United States)

    Weerasundara, Lakshika; Amarasekara, R W K; Magana-Arachchi, D N; Ziyath, Abdul M; Karunaratne, D G G P; Goonetilleke, Ashantha; Vithanage, Meththika

    2017-04-15

    The presence of bacteria and heavy metals in atmospheric deposition were investigated in Kandy, Sri Lanka, which is a typical city in the developing world with significant traffic congestion. Atmospheric deposition samples were analyzed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb which are heavy metals common to urban environments. Al and Fe were found in high concentrations due to the presence of natural sources, but may also be re-suspended by vehicular traffic. Relatively high concentrations of toxic metals such as Cr and Pb in dissolved form were also found. High Zn loads can be attributed to vehicular emissions and the wide use of Zn coated roofing materials. The metal loads in wet deposition showed higher concentrations compared to dry deposition. The metal concentrations among the different sampling sites significantly differ from each other depending on the traffic conditions. Industrial activities are not significant in Kandy City. Consequently, the traffic exerts high influence on heavy metal loadings. As part of the bacterial investigations, nine species of culturable bacteria, namely; Sphingomonas sp., Pseudomonas aeruginosa, Pseudomonas monteilii, Klebsiella pneumonia, Ochrobactrum intermedium, Leclercia adecarboxylata, Exiguobacterium sp., Bacillus pumilus and Kocuria kristinae, which are opportunistic pathogens, were identified. This is the first time Pseudomonas monteilii and Ochrobactrum intermedium has been reported from a country in Asia. The culturable fraction constituted ~0.01 to 10%. Pigmented bacteria and endospore forming bacteria were copious in the atmospheric depositions due to their capability to withstand harsh environmental conditions. The presence of pathogenic bacteria and heavy metals creates potential human and ecosystem health risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    International Nuclear Information System (INIS)

    Christoudias, T.; Lelieveld, J.

    2013-01-01

    We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry - general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255). The model accounts for emissions and transport of the radioactive isotopes 131 I and 137 Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133 Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011) and Stohl et al. (2012); especially the emission estimates of 131 I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m -2 . We also estimated the inhalation and 50-year dose by 137 Cs, 134 Cs and 131 I to which the people in Japan are exposed.

  13. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident

    Directory of Open Access Journals (Sweden)

    T. Christoudias

    2013-02-01

    Full Text Available We modeled the global atmospheric dispersion and deposition of radionuclides released from the Fukushima Dai-ichi nuclear power plant accident. The EMAC atmospheric chemistry – general circulation model was used, with circulation dynamics nudged towards ERA-Interim reanalysis data. We applied a resolution of approximately 0.5 degrees in latitude and longitude (T255. The model accounts for emissions and transport of the radioactive isotopes 131I and 137Cs, and removal processes through precipitation, particle sedimentation and dry deposition. In addition, we simulated the release of 133Xe, a noble gas that can be regarded as a passive transport tracer of contaminated air. The source terms are based on Chino et al. (2011 and Stohl et al. (2012; especially the emission estimates of 131I are associated with a high degree of uncertainty. The calculated concentrations have been compared to station observations by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO. We calculated that about 80% of the radioactivity from Fukushima which was released to the atmosphere deposited into the Pacific Ocean. In Japan a large inhabited land area was contaminated by more than 40 kBq m-2. We also estimated the inhalation and 50-year dose by 137Cs, 134Cs and 131I to which the people in Japan are exposed.

  14. Trends in lake chemistry in response to atmospheric deposition and climate in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa; Ingersoll, George P.

    2011-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation

  15. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    Science.gov (United States)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  16. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Sasselov, D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Podolak, M., E-mail: amitlevi.planetphys@gmail.com [Dept. of Geosciences, Tel Aviv University, Tel Aviv, 69978 (Israel)

    2017-03-20

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmosphere has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.

  17. Elemental analysis of atmospheric aerosols in Gaborone

    African Journals Online (AJOL)

    ELO

    amount more than 90% were copper, lead, nickel and gold. Key words: Atmospheric particles, elements, ... Selebi-Phikwe area, gold and nickel in Francis town and soda ash in Sowa. Gaborone is the capital of ... a stub three times a week with an exposure time of four hours. The exposed stubs were collected and kept ...

  18. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  19. Combined Tree-Ring Carbon and Nitrogen Isotopes to infer past atmospheric deposition in Northeastern Alberta

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.

    2013-12-01

    Monitoring atmospheric emissions from industrial centers in North America is significantly younger than the emitting activities themselves. Attention should be placed on SOx and NOx emissions as they have been increasing over the last 15 years in western Canada. In Northeastern Alberta in particular, two distinct diffuse pollution contexts deserve attention: the Lower Athabasca Oil Sands (OS) district (north of Fort McMurray), and the coal fired power plant (CFPP) area (west of Edmonton). The NOx and SO2 emissions started in 1967 and 1956, but the direct air quality monitoring has been initiated in 1997 and 1985, in these respective contexts. In an attempt to address the gap in emission and deposition monitoring, we explored the δ13C and δ15N patterns of spruce trees (Picea glauca and Picea mariana) growing in four stands in the OS district and one stand, in the CFPP area. Tree-ring series collected from these five sites all covering the 1880-2010 period were analyzed and their δ13C and δ15N values examined along with the climatic parameters and SOx and NOx emission proxies. For two stands in the OS district where soil drainage was poor δ15N series did not vary significantly, but the intermediate and long-term δ13C and δ15N trends inversely correlate in the three other studied stands. For these three sites statistical analyses for the pre-operation calibration periods (1910-1961 and 1900-1951) allowed developing transfer functions and predicting the natural δ13C and δ15N responses to climatic conditions for the operation periods. The measured series all depart from the modeled natural trends, depicting anomalies. Interestingly, the anomalies in the two regions can be nicely reproduced by multiple-regression models combining local climatic parameters with acidifying emissions. Notwithstanding the significant inverse correlations between the δ13C and δ15N series for the three well drained sites and their link to acidifying emissions, it is too early to

  20. Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions

    Directory of Open Access Journals (Sweden)

    D. Neumann

    2016-03-01

    underestimated by the model at most stations. In coastal regions, the total nitrogen deposition (wet and dry is considerably affected by sea salt particles. Approximately 3–7 % of atmospheric nitrogen deposition into the North Sea is caused by sea salt particles. The contribution is lower in the Baltic Sea region. The stations in the EMEP network provide a solid basis for model evaluation and validation. However, for a more detailed analysis of the impact of sea salt particles on atmospheric nitrogen species, size-resolved measurements of Na+, NH4+, and NO3− are needed.

  1. Atmospheric inorganic nitrogen input via dry, wet, and sea fog deposition to the subarctic western North Pacific Ocean

    Directory of Open Access Journals (Sweden)

    J. Jung

    2013-01-01

    Full Text Available Aerosol, rainwater, and sea fog water samples were collected during the cruise conducted over the subarctic western North Pacific Ocean in the summer of 2008, in order to estimate dry, wet, and sea fog deposition fluxes of atmospheric inorganic nitrogen (N. During sea fog events, mean number densities of particles with diameters larger than 0.5 μm decreased by 12–78%, suggesting that particles with diameters larger than 0.5 μm could act preferentially as condensation nuclei (CN for sea fog droplets. Mean concentrations of nitrate (NO3, methanesulfonic acid (MSA, and non sea-salt sulfate (nss-SO42− in sea fog water were higher than those in rainwater, whereas those of ammonium (NH4+ in both sea fog water and rainwater were similar. These results reveal that sea fog scavenged NO3 and biogenic sulfur species more efficiently than rain. Mean dry, wet, and sea fog deposition fluxes for atmospheric total inorganic N (TIN; i.e. NH4+ + NO3 over the subarctic western North Pacific Ocean were estimated to be 4.9 μmol m−2 d−1, 33 μmol m−2 d−1, and 7.8 μmol m−2 d−1, respectively. While NO3 was the dominant inorganic N species in dry and sea fog deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+. The contribution of dry, wet, and sea fog deposition to total deposition flux for TIN (46 μmol m−2 d−1 were 11%, 72%, and 17%, respectively, suggesting that ignoring sea fog deposition would lead to underestimate of the total influx of atmospheric inorganic N into the subarctic western North Pacific Ocean, especially in summer periods.

  2. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests

    International Nuclear Information System (INIS)

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1–0.2 g m −2 year −1 with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m −2 year −1 is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO 3 − /SO 4 2− and NH 4 + /SO 4 2− in precipitation show significantly increasing trends in time similarly to those of pH. -- Highlights: • Significant decrease of sulphur deposition at most of sites has been recorded. • Nitrogen deposition still represents a considerable stress in Czech forests. • Significantly increasing trends of NO 3 − /SO 4 2− , NH 4 + /SO 4 2− , and pH in precipitation. -- While sulphur deposition significantly decreased with the highest improvement in formerly most affected areas, nitrogen deposition still represents a considerable stress in Czech forests

  3. Deposition Mechanism of Aluminum Oxide on Quantum Dot Films at Atmospheric Pressure and Room Temperature

    NARCIS (Netherlands)

    Valdesueiro Gonzalez, D.; Prabhu, M.K.; Guerra Nunez, C.R.; Sandeep, C. S Suchand; Kinge, S.S.; Siebbeles, L.D.A.; de Smet, L.C.P.M.; Meesters, G.M.H.; Kreutzer, M.T.; Houtepen, A.J.; van Ommen, J.R.

    2016-01-01

    Stability of quantum dot (QD) films is an issue of concern for applications in devices such as solar cells, LEDs, and transistors. This paper analyzes and optimizes the passivation of such QD films using gas-phase deposition, resulting in enhanced stability. Crucially, we deposited alumina at

  4. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Science.gov (United States)

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  5. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar + O2 atmosphere

    International Nuclear Information System (INIS)

    Ding, Chao; Ming, Zhenxun; Li, Bing; Feng, Lianghuan; Wu, Judy

    2013-01-01

    Highlights: • CdTe films were deposited by PLD at high substrate temperatures (400 °C, 550 °C). • CdTe films were achieved under the atmosphere (1.2 Torr) of Ar mixed with O 2 . • Deposited CdTe films were cubic phase and had strong (1 0 0) preferred orientation. • Scanning electron microscope (SEM) showed an average grain size of 0.3–0.6 μm. • The ultra-thin film (CdS/PLD-CdTe) solar cell with efficiency of 6.68% was made. -- Abstract: Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures ( 400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (T s ). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O 2 (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O 2 (15 Torr) and at the relatively high T s (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (∼1.5 μm)/HgTe: Cu/Ag) solar cell with an efficiency of 6.68% was fabricated

  6. Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA

    International Nuclear Information System (INIS)

    Fenn, M.E.; Geiser, L.; Bachman, R.; Blubaugh, T.J.; Bytnerowicz, A.

    2007-01-01

    Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha -1 over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO x , NH 3 , and SO 2 concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources. - Nitrogen, sulfur and acidic deposition threaten natural and cultural resources in the Columbia River Gorge National Scenic Area

  7. Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, M.E. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)]. E-mail: mfenn@fs.fed.us; Geiser, L. [USDA Forest Service, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Bachman, R. [USDA Forest Service, Pacific Northwest Regional Office, PO Box 3623, Portland, OR 97208 (United States); Blubaugh, T.J. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Bytnerowicz, A. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2007-03-15

    Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha{sup -1} over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO{sub x}, NH{sub 3}, and SO{sub 2} concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources. - Nitrogen, sulfur and acidic deposition threaten natural and cultural resources in the Columbia River Gorge National Scenic Area.

  8. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States

    Science.gov (United States)

    Elliott, E.M.; Kendall, C.; Wankel, Scott D.; Burns, Douglas A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J.

    2007-01-01

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (??15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in ??15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that ??15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO 42-, or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO 3- deposition at sites in this study is strongly associated with NOx emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in ??15N values are a robust indicator of stationary NOx contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO 3- deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. ?? 2007 American Chemical Society.

  9. External Quality Assurance Programs Managed by the U.S. Geological Survey in Support of the National Atmospheric Deposition Program/Mercury Deposition Network

    Science.gov (United States)

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2007-01-01

    The U.S. Geological Survey (USGS) Branch of Quality Systems operates external quality assurance programs for the National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Beginning in 2004, three programs have been implemented: the system blank program, the interlaboratory comparison program, and the blind audit program. Each program was designed to measure error contributed by specific components in the data-collection process. The system blank program assesses contamination that may result from sampling equipment, field exposure, and routine handling and processing of the wet-deposition samples. The interlaboratory comparison program evaluates bias and precision of analytical results produced by the Mercury Analytical Laboratory (HAL) for the NADP/MDN, operated by Frontier GeoSciences, Inc. The HAL's performance is compared with the performance of five other laboratories. The blind audit program assesses bias and variability of MDN data produced by the HAL using solutions disguised as environmental samples to ascertain true laboratory performance. This report documents the implementation of quality assurance procedures for the NADP/MDN and the operating procedures for each of the external quality assurance programs conducted by the USGS. The USGS quality assurance information provides a measure of confidence to NADP/MDN data users that measurement variability is distinguished from environmental signals.

  10. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century

    Energy Technology Data Exchange (ETDEWEB)

    Agnan, Y., E-mail: yannick.agnan@biogeochimie.fr; Séjalon-Delmas, N.; Claustres, A.; Probst, A., E-mail: anne.probst@ensat.fr

    2015-10-01

    Lichens and mosses were used as biomonitors to assess the atmospheric deposition of metals in forested ecosystems in various regions of France. The concentrations of 17 metals/metalloids (Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Ti, V, and Zn) indicated overall low atmospheric contamination in these forested environments, but a regionalism emerged from local contributions (anthropogenic activities, as well as local lithology). Taking into account the geochemical background and comparing to Italian data, the elements from both natural and anthropogenic activities, such as Cd, Pb, or Zn, did not show any obvious anomalies. However, elements mainly originating from lithogenic dust (e.g., Al, Fe, Ti) were more prevalent in sparse forests and in the Southern regions of France, whereas samples from dense forests showed an accumulation of elements from biological recycling (Mn and Zn). The combination of enrichment factors and Pb isotope ratios between current and herbarium samples indicated the historical evolution of metal atmospheric contamination: the high contribution of coal combustion beginning 150 years ago decreased at the end of the 20th century, and the influence of car traffic during the latter observed period decreased in the last few decades. In the South of France, obvious local influences were well preserved during the last century. - Highlights: • A century of metal deposition was assessed by lichens and mosses in France. • A regional forest cover-dependent geochemical background signature was evidenced. • The anthropogenic contribution was low but stronger in the North-Eastern region. • Changes in the nature of atmospheric deposition were evidenced since the 19th century. • Pb isotopes traced a conservative specific contamination in SW France over a century.

  11. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century

    International Nuclear Information System (INIS)

    Agnan, Y.; Séjalon-Delmas, N.; Claustres, A.; Probst, A.

    2015-01-01

    Lichens and mosses were used as biomonitors to assess the atmospheric deposition of metals in forested ecosystems in various regions of France. The concentrations of 17 metals/metalloids (Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, Sr, Ti, V, and Zn) indicated overall low atmospheric contamination in these forested environments, but a regionalism emerged from local contributions (anthropogenic activities, as well as local lithology). Taking into account the geochemical background and comparing to Italian data, the elements from both natural and anthropogenic activities, such as Cd, Pb, or Zn, did not show any obvious anomalies. However, elements mainly originating from lithogenic dust (e.g., Al, Fe, Ti) were more prevalent in sparse forests and in the Southern regions of France, whereas samples from dense forests showed an accumulation of elements from biological recycling (Mn and Zn). The combination of enrichment factors and Pb isotope ratios between current and herbarium samples indicated the historical evolution of metal atmospheric contamination: the high contribution of coal combustion beginning 150 years ago decreased at the end of the 20th century, and the influence of car traffic during the latter observed period decreased in the last few decades. In the South of France, obvious local influences were well preserved during the last century. - Highlights: • A century of metal deposition was assessed by lichens and mosses in France. • A regional forest cover-dependent geochemical background signature was evidenced. • The anthropogenic contribution was low but stronger in the North-Eastern region. • Changes in the nature of atmospheric deposition were evidenced since the 19th century. • Pb isotopes traced a conservative specific contamination in SW France over a century

  12. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    Science.gov (United States)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  13. Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2003-01-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to selected sites in north-western Italy (3 rivers, 10 alpine lakes to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term changes in surface water chemistry. At present the lumped approach of dynamic models such as MAGIC cannot represent all the processes occurring at the catchment scale. Climate warming in particular and its effects on surface water chemistry proved to be important in the study area. Furthermore the river catchments considered here showed clear signs of N saturation. This condition and the increasing concentrations of NO3 in river water were simulated using N dynamics recently included in MAGIC. The modelling performed in this study represents the first application of MAGIC to Italian sites. The results show that inclusion of other factors specific to the Mediterranean area, such as dust deposition and climate change, may improve the fit to observed data and the reliability of the model forecast. Despite these limitations, the model captured well the main trends in chemical data in both rivers and lakes. The outputs clearly demonstrate the benefits of achieving the emission reductions in both S and N compounds as agreed under the Gothenburg Protocol rather than making no further emission reductions. It was also clear that, besides the substantial reduction of SO4 deposition from the peak levels of the 1980s, N deposition must also be reduced in the near future to protect freshwaters from further acidification. Keywords: MAGIC, northern Italy, acidification, recovery, nitrogen saturation

  14. Atmospheric deposition of nitrogen, runoff of organic nitrogen, and critical loads for soils and waters

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard F.; Raastad, Inger Aandahl; Kaste, Oeyvind

    1997-12-31

    This report tests the hypothesis that increased deposition of inorganic nitrogen compounds leads to increased leaching and runoff of organic nitrogen and thus a higher critical load. The authors use mainly Norwegian data from input-output fluxes at small catchments, national lake surveys, and large-scale experiments with nitrogen deposition to whole catchments. Concentrations of organic nitrogen are not significantly related to nitrogen deposition. Much of the variance in organic nitrogen levels are explained by total organic carbon concentrations. For the small catchments, there is a significant relationship between the carbon/nitrogen (C/N) ratio in dissolved organic matter and the nitrogen deposition. The sites with high nitrogen deposition have low C/N ratio. Chronically high nitrogen deposition and long-term accumulation of nitrogen in soils and biomass may have led to organic matter more enriched in nitrogen relative to pristine sites. Time trend data from manipulated catchments do not show changes in organic-N leaching over 4 to 10 years. Although organic-N levels may have increased as a result of nitrogen deposition, the resultant effect on estimate of critical load for nitrogen for freshwater is minor. For practical purposes, organic nitrogen outputs can be neglected in estimating and mapping critical loads for nitrogen in Norway. 23 refs., 11 figs., 4 tabs.

  15. Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia).

    Science.gov (United States)

    Djebbi, Chaima; Chaabani, Fredj; Font, Oriol; Queralt, Ignasi; Querol, Xavier

    2017-10-01

    The present study focuses on the eolian dispersion and dust deposition, of major and trace elements in soils in a semi-arid climate, around an old fluorite (CaF 2 ) and barite (BaSO 4 ) mine, located in Hammam Zriba in Northern Tunisia. Ore deposits from this site contain a high amount of metal sulphides constituting heavy metal pollution in the surrounding environment. Samples of waste from the surface of mine tailings and agricultural topsoil samples in the vicinity of the mine were collected. The soil samples and a control sample from unpolluted area, were taken in the direction of prevailing northwest and west winds. Chemical analysis of these solids was performed using both X-ray fluorescence and X-ray diffraction. To determine the transfer from mine wastes to the soils, soluble fraction was performed by inductively coupled plasma and ionic chromatography. The fine grained size fraction of the un-restored tailings, still contained significant levels of barium, strontium, sulphur, fluorine, zinc and lead with mean percentages (wt%) of 30 (calculated as BaO), 13 (as SrO), 10 (as SO 3 ), 4 (F), 2 (Zn) and 1.2 (Pb). Also, high concentrations of cadmium (Cd), arsenic (As) and mercury (Hg) were found with an averages of 36, 24 and 1.2mgkg -1 , respectively. As a result of the eolian erosion of the tailings and their subsequent wind transport, the concentrations of Ba, Sr, S, F, Zn and Pb were extremely high in the soils near to the tailings dumps, with 5%, 4%, 7%, 1%, 0.8% and 0.2%, respectively. Concentration of major pollutants decreases with distance, but they were high even in the farthest samples. Same spatial distribution was observed for Cd, As and Hg. While, the other elements follow different spatial patterns. The leaching test revealed that most elements in the mining wastes, except for the anions, had a low solubility despite their high bulk concentrations. According the 2003/33/CE Decision Threshold, some of these tailings samples were considered as

  16. Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions

    Science.gov (United States)

    Chen, L.; Wang, H. H.; Liu, J. F.; Tong, Y. D.; Ou, L. B.; Zhang, W.; Hu, D.; Chen, C.; Wang, X. J.

    2014-09-01

    Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source-receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem global chemical transport model to establish source-receptor relationships among 11 major continental regions worldwide. Source-receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g., East Asia, the Indian subcontinent, and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations due to near-field transport and deposition contributions from their local anthropogenic emissions (up to 64 and 71% for Hg(II) and Hg(P), respectively, over East Asia). We define the region of primary influence (RPI) and the region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is the SMC RPI for almost all other regions, while Europe, Russia, and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source-receptor relationships for mercury deposition show that approximately 16 and 17% of dry and wet deposition, respectively, over North America originate from East Asia, indicating that transpacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia, and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are the dominant RSIs. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g., North America, Europe, Russia, the Middle East, and Middle Asia) vary seasonally, with the maximum values in summer and

  17. Estimation of contamination on plant surfaces due to deposition of radionuclides from the atmosphere

    International Nuclear Information System (INIS)

    Simmonds, J.R.

    1983-01-01

    Calculations of Normalized Specific Activity (NSA), the ratio of concentration of a contaminant per unit of vegetation to its daily rate of deposition onto the ground, have been used as a basis for determining interception factors and retention half-lives for radioactivity deposited on grain and leafy vegetables. The resulting interception factors and retention half-lives are for use in assessing contamination levels on crops at harvest during conditions of continuous deposition. The results of the study indicate that the behaviour of strontium and caesium on plant surfaces is fairly similar but that plutonium behaves in a notably different way. (author)

  18. Atmospheric bulk deposition to the lagoon of Venice Part I. Fluxes of metals, nutrients and organic contaminants.

    Science.gov (United States)

    Rossini, P; Guerzoni, S; Molinaroli, E; Rampazzo, G; De Lazzari, A; Zancanaro, A

    2005-09-01

    First available data on atmospheric fall-out were provided by sampling monthly bulk depositions in four sites inside the Lagoon of Venice (550 km2). Sampling was carried out monthly during the period July 1998-July 1999, in one site near an industrial area (Porto Marghera; site D), another site in the city of Venice (site A), and the remaining two in the southern- and northernmost ends of the Lagoon (Valle Figheri, site C; Valle Dogà site B). The following determinations were carried out for each samples: pH, conductivity, grain-size, particulate load, and dissolved nutrients (N, P). Samples were then subdivided into soluble and insoluble fractions, and Al, Ca, Na, K, Mg, Si, Mn, Fe, Zn, Ni, Cr, Cu, Pb, Cd, As, Hg, Ti, V, S, P, Se and Sb were analysed on both fractions. Total organic micropollutants (PAH, PCB, HCB, DDT, PCDD/F) were measured. As regards particle size distribution, there was great variability among sampling sites. The percentage of the < or =2 microm grain-size fraction was higher in the southern and northern ends of the Lagoon. Small differences were found among sites for major elements, whereas higher variability was observed for inorganic and organic micropollutants, with standard deviations between 20% and 60% of the fluxes measured. Major differences in annual fluxes between the most polluted sites (mostly D and A) and background (site B) were seen for Cd (0.26 vs. 0.06 mg m(-2) year(-1)), Hg (41 vs. 15 microg m(-2) year(-1)), PCB ( approximately 2500 vs. approximately 500 ng m(-2) year(-1)) and HCB ( approximately 8000 vs. approximately 1000 ng m(-2) year(-1)). Comparisons with previous data, collected in the periods 1993-1994 and 1995-1997, were only available for a few trace metals. A definite decline in the annual Pb flux in the city of Venice was detected, from 18 to 13 mg m(-2) in 1996/1997 and 1995/1996 respectively, to approximately 5 mg m(-2) in the present study. Total annual deposition was calculated by means of two different

  19. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records

    International Nuclear Information System (INIS)

    Wynn, P.M.; Loader, N.J.; Fairchild, I.J.

    2014-01-01

    Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability. Rapid isotopic analysis by a novel “on-line” method using elemental analyser isotope ratio mass spectrometry (EA-IRMS) is developed, achieving sample precision of <0.4‰ using sample sizes of 40 mg wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing concentrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differentiating modern growth with light sulphur isotopes (+0.7‰) from pre-industrial growth (+7.5‰) influenced by bedrock composition. Comparison with speleothem records from the same location demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution dynamics. - Highlights: • Sulphur isotopes from tree rings are analysed using ‘on-line’ EA combustion. • Isotopes differentiate modern growth influenced by pollution from pre-industrial growth. • Biogeochemical cycling imparts minimal delay in sulphur incorporation into tree rings. • Trends in pollution are replicated between speleothems and trees from the same location. - Sulphur isotopes extracted from tree ring records are used to identify twentieth century pollution dynamics at the local- to regional-scale

  20. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa

    2018-03-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and

  1. Atmospheric ammonia measurements along the coastal lines of Southeastern China: Implications for inorganic nitrogen deposition to coastal waters

    Science.gov (United States)

    Wu, Shui-Ping; Dai, Lu-Hong; Wei, Ya; Zhu, Heng; Zhang, Yin-Ju; Schwab, James J.; Yuan, Chung-Shin

    2018-03-01

    Ambient NH3 concentrations were determined using Ogawa passive samplers along the coastal lines of southeast China from June 2015 to May 2017. Additional monitoring of PM2.5 and precipitation around Xiamen Bay during the period from November 2015 to May 2017 were carried out to estimate atmospheric inorganic nitrogen (IN) deposition to the bay. Distinct seasonal variations of ambient NH3 were observed with summer averages 1.41-5.56 times higher than winter, which agreed well with the seasonal trend of air temperature. Nitrate concentrations (pNO3-) in PM2.5 were significantly higher than ammonium concentrations (pNH4+), and both species showed higher concentrations in winter and spring and lower values in summer and fall which were influenced mainly by the monsoon cycle, gas-to-particle transformation process and rain washout. Paired t-testing revealed that no significant differences of pNO3- and pNH4+ between the urban and suburban sites around the Xiamen Bay. Unlike pNO3- and pNH4+, there were no clear seasonal trends for NH4+ and NO3- concentrations in precipitation samples (wNH4+ and wNO3-). On average, the deposition of IN consisted of NH3-N (27.4-28.2%) and pNO3--N (25.9-26.8%), followed by pNH4+-N (17.0-17.7%), wNH4+-N (14.5%), wNO3--N (13.3-13.8%) and NO2-N (0.35-0.46%); and showed distinct seasonal trends with higher values in winter/spring and lower values in summer/fall. In 2016, the total IN deposition was determined to be 36.45 and 35.92 kg N ha-1 at the urban and suburban sites around the Xiamen Bay, respectively. The proportion of IN deposition to total IN loads (terrestrial + atmospheric), varied over the range of 7.1-13.3% depending on the data source of riverine influx. Our observations revealed that the total IN deposition could account for 9.6-25.1% (based on primary productivity over Taiwan Strait) and 1.7-5.3% (based on primary productivity in Guangdong coastal region) of new productivity in Xiamen Bay, respectively. As an important nutrient

  2. Spatial and temporal variation in sources of atmospheric nitrogen deposition in the Rocky Mountains using nitrogen isotopes

    Science.gov (United States)

    Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa

    2018-01-01

    Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and

  3. Ahead of his time: Jacob Lipman's 1930 estimate of atmospheric sulfur deposition for the conterminous United States

    Science.gov (United States)

    Landa, Edward R.; Shanley, James B.

    2015-01-01

    A 1936 New Jersey Agricultural Experiment Station Bulletin provided an early quantitative assessment of atmospheric deposition of sulfur for the United States that has been compared in this study with more recent assessments. In the early 20th century, anthropogenic sulfur additions from the atmosphere to the soil by the combustion of fossil fuels were viewed as part of the requisite nutrient supply of crops. Jacob G. Lipman, the founding editor of Soil Science, and his team at Rutgers University, made an inventory of such additions to soils of the conterminous United States during the economic depression of the 1930s as part of a federally funded project looking at nutrient balances in soils. Lipman's team gathered data compiled by the US Bureau of Mines on coal and other fuel consumption by state and calculated the corresponding amounts of sulfur emitted. Their work pioneered a method of assessment that became the norm in the 1970s to 1980s—when acid rain emerged as a national issue. Lipman's estimate of atmospheric sulfur deposition in the 1930 is in reasonable agreement with recent historic reconstructions.

  4. Chemical characteristics of atmospheric deposition collected at two ENEA stations near Bologna

    International Nuclear Information System (INIS)

    Barilli, L.; Olivieri, P.; Salvi, S.; Morselli, L.; Grandi, E.; Ianuccilli, A.

    1997-06-01

    This article presents the results of the measurements of the water quality in acid rains, collected by a Wet and Dry Sampler in 1994 and in 1995 at two ENEA stations, Brasimone and Bologna town, belonging to the RIDEP network and characterized by different geography and different anthropogenic sources. In the Bologna station from April 95 an innovative sampler DAS (Dry Deposition on Aquatic Surface) has been activated. The monitoring has allowed determining the wet deposition fluxes in both the stations and pointing out the differences between two areas characterized by different topology. Besides the DAS sampler has allowed evaluating the total deposition fluxes (wet and dry deposition) in the Bologna station and comparing them with the ''critical loads'' pertaining to the examined territory

  5. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2002)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2002. Values are provided for total...

  6. EnviroAtlas - Atmospheric Nitrogen Deposition by 12-digit HUC for the Conterminous United States (2006)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes annual nitrogen and sulfur deposition within each 12-digit HUC subwatershed for the year 2006. Values are provided for total...

  7. Seven centuries of atmospheric Pb deposition recorded in a floating mire from Central Italy

    Science.gov (United States)

    Zaccone, Claudio; Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro M.; Shotyk, William

    2016-04-01

    Floating mires generally consist of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Generally speaking, the entire floating mass (mat) is divided into a mat root zone and an underlying mat peat zone. Floating mires are distributed world-wide; large areas of floating marsh occur along rivers and lakes in Africa, the Danube Delta in Romania, the Amazon River in South America, and in the Mississippi River delta in USA, whereas smaller areas occur also in The Netherlands, Australia and Canada. While peat cores from ombrotrophic bogs have been often (and successfully) used to reconstruct changes in the atmospheric deposition of several metals (including Pb), no studies are present in literature about the possibility to use peat profiles from floating mires. To test the hypothesis that peat-forming floating mires could provide an exceptional tool for environmental studies, a complete, 4-m deep peat profile was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum palustre centre. The whole core was frozen cut each 1-to-2 cm (n =231), and Pb determined by quadrupole ICP-MS (at the ultraclean SWAMP lab, University of Alberta, Canada) in each sample throughout the first 100 cm, and in each odd-numbered slice for the remaining 300 cm. The 14C age dating of organic sediments (silty peat) isolated from the sample at 385 cm of depth revealed that the island probably formed ca. 700 yrs ago. Lead concentration trend shows at least two main zones of interest, i.e., a clear peak (ranging from 200 to 1600 ppm) between 110-115 cm of depth, probably corresponding to early 1960's - late 1970's, and a broad band (80-160 ppm) between 295-320 cm of depth, corresponding to approximately AD 1480

  8. Source, flux and balance of atmospheric deposition of metals at Ile-de-France; Source, flux et bilan des retombees atmospheriques de metaux en Ile de France

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.

    2004-07-15

    The urban atmosphere is submitted to large inputs of anthropogenic contaminants arising from both stationary (power plants, industries, etc.) and mobile (road traffic) sources. These small particles may be transported over long distances and affect ecosystems. Significant dry and wet atmospheric deposition also occurs locally and contributes to the contamination of urban runoff. The aim of this study is to compare heavy metal and hydrocarbon atmospheric deposition fluxes to other input ways on agricultural and urban areas to assess their importance. Moreover, a source investigation has been done to identify the main origins of these pollutants. Before the quantification of pollutant fluxes, a comparison of several sampling procedures was performed. As a result, the sampling of total atmospheric deposition is not affected by the funnel material (Teflon and polyethylene) or by the sampling duration (7 and 28 days). However, the rinsing step of the funnel walls showed a higher relative importance during short sampling periods. The relative amount contained in these solutions reached 24 to 40 % of the total flux during weekly sampling periods and 8 to 18 % during monthly sampling periods, whatever the element considered. The temporal evolution of atmospheric deposition showed no seasonal influence on flux variations during the 2001-2002 period. Considering an 8-year period behaviour, between 1994 and 2002, a significant decrease of the deposition fluxes of Cd, Cu, Pb and Zn occurred at the Creteil site which is placed in an industrialized area of the Paris suburb. The decreasing factor reached 16, 2.5, 4 and 7.5 for these elements respectively. At the Ile-de-France scale, the deposition flux levels on urban and semi-urban areas were of the same order of magnitude (?20 tonnes per year for Ba, Cu, Pb and Sr). Since semi-urban surface area is four times higher than urban ones, the important influence of anthropogenic activities on atmospheric deposition of urban areas is

  9. Results of external quality-assurance program for the National Atmospheric Deposition Program and National Trends Network during 1985

    Science.gov (United States)

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1988-01-01

    External quality assurance monitoring of the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN) was performed by the U.S. Geological Survey during 1985. The monitoring consisted of three primary programs: (1) an intersite comparison program designed to assess the precision and accuracy of onsite pH and specific conductance measurements made by NADP and NTN site operators; (2) a blind audit sample program designed to assess the effect of routine field handling on the precision and bias of NADP and NTN wet deposition data; and (3) an interlaboratory comparison program designed to compare analytical data from the laboratory processing NADP and NTN samples with data produced by other laboratories routinely analyzing wet deposition samples and to provide estimates of individual laboratory precision. An average of 94% of the site operators participated in the four voluntary intersite comparisons during 1985. A larger percentage of participating site operators met the accuracy goal for specific conductance measurements (average, 87%) than for pH measurements (average, 67%). Overall precision was dependent on the actual specific conductance of the test solution and independent of the pH of the test solution. Data for the blind audit sample program indicated slight positive biases resulting from routine field handling for all analytes except specific conductance. These biases were not large enough to be significant for most data users. Data for the blind audit sample program also indicated that decreases in hydrogen ion concentration were accompanied by decreases in specific conductance. Precision estimates derived from the blind audit sample program indicate that the major source of uncertainty in wet deposition data is the routine field handling that each wet deposition sample receives. Results of the interlaboratory comparison program were similar to results of previous years ' evaluations, indicating that the participating laboratories

  10. Multifractal analysis of atmospheric sub-micron particle data

    Science.gov (United States)

    Arizabalo, Rubén Darío; González-Ávalos, Eugenio; Korvin, Gabor

    2015-03-01

    Multifractal analysis was used to describe air pollution by sub-micrometric atmospheric particles. Atmospheric particle concentrations were studied from March 31 to April 21, 2006, as part of the MILAGRO campaign at the Jasso Station by means of an SMPS. Sixteen campaign days were selected to carry out the multifractal analysis of the experimental data through Singularity Spectra f(α). In this work, the roughness/smoothness feature of atmospheric particle distributions was studied by means of the Hölder exponent (α), which can be associated with the intensity of particle emissions through time and the randomness of the external emission sources. Multifractal analysis has been found to be a useful tool to establish intensity fluctuations of atmospheric data.

  11. Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador – Pacific or Atlantic origin?

    Directory of Open Access Journals (Sweden)

    S. Makowski Giannoni

    2016-08-01

    Full Text Available Sea salt (NaCl has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east–west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+ and chloride (Cl−, which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ ∕ Cl− ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ ∕ Cl− ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the

  12. Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets

    Science.gov (United States)

    Kawaharamura, Toshiyuki; Dang, Giang T.; Nitta, Noriko

    2016-10-01

    A multiple quantum well α-Fe2O3/α-Ga2O3 with parallel and coherent formation of uniform and highly single-crystalline layers on a sapphire substrate has been fabricated by open-air atmospheric-pressure solution-processed mist chemical vapor deposition (Mist CVD). This report demonstrates that complicated structures with atomic-level control can be fabricated even in non-vacuum conditions by the Mist CVD. This can be achieved via the precise control of the precursor flow and ambient temperature combined with the formation of mist droplets of the special Leidenfrost state, which increased the atomic migration length by 108 times more than that of traditional vacuum techniques. This work could be a milestone in the transformation from vacuum to non-vacuum thin film deposition techniques towards a green and sustainable industry.

  13. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  14. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  15. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  16. Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Juang, Jia-Yang; Chou, Tung-Sheng; Lin, Hsin-Tien; Chou, Yuan-Fang; Weng, Chih-Chiang

    2014-01-01

    Highlights: • We develop a cost-effective technique, atmosphere pressure plasma jet (APPJ), to deposit gallium-doped zinc oxide (GZO) films on large area glass substrates in atmosphere. • Scanning trajectory has a significant impact on the pattern of sheet resistance distribution. • The primary root cause of the nonuniformity is the annealing effect of the deposited films in air while the nozzle scans over the rest of the substrate. • Equivalent circuits models considering only the resistance increase due to air annealing cannot explain the unexpected rise of resistance in the center of the substrate for multiple-pass samples. • Measurements of residual stress, carrier concentration and Hall mobility reveal that the residual stress is another factor that results in nonuniform resistance distribution. - Abstract: Large area (117 mm × 185 mm) gallium-doped zinc oxide (GZO) films are prepared on glass substrates by atmospheric pressure plasma jet (APPJ) technique. The uniformity of material properties, in particular the electrical resistivity, of the deposited film is of great importance in reducing design complexity of the electron devices. We investigate the effects of scanning trajectory recipe (speed, pitch and number of passes) on structural and electrical properties of GZO thin films. We find that the trajectory has significant effects on the magnitude and uniformity of sheet resistance over the glass substrates. For single pass, the resistance appears higher at the starting part of spray, whereas, for cases of multiple passes, the highest resistance appears in the central part of the substrate. XRD, SEM, Hall measurement and residual stress are used to study the film properties and identify root causes of the nonuniform distribution of sheet resistance. We conclude that annealing time is the dominant root cause of the nonuniform resistance distribution, and other factors such as residual stress and structural characteristics may also have

  17. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Science.gov (United States)

    Salim Belyazid; Scott Bailey; Harald. Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  18. Evaluating the impact of atmospheric depositions on springtime dinitrogen fixation in the Cretan Sea (Eastern Mediterranean - A mesocosm approach

    Directory of Open Access Journals (Sweden)

    Eyal Rahav

    2016-09-01

    Full Text Available Large amounts of dust and atmospheric aerosols, originating from surrounding desert areas (e.g., Sahara and Middle East are deposited annually on the surface of the Eastern Mediterranean Sea. These depositions can provide high amounts of micro (such as Fe, Zn, Co and macro nutrients (such as P and N to supplement nutrient-poor surface waters- that typically limit primary productivity and also dinitrogen (N2 fixation in many marine environments. Here, we studied the impact of the atmospheric deposition of dust and aerosols on N2 fixation in the Cretan Sea (Eastern Mediterranean Sea. Mixed polluted aerosols (hereafter A and Saharan dust (hereafter SD were added to nine mesocosms (3-m3 each containing surface mixed layer seawater (~10 m, and N2 fixation was evaluated for 6 days during May 2012 (springtime. The addition of SD triggered a rapid (30 h and robust (2-4 fold increase in N2 fixation rates that remained high for 6 days and contributed 3-8% of the primary productivity. The A addition also resulted in higher N2 fixation rates compared to the unamended control mesocosms, although the responses were less profound (1.5-2 fold and accounted for only 2-4% of the primary productivity. The microbial community responded differently to the two additions. Heterotrophic bacterial N2 fixers dominated the diazotroph community in A and the control mesocosms, while the non-filamentous cyanobacterial group Trichodesmium prevailed in the SD treatment (68% of all the operational taxonomic units, verified by qPCR analyses. Our results indicate that the aerosol source, its route prior to deposition, and its specific chemical composition, can alter the diazotrophic diversity and activity in the Eastern Mediterranean Sea and may thus impact both the N and C dynamics in this impoverished environment.

  19. Adsorption of polycyclic aromatic hydrocarbons at the air-water interface and its role in atmospheric deposition by fog droplets.

    Science.gov (United States)

    Valsaraj, Kalliat T

    2004-10-01

    This review addresses the significance of air-water interfacial adsorption in the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in dispersed systems, such as fog droplets in the atmosphere and air bubbles in wastewater systems. The equilibrium (partition constants) and transport (mass accommodation coefficients) parameters in dispersed systems are discussed. Specific cases where the air-water interfacial adsorption makes a significant impact, such as uptake of naphthalene by fog droplets in a falling droplet reactor and of pyrene removal on air bubbles in a solvent sublation reactor, are discussed as illustrations. The consequence of the air-water interface in atmospheric wet deposition of PAHs by fog droplets is analyzed mathematically.

  20. Synthesis of ZnO nanocrystals with novel hierarchical structures via atmosphere pressure physical vapor deposition method

    Science.gov (United States)

    Yan, Youguo; Zhang, Ye; Meng, Guowen; Zhang, Lide

    2006-09-01

    The search for hierarchically organized ZnO nanocrystals have been intense in recent years, due to both fundamental interest in nanocrystal growth subjects and their potential applications as components for building nanodetectors, optoelectronic, vacuum microelectronic, and spintronic nanodevices. We reported the first observation of a variety of novel nanostructures, such as nanocandle arrays, wine-bottle-shaped rod arrays, nanorivet arrays, periodic diamond-string and needle arrays, nanofern and needle arrays, tooth-shaped belt, spinal-shaped nanostructures and bamboo-shaped nanorod via an atmosphere pressure physical vapor deposition method. The unique feature of our method is atmosphere chamber pressure, which can induce chaos and fluctuation of source vapor and facilities multiply growth mechanisms to have competing dominating effects on the crystal growth of ZnO. The SEM and photoluminescence spectra confirm that those nanostructured ZnO crystals possess satisfactory structural and optical qualities.

  1. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  2. Inertial deposition of nanoparticle chain aggregates: Theory and comparison with impactor data for ultrafine atmospheric aerosols

    International Nuclear Information System (INIS)

    Barone, Teresa L.; Lall, Anshuman Amit; Zhu Yifang; Yu Rongchung; Friedlander, Sheldon K.

    2006-01-01

    Nanoparticle chain aggregates (NCAs) are often sized and collected using instruments that rely on inertial transport mechanisms. The instruments size segregate aggregates according to the diameter of a sphere with the same aerodynamic behavior in a mechanical force field. A new method of interpreting the aerodynamic diameter of NCAs is described. The method can be used to calculate aggregate surface area or volume. This is useful since inertial instruments are normally calibrated for spheres, and the calibrations cannot be directly used to calculate aggregate properties. A linear relationship between aggregate aerodynamic diameter and primary particle diameter based on published Monte-Carlo drag calculations is derived. The relationship shows that the aggregate aerodynamic diameter is independent of the number of primary particles that compose an aggregate, hence the aggregate mass. The analysis applies to aggregates with low fractal dimension and uniform primary particle diameter. This is often a reasonable approximation for the morphology of nanoparticles generated in high temperature gases. An analogy is the use of the sphere as an approximation for compact particles. The analysis is applied to the collection of NCAs by a low-pressure impactor. Our results indicate the low-pressure impactor collects aggregates with a known surface area per unit volume on each stage. Combustion processes often produce particles with aggregate structure. For diesel exhaust aggregates, the surface area per unit volume calculated by our method was about twice that of spheres with diameter equal to the aerodynamic diameter. Measurements of aggregates collected near a major freeway and at Los Angeles International Airport (LAX) were made for two aerodynamic cutoff diameter diameters (d a,50 ), 50 and 75 nm. (Aerodynamic cutoff diameter refers to the diameter of particles collected with 50% efficiency on a low-pressure impactor stage.) Near-freeway aggregates were probably primarily a

  3. Atmospheric deposition and soil vertical distribution of {sup 7}Be in a semiarid region of central Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lohaiza, Flavia A.; Velasco, Hugo; Ayub, Jimena Juri; Rizzotto, Marcos; Valladares, Diego L. [Grupo de Estudios Ambientales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis - CONICET, Ejercito de los Andes 950, D5700HHW San Luis (Argentina)

    2014-07-01

    Beryllium-7 is a potentially powerful tracer of soil erosion but poor information on {sup 7}Be atmospheric deposition and associated soil inventories in a semiarid region of Central Argentina exists. We estimated the {sup 7}Be atmospheric wet deposition and {sup 7}Be inventory in undisturbed soils north of the City of San Luis (S 33 deg. 9'; W 66 deg. 16') and explored its seasonal variation. Rain and soil samples were collected during 2006-2008 and 2009-2012, respectively. The atmospheric wet deposition was estimated considering both the mean activity concentration in rainwater and the precipitation regime of the region. Using the assessed monthly wet deposition of {sup 7}Be, the expected {sup 7}Be areal activity in soil was estimated applying a simple model. These estimated values were confronted with the experimental measurements in soil. The {sup 7}Be rainwater activity concentration ranged from 0.7 to 3.2 Bq l{sup -1}, with a mean of 1.7 Bq l{sup -1} (sd = 0.53 Bq l{sup -1}). A good linear relationship between {sup 7}Be wet deposition and rain magnitude was obtained (R=0.92, p<0.0001). The wet deposition on soil ranged from 1.1 to 120 Bq m{sup -2} with a mean value of 32.7 Bq m-2 (sd = 29.9 Bq m-2). The annual depositional flux was estimated at 1140 ± 120 Bq m{sup -2} y{sup -1}. The {sup 7}Be mass activity (Bq kg{sup -1}) values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). A typical decreasing exponential function of {sup 7}Be areal activity (Bq m{sup -2}) with soil mass depth (kg m{sup -2}) was found and the distribution parameters for each month were determined. The minimum value of areal activity was 51 Bq m{sup -2} in August, reaching the maximum of 438 Bq m{sup -2} in February. The relaxation mass depth ranged from 2.9 kg m{sup -2} in March to 1.3 kg m{sup -2} in August. The confrontation of experimental measurements in soil with the estimated values using the model showed a good agreement

  4. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  5. Atmospheric deposition of trace elements around point sources and human health risk assessment. II: Uptake of arsenic and chromium by vegetables grown near a wood preservation factory

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Moseholm, Lars; Nielsen, Margot M.

    1992-01-01

    to the leafy vegetables grown nearby was by direct atmospheric deposition, while arsenic in the root crops originated from both the soil and the atmosphere. Consumption of vegetables grown near the source would result in an increased intake of inorganic arsenic, but the intake via the total diet was estimated...

  6. Differential effects of high atmospheric N and S deposition on bog plant/lichen tissue and porewater chemistry across the Athabasca Oil Sands Region

    Science.gov (United States)

    R. Kelman Wieder; Melanie A. Vile; Kimberli D. Scott; Cara M. Albright; Kelly J. McMillen; Dale H. Vitt; Mark E. Fenn

    2016-01-01

    Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NOx, SOx, and NHy to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and...

  7. The Contribution of On-Road Emissions of Ammonia to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Fenn, M. E.; Schilling, S.; Bytnerowicz, A.; Bell, M. D.; Sickman, J. O.; Hanks, K.; Geiser, L.

    2017-12-01

    Emissions control technologies for NOx result in increased production of NH3. Emissions inventories and simulated deposition of NHx frequently underestimate reduced forms of N. Herein we provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental U.S. On-road NH3 emissions were determined from on-road CO2 emissions data and published empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 in urbanized regions are typically 0.1 - 1.3 t/km2/yr. By comparison, NH3 emissions in agricultural regions generally range from 0.4 - 5.5 t/km2/yr, with a few hotspots as high as 5.5 - 11.2 t/km2/yr. We identified 500 counties that receive at least 30% of the NH3 emissions from on-road sources. Counties with higher vehicle NH3 emissions than from agriculture include 41% of the U.S. population. Within CONUS the percent of wet inorganic N deposition from the NADP/NTN as NH4+ ranged from 37 to 83% with a mean of 59.5%. Only 13% of the NADP sites across the U.S. had less than 45% of the N deposition as NH4+ based on data from 2014-2016, illustrating the near-universal occurrence of NH4+ deposition across the U.S., regardless of the primary sources of NH3 emissions. The relative importance of urban and on-road NH3 emissions versus emissions from agriculture varies regionally. In some areas both are important and should be considered when evaluating the principal sources of N deposition to affected ecosystems.Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the NH4-N:NO3-N ratio in throughfall was 1.0 compared to an average ratio of 2.3 in bulk deposition. At urban sites in the Los Angeles Basin bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs in the greater LA Basin ranged from 0.7 to 1.5. The NH4-N:NO3-N ratio at ten sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall. Throughfall and

  8. Projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020

    DEFF Research Database (Denmark)

    Hertel, Ole; Geels, Camilla; Hansen, K.M.

    2011-01-01

    this is projected to decrease to 48 %. For some countries the projected decrease in N deposition arising from the implementation of the NEC-II directive will be a considerable part of the reductions agreed on in the provisional reduction targets of the Baltic Sea Action Plan. This underlines the importance......The ecological status of the Baltic Sea has for many years been affected by the high input of both waterborne and airborne nutrients. The focus is here on the airborne input of nitrogen (N) and the projected changes in this input, assuming the new National Emission Ceilings directive (NEC...... scenario, giving a projected reduction of 38 k tonnes N in the annual load in 2020. This equals a decline in N deposition of 19 %. The results from 20 model runs using the tagging method show that of the total N deposition in 2007, 52 % came from emissions within the bordering countries. By 2020...

  9. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  10. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey

    International Nuclear Information System (INIS)

    Tasdemir, Yuecel; Kural, Can

    2005-01-01

    Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24 230 (Ca) μg m -2 d -1 . The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m -3 for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3±1.7 cm s -1 (Pb) to 11.1±6.4 cm s -1 (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples. - Mechanical turbulence has an important influence on re-suspension and dry deposition of trace elements in an urban area

  11. Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest.

    Science.gov (United States)

    Aguillaume, Laura; Rodrigo, Anselm; Avila, Anna

    2016-02-15

    The abatement programs implanted in Europe to reduce SO2, NO2 and NH3 emissions are here evaluated by analyzing the relationships between emissions in Spain and neighboring countries and atmospheric deposition in a Mediterranean forest in the Montseny mountains (NE Spain) for the last 3decades. A canopy budget model was applied to throughfall data measured during a period of high emissions (1995-1996) and a period of lower emissions (2011-2013) to estimate the changes in dry deposition over this time span. Emissions of SO2 in Spain strongly decreased (77%) and that was reflected in reductions for nssSO4(2-) in precipitation (65% for concentrations and 62% for SO4(2)-S deposition). A lower decline was found for dry deposition (29%). Spanish NO2 emissions increased from 1980 to 1991, remained constant until 2005, and decreased thereafter, a pattern that was paralleled by NO3(-) concentrations in bulk precipitation at Montseny. This pattern seems to be related to a higher share of renewable energies in electricity generation in Spain in recent years. However, dry deposition increased markedly between 1995 and 2012, from 1.3 to 6.7 kg ha(-1) year(-)(1). Differences in meteorology between periods may have had a role, since the recent period was drier thus probably favoring dry deposition. Spanish NH3 emissions increased by 13% between 1980 and 2012 in Spain but NH4(+) concentrations in precipitation and NH4(+)-N deposition showed a decreasing trend (15% reduction) at Montseny, probably linked to the reduction ammonium sulfate and nitrate aerosols to be scavenged by rainfall. NH4(+)-N dry deposition was similar between the compared periods. The N load at Montseny (15-17 kg ha(-1)y ear(-1)) was within the critical load range proposed for Mediterranean sclerophyllous forests (15-17.5 kg ha(-1) year(-1)). The onset of N saturation is suggested by the observed increasing N export in streamwaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. PIXE analysis: an option for the study of atmospheric pollutants

    International Nuclear Information System (INIS)

    Aldape, U.F.

    1989-01-01

    Several techniques have been utilized in studying atmospheric contamination samples. However, each lack some characteristics required for these studies. Spectroscopy of X-rays particularly where excitation models are produced using charged particles (Particle Induced X-ray Emission, PIXE), for its high sensitivity, is the one that best fitting itself to the scheme of analysis required. In this paper we report some qualitative results of the atmospheric aerosol samples collected in Mexico City. (Author)

  13. Processes engaged in the persistence in atmosphere of previously deposited artificial radionuclides

    International Nuclear Information System (INIS)

    Piga, Damien

    2010-01-01

    Since 1959, atmospheric sampling stations of the environmental radioactivity permanent observatory measure both natural and artificial radioactivity in ambient air. Nowadays, Cs-137 (30.07 years), an artificial radionuclide mainly issue from atmospheric weapons tests and several accidents, is still measured at trace level in the lower atmosphere although there is no significant release anymore. The aim of this study was to identify and characterize the processes which explain this persistence. Areas highly contaminated by Chernobylsk accident are the major contributors to the Cs-137 atmospheric persistence in France. In these areas, wildfires are the most significant resuspension processes during the dry season and can lead to long range transport events. Around 1013 Bq of Cs-137 are yearly resuspended by this process. In connection with significant increases of total suspended particles, Sahara is the second area involved in the atmospheric Cs-137 persistence due to dust transport events. The whole of these events has a mean contribution of around 1/3 of the Cs-137 background level at the French scale. The last identified process is the wood burning during winter. Even if its emission factor is low, spatial extent of source areas and quantities used at the season scale makes wood burning a significant process compared to ambient trace levels. At the French scale, around 1011 Bq of Cs-137 are yearly resuspended by this process. During this season, the decrease of ventilation conditions in the lower atmosphere leads to an increase of the background level whereas significant increases are due to long range transport events from Eastern Europe

  14. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

    NARCIS (Netherlands)

    Zhu, Qichao; Vries, De Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo

    2016-01-01

    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in

  15. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends

    NARCIS (Netherlands)

    Sawicka, Kasia; Rowe, E.C.; Evans, C.D.; Monteith, D.T.; Vanguelova, E.I.; Wade, A.J.; Clark, J.M.

    2017-01-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been

  16. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Navrátil, Tomáš; Dobešová, Irena

    2011-01-01

    Roč. 220, 1/4 (2011), s. 117-130 ISSN 0049-6979 Institutional research plan: CEZ:AV0Z30130516 Keywords : acid deposition * sandstone percolates * chemical weathering * salt efflorescence * Black Triangle * aluminum * sulfates Subject RIV: DD - Geochemistry Impact factor: 1.625, year: 2011

  18. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  19. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  20. Use of regression‐based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Huggett, Brian

    2010-01-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall‐season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall‐season surface‐water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface‐water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface‐water nitrate and ANC concentrations were created. Predicted surface‐water nitrate concentrations were highest in small, high‐elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high‐elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L−1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide

  1. Use of regression-based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, D. W.; Nanus, L.; Huggett, B. W.

    2010-12-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple-linear regression (MLR) models were created to estimate fall-season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall-season surface-water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface-water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Dataset for Yosemite, and maps of predicted surface-water nitrate and ANC concentrations were created. Predicted surface-water nitrate concentrations were highest in small, high-elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high-elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 µeq L-1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of

  2. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends.

    Science.gov (United States)

    Sawicka, K; Rowe, E C; Evans, C D; Monteith, D T; E I Vanguelova; Wade, A J; J M Clark

    2017-02-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilisation by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the "acid recovery DOC baseline" significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed

  3. Projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020

    Science.gov (United States)

    Geels, C.; Hansen, K. M.; Christensen, J. H.; Ambelas Skjøth, C.; Ellermann, T.; Hedegaard, G. B.; Hertel, O.; Frohn, L. M.; Gross, A.; Brandt, J.

    2012-03-01

    The ecological status of the Baltic Sea has for many years been affected by the high input of both waterborne and airborne nutrients. The focus here is on the airborne input of nitrogen (N) and the projected changes in this input, assuming the new National Emission Ceilings directive (NEC-II), currently under negotiation in the EU, is fulfilled towards the year 2020. With a set of scenario simulations, the Danish Eulerian Hemispheric Model (DEHM) has been used to estimate the development in nitrogen deposition based on present day meteorology combined with present day (2007) or future (2020) anthropogenic emissions. Applying a so-called tagging method in the DEHM model, the contribution from ship traffic and from each of the nine countries with coastlines to the Baltic Sea has been assessed. The annual deposition to the Baltic Sea is estimated to 203 k tonnes N for the present day scenario (2007) and 165 k tonnes N in the 2020 scenario, giving a projected reduction of 38 k tonnes N in the annual load in 2020. This equals a decline in nitrogen deposition of 19%. The results from 20 model runs using the tagging method show that of the total nitrogen deposition in 2007, 52% came from emissions within the bordering countries. By 2020, this is projected to decrease to 48%. For some countries the projected decrease in nitrogen deposition arising from the implementation of the NEC-II directive will contribute significantly to compliance with the reductions agreed on in the provisional reduction targets of the Baltic Sea Action Plan. This underlines the importance of including projections like the current in future updates of the Baltic Sea Action Plan.

  4. Projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020

    Directory of Open Access Journals (Sweden)

    C. Geels

    2012-03-01

    Full Text Available The ecological status of the Baltic Sea has for many years been affected by the high input of both waterborne and airborne nutrients. The focus here is on the airborne input of nitrogen (N and the projected changes in this input, assuming the new National Emission Ceilings directive (NEC-II, currently under negotiation in the EU, is fulfilled towards the year 2020. With a set of scenario simulations, the Danish Eulerian Hemispheric Model (DEHM has been used to estimate the development in nitrogen deposition based on present day meteorology combined with present day (2007 or future (2020 anthropogenic emissions. Applying a so-called tagging method in the DEHM model, the contribution from ship traffic and from each of the nine countries with coastlines to the Baltic Sea has been assessed. The annual deposition to the Baltic Sea is estimated to 203 k tonnes N for the present day scenario (2007 and 165 k tonnes N in the 2020 scenario, giving a projected reduction of 38 k tonnes N in the annual load in 2020. This equals a decline in nitrogen deposition of 19%. The results from 20 model runs using the tagging method show that of the total nitrogen deposition in 2007, 52% came from emissions within the bordering countries. By 2020, this is projected to decrease to 48%. For some countries the projected decrease in nitrogen deposition arising from the implementation of the NEC-II directive will contribute significantly to compliance with the reductions agreed on in the provisional reduction targets of the Baltic Sea Action Plan. This underlines the importance of including projections like the current in future updates of the Baltic Sea Action Plan.

  5. External quality-assurance results for the national atmospheric deposition program/national trends network, 2000-2001

    Science.gov (United States)

    Wetherbee, Gregory A.; Latysh, Natalie E.; Gordon, John D.

    2004-01-01

    Five external quality-assurance programs were operated by the U.S. Geological Survey for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) from 2000 through 2001 (study period): the intersite-comparison program, the blind-audit program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program is designed to measure specific components of the total error inherent in NADP/NTN wet-deposition measurements. The intersite-comparison program assesses the variability and bias of pH and specific-conductance determinations made by NADP/NTN site operators with respect to accuracy goals. The accuracy goals are statistically based using the median of all of the measurements obtained for each of four intersite-comparison studies. The percentage of site operators responding on time that met the pH accuracy goals ranged from 84.2 to 90.5 percent. In these same four intersite-comparison studies, 88.9 to 99.0 percent of the site operators met the accuracy goals for specific conductance. The blind-audit program evaluates the effects of routine sample handling, processing, and shipping on the chemistry of weekly precipitation samples. The blind-audit data for the study period indicate that sample handling introduced a small amount of sulfate contamination and slight changes to hydrogen-ion content of the precipitation samples. The magnitudes of the paired differences are not environmentally significant to NADP/NTN data users. The field-audit program (also known as the 'field-blank program') was designed to measure the effects of field exposure, handling, and processing on the chemistry of NADP/NTN precipitation samples. The results indicate potential low-level contamination of NADP/NTN samples with calcium, ammonium, chloride, and nitrate. Less sodium contamination was detected by the field-audit data than in previous years. Statistical analysis of the paired differences shows that contaminant ions

  6. Letter to the editor: Critical assessments of the current state of scientific knowledge, terminology, and research needs concerning the ecological effects of elevated atmospheric nitrogen deposition in China

    Science.gov (United States)

    Pan, Yuepeng; Liu, Yongwen; Wentworth, Gregory R.; Zhang, Lin; Zhao, Yuanhong; Li, Yi; Liu, Xuejun; Du, Enzai; Fang, Yunting; Xiao, Hongwei; Ma, Hongyuan; Wang, Yuesi

    2017-03-01

    In a publication in Atmospheric Environment (http://dx.doi.org/10.1016/j.atmosenv.2015.10.081), Gu et al. (2015) estimated that "the total nitrogen (N) deposition in 2010 was 2.32 g N m-2 yr-1" in China. This value is comparable with previous estimations based on a synthesized dataset of wet/bulk inorganic N deposition observations, which underestimates the total N deposition since their algorithm (equations (2) and (3) in their paper) does not account for dry deposition of NH3, HNO3, NOx and wet/dry deposition of HONO and organic nitrogen (e.g. amines, amides, PAN). Indeed, Gu et al. (2015) mixed the terminology of wet/bulk deposition and total deposition. Another flawed assumption by Gu et al. (2015) is that all inorganic N in precipitation estimated by their algorithm originates from fertilizer and coal combustion. This is incorrect and almost certainly causes biases in the spatial and temporal distribution of estimated wet/bulk inorganic N deposition (Fig. 5 in their paper), further considering the fact that they neglected important N sources like livestock and they did not consider the nonlinearity between various sources and deposition. Besides the input data on N deposition, the model validation (Sect. 2.3.2) described in their paper also requires clarification because the detailed validation information about the time series of observational dataset versus modeling results was not given. As a result of these combined uncertainties in their estimation of N deposition and the lack of detail for model-measurement comparison, their estimates of the impacts of N deposition on carbon storage in Chinese forests may need further improvement. We suggest the clarification of the terminology regarding N deposition, especially for wet deposition, bulk deposition, gaseous and particulate dry deposition or total deposition since the accurate distinction between these terms is crucial to investigating and estimating the effects of N deposition on ecosystems.

  7. Effect of reactive atmosphere on pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Mroz, W.; Jedynski, M.; Hoffman, J.; Jelínek, Miroslav; Major, B.; Prokopiuk, A.; Szymanski, Z.

    2007-01-01

    Roč. 59, - (2007), s. 720-723 ISSN 1742-6588 Grant - others:PBZ-KBN(PL) 100/TO8/2003 and 0028/TOO/2005/29 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * hydroxyapatite * reactive atmosphere * thin layers Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.

    Science.gov (United States)

    Wei, Zheng; Wu, Guanghong; Su, Ruixian; Li, Congwei; Liang, Peiyu

    2011-09-01

    Samples of class F coal fly ash (levels I, II, and III), slag, coal, atmospheric deposition, and soils collected from Tianjin, China, were analyzed using U.S. Environmental Protection Agency (U.S. EPA) Method 3052 and a sequential extraction procedure, to investigate the pollution status and mobility of Hg. The results showed that total mercury (HgT) concentrations were higher in level I fly ash (0.304 µg/g) than in level II and level III fly ash and slag (0.142, 0.147, and 0.052 µg/g, respectively). Total Hg in the atmospheric deposition was higher during the heating season (0.264 µg/g) than the nonheating season (0.135 µg/g). Total Hg contents were higher in suburban area soils than in rural and agricultural areas. High HgT concentrations in suburban area soils may be a result of the deposition of Hg associated with particles emitted from coal-fired power plants. Mercury in fly ash primarily existed as elemental Hg, which accounted for 90.1, 85.3, and 90.6% of HgT in levels I, II, and III fly ash, respectively. Mercury in the deposition existed primarily as sulfide Hg, which accounted for 73.8% (heating season) and 74.1% (nonheating season) of HgT. However, Hg in soils existed primarily as sulfide Hg, organo-chelated Hg and elemental Hg, which accounted for 37.8 to 50.0%, 31.7 to 41.8%, and 13.0 to 23.9% of HgT, respectively. The percentage of elemental Hg in HgT occurred in the order fly ash > atmospheric deposition > soils, whereas organo-chelated Hg and sulfide Hg occurred in the opposite order. The present approach can provide a window for understanding and tracing the source of Hg in the environment in Tianjin and the risk associated with Hg bioaccessibility. Copyright © 2011 SETAC.

  9. Genetic analysis of intracapillary glomerular lipoprotein deposits in aging mice.

    Directory of Open Access Journals (Sweden)

    Gerda A Noordmans

    Full Text Available Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes.Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0-4. Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping.Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97, NZW(0.41, NON(0.30, B10(0.21, C3 H(0.9 and C57BR(0.7. The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3.By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses.

  10. Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China.

    Science.gov (United States)

    Kuang, Yuan Wen; Zhou, Guo Yi; Da Wen, Zhi; Liu, Shi Zhong

    2007-06-01

    Rapid urbanization and the expansion of industrial activities in the past several decades have led to large increases in emissions of pollutants in the Pearl River Delta of south China. Recent reports have suggested that industrial emission is a major factor contributing to the damages in current natural ecosystem in the Delta area. Tree barks have been used successfully to monitor the levels of atmospheric metal deposition in many areas, but rarely in China. This study aimed at determining whether atmospheric heavy metal deposition from a Pb-Zn smeltery at Qujiang, Guangdong province, could be accurately reflected both in the inner bark and the outer bark of Masson pine (Pinus massoniana L.). The impact of the emission from smeltery on the soils beneath the trees and the relationships of the concentrations between the soils and the barks were also analyzed. Barks around the bole of Pinus massoniana from a pine forest near a Pb-Zn smeltery at Qujiang and a reference forest at Dinghushan natural reserve were sampled with a stainless knife at an average height of 1.5 m above the ground. Mosses and lichens on the surface barks were cleaned prior to sampling. The samples were carefully divided into the inner bark (living part) and the outer bark (dead part) in the laboratory, and dried and ground, respectively. After being dry-ashed, the powder of the barks was dissolved in HNO3. The solutions were analyzed for iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni) and cobalt (Co) by inductively coupled plasmas emission spectrometry (ICP, PS-1000AT, USA) and Cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrometry (GFAAS, ZEENIT 60, Germany). Surface soils (0-10 cm) beneath the sample trees were also collected and analyzed for the selected metals. Concentrations of the selected metals in soils at Qujiang were far above their environmental background values in the area, except for Fe and Mn, whilst at Dinghushan, they were far

  11. Atmospheric Pressure Chemical Vapor Deposition of CdTe for High-Efficiency Thin-Film PV Devices; Annual Report, 26 January 1998-25 January 1999

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P. V. [ITN Energy Systems, Wheat Ridge, Colorado (US); Kee, R.; Wolden, C.; Raja, L.; Kaydanov, V.; Ohno, T.; Collins, R.; Aire, M.; Kestner, J. [Colorado School of Mines, Golden, Colorado (US); Fahrenbruch, A. [ALF, Inc., Stanford, California (US)

    1999-09-30

    ITN's 3-year project, titled ''Atmospheric Pressure Chemical Vapor Deposition (APCVD) of CdTe for High-Efficiency Thin-Film Photovoltaic (PV) Devices,'' has the overall objectives of improving thin-film CdTe PV manufacturing technology and increasing CdTe PV device power conversion efficiency. CdTe deposition by APCVD employs the same reaction chemistry as has been used to deposit 16%-efficient CdTe PV films, i.e., close-spaced sublimation, but employs forced convection rather than diffusion as a mechanism of mass transport. Tasks of the APCVD program center on demonstrating APCVD of CdTe films, discovering fundamental mass-transport parameters, applying established engineering principles to the deposition of CdTe films, and verifying reactor design principles that could be used to design high-throughput, high-yield manufacturing equipment. Additional tasks relate to improved device measurement and characterization procedures that can lead to a more fundamental understanding of CdTe PV device operation, and ultimately, to higher device conversion efficiency and greater stability. Specifically, under the APCVD program, device analysis goes beyond conventional one-dimensional device characterization and analysis toward two-dimension measurements and modeling. Accomplishments of the first year of the APCVD subcontract include: selection of the Stagnant Flow Reactor design concept for the APCVD reactor, development of a detailed reactor design, performance of detailed numerical calculations simulating reactor performance, fabrication and installation of an APCVD reactor, performance of dry runs to verify reactor performance, performance of one-dimensional modeling of CdTe PV device performance, and development of a detailed plan for quantification of grain-boundary effects in polycrystalline CdTe devices.

  12. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    Directory of Open Access Journals (Sweden)

    N. Evangeliou

    2017-07-01

    Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order

  13. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    Science.gov (United States)

    Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas

    2017-07-01

    This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration

  14. Multitaper spectral analysis of atmospheric radar signals

    Directory of Open Access Journals (Sweden)

    V. K. Anandan

    2004-11-01

    Full Text Available Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  15. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    International Nuclear Information System (INIS)

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-01-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development

  16. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A.

    Science.gov (United States)

    Böhlke, J.K.; Ericksen, G.E.; Revesz, K.

    1997-01-01

    Natural surficial accumulations of nitrate-rich salts in the Atacama Desert, northern Chile, and in the Death Valley region of the Mojave Desert, southern California, are well known, but despite many geologic and geochemical studies, the origins of the nitrates have remained controversial. N and O isotopes in nitrate, and S isotopes in coexisting soluble sulfate, were measured to determine if some proposed N sources could be supported or rejected, and to determine if the isotopic signature of these natural deposits could be used to distinguish them from various types of anthropogenic nitrate contamination that might be found in desert groundwaters. High-grade caliche-type nitrate deposits from both localities have ??15N values that range from -5 to +5???, but are mostly near 0???. Values of ??15N near 0??? are consistent with either bulk atmospheric N deposition or microbial N fixation as major sources of the N in the deposits. ??18O values of those desert nitrates with ??15N near 0??? range from about +31 to + 50??? (V-SMOW), significantly higher than that of atmospheric O2 (+ 23.5???). Such high values of ??18O are considered unlikely to result entirely from nitrification of reduced N, but rather resemble those of modern atmospheric nitrate in precipitation from some other localities. Assuming that limited modern atmospheric isotope data are applicable to the deposits, and allowing for nitrification of co-deposited ammonium, it is estimated that the fraction of the nitrate in the deposits that could be accounted for isotopically by atmospheric N deposition may be at least 20% and possibly as much as 100%. ??34S values are less diagnostic but could also be consistent with atmospheric components in some of the soluble sulfates associated with the deposits. The stable isotope data support the hypothesis that some high-grade caliche-type nitrate-rich salt deposits in some of the Earth's hyperarid deserts represent long-term accumulations of atmospheric deposition

  17. Meteorological testing and analysis of sampling equipment for wet deposition

    International Nuclear Information System (INIS)

    Winkler, P.; Jobst, S.; Harder, C.

    1989-01-01

    11 rain collector types for wet deposition were subjected to a field test. Two of the nine types were identically constructed. The following measured values were analyzed: amount of rainfall, electrical conductivity, pH value, Cl - , NO 3 - , SO 4 = , NH 4 + , Na + , K + , Ca ++ , Mg ++ , Fe, Pb, Cu, Cd. The analysis was restricted to rainfall. In a basic study structural and statistical analyses of precipitations were made in order to find out from which extent of intensity resp. rain volume per rainfall the precipitations are important for wet deposition. Some sensors required intensities of nearly 1 mm/h in order to recognize all rainfalls. In order to reach a better standardization of the measuring technique the funnel geometry should be standardized. The current technique is not suited for correctly registering the deposition which is connected with light and very light rainfall. It was found out in rinsing tests with diluted HNO 3 that considerable amounts of trace metals accumulate at funnel walls and in headers, although the collecting device had been subjected to a thorough acid purification before. For the determination of the wet deposition of the trace metals problems arise if the samples are filtered and the filters are not analyzed. In that case particle-bound metals which are suspended in raindrops will not be registered. After comparing the equipment some of the devices were improved in order to eliminate known sources of contamination. (orig./KW) [de

  18. Erosion of atmospherically deposited radionuclides as affected by soil disaggregation mechanisms

    International Nuclear Information System (INIS)

    Claval, D.; Garcia-Sanchez, L.; Real, J.; Rouxel, R.; Mauger, S.; Sellier, L.

    2004-01-01

    The interactions of soil disaggregation with radionuclide erosion were studied under controlled conditions in the laboratory on samples from a loamy silty-sandy soil. The fate of 134 Cs and 85 Sr was monitored on soil aggregates and on small plots, with time resolution ranging from minutes to hours after contamination. Analytical experiments reproducing disaggregation mechanisms on aggregates showed that disaggregation controls both erosion and sorption. Compared to differential swelling, air explosion mobilized the most by producing finer particles and increasing five-fold sorption. For all the mechanisms studied, a significant part of the contamination was still unsorbed on the aggregates after an hour. Global experiments on contaminated sloping plots submitted to artificial rainfalls showed radionuclide erosion fluctuations and their origin. Wet radionuclide deposition increased short-term erosion by 50% compared to dry deposition. A developed soil crust when contaminated decreased radionuclide erosion by a factor 2 compared to other initial soil states. These erosion fluctuations were more significant for 134 Cs than 85 Sr, known to have better affinity to soil matrix. These findings confirm the role of disaggregation on radionuclide erosion. Our data support a conceptual model of radionuclide erosion at the small plot scale in two steps: (1) radionuclide non-equilibrium sorption on mobile particles, resulting from simultaneous sorption and disaggregation during wet deposition and (2) later radionuclide transport by runoff with suspended matter

  19. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    Science.gov (United States)

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-08

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  20. Kilometer-Scale Transient Atmospheres for Kinetic Payload Deposition on Icy Bodies

    Science.gov (United States)

    Koch, James

    Entry, descent, and landing technologies for space exploration missions to atmospheric bodies traditionally exploit the body's ambient atmosphere as a medium through which a spacecraft or probe can interact to transfer momentum and energy for a soft landing. For bodies with no appreciable atmosphere, a significant engineering challenge exists to overcome the lack of passive methods to decelerate a spacecraft or probe. Proposed is a novel means for the creation of a transient atmosphere for airless icy bodies through the use of a two stage payload-penetrator probe. The first stage is a hyper-velocity penetrator that impacts the icy body. The second stage is an aero-braking-capable probe directed to pass through the ejecta plume from the hyper-velocity impact. Both experimental and computational studies show that a controlled high-energy impact can direct and transfer energy and momentum to a probe via a collimated ejecta plume. In an effort to provide clarity to this unexplored class of missions, a modeling-based engineering approach is taken to provide a first-order estimation of some of the involved physical phenomena. Three sub-studies are presented: an examination and characterization of ice plumes, modeling plume-probe interaction, and the extension of plume modeling as the basis for conceptual mission design. The modeling efforts are centered about two modeling formulations: smoothed particle hydrodynamics (SPH) and the arbitrary Largrangian-Eulerian (ALE) set of techniques. A database of fully-developed hypervelocity impacts and their associated plumes is created and used as inputs to a 1-D mathematical model for the interaction of a continuum-based plume and probe. A parametric study based on the hyper-velocity impact and staging of the probe-penetrator system is presented and discussed. Shown is that a tuned penetrator-probe mission has the potential to increase spacecraft payload mass fraction over conventional soft landing schemes.

  1. Characterization of Carbon Nanotubes Deposited in Microwave Torch at Atmospheric Pressure

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Eliáš, M.; Jašek, O.; Kučerová, Z.; Synek, P.; Matějková, Jiřina; Kadlečíková, M.; Klementová, Mariana; Buršík, Jiří; Vojačková, A.

    2007-01-01

    Roč. 4, Suppl. 1 (2007), S245-S249 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GA202/05/0607 Institutional research plan: CEZ:AV0Z20650511; CEZ:AV0Z40320502; CEZ:AV0Z20410507 Keywords : carbon nanotubes * microwave torch * atmospheric pressure * scanning electron microscopy * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.132, year: 2007

  2. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    Energy Technology Data Exchange (ETDEWEB)

    Profili, J. [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Levasseur, O.; Stafford, L. [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada); Naudé, N.; Gherardi, N., E-mail: nicolas.gherardi@laplace.univ-tlse.fr [LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); Chaneac, C. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005 Paris (France)

    2016-08-07

    This work examines the growth dynamics of TiO{sub 2}-SiO{sub 2} nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO{sub 2} colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO{sub 2} nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO{sub 2} NPs deposited strongly decreases due to their “trapping” in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO{sub 2} NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO{sub 2} NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO{sub 2} NPs and for nanocomposite TiO{sub 2}-SiO{sub 2} coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO{sub 2} NPs injected into the discharge.

  3. Sources and Depositions of Atmospheric Trace Metals in PM2.5 over East China Seas and Northwestern Pacific Ocean

    Science.gov (United States)

    Zheng, M.; Yan, C.; Guo, X.; Gao, H.; Yao, X.

    2016-12-01

    Previous studies have indicated that trace metals may have significant effects on marine ecosystem. Atmospheric transport of continental aerosols and deposition of marine aerosols are one of the most important ways for trace metals from anthropogenic processes transferred to sea. One Chinese Comprehensive Ocean Experiment by R/V "Dong Fang Hong 2" of Ocean University of China was conducted over East China Seas and West Pacific in spring (from 30 March to 6 May) of 2015. An online multi-metal monitor (Xact 625, Copper Environmental Sciences, LLC) and single particle aerosol mass spectrometer (SPAMS), equipped with PM2.5 cyclone inlets during the cruise were onboard to conduct high time-resolution measurement on metals over these regions. Totally, 23 metals (e.g., Ca, Cu, Fe, Mn, K, Ni, Pb, Se, Zn, and V) were continuously and simultaneously measured with a time resolution of 1 to 2 hour. Therefore, chemical characteristics and spatial distribution of trace metals in marine aerosol were further investigated. In consideration of data quality, only 15 metals were further used and discussed. Our preliminary results showed that the concentrations of the sum of 15 metals ranged from 50 ng/m3 to 3 μg/m3 in this region, and metals inshore tend to have higher concentrations than offshore. The metals detected could be classified into four categories based on their spatial distributions. Source regions were identified by total potential source contribution function (TPSCF) model for each kind of metals. Size distribution of metals were analyzed by SPAMS. Furthermore, dry deposition of metals over this region were calculated and discussed, with a fixed small dry deposition velocity and also with consideration of size-dependent particle dry deposition velocities.

  4. External quality-assurance results for the National Atmospheric Deposition Program and the National Trends Network during 1986

    Science.gov (United States)

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1988-01-01

    During 1986, the U.S. Geological Survey operated three programs to provide external quality-assurance monitoring of the National Atmospheric Deposition Program and National Trends Network. An intersite-comparison program was used to assess the accuracy of onsite pH and specific-conductance determinations at quarterly intervals. The blind-audit program was used to assess the effect of routine sample handling on the precision and bias of program and network wet-deposition data. Analytical results from four laboratories, which routinely analyze wet-deposition samples, were examined to determine if differences existed between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. An average of 78 and 89 percent of the site operators participating in the intersite-comparison met the network goals for pH and specific conductance. A comparison of analytical values versus actual values for samples submitted as part of the blind-audit program indicated that analytical values were slightly but significantly (a = 0.01) larger than actual values for pH, magnesium, sodium, and sulfate; analytical values for specific conductance were slightly less than actual values. The decreased precision in the analyses of blind-audit samples when compared to interlaboratory studies indicates that a large amount of uncertainty in network deposition data may be a result of routine field operations. The results of the interlaboratory comparison study indicated that the magnitude of the difference between laboratory analyses was small for all analytes. Analyses of deionized, distilled water blanks by participating laboratories indicated that the laboratories had difficulty measuring analyte concentrations near their reported detection limits. (USGS)

  5. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    International Nuclear Information System (INIS)

    Harper, F.T.; Young, M.L.; Miller, L.A.; Hora, S.C.; Lui, C.H.; Goossens, L.H.J.; Cooke, R.M.; Paesler-Sauer, J.; Helton, J.C.

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project

  6. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    Energy Technology Data Exchange (ETDEWEB)

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.

  7. Effects of equipment performance on data quality from the National Atmospheric Deposition Program/National Trends Network and the Mercury Deposition Network

    Science.gov (United States)

    Wetherbee, Gregory A.; Rhodes, Mark F.

    2013-01-01

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance project (PCQA) to provide independent, external quality-assurance for the National Atmospheric Deposition Program (NADP). NADP is composed of five monitoring networks that measure the chemical composition of precipitation and ambient air. PCQA and the NADP Program Office completed five short-term studies to investigate the effects of equipment performance with respect to the National Trends Network (NTN) and Mercury Deposition Network (MDN) data quality: sample evaporation from NTN collectors; sample volume and mercury loss from MDN collectors; mercury adsorption to MDN collector glassware, grid-type precipitation sensors for precipitation collectors, and the effects of an NTN collector wind shield on sample catch efficiency. Sample-volume evaporation from an NTN Aerochem Metrics (ACM) collector ranged between 1.1–33 percent with a median of 4.7 percent. The results suggest that weekly NTN sample evaporation is small relative to sample volume. MDN sample evaporation occurs predominantly in western and southern regions of the United States (U.S.) and more frequently with modified ACM collectors than with N-CON Systems Inc. collectors due to differences in airflow through the collectors. Variations in mercury concentrations, measured to be as high as 47.5 percent per week with a median of 5 percent, are associated with MDN sample-volume loss. Small amounts of mercury are also lost from MDN samples by adsorption to collector glassware irrespective of collector type. MDN 11-grid sensors were found to open collectors sooner, keep them open longer, and cause fewer lid cycles than NTN 7-grid sensors. Wind shielding an NTN ACM collector resulted in collection of larger quantities of precipitation while also preserving sample integrity.

  8. Atmospheric transport and deposition of pesticides: An assessment of current knowledge

    DEFF Research Database (Denmark)

    Pul, W.A.J. van; Bidleman, T.F.; Brorström-Lunden, E.

    1999-01-01

    in the exchange processes at the interface between air and soil/water/vegetation. In all process descriptions the uncertainty in the physicochemical properties play an important role. Particularly those in the vapour pressure, Henry's law constant and its temperature dependency. More accurate data...... there is a shortage of measurement data to evaluate the deposition and reemission processes. It was concluded that the mechanisms of transport and dispersion of pesticides can be described similarly to those for other air pollution components and these mechanisms are rather well-known. Large uncertainties are present...

  9. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Science.gov (United States)

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  10. ED-XRF analysis of wet deposition around metal recycling plant ...

    African Journals Online (AJOL)

    The study investigated the compositions of air emissions from a steel recycling factory with a view to assessing the impact of emissions from the factory on elemental deposition in the immediate environment of the factory. Wet atmospheric depositions samples were collected in four geographic directions and at varying ...

  11. Synoptic evaluation of modelled and bioindicated atmospheric deposition of heavy metals in forests; Synoptische Auswertung modellierter atmosphaerischer Eintraege von Schwermetallen und deren Indikation durch Biomonitore in Waeldern

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Stefan; Schroeder, Winfried [Vechta Univ. (Germany). Lehrstuhl fuer Landschaftsoekologie; Fries, Caroline [PlanWerk - Buero fuer oekologische Fachplanungen, Nidda (Germany)

    2017-03-15

    Heavy metals (HM) concentrations in moss, leaves and needles and organic surface soil layers, derived from the European Moss Survey, the German Environmental Specimen Bank (ESB) and the ICP Forests were compared with those from deposition modelling by use of LOTOS-EUROS (LE) and EMEP/MSCE-HM in terms of their spatial patterns and temporal trends. The total atmospheric deposition differs considerably between the two models. HM concentrations in biomonitors (moss, leaves, and needles) were found to be predominantly higher correlated to deposition modelled by LE compared to EMEP. For Cd, strongest correlations could be found between deposition data calculated by LE and concentrations in moss (Europe, geostatistically estimated) and in needles (Germany). Regarding Pb, the coefficients of correlation came out to be the highest for EMEP deposition and measured element concentrations in moss (Europe) as well as for LE deposition and needles from ICP Forests Level II (Germany) and, respectively, leaves from ESB (Germany).

  12. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.

    1979-06-01

    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  13. Atmospheric Pathway Screening Analysis for Saltstone Disposal Facility Vault 4

    International Nuclear Information System (INIS)

    COOK, JAMES

    2004-01-01

    A sequential screening process using a methodology developed by the National Council on Radiation Protection and Measurements, professional judgment and process knowledge has been used to produce a list of radionuclides requiring detailed analysis to derive disposal limits for the Saltstone Disposal Facility based on the atmospheric pathway

  14. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    Science.gov (United States)

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  15. Elemental analysis of atmospheric aerosols in Gaborone | Verma ...

    African Journals Online (AJOL)

    Aerosols are mixture of solid and liquid particles and have considerable variation in terms of their chemical composition and size. In this study the elemental composition of aerosol particles in the atmosphere of a city, Gaborone, was carried out. The elemental analysis was done by environmental scanning electron ...

  16. Sampling And Analysis Of Carbonyl In Laboratory Atmospheres ...

    African Journals Online (AJOL)

    A sampling and analytical method has been developed for carbonyl concentrations in different laboratory atmospheres at the faculty of Science Bayero University; Kano, Nigeria using cold oximation followed by titrimetric finish. The analysis was carried out between 008 and 1800 hrs from from October 2002 to June 2003.

  17. Nonlinear chaos-dynamical approach to analysis of atmospheric ...

    Indian Academy of Sciences (India)

    *Corresponding author. E-mail: glushkovav@gmail.com. Abstract. We present the theoretical foundations of an effective universal complex chaos-dynamical approach to the analysis and prediction of atmospheric radon 222Rn concentration ..... are taken in descend- ing order. There are a few approaches to computing.

  18. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Smith Korsholm, U.; Havskov Soerensen, J. (Danish Meteorological Institute (DMI), Copenhagen (Denmark)); Astrup, P.; Lauritzen, B. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2011-04-15

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  19. NKS NordRisk II: Atlas of long-range atmospheric dispersion and deposition of radionuclides from selected risk sites in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Smith Korsholm, U.; Havskov Soerensen, J.; Astrup, P.; Lauritzen, B.

    2011-04-01

    The present atlas has been developed within the NKS/NordRisk-II project 'Nuclear risk from atmospheric dispersion in Northern Europe'. The atlas describes risks from hypothetical long-range dispersion and deposition of radionuclides from 16 nuclear risk sites on the Northern Hemisphere. The atmospheric dispersion model calculations cover a period of 30 days following each release to ensure almost complete deposition of the dispersed material. The atlas contains maps showing the total deposition and time-integrated air concentration of Cs-137 and I-131 based on three years of meteorological data spanning the climate variability associated with the North Atlantic Oscillation, and corresponding time evolution of the ensemble mean atmospheric dispersion. (Author)

  20. PCDD/Fs atmospheric deposition fluxes and soil contamination close to a municipal solid waste incinerator.

    Science.gov (United States)

    Vassura, Ivano; Passarini, Fabrizio; Ferroni, Laura; Bernardi, Elena; Morselli, Luciano

    2011-05-01

    Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area's total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m(-2)d(-1) to 89.9 pg m(-2)d(-1) (0.75 pg-TEQ m(-2)d(-1) to 3.73 pg-TEQ m(-2)d(-1)) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg(-1) d.w. and 1.35 ng-TEQ kg(-1)d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network during 1991

    Science.gov (United States)

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.; Paulin, C.E.

    1995-01-01

    The U.S. Geological Survey used four programs in 1991 to provide external quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). An intersite-comparison program was used to evaluate onsite pH and specific-conductance determinations. The effects of routine sample handling, processing, and shipping of wet-deposition samples on analyte determinations and an estimated precision of analyte values and concentrations were evaluated in the blind-audit program. Differences between analytical results and an estimate of the analytical precision of four laboratories routinely measuring wet deposition were determined by an interlaboratory-comparison program. Overall precision estimates for the precipitation-monitoring system were determined for selected sites by a collocated-sampler program. Results of the intersite-comparison program indicated that 93 and 86 percent of the site operators met the NADP/NTN accuracy goal for pH determinations during the two intersite-comparison studies completed during 1991. The results also indicated that 96 and 97 percent of the site operators met the NADP/NTN accuracy goal for specific-conductance determinations during the two 1991 studies. The effects of routine sample handling, processing, and shipping, determined in the blind-audit program indicated significant positive bias (a=.O 1) for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias (or=.01) was determined for hydrogen ion and specific conductance. Only ammonium determinations were not biased. A Kruskal-Wallis test indicated that there were no significant (*3t=.01) differences in analytical results from the four laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler program indicated the median relative error for cation concentration and deposition exceeded eight percent at most sites, whereas the median relative error for sample volume

  2. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    Science.gov (United States)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates.