WorldWideScience

Sample records for analysing fusion plasma

  1. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  2. Low-level gamma-ray spectrometry for analysing fusion plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wieslander, J.S. Elisabeth [EU Commission - JRC - IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)], E-mail: elisabeth.wieslander@gmail.com; Hult, Mikael [EU Commission - JRC - IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: mikael.hult@ec.europa.eu; Bonheure, Georges [Laboratory for Plasma Physics, Association ' Euratom-Belgian State' , Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Arnold, Dirk; Dombrowski, Harald [Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig (Germany); Gasparro, Joel [EU Commission - JRC - IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, S.S. 17/bis, km 18-910, I-67010 Assergi (AQ) (Italy); Marissens, Gerd [EU Commission - JRC - IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Vermaercke, Peter [SCK-CEN, Boeretang, B-2400 Mol (Belgium)

    2008-06-21

    A new method, combining activation by neutrons and charged particles with ultra low-level gamma-ray spectrometry, aimed at obtaining a better understanding and more adequate measurements of MeV particle leaks in magnetic fusion devices was studied here. A total of 36 samples containing Ti, LiF, B{sub 4}C and W were placed in a boron-nitride holder mounted on the ceiling of the JET Tokamak. The samples were activated by 63 pulses from a D-{sup 3}He plasma and were later measured using underground gamma-ray spectrometry. The radionuclides {sup 7}Be, {sup 46}Sc, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, {sup 124}Sb, {sup 181}Hf, {sup 182}Ta, {sup 181}W and {sup 185}W were detected in several of the samples, with very low levels of activity of {sup 47}Sc and {sup 48}V found in a few of the samples. The various production channels for the radionuclides in question are discussed.

  3. Fokker--Planck/transport analyses of fusion plasmas in contemporary beam-driven tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mirin, A.A.; McCoy, M.G.; Killeen, J.; Rensink, M.E.; Shumaker, D.E.; Jassby, D.L.; Post, D.E.

    1978-04-01

    The properties of deuterium plasmas in experimental tokamaks heated and fueled by intense neutral-beam injection are evaluated with a Fokker-Planck/radial transport code coupled with a Monte Carlo neutrals treatment. Illustrative results are presented for the Poloidal Divertor Experiment at PPPL as a function of beam power and plasma recycling coefficient, R/sub c/. When P/sub beam/ = 8 MW at E/sub b/ = 60 keV, and R/sub c/ = 0.2, then approximately 0.5, (/sup 2///sub 3/ ) = 22 keV approximately 6, and the D-D neutron intensity is 10/sup 16/ n/sec.

  4. Parametric analyses of fusion-fission systems

    International Nuclear Information System (INIS)

    After a short review of the nuclear reactions relevant to fusion-fission systems the various types of blankets and characteristic model cases are presented. The fusion-fission system is modelled by its energy flow diagram. The system components and the system as a whole are characterized by 'component parameters' and 'system parameters' all of which are energy ratios. A cost estimate is given for the net energy delivered by the system, and a collection of formulas for the various energies flowing in the system in terms of the thermal energy delivered by the fusion part is presented. For sensitivity analysis four reference cases are defined which combine two plasma confinement schemes (mirror and tokamak) with two fissile fuel cycles (thorium-uranium and uranium-plutonium). The sensitivity of the critical plasma energy multiplication, of the circulating energy fraction, and of the energy cost with respect to changes of the component parameters is analysed. For the mirror case only superconducting magnets are considered, whereas two tokimak cases take into account both superconducting and normal-conducting coils. A section presenting relations between the plasma energy multiplication and the confinement parameter n tausub(E) of driven tokamak plasmas is added for reference. The conclusions summarize the results which could be obtained within the framework of energy balances, cost estimates and their parametric sensitivities. This is supplemented by listing those issues which lie beyond this scope but have to be taken into account when assessments of fusion-fission systems are made. (orig.)

  5. Simulation science for fusion plasmas

    OpenAIRE

    Sudo, S.; Skoric, M.M.; Watanabe, T-H.; Todo, Y.; Ishizawa, A.; Miura, H; Ito, A; Ohtani, H.; Usami, S.; Nakamura, H; ITO, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; M. Sato

    2008-01-01

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to pr...

  6. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  7. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  8. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  9. Complex Spectra in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von; Jaspers, R. [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands); Bertschinger, G.; Biel, W.; Marchuk, O. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Giroud, C.; Zastrow, K.D. [UKAEA Culham Laboratory Euratom Association, Abingdon (United Kingdom); Jupen, C. [Univ. of Lund (Sweden). Physics Dept.; O' Mullane, M.; Summers, H.P.; Whiteford, A. [Univ. of Strathclyde, Glasgow (United Kingdom). Applied Physics Dept.

    2005-12-15

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced ?pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft X-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C{sup +6}, He{sup +2}, N

  10. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  11. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  12. Simulation science for fusion plasmas

    International Nuclear Information System (INIS)

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al.). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  13. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  14. Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  15. Plasma facing materials for fusion reactor applications

    OpenAIRE

    Gonzalez Arrabal, Raquel; Gordillo Garcia, Nuria; Rivera de Mena, Antonio; Alvarez Ruiz, Jesus; Garoz, D.; Perlado Martin, Jose Manuel

    2012-01-01

    The lack of plasma facing materials (PFM) able to withstand the severe magnetiicffusiion radiation conditions expected in fusion reactors is the actual bottle In both fusions approaches energy is released in the form of kinetic energy of neck for fusion to becomes a reality.

  16. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  17. Fusion. A voyage through the plasma universe

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsson, H. [Chalmers University of Technology, Goeteborg (Sweden)

    2000-07-01

    This book adopts a novel approach to fusion plasmas, covering fusion both in the laboratory and in the cosmos. It discusses the evolution of the field from early plasma research to the gigantic scientific efforts of today, covering basic fusion plasma science and laboratory fusion experiments as well as geocosmophysical and astrophysical projects. The description is interspersed with passages which suggest relationships between science and art or poetry. The author also relates meetings which he has had with famous scientists like Niels Bohr, Hannes Alfven, Piotr Kapitza, Subrahmanyan Chandrasekhar, Lyman Spitzer and others.

  18. Fusion. A voyage through the plasma universe

    International Nuclear Information System (INIS)

    This book adopts a novel approach to fusion plasmas, covering fusion both in the laboratory and in the cosmos. It discusses the evolution of the field from early plasma research to the gigantic scientific efforts of today, covering basic fusion plasma science and laboratory fusion experiments as well as geocosmophysical and astrophysical projects. The description is interspersed with passages which suggest relationships between science and art or poetry. The author also relates meetings which he has had with famous scientists like Niels Bohr, Hannes Alfven, Piotr Kapitza, Subrahmanyan Chandrasekhar, Lyman Spitzer and others

  19. Wakes in Inertial Fusion Plasmas

    Science.gov (United States)

    Ellis, Ian Norman

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relativistically propagating electrons through the dense plasma, are discussed. Both processes play important roles in Inertial Confinement Fusion (ICF). In BSRS, laser light is scattered backwards out of the plasma, decreasing the energy available to compress the ICF capsule and affecting the symmetry of where the laser energy hits the hohlraum wall in indirect drive ICF. The plasma wave wake can also generate superthermal electrons that can preheat the core and/or the ablator. Electron beam stopping plays a critical role in the Fast Ignition (FI) ICF concept, in which a beam of relativistic electrons is used to heat the target core to ignition temperatures after the compression stage. The beam stopping power determines the effectiveness of the heating process. This dissertation covers new discoveries on the importance of plasma wave wakes in both BSRS and electron beam stopping. In the SRS studies, 1D particle-in-cell (PIC) simulations using OSIRIS are performed, which model a short-duration (˜500/ω0 --1FWHM) counter-propagating scattered light seed pulse in the presence of a constant pump laser with an intensity far below the absolute instability threshold for plasma waves undergoing Landau damping. The seed undergoes linear convective Raman amplification and dominates over the amplification of fluctuations due to particle discreteness. The simulation results are in good agreement with results from a coupled-mode solver when special relativity and the effects of finite size PIC

  20. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  1. Plasma physics and controlled nuclear fusion

    International Nuclear Information System (INIS)

    The report contains the proceedings of a conference on plasma physics. A fraction of topics included MHD instabilities, magnetic confinement and plasma heating in the field of fusion plasmas, in 8 papers falling in the INIS scope have been abstracted and indexed for the INIS database. (K.A.)

  2. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  3. Wakes in Inertial Fusion Plasmas

    OpenAIRE

    Ellis, Ian Norman

    2014-01-01

    Plasma wave wakes, which are the collective oscillatory response near the plasma frequency to the propagation of particles or electromagnetic waves through a plasma, play a critical role in many plasma processes. New results from backwards stimulated Raman scattering (BSRS), in which wakes with phase velocities much less than the speed of light are induced by the beating of counter-propagating light waves, and from electron beam stopping, in which the wakes are produced by the motion of relat...

  4. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  5. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    In this paper, summary reports are given on significant new results for understanding and controlling tokamak performance under the application of high power ICH; new results on understanding the complicated interaction of plasma, atomic and surface physics in the tokamak edge plasma with intense rf fields; and new results on the neoclassical transport of energetic alpha particles

  6. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  7. EDITORIAL: Plasma Surface Interactions for Fusion

    Science.gov (United States)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  8. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    This report discusses: ICRF impurity studies; ICRF convective cells; sheath plasma waves and anomalous IBW loading; a quasilinear description for fast wave minority heating permitting off magnetic axis heating in a tokamak; and runaway electrons studies in support of TEXT

  9. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  10. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  11. Perturbative Transport Studies in Fusion Plasmas

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1995-01-01

    Studies of transport in fusion plasmas using perturbations of an equilibrium state reviewed. Essential differences between steady-state and perturbative transport studies are pointed out. Important transport issues that can be addressed with perturbative experiments are identified as: (i) Are the tr

  12. Fusion studies by laser-plasma interaction

    International Nuclear Information System (INIS)

    Thermonuclear fusion studies have been the requirements for sustaining technological development. Inertial confinement fusion is one of the schemes driven by high power lasers such that an efficient compression defined by Lawson criterion is achieved. The present work is devoted to analyze a few of the important parameters such as driver energy deposition, energy transfer and compression in terms of absorption of energy by the plasma, suitability of laser wavelength and the condition for ablation for better has been seen with the shorter wavelength laser. Analysis have also been done to type of fusion fuel and on the ratio of amount of rest mass to the accelerated mass of the ablator. This value has been estimated as 5. This value as well as the magnitude of absorption with shorter wavelength laser interaction with low target fuel by may be useful in the laser-target fusion studies. (author)

  13. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Work on ICRF interaction with the edge plasma is reported. ICRF generated convective cells have been established as an important mechanism for influencing edge transport and interaction with the H-mode, and for controlling profiles in the tokamak scrape-off-layer. Power dissipation by rf sheaths has been shown to be significant for some misaligned ICRF and IIBW antenna systems. Near-field antenna sheath work has been extended to the far-field case, important for experiments with low single pass absorption. Impurity modeling and Faraday screen design support has been provided for the ICRF community. In the area of core-ICRF physics, the kinetic theory of heating by applied ICRF waves has been extended to retain important geometrical effects relevant to modeling minority heated tokamak plasmas, thereby improving on the physics base that is standard in presently employed codes. Both the quasilinear theory of ion heating, and the plasma response function important in wave codes have been addressed. In separate studies, it has been shown that highly anisotropic minority heated plasmas can give rise to unstable field fluctuations in some situations. A completely separate series of studies have contributed to the understanding of tokamak confinement physics. Additionally, a diffraction formalism has been produced which will be used to access the focusability of lower hybrid, ECH, and gyrotron scattering antennas in dynamic plasma configurations

  14. Dust remobilization in fusion plasmas

    CERN Document Server

    Tolias, P; De Angeli, M; De Temmerman, G; Ripamonti, D; Riva, G; Bykov, I; Shalpegin, A; Vignitchouk, L; Brochard, F; Bystrov, K; Bardin, S; Litnovsky, A

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions - detachment, sliding, rolling - are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  15. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  16. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    This paper discusses tokamak transport, auxiliary heating physics; ICRF impurity study; ponderomotive stabilization studies; ICRF induced fluxes in the edge plasma; runaway electron confinement in TEXT; rf sheath modelling for ICRF antenna Faraday screens; and isotropic energetic in fluxes in tokamaks

  17. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  18. Plasma physics for controlled fusion. 2. ed.

    International Nuclear Information System (INIS)

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  19. Fusion Reaction Rate in an Inhomogeneous Plasma

    Energy Technology Data Exchange (ETDEWEB)

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  20. Reflectometry techniques for density profile measurements on fusion plasmas

    International Nuclear Information System (INIS)

    Reflectometry applied to the measurement of density profiles on fusion plasmas has been subject to many recent developments. After a brief reminder of the principles of reflectometry, the theoretical accuracy of reflectometry measurements is discussed. The main difficulties limiting the performance, namely the plasma fluctuations and the quality of the transmission lines, are analysed. The different techniques used for reflectometry are then presented. The present status and achievements of actual implementations of these techniques are shown, with an analysis of their respective limitations and merits, as well as foreseen developments. (author)

  1. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  2. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  3. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  4. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  5. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  6. Numerical Studies of Impurities in Fusion Plasmas

    Science.gov (United States)

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  7. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  8. Magnetic confinement fusion plasma theory, Task 1

    International Nuclear Information System (INIS)

    The research performed under this grant during the current year has concentrated on a few key tokamak plasma confinement and heating theory issues: extensive development of a new Chapman-Enskog-like fluid/kinetic hybrid approach to deriving rigorously valid fluid moment equations; applications (neoclassical viscous force, instabilities in the banana-plateau collisionality regime, nonlinear gyroviscous force, unified plasma microinstability equations and their implications, semi-collisional presheath modeling, etc.) of this new formalism; interactions of fluctuating bootstrap-current-driven magnetic islands; determination of net transport processes and equations for a tokamak; and some other topics (extracting more information from heat-pulse-propagation data, modeling of BES fluctuation data, exploring sawtooth effects on energy confinement in DIII-D, divertor X-point modeling). Recent progress and publications in these areas, and in the management of the local NERSC node and fusion theory DECstation 5000 at UW-Madison are summarized briefly in this report

  9. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  10. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    This report gives a summary of Plasma Fusion Center research activities. Particular emphasis is placed on describing (a) technical progress during the past year, (b) future plans, and (c) research programs and objectives at the individual research group level. In particular, the report covers the following: (1) applied plasma physics, (2) toroidal confinement experiments, (3) mirror confinement experiments, (4) fusion technology and engineering, and (5) fusion systems

  11. Major minority: energetic particles in fusion plasmas

    Science.gov (United States)

    Breizman, B. N.; Sharapov, S. E.

    2011-05-01

    This paper describes advances made in the field of energetic-particle physics since the topical review of Alfvén eigenmode observations in toroidal plasmas (Wong 1999 Plasma Phys. Control. Fusion 41 R1-R56). The development of plasma confinement scenarios with reversed magnetic shear and significant population of energetic particles, and the development of novel energetic-particle diagnostics were the main milestones in the past decade, and these are the main experimental subjects of this review. The theory of Alfvén cascade eigenmodes in reversed-shear tokamaks and its use in magnetohydrodynamic spectroscopy are presented. Based on experimental observations and nonlinear theory of energetic-particle instabilities in the near-threshold regime, the frequency-sweeping events for spontaneously formed phase-space holes and clumps and the evolution of the fishbone oscillations are described. The multi-mode scenarios of enhanced particle transport are discussed and a brief summary is given of several engaging research topics that are beyond the authors' direct involvement.

  12. How much laser power can propagate through fusion plasma?

    OpenAIRE

    Lushnikov, Pavel M.; Rose, Harvey A.

    2005-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and...

  13. The role of energetic particles in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S D [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Boltzmannstrasse 2, D-85748 Garching (Germany); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Borba, D N [Centro de Fusao Nuclear, Associacao EURATOM/IST, Instituto Superior Tecnico, Av Rovisco Pais, 1049-001 Lisbon (Portugal); Breizman, B N [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Briguglio, S [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Fasoli, A [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Fogaccia, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Gryaznevich, M P [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Kiptily, V [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Mantsinen, M J [Helsinki University of Technology, Association Euratom-Tekes (Finland); Sharapov, S E [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Testa, D [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Vann, R G L [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Vlad, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Zonca, F [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy)

    2004-12-01

    In the burning fusion plasmas of next step devices such as ITER (2001 ITER-FEAT Outline Design Report IAEA/ITER EDA/DS/18 (Vienna: IAEA) p 21), the majority of the heating of the fusing fuel will come from the plasma self-heating by fusion born {alpha} -particles. Recent advances in theoretical understanding, together with the development of new diagnostic techniques, make this a timely opportunity to survey the role of energetic particles in fusion plasmas and how it projects to future burning plasma devices.

  14. The Zero Turbulence Manifold in Fusion Plasmas

    CERN Document Server

    Highcock, E G

    2012-01-01

    The transport of heat that results from turbulence is a major factor limiting the temperature gradient, and thus the performance, of fusion devices. We use nonlinear simulations to show that a toroidal equilibrium scale sheared flow can completely suppress the turbulence across a wide range of flow gradient and temperature gradient values. We demonstrate the existence of a bifurcation across this range whereby the plasma may transition from a low flow gradient and temperature gradient state to a higher flow gradient and temperature gra- dient state. We show further that the maximum temperature gradient that can be reached by such a transition is limited by the existence, at high flow gradient, of subcritical turbulence driven by the parallel velocity gradient (PVG). We use linear simulations and analytic calculations to examine the properties of the transiently growing modes which give rise to this subcritical turbulence, and conclude that there may be a critical value of the ratio of the PVG to the suppressi...

  15. Thermonuclear plasma physic: inertial confinement fusion

    International Nuclear Information System (INIS)

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  16. Final Report on The Theory of Fusion Plasmas

    International Nuclear Information System (INIS)

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research - some were funded under the grant.

  17. Magnetized Plasma Compression for Fusion Energy

    Science.gov (United States)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  18. Vortex stabilized electron beam compressed fusion grade plasma

    International Nuclear Information System (INIS)

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  19. Vortex stabilized electron beam compressed fusion grade plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  20. High-Gain High-Field Fusion Plasma

    Science.gov (United States)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  1. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  2. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  3. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics

  4. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  5. Massachusetts Institute of Technology Plasma Fusion Center, 1988--1989 report to the President

    International Nuclear Information System (INIS)

    This report discusses the following topics on fusion energy: cold fusion; alcator confinement experiments; applied plasma physics research; fusion systems; coherent electromagnetic wave generation; and fusion technology and engineering

  6. Stability analysis of tokamak plasmas; Analyse de stabilite de plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bourdelle, C

    2000-10-01

    In a tokamak plasma, the energy transport is mainly turbulent. In order to increase the fusion reactions rate, it is needed to improve the energy confinement. The present work is dedicated to the identification of the key parameters leading to plasmas with a better confined energy in order to guide the future experiments. For this purpose, a numerical code has been developed. It calculates the growth rates characterizing the instabilities onset. The stability analysis is completed by the evaluation of the shearing rate of the rotation due to the radial electric field. When this shearing rate is greater than the growth rate the ion turbulence is fully stabilised. The shearing rate and the growth rate are determined from the density, temperature and security factor profiles of a given plasma. Three types of plasmas have been analysed. In the Radiative Improved modes of TEXTOR, high charge number ions seeding lowers the growth rates. In Tore Supra-high density plasmas, a strong magnetic shear and/or a more efficient ion heating linked to a bifurcation of the toroidal rotation direction (which is not understood) trigger the improvement of the confinement. In other Tore Supra plasmas, locally steep electron pressure gradients have been obtained following magnetic shear reversal. This locally negative magnetic shear has a stabilizing effect. In these three families of plasmas, the growth rates decrease, the confinement improves, the density and temperature profiles are steeper. This steepening induces an increase of the rotation shearing rate, which then maintains the confinement high quality. (author)

  7. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  8. On Stability of Targets for Plasma Jet Induced Magnetoinertial Fusion

    CERN Document Server

    Samulyak, Roman; Kim, Hyoungekun

    2015-01-01

    The compression and stability of plasma targets for the plasma jet-induced magneto-inertial fusion (PJMIF) have been investigated via large scale simulations using the FronTier code capable of explicit tracking of material interfaces. In the PJMIF concept, a plasma liner, formed by the merger of a large number of radial, highly supersonic plasma jets, implodes on a magnetized plasma target and compresses it to conditions of the fusion ignition. A multi-stage computational approach for simulations of the liner-target interaction and the compression of plasma targets has been developed to minimize computing time. Simulations revealed important features of the target compression process, including instability and disintegration of targets. The non-uniformity of the leading edge of the liner, caused by plasma jets as well as oblique shock waves between them, leads to instabilities during the target compression. By using front tracking, the evolution of targets has been studied in 3-dimensional simulations. Optimi...

  9. Fusion cross sections from Los Alamos R-matrix analyses

    International Nuclear Information System (INIS)

    We have been using R-matrix theory many years at Los Alamos to describe reactions in light systems, especially those containing fusion reactions. The theory is ideally suited for describing the resonances that are usually seen in light-element reactions, and at the same time it builds in the correct energy dependence of the transition matrix elements at low energies by making explicit use of the solutions for the external parts of the interaction. Thus, the method gives reliable extrapolations to low energies for both neutron- and charged-particle-induced reactions. We will present here the results of analysis that have been done, or are in progress, for reactions in the four- and five-nucleon systems, containing the fusion reactions of major interest: T(d,n)4He, 3He,D(d, p)T, and D(d,n)3He. These analyses contain all possible types of data that have been measured for the two-body reactions of these systems, a method that we have found crucial for determining their true resonant structures, and for ensuring reliable R-matrix interpolations and extrapolations of even the cross-section data. Integrated cross sections will be presented in the form of astrophysical S-functions, as functions of center-of-mass energy, in order that their low energy behavior might be better displayed. In addition to the R-matrix results, we will also show earlier cross-section parametrizations by Duane and Peres that still are used widely within the function reactor community. Some severe shortcomings of these earlier data sets are revealed by comparison with modern measurements and with the R-matrix calculations. More details about these comparisons and useful representations of the R-matrix cross sections and their associated reactivities () recommended for use in fusion reactor design are given in a paper by Bosch and Hale has been submitted for publication

  10. Fusion cross sections from Los Alamos R-matrix analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hale, G.M.

    1991-01-01

    We have been using R-matrix theory many years at Los Alamos to describe reactions in light systems, especially those containing fusion reactions. The theory is ideally suited for describing the resonances that are usually seen in light-element reactions, and at the same time it builds in the correct energy dependence of the transition matrix elements at low energies by making explicit use of the solutions for the external parts of the interaction. Thus, the method gives reliable extrapolations to low energies for both neutron- and charged-particle-induced reactions. We will present here the results of analysis that have been done, or are in progress, for reactions in the four- and five-nucleon systems, containing the fusion reactions of major interest: T(d,n){sup 4}He, {sup 3}He,D(d, p)T, and D(d,n){sup 3}He. These analyses contain all possible types of data that have been measured for the two-body reactions of these systems, a method that we have found crucial for determining their true resonant structures, and for ensuring reliable R-matrix interpolations and extrapolations of even the cross-section data. Integrated cross sections will be presented in the form of astrophysical S-functions, as functions of center-of-mass energy, in order that their low energy behavior might be better displayed. In addition to the R-matrix results, we will also show earlier cross-section parametrizations by Duane and Peres that still are used widely within the function reactor community. Some severe shortcomings of these earlier data sets are revealed by comparison with modern measurements and with the R-matrix calculations. More details about these comparisons and useful representations of the R-matrix cross sections and their associated reactivities (<{sigma}v>) recommended for use in fusion reactor design are given in a paper by Bosch and Hale has been submitted for publication.

  11. Alfven waves: a journey between space and fusion plasmas

    International Nuclear Information System (INIS)

    Alfven waves discovered by Hannes Alfven (1942 Nature 150 405) are fundamental electromagnetic oscillations in magnetized plasmas existing in the nature and laboratories. Alfven waves play important roles in the heating, stability and transport of plasmas. The anisotropic nearly incompressible shear Alfven wave is particularly interesting since, in realistic non-uniform plasmas, its wave spectra consist of both the regular discrete and the singular continuous components. In this Alfven lecture, I will discuss these spectral properties and examine their significant linear and nonlinear physics implications. These discussions will be based on perspectives from my own research in both space and laboratory fusion plasmas, and will demonstrate the positive feedback and cross-fertilization between these two important sub-disciplines of plasma physics research. Some open issues of nonlinear Alfven wave physics in burning fusion as well as magnetospheric space plasmas will also be explored.

  12. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  13. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  14. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  15. Thermonuclear plasma physic: inertial confinement fusion; Physique des plasmas thermonucleaires: la fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Ch.; Juraszek, D

    2001-07-01

    Inertial Confinement Fusion (ICF) is an approach to thermonuclear fusion in which the fuel contained in a spherical capsule is strongly compressed and heated to achieve ignition and burn. The released thermonuclear energy can be much higher than the driver energy, making energetic applications attractive. Many complex physical phenomena are involved by the compression process, but it is possible to use simple analytical models to analyze the main critical points. We first determine the conditions to obtain fuel ignition. High thermonuclear gains are achieved if only a small fraction of the fuel called hot spot is used to trigger burn in the main fuel compressed on a low isentrope. A simple hot spot model will be described. The high pressure needed to drive the capsule compression are obtained by the ablation process. A simple Rocket model describe the main features of the implosion phase. Several parameters have to be controlled during the compression: irradiation symmetry, hydrodynamical stability and when the driver is a laser, the problems arising from interaction of the EM wave with the plasma. Two different schemes are examined: Indirect Drive which uses X-ray generated in a cavity to drive the implosion and the Fast Ignitor concept using a ultra intense laser beam to create the hot spot. At the end we present the Laser Megajoule (LMJ) project. LMJ is scaled to a thermonuclear gain of the order of ten. (authors)

  16. Modeling plasma facing materials for fusion power

    OpenAIRE

    Duffy, D.M.

    2009-01-01

    Plasma facing materials, the materials that line the vacuum vessel, experience particularly hostile conditions as they are subjected to high particle and neutron flux and high heat loads. Plasma facing materials must have high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment and low atomic number to minimize plasma cooling. These contradictory requirements make the development of plasma facing materials one of the greatest challen...

  17. User facility for research on fusion systems with dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.

    1999-01-07

    There are a number of fusion systems whose dimensions can be scaled down to a few centimeters, if the plasma density and confining magnetic field are raised to sufficiently high values. This prompts a "user-facility" approach to the studies of this class of fusion systems. The concept of such a user facility was first briefly mentioned in Ref. 1. Here we present a more detailed description.

  18. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    Science.gov (United States)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  19. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced gyrotron development for RF heating, preconceptual design studies of torsatrons and stellarators, and advanced tokamak design and reactor studies).

  20. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    International Nuclear Information System (INIS)

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas

  1. Fusion plasma physics during half a century

    International Nuclear Information System (INIS)

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 108 K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks

  2. Fusion plasma physics during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10{sup 8} K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks.

  3. Fusion Science Outreach at the MIT Plasma Science and Fusion Center

    Science.gov (United States)

    Censabella, V.; Rivenberg, P.; Granville, J.; Nachtrieb, R.; Gangadhara, S.

    1997-11-01

    Educational Outreach at the MIT Plasma Science and Fusion Center is organized and energized by volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. The PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Included in these days is a demonstration of how magnets affect plasma using the ``Plasma Demo," an educational tool which will be on display for the first time outside the MIT area. Also featured is ``C-Mod Jr.," a video game which helps students discover how computers manipulate magnetic pulses to keep a plasma confined in the C-Mod tokamak for as long as possible. The PSFC maintains a Home Page on the World Wide Web, which can be reached at HTTP://PFC.MIT.EDU.

  4. Atomistic simulations of plasma-wall interactions in fusion reactors

    International Nuclear Information System (INIS)

    Atomistic computer simulations, especially molecular dynamics, but also kinetic Monte Carlo simulations and electronic structure calculations, have proven to be a valuable tool for studying radiation effects in fusion reactor materials. In this paper, I will first review a few cases where these methods have given additional insights into the interaction between a fusion plasma and the first wall of a reactor. Then I will, in the spirit of the workshop theme of 'new directions in plasma-wall interactions' discuss some possible future avenues of research

  5. A fusion power plant without plasma-material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  6. Studies on plasma shutdown of JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Shutdown of the plasma with a time-dependent one-point model is described. The pseudoclassical scaling law plays a role in the plasma diffusion in the low energy region below several keV and the trapped ion scaling law in the higher energy region. In this shutdown model, only deuterium is inserted during 20-second shutdown process. In the first 10 sec, while the plasma temperature, electron density and plasma current decrease from 7 keV to 1 keV, 1.1 x 1020m-3 to 1019m-3 and 4 MA respectively the fusion power falls down with gradual decrease of heating power. During the second 10 sec, while the plasma temperature, electron density and plasma current decrease from 1 keV to 100 keV, 1019m-3 to 1018m-3 and 1 MA to 100 kA respectively, the plasma thermal energy is removed. Plasma one-turn voltages are -4.0 volt and -0.5 -- -1.0 volt which fall the plasma current down to 1 MA and 100 kA during the first 10 sec and the second 10 sec, respectively. Decrease of plasma current largely lowers plasma density and energy since particle and energy confinement times decrease as plasma current decreases. Deuterium insertion rate below that in the equilibrium operation little lowers plasma density and energy. This plasma shutdown scheme is effective in driven-type reactors. (auth.)

  7. Transport properties of inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Issanova, M.K.; Kodanova, S.K.; Ramazanov, T.S. [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Hoffmann, D.H.H. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-06-15

    In this paper the transport properties of non-isothermal dense deuterium-tritium plasmas were studied. Based on the effective interaction potentials between particles, the Coulomb logarithm for a two-temperature nonisothermal dense plasma was obtained. These potentials take into consideration long-range multi-particle screening effects and short-range quantum-mechanical effects in two-temperature plasmas. Transport processes in such plasmas were studied using the Coulomb logarithm. The obtained results were compared with the theoretical works of other authors and with the results of molecular dynamics simulations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. 10th International Conference and School on Plasma Physics and Controlled Fusion. Book of Abstracts

    International Nuclear Information System (INIS)

    About 240 abstracts by Ukrainian and foreign authors submitted to 10-th International Conference and School on Plasma Physics and Controlled fusion have been considered by Conference Program Committee members. All the abstracts have been divided into 8 groups: magnetic confinement systems: stellarators, tokamaks, alternative conceptions; ITER and Fusion reactor aspects; basic plasma physics; space plasma; plasma dynamics and plasma-wall interaction; plasma electronics; low temperature plasma and plasma technologies; plasma diagnostics

  9. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  10. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  11. Transport studies in fusion plasmas: Perturbative experiments

    NARCIS (Netherlands)

    Cardozo, N. L.

    1998-01-01

    By inducing in a small temperature perturbation in a plasma in a steady state one can determine the conductive and convective components of the heat flux, and the associated thermal diffusivity and convection velocity. The same can be done for the density, and in principle also other plasma paramete

  12. Additional Beta due to Fast Fusion Products in D-3He Fusion Plasma

    Institute of Scientific and Technical Information of China (English)

    DENG Bai-Quan(邓柏权); G.A.Emmert; PENG Li-Lin(彭利林)

    2003-01-01

    An analytical formula for the additional beta due to fast fusion-born ions is derived by using the slowing-down approximation from the Fokker-Planck equation under the assumption of negligible loss term. It is found that the fast ion beta in a D-3 He fusion plasma at a typical temperature of 55 ke V is about 20% of the thermal beta,which is the same ratio as that obtained in a D-T plasma at 20keV.

  13. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    International Nuclear Information System (INIS)

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments

  14. Laser-plasma interactions relevant to Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, K.B.

    1998-11-02

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and

  15. Laser-plasma interactions relevant to Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  16. Plasma physics and controlled nuclear fusion research 1990. V. 1

    International Nuclear Information System (INIS)

    Volume 1 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research contains papers given in two of the sessions: A and E. Session A contains the Artsimovich Memorial Lecture and papers on tokamaks; session E papers on plasma heating and current drive. The titles and authors of each paper are listed in the Contents. Abstracts accompany each paper. Refs, figs and tabs

  17. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc

  18. Plasma physics and controlled nuclear fusion research 1990. V. 3

    International Nuclear Information System (INIS)

    The thirteenth International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research, held in Washington D.C., 1-6 October 1990, and organized in cooperation with the United States Department of Energy, was devoted to the exchange and dissemination of reports on the steady progress in the research on both inertial and magnetic confinement fusion, aiming ultimately for the production of commercial energy from controlled thermonuclear reactors. More than two hundred technical papers presented work on tokamak experiments, inertial confinement, non-tokamak confinement systems, magnetic confinement theory and modelling, plasma heating and current drive, the ITER project, technology and reactor concepts, and the economic, safety and environmental aspects of thermonuclear fusion. Refs, figs and tabs

  19. Reflectometry techniques for density profile measurements on fusion plasmas

    NARCIS (Netherlands)

    Laviron, C.; Donne, A. J. H.; Manso, M. E.; Sanchez, J.

    1996-01-01

    Reflectometry applied to the measurement of density profiles on fusion plasmas has been subject to many recent developments. After a brief reminder of the principles of reflectometry, the theoretical accuracy of reflectometry measurements is discussed. The main difficulties limiting the performance,

  20. The Salpeter plasma correction for solar fusion reactions

    OpenAIRE

    Bahcall, John N.; Brown, Lowell; Gruzinov, Andrei; Sawyer, R. F.

    2000-01-01

    We review five different derivations that demonstrate that the Salpeter formula for the plasma corrections to fusion rates is valid at the center of the sun with insignificant errors (~ percent). We point out errors in several recent papers that have obtained a variety of answers, some even with the wrong sign or the wrong functional dependence.

  1. Plasma physics and controlled nuclear fusion research 1990. V. 2

    International Nuclear Information System (INIS)

    Volume 2 of the Proceedings of the Thirteenth International Conference on Plasma Physics and Controlled Fusion Research contains papers in two sessions: the first part, on Magnetic Confinement Theory and Modelling, was presented in session D at the conference; the second part, on Non-Tokamak Confinement Systems, was given in session C of the conference. Abstracts accompany each paper. Refs, figs and tabs

  2. Simulation of transition dynamics to high confinement in fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Xu, G. S.; Madsen, Jens;

    2015-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particula...... highly relevant for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors....

  3. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    Science.gov (United States)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  4. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    Science.gov (United States)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  5. How much laser power can propagate through fusion plasma?

    CERN Document Server

    Lushnikov, P M; Lushnikov, Pavel M.; Rose, Harvey A.

    2006-01-01

    Propagation of intense laser beams in plasma raises outstanding technological and scientific issues. These issues are closely tied with inertial confinement fusion (ICF), which requires precise beam control in order to maintain symmetry of spherical target implosion, and so achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where ICF will be attempted, is now under construction. While most engineering features of NIF are now fixed, there are still crucial choices to be made in target designs. Control of intense beam propagation may be ruined by laser beam self-focusing, when a beam digs a cavity in plasma, trapping itself, leading to higher beam intensity, a deeper cavity, and so on. Previously, we have found, contrary to common expectation, that self-focusing may not be controlled solely by manipulation of the beam's temporal coherence. Instead, we found that this control depends on a single parameter that includes plasma acoustic wave damping. ...

  6. Transport Studies in Fusion Plasmas - Perturbative Experiments

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1994-01-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to tranpsport driven by the pressure and temperature gradients. Imp

  7. Transport studies in fusion plasmas: Perturbative experiments

    NARCIS (Netherlands)

    Cardozo, N. J. L.

    1996-01-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to tranpsport driven by the pressure and temperature gradients. Imp

  8. Comparative analyses of plasma probe diagnostics techniques

    International Nuclear Information System (INIS)

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range

  9. Comparative analyses of plasma probe diagnostics techniques

    Energy Technology Data Exchange (ETDEWEB)

    Godyak, V. A. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA and RF Plasma Consulting, Brookline, Massachusetts 02446 (United States); Alexandrovich, B. M. [Plasma Sensors, Brookline, Massachusetts 02446 (United States)

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  10. Energetic particle instabilities in fusion plasmas

    CERN Document Server

    Sharapov, S E; Berk, H L; Borba, D N; Breizman, B N; Challis, C D; Classen, I G J; Edlund, E M; Eriksson, J; Fasoli, A; Fredrickson, E D; Fu, G Y; Garcia-Munoz, M; Gassner, T; Ghantous, K; Goloborodko, V; Gorelenkov, N N; Gryaznevich, M P; Hacquin, S; Heidbrink, W W; Hellesen, C; Kiptily, V G; Kramer, G J; Lauber, P; Lilley, M K; Lisak, M; Nabais, F; Nazikian, R; Nyqvist, R; Osakabe, M; von Thun, C Perez; Pinches, S D; Podesta, M; Porkolab, M; Shinohara, K; Schoepf, K; Todo, Y; Toi, K; Van Zeeland, M A; Voitsekhovich, I; White, R B; Yavorskij, V; TG, ITPA EP; Contributors, JET-EFDA

    2013-01-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfven instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  11. Abstracts of the 23rd European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    This document contains the abstracts of the invited and contributed papers presented at 23 EPS conference on controlled fusion and plasma physics. The main contents are: tokamaks, stellarators; alternative magnetic confinement; plasma edge physics; plasma heating and current drive; plasma diagnostics; basic collisionless plasma physics; high intensity laser produced plasmas and inertial confinement; low-temperature plasmas

  12. Laser plasma interaction physics in the context of fusion

    Science.gov (United States)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Baldis, H. A.; Pesme, D.; Myatt, J.; Hüller, S.; Tikhonchuk, V. T.; Laval, G.

    2000-08-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using the LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurence of the Langmuir decay instability. This secondary instability may play an imporant role in the saturation of stimulated Raman scattering. Another mechanism for reducing the growth of the scattering instabilities is the so-called `plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities.

  13. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    Science.gov (United States)

    Counsell, G. F.

    2002-08-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV1019 m-3) but weakly ionized (n0>1020 m-3, ne/n0carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues.

  14. Aneutronic Fusion in a Degenerate Plasma

    International Nuclear Information System (INIS)

    In a Fermi-degenerate plasma, the electronic stopping of a slow ion is smaller than that given by the classical formula, because some transitions between the electron states are forbidden. The bremsstrahlung losses are then smaller, so that the nuclear burning of an aneutronic fuel is more efficient. Consequently, there occurs a parameter regime in which self-burning is possible. Practical obstacles in this regime that must be overcome before net energy can be realized include the compression of the fuel to an ultra dense state and the creation of a hot spot

  15. Plasma Heating and Current Drive for Fusion Reactors

    Science.gov (United States)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  16. Investigation of neutron spectrometers as fusion plasmas diagnostic methods

    International Nuclear Information System (INIS)

    Two neutron spectrometer systems were investigated to be used as fusion plasmas diagnostic methods. The first, NE-213 proton recoil spectrometry system has been assembled with two different detector sizes to be used for both D-D and D-T measurements. The detectors' efficiencies and response functions (Response Matrices) were calculated with CECIL Monte Carlo code. Several improvements have been made for this code to agree with the measurements of this spectrometer. Neutron energy spectra were obtained by unfolding the measured pulse height spectra. The FERDOR unfolding procedure after several improvements have been used in unfolding the measured spectra. A second neutron spectrometer using a He-3 semiconductor sandwich detector was used to measure the neutron spectrum for D-D neutrons. The efficiency was calculated and the resolution was determined from the neutron energy spectra. These spectrometers approved to be efficient for fusion plasma diagnostics for temperature ≥1 keV. (orig.)

  17. Effects of suprathermal fusion particles in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W.

    1978-01-01

    Several crucial properties of suprathermal (> 500 keV) fusion-products are explored, both in their initial phase and during their slowing-down period. A guiding center drift theory, which predicts the effect of energy loss on the motion of these suprathermals, is derived for a low-..beta.., symmetric (non-ripple) tokamak. Velocity-space scattering is ignored. Among the important implications of this theory are: (1) the net inward drift of fusion particles during their slow-down phase and (2) the importance of the plasma density and temperature in determining this drift. The effect the inward drifting has on the spatial profile for the suprathermals approaching thermal energies, on the energy distribution, and on the plasma heating profile is demonstrated for five reactor cases, ranging from near-term low-current devices to conceptual power reactors.

  18. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  19. Effects in CVD diamond exposed to fusion plasmas

    International Nuclear Information System (INIS)

    Micro and nanocrystalline diamond layers have been deposited on molybdenum substrates by hot-filament CVD, and tested in the Mega Amp Spherical Tokamak as a protective coating of fusion plasma-facing materials. The modification of surface properties induced by high density plasma was investigated by SEM, X-ray photoelectron spectroscopy and Raman spectroscopy. Although some modifications of the coating, amorphization and some traces of arcing, diamond proved to be a viable protection as most of the samples were still coated after the plasma exposure. Fuel retention measurements, evaluated by nuclear reaction analysis, showed that a small amount of deuterium was trapped in the surface of the coatings. The chemical erosion of the layers was 50% lower than graphite, as evaluated by dedicated experiments in Pilot-PSI, a linear plasma simulator device. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Laser fusion implosion and plasma interaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1977-08-01

    Results related to the propagation, absorption and scattering of laser light by both spherical and planar targets are described. The absorption measurements indicate that for intensities of interest, inverse bremsstrahlung is not the dominant absorption mechanism. The laser light scattered by the plasma is polarization dependent and provides evidence that Brillouin scattering and resonance absorption are operative. Special diagnostics have been designed and experiments have been performed to elucidate the nature of these two processes. Implosion results on glass microshell targets filled with DT gas are also summarized. These experiments are for targets intentionally operated in the portion of parameter space characteristic of exploding pusher events. Experiments have been performed over a yield range from 0 to 10/sup 9/ neutrons per event. It is shown how this data can be normalized with a simple scaling law.

  1. Microsources of intense fusion in focused discharges of plasma focus

    International Nuclear Information System (INIS)

    High nuclear reactivity within submillimetric domains in the space structure of the pinch of focused discharges has been reported since many years. Now the authors summarize and compare new and previously published data from our experiments which describe the emission of D+ beams and the occurrence of nuclear fusion reactions within submillimetric domains of plasma focus (PF) discharges for W = 5--10 kJ PF machines operating in the neutron optimized mode

  2. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  3. Material Challenges For Plasma Facing Components in Future Fusion Reactors

    International Nuclear Information System (INIS)

    Increasing attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO2-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible materials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PFMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm-2; the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm-2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat sink materials as well as reliable fabrication processes for actively cooled plasma facing components. The technical solutions which are considered today are mainly based on the PFMs beryllium, carbon or tungsten joined to copper alloys or stainless steel heat sinks. In addition to the above mentioned quasi-stationary heat loads, short transient thermal pulses with deposited energy densities up to several tens of MJm-2 are a serious concern for next step tokamak devices. The most frequent events are so-called Edge Localized Modes (type I ELMs) and plasma disruptions

  4. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  5. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    Science.gov (United States)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  6. Quantitative Characterization of Phosphor Detector for Fusion Plasmas; Caracterizacion Cuantitativa de Detectores Luminiscentes para Plasmas de Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-07-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  7. Fusion plasma control using TRAIL: a nondamageable limiter

    International Nuclear Information System (INIS)

    An attractive new limiter system is described, termed TRAIL (Tokamak Rail Gun Limiter), which can inject streams of pellets into the plasma to: (a) define the plasma boundary, (b) absorb plasma disruption energy, and (c) control plasma temperature profiles. Using EM (Electromagnetic) guns now being developed for military applications, particles can be injected at velocities in the range of meters to several kilometers per second. Transient heat transfer analyses are presented for various pellet sizes (0.5 to 1.5 cm diam), heat fluxes (5000 to 200,000 W/cm2), compositions (Al, Cu, C, Mo, and Li) and heat pulse length

  8. High Temperature Plasmas Theory and Mathematical Tools for Laser and Fusion Plasmas

    CERN Document Server

    Spatschek, Karl-Heinz

    2012-01-01

    Filling the gap for a treatment of the subject as an advanced course in theoretical physics with a huge potential for future applications, this monograph discusses aspects of these applications and provides theoretical methods and tools for their investigation. Throughout this coherent and up-to-date work the main emphasis is on classical plasmas at high-temperatures, drawing on the experienced author's specialist background. As such, it covers the key areas of magnetic fusion plasma, laser-plasma-interaction and astrophysical plasmas, while also including nonlinear waves and phenomena.

  9. Atomic and plasma-material interaction data for fusion. V. 6

    International Nuclear Information System (INIS)

    Volume 6 of the supplement ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' includes critical assessments and results of original experimental and theoretical studies on inelastic collision processes among the basic and dominant impurity constituents of fusion plasmas. Processes considered in the 15 papers constituting this volume are: electron impact excitation of excited Helium atoms, electron impact excitation and ionization of plasma impurity ions and atoms, electron-impurity-ion recombination and excitation, ionization and electron capture in collisions of plasma protons and impurity ions with the main fusion plasma neutral components helium and atomic and molecular hydrogen. Refs, figs, tabs

  10. Dust remobilization in fusion plasmas under steady state conditions

    Science.gov (United States)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  11. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, Alec, E-mail: acd@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Guenette, Mathew C. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Corr, Cormac S. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Karatchevtseva, Inna [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ionescu, Mihail [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney (Australia); Lumpkin, Gregory R.; Riley, Daniel P. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Sydney (Australia)

    2014-12-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10{sup 24} ions m{sup −2}. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four.

  12. Contributions to the course and workshop on basic and advanced fusion plasmas diagnostic techniques

    International Nuclear Information System (INIS)

    Three papers read at the Course and workshop on basic and advanced fusion plasmas diagnostic techniques held in Varenna from 3 to 13 September 1986 and prepared by searchers of Fusion Department of ENEA are reported

  13. Neutronics and pumping power analyses on the Tokamak reactor for the fusion-biomass hybrid concept

    International Nuclear Information System (INIS)

    Highlights: • MCNP analyses on a Tokamak with LiPb-cooled components shows concentrations of nuclear heating at the in-board region in addition to the out-board region. • Required pumping power of LiPb coolants for the nuclear heating exponentially increases as fusion power increases. • Pumping power analysis for the divertor also indicates the increasing pumping power as the fusion power increases. -- Abstract: The authors aim to develop a fusion-biomass combined plant concept with a small power fusion reactor. A concern for the small power reactor is the coolant pumping power which may significantly decreases the apparent energy outcome. Thus pressure loss and corresponding pumping power were studied for a designed Tokamak reactor: GNOME. First, 3-D Monte-Carlo Neutron transport analysis for the reactor model with dual-coolant blankets was taken in order to simulate the tritium breeding ability and the distribution of nuclear heat. Considering calculated concentration of nuclear heat on the in-board blankets, pressure loss of the liquid LiPb at coolant pipes due to MHD and friction forces was analyzed as a function of fusion power. It was found that as the fusion power increases, the pressure loss and corresponding pumping power exponentially increase. Consequently, the proportion of the pumping power to the fusion power increases as the fusion power increases. In case of ∼360 MW fusion power operation, pumping power required for in-board cooling pipes was estimated as ∼1% of the fusion power

  14. Atomic and plasma-material interaction data for fusion. V. 2

    International Nuclear Information System (INIS)

    This issues of the Atomic and Plasma-Material Interaction Data for Fusion contains 9 papers on atomic and molecular processes in the edge region of magnetically confined fusion plasmas, including spectroscopic data for fusion edge plasmas; electron collision processes with plasma edge neutrals; electron-ion collisions in the plasma edge; cross-section data for collisions of electrons with hydrocarbon molecules; dissociative and energy transfer reactions involving vibrationally excited hydrogen or deuterium molecules; an assessment of ion-atom collision data for magnetic fusion plasma edge modeling; an extended scaling of cross sections for the ionization of atomic and molecular hydrogen as well as helium by multiply-charged ions; ion-molecule collision processes relevant to fusion edge plasmas; and radiative losses and electron cooling rates for carbon and oxygen plasma impurities. Refs, figs and tabs

  15. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  16. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)

  17. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  18. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  19. Plasma physics and controlled nuclear fusion research 1988. V.2

    International Nuclear Information System (INIS)

    Volume 2 of the Proceedings of the Twelfth International Conference on Plasma Physics and Controlled Nuclear Fusion contains papers given in two of the sessions: D and C. Session D contains papers on magnetic confinement theory and modelling tokamaks, and session C the papers on non-tokamak confinement system. Each of these papers and their authors is listed in the Contents; in turn, each paper contains an abstract for more information as to the contents of a specific paper. Refs, figs and tabs

  20. Simulation of transition dynamics to high confinement in fusion plasmas

    CERN Document Server

    Nielsen, A H; Madsen, J; Naulin, V; Rasmussen, J Juul; Wan, B N

    2014-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in close agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST. Particularly, the slow transition with an intermediate dithering phase is well reproduced by the numerical solutions. Additionally, the model reproduces the experimentally determined L-H transition power threshold scaling that the ion power threshold increases with increasing particle density. The results hold promise for developing predictive models of the transition, essential for understanding and optimizing future fusion power reactors.

  1. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    International Nuclear Information System (INIS)

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  2. Plasma physics and controlled nuclear fusion research 1988. V.1

    International Nuclear Information System (INIS)

    Volume 1 of the Proceedings of the Twelfth International Conference on Plasma Physics and Controlled Nuclear Fusion contains papers given in two of the sessions: A and E. Session A contains, in addition to the Artsimovich Memorial Lecture, the papers on tokamaks, and session E the papers on heating and current drive. Each of these papers and their authors is listed in the Contents; in turn, each paper contains an abstract for more information as to the contents of a specific paper. Refs, figs and tabs

  3. Recombination of H atoms on the dust in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), 14395-836 Tehran (Iran, Islamic Republic of); Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir [Department of Physics, Faculty of Science, Qom University, Qom (Iran, Islamic Republic of)

    2015-07-15

    We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

  4. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)

    2001-09-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  5. Hydrodynamics compression in inertial confinement fusion (ICF) plasma

    International Nuclear Information System (INIS)

    The hydrodynamics compression in ICF plasma has been theoretically studied using conservation equations. The study is based on single fluid plasma model. A comparison is made between shock and adiabatic compression. It seems that the amount of energy required to compress the fusion fuel by same factor is greater for strong shocks but is nearly same for weak shocks in comparison with the adiabatic compression. It can be inferred as conclusion that weak shocks are appropriate for compression in ICF. The ratio of pressure, density and temperature are obtained in terms of shock speed, i.e., in terms of mach numbers. The limitation of achievable density of fuel in shock is calculated beyond which there is expansion rather than compression. (author)

  6. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  7. Microwave Receivers for Fast-Ion Detection in Fusion Plasmas

    DEFF Research Database (Denmark)

    Furtula, Vedran

    collective Thomson scattering (CTS). The Danish CTS group has been involved in fusion plasma experiments for more than 10 years and the future plans will most probably include the International Thermonuclear Experimental Reactor (ITER). Current CTS systems designed by the Danish group are specified...... are assessed. For the ITER HFS receiver we have designed and measured the quasioptical components that form a transmission link between the plasma and the radio frequency (RF) electronics. This HFS receiver is required to resolve the near parallel velocity components created by the alpha particles. Secondly...... have measured and analyzed all the receiver components starting from the two notch filters to the fifty square-law detector diodes. The receiver sensitivity is calculated from the system measurements and compared with the expected sensitivity based on the individual component measurements. Besides...

  8. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  9. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    In this report one invited and fifteen contributed papers by researchers of the 'Centre de Recherche en Physique des Plasmas', Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs

  10. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  11. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. I. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council. The primary aim of this Council, which had its first meeting in conjunction with the Madison Conference, is to promote international co-operation in controlled nuclear fusion

  12. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  13. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  14. Fusion plasma theory grant: Task 1, Magnetic confinement fusion plasma theory

    International Nuclear Information System (INIS)

    The research performed under this grant during the current year has concentrated on key tokamak plasma confinement and heating theory issues: further development of neoclassical MHD; development of a new fluid/kinetic hybrid model; energy confinement degradation due to macroscopic phenomena in tokamaks; and some other topics (magnetics analysis, coherent structures, presheath structure). Progress and publications in these areas are briefly summarized in this report. 20 refs

  15. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, S. (ed.) (Tokyo Univ. (Japan). Dept. of Physics); Tajima, T. (ed.) (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  16. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, S. [ed.] [Tokyo Univ. (Japan). Dept. of Physics; Tajima, T. [ed.] [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  17. Atomic and plasma-material interaction data for fusion. Vol.1

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, coordinates a wide spectrum of programmes for the compilation, evaluation, and generation of atomic, molecular, and plasma-wall interaction data for fusion research. The present, first, volume of Atomic and Plasma-Material Interaction Data for Fusion, contains extended versions of the reviews presented at the IAEA Advisory Group Meeting on Particle-Surface Interaction Data for Fusion, held 19-21 April 1989 at the IAEA Headquarters in Vienna, The plasma-wall interaction processes covered here are those considered most important for the operational performance of magnetic confinement fusion reactors. In addition to processes due to particle impact under normal operation, plasma-wall interaction effects due to off-normal plasma events (disruptions, electron runaway bombardment) are covered, and a summary of the status of data information on these processes is given from the point of view of magnetic fusion reactor design. Refs, figs and tabs

  18. Relevance, Realization and stability of a cold layer at the plasma edge for fusion reactors

    International Nuclear Information System (INIS)

    The workshop was dedicated to the realization and stability of a cold layer at the plasma edge for fusion reactors. The subjects of the communications presented were: impurity transport, and control, plasma boundary layers, power balance, radiation control and modifications, limiter discharges, tokamak density limit, Asdex divertor discharges, thermal stability of a radiating diverted plasma, plasma stability, auxiliary heating in Textor, detached plasma in Tore Supra, poloidal divertor tokamak, radiation cooling, neutral-particle transport, plasma scrape-off layer, edge turbulence

  19. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    Science.gov (United States)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  20. Atomic and plasma-material interaction data for fusion. V. 5

    International Nuclear Information System (INIS)

    Volume 5 of the supplements on ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' is devoted to a critical assessment of the physical and thermo-mechanical properties of presently considered candidate plasma-facing and structural materials for next-generation thermonuclear fusion devices. It contains 9 papers. The subjects are: (i) requirements and selection criteria for plasma-facing materials and components in the ITER EDA (Engineering Design Activities) design; (ii) thermomechanical properties of Beryllium; (iii) material properties data for fusion reactor plasma-facing carbon-carbon composites; (iv) high-Z candidate plasma facing materials; (v) recommended property data for Molybdenum, Niobium and Vanadium alloys; (vi) copper alloys for high heat flux structure applications; (vii) erosion of plasma-facing materials during a tokamak disruption; (viii) runaway electron effects; and (ix) data bases for thermo-hydrodynamic coupling with coolants. Refs, figs, tabs

  1. Plasma transport control and self-sustaining fusion reactor

    International Nuclear Information System (INIS)

    The possibility of a high performance/low cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fraction (self-sustaining), and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a non-classical current diffusion process. Recent theoretical studies of MHD stability limits in spherical torus .g., the National Spherical Torus Experiment (NSTX) reduced a promising regime with stable beta of 45% and bootstrap current fraction of ≥99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through a creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g., ITER) with a relatively small amount of power (∼10 MW much-lt Pfusion)

  2. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  3. 22. IAEA fusion energy conference: 'Celebrating fifty years of fusion... entering into the burning plasma era'. Book of abstracts

    International Nuclear Information System (INIS)

    Recognizing the prominent global role of nuclear energy, and based on the expectation that nuclear fusion will be able to provide an abundant source of energy, the International Atomic Energy Agency (IAEA) supports the exchange of scientific and technical information on fusion research through conferences, meetings and projects. The 22nd IAEA Fusion Energy Conference (FEC 2008) provides a forum to present and discuss current progress and developments in fusion experiments, theory and technology. The second United Nations Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1958, proved to be an important event for fusion research. This conference featured the participation of 61 countries, with 21 countries exhibiting fusion devices, fission reactors, alternative concepts and models of nuclear power plants. For the first time the Soviet Union, the United Kingdom and the USA declassified their fusion research and shared their results and experience providing for a global awareness of the enormous challenges that nuclear fusion need to overcome in order to one day serve as a practically inexhaustible and clean energy source for the benefit of all humanity. Since then, remarkable progress in fusion research has been made, doubling the achieved fusion triple product every 1.8 years since the mid 1960s. The main goal for the future is to demonstrate that the energy released by the controlled thermonuclear fusion of deuterium and tritium will exceed the energy necessary to initiate and maintain the burning process. This is expected to be demonstrated by the International Thermonuclear Experimental Reactor (ITER) being built at Cadarache, France, as a joint venture between China, the European Union, India, Japan, the Republic of Korea, the Russian Federation and the USA. The study of the engineering requirements and the physics of the burning fusion plasma will lead to the first demonstration reactor for fusion. The worldwide effort in fusion has now

  4. RF Plasma source for a Heavy Ion Fusion injector

    International Nuclear Information System (INIS)

    We are developing high-current ion sources for Heavy Ion Fusion (HIF) applications. Our proposed RF plasma source starts with an array of high current density mini-beamlets (of a few milliampere each at ∼100 mA/cm2) that are kept separated from each other within a set of acceleration grids. After they have gained sufficient kinetic energy (>1.2 MeV), the mini-beamlets are allowed to merge together to form a high current beam (about 0.5 A) with low emittance. Simulations have been done to maximize the beam brightness within the physical constraints of the source. We have performed a series of experiments on an RF plasma source. A 80-kV 20-μs source has produced up to 5 mA of Ar+ in a single beamlet and we measured the emittance of a beamlet, its energy spread, and the fraction of ions in higher charge states. We have also tested a 50-kV 61-hole multi-beamlet array. Two upcoming experiments are being prepared: the first experiment will test full-gradient extraction and transport of 61 beamlets through the first four electrodes, and the second experiment will converge 119 beamlets into an ESQ channel at one-quarter scaled voltage of a 1.6 MV HIF injector

  5. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  6. Real-time wavelet detection of crashes in limit cycles of non-stationary fusion plasmas

    NARCIS (Netherlands)

    Berkel, M. van; Witvoet, G.; Baar, M.R. de; Nuij, P.W.J.M.; Morsche, H.G. ter; Steinbuch, M.

    2011-01-01

    The high performance mode(H-mode)is one of the baseline plasma scenarios for the experimental fusion reactor ITER. This scenario features a periodic crash-like reorganization of the plasma pressure and the magnetic flux in the plasmacore and plasma periphery. The core instability is often referred t

  7. Influence of nuclear fusion on the plasma of the solar core

    International Nuclear Information System (INIS)

    The equation of state of the nonideal plasma mixture of the solar core is investigated applying the virial expansion method in density order 5/2. Thereat the quantum virial function describing Heisenberg quantum effects and quantum-physical exchange phenomena has been evaluated in third order with respect to the Born parameter for a mixture of electrons, protons and helium nuclei. Thus the pressure due to coulomb interaction in warm dense matter is calculated. Above all, the energy production in the solar core by the proton-proton fusion process is analysed. The temporal variations of the free energy and the pressure of the solar core by fusion are studied for some millions of years. There, within the frame of a first approximation, heat and radiation transport between the inner solar layers are neglected. It is shown that the changes of the solar pressure by nuclear fusion during 500.000 years, obtained within the frame of the present approximations, should be resolvable by recent helioseismology.

  8. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  9. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H. [ed.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  10. Quantifying fusion born ion populations in magnetically confined plasmas using ion cyclotron emission

    CERN Document Server

    Carbajal, L; Chapman, S C; Cook, J W S

    2016-01-01

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity $P_{ICE}$ scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, $n_\\alpha/n_i$, of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha-particle confinement and stability in MCF plasmas. It confirms the magnetoacoustic cyclotron instability (MCI) as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  11. Neutron computed tomography of plasma facing components for fusion experiments

    International Nuclear Information System (INIS)

    In nuclear fusion experiments, divertor plates are used to remove energy and particles from the plasma. These divertor plates can be made of water-cooled copper heat sinks covered by carbon fiber composite (CFC) protection tiles. During operation, surface temperatures in excess of 1000 oC are reached for typical heat loads of 10 MW/m2. The large mismatch in the coefficients of thermal expansion for CFC and Cu causes high stresses and possibly bonding defects. Growing joint defects, which lead to unacceptable overheating of the protection tiles, are critical for the lifetime of the components. A prototype component was subjected to 10,000 cycles at 10 MW/m2 to study the crack growth mechanism. Neutron computed tomography offers the possibility to analyze such structures on centimeter-sized samples non-destructively with a high spatial resolution. At the ANTARES neutron imaging facility of the FRM II reactor, the samples were loaded with a contrast agent and examined with neutron computed tomography.

  12. Radiation hazards in PF-1000 plasma generator fusion research (part 2)

    International Nuclear Information System (INIS)

    This paper focuses on radiation exposures to researchers and technicians involved in fusion research. It is the second article in the series on this topic. It discusses immediate exposures to the ionizing radiation that is generated immediately during fusion research performed on the PF-1000, a dense magnetized plasma generator that is the world's largest. (author)

  13. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  14. Fusion reactions in plasmas as probe of the high-momentum tail of particle distributions

    OpenAIRE

    Coraddu, Massimo; Lissia, Marcello; Mezzorani, Giuseppe; Quarati, Piero

    2005-01-01

    In fusion reactions, the Coulomb barrier selects particles from the high-momentum part of the distribution. Therefore, small variations of the high-momentum tail of the velocity distribution can produce strong effects on fusion rates. In plasmas several potential mechanisms exist that can produce deviations from the standard Maxwell-Boltzmann distribution. Quantum broadening of the energy-momentum dispersion relation of the plasma quasi-particles modifies the high-momentum tail and could expl...

  15. Three-dimensional magnetic perturbation fields in fusion plasmas: plasma edge transport and plasma surface interaction

    International Nuclear Information System (INIS)

    Three-dimensional (3D) magnetic perturbation fields are applied to high temperature plasma experiments to optimize the transport in the plasma edge and the resulting plasma wall interaction. While 3D magnetic field topologies are inherent to stellarator devices, the application of small, external 3D magnetic perturbation fields is a new and promising approach in tokamaks to control cyclic edge instabilities causing impulsive heat and particle loads to the first wall. The external 3D field applied breaks the axisymmetry and the standard assumptions for plasma edge transport are not valid anymore. Thus the resulting plasma surface interaction is governed by the 3D field structure. This talk will survey experimental results on the formation of such a 3D plasma boundary and the stationary plasma edge transport is studied with a Monte-Carlo fluid plasma and kinetic neutral transport model (EMC3-Eirene) in direct comparison to the experiment. It is shown that a 3D plasma boundary is induced resulting in 3D plasma surface particle and heat fluxes. Experimental quantification of the resulting material erosion at the wall elements shows that the net-erosion characteristic in a 3D boundary is highly dependent on the actual location in the 3D topology.

  16. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    Science.gov (United States)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  17. THz Backward-wave oscillators for plasma diagnostic in nuclear fusion

    OpenAIRE

    Paoloni, Claudio; Yue, Lingna; Tang, Xiaopin; Zhang, Fuzhi; Popovic, Branko; Himes, Logan; Barchfeld, Robert; Gamzina, Diana; Mineo, Mauro; Letizia, Rosa; Luhmann Jr., Neville C

    2015-01-01

    Summary form only given. The understanding of plasma turbulence in nuclear fusion is related to the availability of powerful THz sources and the possibility to map wider plasma regions. A novel approach to realize compact THz sources to be implemented in the plasma diagnostic at NSTX experiment (Princeton Plasma Physics Laboratory, USA) is reported.Two novel 0.346 THz Backward-Wave Oscillators (BWOs) have been designed and are presently in the fabrication phase. One BWO is based on the Double...

  18. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, E. C. [National Security Technologies, LLC; Lowe, D. R. [National Security Technologies, LLC; O' Brien, R. [University of Nevada, Las Vegas; Meehan, B. T. [National Security Technologies, LLC

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  19. The β-Lactamase Assay: Harnessing a FRET Biosensor to Analyse Viral Fusion Mechanisms.

    Science.gov (United States)

    Jones, Daniel M; Padilla-Parra, Sergi

    2016-01-01

    The β-lactamase (BlaM) assay was first revealed in 1998 and was demonstrated to be a robust Förster resonance energy transfer (FRET)-based reporter system that was compatible with a range of commonly-used cell lines. Today, the BlaM assay is available commercially as a kit and can be utilised readily and inexpensively for an array of experimental procedures that require a fluorescence-based readout. One frequent application of the BlaM assay is the measurement of viral fusion-the moment at which the genetic material harboured within virus particles is released into the cytosol following successful entry. The flexibility of the system permits evaluation of not only total fusion levels, but also the kinetics of fusion. However, significant variation exists in the scientific literature regarding the methodology by which the assay is applied to viral fusion analysis, making comparison between results difficult. In this review we draw attention to the disparity of these methodologies and examine the advantages and disadvantages of each approach. Successful strategies shown to render viruses compatible with BlaM-based analyses are also discussed. PMID:27347948

  20. Analyses of domains and domain fusions in human proto-oncogenes

    Directory of Open Access Journals (Sweden)

    Wan Ping

    2009-03-01

    Full Text Available Abstract Background Understanding the constituent domains of oncogenes, their origins and their fusions may shed new light about the initiation and the development of cancers. Results We have developed a computational pipeline for identification of functional domains of human genes, prediction of the origins of these domains and their major fusion events during evolution through integration of existing and new tools of our own. An application of the pipeline to 124 well-characterized human oncogenes has led to the identification of a collection of domains and domain pairs that occur substantially more frequently in oncogenes than in human genes on average. Most of these enriched domains and domain pairs are related to tyrosine kinase activities. In addition, our analyses indicate that a substantial portion of the domain-fusion events of oncogenes took place in metazoans during evolution. Conclusion We expect that the computational pipeline for domain identification, domain origin and domain fusion prediction will prove to be useful for studying other groups of genes.

  1. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  2. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  3. Diagnosis of energetic ions and ion composition in fusion plasmas by collective Thomson scattering of mm-waves

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Korsholm, Søren Bang; Leipold, Frank;

    2012-01-01

    In fusion plasmas, the dominant heating source will be fusion generated energetic ions slowing down in the plasma. The same ions can also drive waves and instabilities in the plasma. Their distribution in velocity and in space has major impact on plasma dynamics, and plasma dynamics in turn affects...... the energetic ion distributions. The dynamics of energetic ions is thus important to measure in order to understand fusion plasmas, and important to monitor as part of input to plasma control. The collective Thomson scattering of millimeter waves has proven to be a valuable means of diagnosing energetic ion...... distributions in fusion plasmas1,2. A beam of mm-waves with a diameter of 5–10 cm and a power of 150–600 kW is sent through the plasma, and radiation scattered from this probe beam by the microscopic fluctuations in the plasma is detected. These microscopic fluctuations are in part induced by the ion motion...

  4. The Role of Atomic and Molecular Processes in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Plasma edge physics (plasmas with temperatures in the 1 to 100 eV range, near solid surfaces) has become a key issue in controlled nuclear fusion research. As for the physics of the fully ionized hot plasma core, appropriate dimensionless parameters have been identified: present fusion research acts like wind-channel experiments on downsized models, with respect to future fusion reactors. This is not longer possible for the plasma edge region due to dominant effects from atomic and surface processes. Integrated computational models comprising the physics of the plasma flow near boundaries, the atomic and molecular processes and the particle-surface interactions are the only tool to evaluate present experimental results (LHD, JT60, Tore Supra, JET,...) with respect to their relevance for future fusion power experiments (ITER) or a reactor.In particular proton and electron collisions with the hydrogenic molecules H2, O2, T2, DT, and their ions, play a key role in cooling and attenuating the magnetically confined plasma, before it hits exposed target surfaces. The surface released molecules travel in a bath of electrons and hydrogenic ions, with plasma temperatures (in the relevant region) in the 1 to 20 eV range, and typical (plasma) scale lengths are in the 1 to 10 cm range.Sample calculations with current fusion plasma edge codes, as e.g. used by the international design team for the ITER prototypical fusion reactor, applied to the tokamak with the highest divertor collisionality today (Alcator-C-Mod), are used to demonstrate these issues

  5. Derivation and Implementation of Hybrid Fluid/Kinetic Model for Fusion Plasmas

    International Nuclear Information System (INIS)

    This is a final report for Dr. Eric Held's Junior Faculty in Plasmas Physics grant entitled, ''Derivation and Implementation of Hybrid Fluid/Kinetic Model for Fusion Plasmas''. Progress over the three years and six months of this project included work on analytical and numerical fronts

  6. High precision measurement of fuel density profiles in nuclear fusion plasmas

    NARCIS (Netherlands)

    Svensson, J.; von Hellermann, M.; Konig, R.

    2002-01-01

    This paper presents a method for deducing fuel density profiles of nuclear fusion plasmas in realtime during an experiment. A Multi Layer Perceptron (MLP) neural network is used to create a mapping between plasma radiation spectra and indirectly deduced hydrogen isotope densities. By combining diffe

  7. Towards Real-Time Detection and Tracking of Blob-Filaments in Fusion Plasma Big Data

    CERN Document Server

    Wu, Lingfei; Sim, Alex; Churchill, Michael; Choi, Jong Y; Stathopoulos, Andreas; Chang, Cs; Klasky, Scott

    2015-01-01

    Magnetic fusion could provide an inexhaustible, clean, and safe solution to the global energy needs. The success of magnetically-confined fusion reactors demands steady-state plasma confinement which is challenged by the blob-filaments driven by the edge turbulence. Real-time analysis can be used to monitor the progress of fusion experiments and prevent catastrophic events. However, terabytes of data are generated over short time periods in fusion experiments. Timely access to and analyzing this amount of data demands properly responding to extreme scale computing and big data challenges. In this paper, we apply outlier detection techniques to effectively tackle the fusion blob detection problem on extremely large parallel machines. We present a real-time region outlier detection algorithm to efficiently find blobs in fusion experiments and simulations. In addition, we propose an efficient scheme to track the movement of region outliers over time. We have implemented our algorithms with hybrid MPI/OpenMP and ...

  8. Effects of nuclear fusion produced neutrons on silicon semiconductor plasma X-ray detectors

    CERN Document Server

    Kohagura, J; Hirata, M; Numakura, T; Minami, R; Watanabe, H; Sasuga, T; Nishizawa, Y; Yoshida, M; Nagashima, S; Tamano, T; Yatsu, K; Miyoshi, S; Hirano, K; Maezawa, H

    2002-01-01

    The effects of nuclear fusion produced neutrons on the X-ray energy responses of semiconductor detectors are characterized. The degradation of the response of position-sensitive X-ray tomography detectors in the Joint European Torus (JET) tokamak is found after neutron exposure produced by deuterium-deuterium and deuterium-tritium plasma fusion experiments. For the purpose of further detailed characterization of the neutron degradation effects, an azimuthally varying-field (AVF) cyclotron accelerator is employed using well-calibrated neutron fluence. These neutron effects on the detector responses are characterized using synchrotron radiation from a 2.5 GeV positron storage ring at the Photon Factory (KEK). The effects of neutrons on X-ray sensitive semiconductor depletion thicknesses are also investigated using an impedance analyser. Novel findings of (i) the dependence of the response degradation on X-ray energies as well as (ii) the recovery of the degraded detector response due to the detector bias applic...

  9. On the feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas

    International Nuclear Information System (INIS)

    The feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas was analyzed from the point of view of the technical requirements for the fusion and fission components of the reactor. In the conceptual design, a 200 MW hybrid fusion-fission reactor is considered to be used as a heat source for district heating. The fission heat-generating blanket is based on the CANDU reactor technology, while the fusion fast neutrons are provided by a high-density pinch plasma. As far as the fission components of the reactor are concerned, the hybrid reactor turns out to be entirely feasible based on existing technologies. On the other hand extensive development will be needed to meet the requirements for the fusion component of the reactor. The basic conditions for a dense magnetized plasma fusion device to be used for the proposed hybrid concept are not concerned only with the attainment of high neutron yield per pulse (at least 5 x 10 18), but also with a relatively high repetition rate (in the range 1-10 Hz). An important feature of the proposed design is its inherent safety feature: no active component are necessary within the reactor containment area, all the hybrid system control being ensured by the fusion component of the reactor. (authors)

  10. Discrete nuclear-elastic-scattering effects in Cat-D and D-3He fusion plasmas

    International Nuclear Information System (INIS)

    The effects of Nuclear Elastic Scattering (NES) of fusion products are investigated for Cat-D and D-3He plasmas. It is found that accounting for the discrete nature of the large energy transfer associated with NES is necessary to accurately calculate the plasma distribution functions, and effects on overall plasma characteristics such as ignition requirements. For cases where cyclotron losses are important, inclusion of NES can reduce the ignition requirements by 50%

  11. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  12. A standard method for economic analyses of inertial confinement fusion power plants

    International Nuclear Information System (INIS)

    A standard method for calculating the total capital cost and the cost of electricity for a typical inertial confinement fusion electric power plant has been developed. A standard code of accounts at the two-digit level is given for the factors making up the total capital cost of the power plant. Equations are given for calculating the indirect capital costs, the project contingency, and the time-related costs. Expressions for calculating the fixed charge rate, which is necessary to determine the cost of electricity, are also described. Default parameters are given to define a reference case for comparative economic analyses

  13. Standard method for economic analyses of inertial confinement fusion power plants

    International Nuclear Information System (INIS)

    A standard method for calculating the total capital cost and the cost of electricity for a typical inertial confinement fusion electric power plant has been developed. A standard code of accounts at the two-digit level is given for the factors making up the total capital cost of the power plant. Equations are given for calculating the indirect capital costs, the project contingency, and the time-related costs. Expressions for calculating the fixed charge rate, which is necessary to determine the cost of electricity, are also described. Default parameters are given to define a reference case for comparative economic analyses

  14. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  15. Nuclear astrophysical plasmas: ion distribution functions and fusion rates

    OpenAIRE

    2005-01-01

    This article illustrates how very small deviations from the Maxwellian exponential tail, while leaving unchanged bulk quantities, can yield dramatic effects on fusion reaction rates and discuss several mechanisms that can cause such deviations.

  16. Massachusetts Institute of Technology Plasma Fusion Center 1987--1988 report to the President

    International Nuclear Information System (INIS)

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on several fronts: the basic physics of high-temperature plasmas (plasmas theory, RF heating, free electron lasers, development of advanced diagnostics, and intermediate-scale experiments on the Versator tokamak and Constance mirror devices), major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, experiments on the medium-scale TARA tandem mirror, including the development of novel MHD stabilization techniques in axisymmetric geometry, and a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter-wave source development, and system studies of fusion reactor design, operation, and technology requirements

  17. Massachusetts Institute of Technology Plasma Fusion Center: 1986-1987 Report to the President

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on four fronts: (a) the basic physics of high-temperature plasmas (plasma theory, RF heating, free electron lasers, development of advanced diagnostics and small-scall experiments on the Versator tokamak and Constance mirror devices), (b) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, (c) operation of the medium-scale TARA tandem mirror, an axisymmetric confinement configuration with inboard thermal barriers, and (d) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements).

  18. Massachusetts Institute of Technology Plasma Fusion Center 1987--1988 report to the President

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on several fronts: the basic physics of high-temperature plasmas (plasmas theory, RF heating, free electron lasers, development of advanced diagnostics, and intermediate-scale experiments on the Versator tokamak and Constance mirror devices), major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, experiments on the medium-scale TARA tandem mirror, including the development of novel MHD stabilization techniques in axisymmetric geometry, and a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter-wave source development, and system studies of fusion reactor design, operation, and technology requirements.

  19. Massachusetts Institute of Technology, Plasma Fusion Center, 1984-1985. Report to the President

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on four fronts: (1) the basic physics of high-temperature plasmas (plasma theory, rf heating, free electron lasers, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields; (3) development of an innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experiment beginning in 1984; and (4) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements). A review of these programs is given.

  20. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  1. Fusion plasma diagnostics with mm-waves an introduction

    CERN Document Server

    Hartfuss, Hans-Jürgen

    2013-01-01

    Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

  2. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  3. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    CERN Document Server

    Labaune, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  4. Models and analyses for inertial-confinement fusion-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Bohachevsky, I.O.

    1981-05-01

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report.

  5. Models and analyses for inertial-confinement fusion-reactor studies

    International Nuclear Information System (INIS)

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report

  6. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 2, Technical analyses

    International Nuclear Information System (INIS)

    A two-year project was undertaken to assess the commercial potential of heavy-ion fusion (HIF) as an economical electric power production technology. Because the US HIF development program is oriented toward the use of multiple-beam induction linacs, the study was confined to this particular driver technology. The HIF systems assessment (HIFSA) study involved several subsystem design, performance, and cost studies (e.g., the induction linac, final beam transport, beam transport in reactor cavity environments, cavity clearing, target manufacturing, and reactor plant). In addition, overall power plant systems integration, parametric analyses, and tradeoff studies were performed using a systems code developed specifically for the HIFSA project. Systems analysis results show values for cost of electricity (COE) comparable to those from other inertial- and magnetic-confinement fusion plant studies; viz., 50 to 60 mills/kWh (1985 dollars) for 1-GWe plant sizes. Also, significant COE insensitivity to major accelerator, target, and reactor parameters near the minima was demonstrated. Conclusions from the HIFSA study have already led to substantial modifications of the US HIF research and development program. Separate abstracts were prepared for 17 papers in these analyses

  7. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  8. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  9. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    Science.gov (United States)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  10. Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma

    Institute of Scientific and Technical Information of China (English)

    Li Cheng-Yue; J.P. Allain; Deng Bai-Quan

    2007-01-01

    This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario Ⅱ of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.

  11. Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas

    CERN Document Server

    Cook, J W S; Chapman, S C

    2016-01-01

    A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.

  12. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    International Nuclear Information System (INIS)

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 1017 m-3 without the appearance of either disruptive MHD events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits

  13. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    International Nuclear Information System (INIS)

    Peak fusion power production of 6.2±0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2x1017 m-3 without the appearance of either disruptive magnetohydrodynamics events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits

  14. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  15. Plasma Physics and Controlled Nuclear Fusion Research Vol. I. Proceedings of a Symposium on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas.

  16. MHD plasma physics in rail accelerators for hydrogen-pellet injection in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azzerboni, B.; Becherini, G.; Cardelli, E.; Tellini, A.

    1989-06-01

    In this paper the behavior of the electromagnetic and thermal qualitities in a plasma arc placed between two conducting rails is analyzed. The plasma hydrogen armature drives the hydrogen pellets for the refueling of magnetic fusion reactors. Considering the general equations of electromagnetic and of plasma fluid dynamics and assuming steady-state conditions in a frame which is moving at the same rate as the plasma arc armature, as monodimensional model is deduced. The effects of an applied magnetic field on the behavior of all flow variables are particularly investigated.

  17. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  18. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    Science.gov (United States)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  19. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  20. Current fusion plasma theory grant: Task I, Magnetic confinement fusion plasma theory: Final report, December 1, 1987--November 14, 1988

    International Nuclear Information System (INIS)

    The research performed under this grant over the current 11-1/2 month period has concentrated on key tokamak plasma confinement and heating theory issues: extensions of neoclassical MHD; viscosity coefficients and transport; nonlinear resistive MHD simulations of Tokapole II plasmas; ICRF and edge plasma interactions; energy confinement degradation due to macroscopic phenomena; and coordination of a new transport initiative. Progress and publications in these areas are briefly summarized in this report. 21 refs

  1. Sensitivity and uncertainty analyses in external cost assessments of fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, K. E-mail: karin.aquilonius@studsvik.se; Hallberg, B.; Hofman, D.; Bergstroem, U.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2001-11-01

    Analysis of sensitivity and uncertainty of assessment models for external costs, which is monetarization of environmental impacts, of a commercial fusion plant were performed. The assessments covered the plant's entire life cycle, and adopted the ExternE methodology, which had been used to calculate external costs from other energy sources. Based on the SEAFP study, three different power plant designs were considered. The method developed in ExternE to estimate uncertainty gave very large ranges. A statistical error propagation method was employed for this study. Rather than as a single value, model input parameter values were given as distributions, from which random input sets of data were constructed. The models were then run with these sets, and the ensemble of output results was analysed statistically, yielding estimates of the uncertainty due to variation of the model parameteres. More information of parameter variation is needed for a more realistic estimation of model uncertainty, though. Sensitivity analyses were performed by varying all input parameters in a similar fashion. All model parameters were assumed to have a gaussian distribution with standard deviations of 10% of the mean value. The results pointed out the most essential parameters of the models. The sensitivity analyses are also useful for estimating the most effective ways to reduce the model computed external costs.

  2. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    Science.gov (United States)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  3. Laser-plasma interaction studies in the context of megajoule lasers for inertial fusion

    International Nuclear Information System (INIS)

    Laser-plasma interaction (LPI) physics is one the major issues for the realization of inertial fusion. Parametric instabilities may be driven by the incident laser beams during their propagation in the underdense plasma surrounding the fusion capsule. These instabilities may result in various effects detrimental to a good energy transfer from the laser beams to the target: the backscattering of the incident beams, the generation of energetic electrons which might preheat the fusion fuel, and the spoiling of the laser beam alignment. The control of the linear growth of these instabilities, together with the understanding of their nonlinear saturation mechanisms are therefore of fundamental importance for laser fusion. During the past few years, a series of new concepts have emerged, deeply modifying our approach to LPI physics. In particular, LPI experiments are now carried out with laser beams which are optically smoothed by means of random phase plates. Such beams are characterized inside the plasma by randomly distributed intensity maxima. Filamentation instabilities may locally increase the laser intensity maxima and deplete the electron density, leading to an intricate coupling between various nonlinear processes. One of the most striking features of this intricate coupling is the resulting ability of the plasma to induce additional temporal and spatial incoherence to the laser beams during their propagation. The increased incoherence may in turn reduce the level of backscattering instabilities

  4. Plasma physics and controlled nuclear fusion research 1994. V. 3. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    This is the third volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained in it are 29 papers on inertial confinement and 46 papers on magnetic confinement. Refs, figs, tabs

  5. 13th EU-US Transport Task Force Workshop on transport in fusion plasmas

    DEFF Research Database (Denmark)

    Connor, J.W.; Fasoli, A.; Hidalgo, C.;

    2009-01-01

    This report summarizes the contributions presented at the 13th EU-US Transport Task Force Workshop on transport in fusion plasmas, held in Copenhagen, Denmark, 1-4 September 2008. There were sessions on core heat and particle transport; core and edge momentum transport; edge and scrape...

  6. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    NARCIS (Netherlands)

    Berkel, van M.; Zwart, H.J.; Hogeweij, G.M.D.; Vandersteen, G.; Brand, van den H.; Baar, de M.R.

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be show

  7. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  8. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    International Nuclear Information System (INIS)

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  9. A two photon absorption laser induced fluorescence diagnostic for fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M.; Galante, M. E.; McCarren, D.; Scime, E. E. [Physics Department, West Virginia University, Morgantown, West Virginia 26506 (United States); Boivin, R. L.; Brooks, N. H.; Groebner, R. J.; Hill, D. N. [General Atomics, San Diego, California 92121 (United States); Porter, G. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup -1}) laser is injected into a hydrogen plasma to excite the Lyman {beta} transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer {alpha} emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.

  10. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    Science.gov (United States)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  11. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herb [Univ. of Texas, Austin, TX (United States); Betti, Riccardo [Univ. of Rochester, NY (United States); Dahlburg, Jill [Univ. of Georgia, Athens, GA (United States); Freidberg, Jeff [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hopper, Bick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meade, Dale [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Navritil, Jerry [Columbia Univ., New York, NY (United States); Nevins, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ono, Masa [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Perkins, Rip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Prager, Stewart [Univ. of Wisconsin, Madison, WI (United States); Schoenburg, Kurt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Tony [Univ. of Georgia, Athens, GA (United States); Uckan, Nermin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  12. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  13. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    OpenAIRE

    Stork, D.; Agostini, P.; Boutard, J.L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; LI PUMA, A; Marbach, G.; Morris, P. F.

    2014-01-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding >= 2 MW yr m(-2) fusion neutron...

  14. Two steps towards the realization of fusion: New plasma configurations in the TCV tokamak and its ongoing upgrades

    OpenAIRE

    Martin Yves; Duval Basil P.; Karpushov Alexander N.; Labit Benoit; Reimerdes Holger

    2014-01-01

    To realise the potential of fusion as an abundant energy source, several challenges remain. The TCV tokamak, featuring high shaping capability and a flexible heating system, is strongly contributing to solving these challenges. A fundamental challenge remains in controlling heat exhaust from the plasma. ITER's currently foreseen operational regime implies heat flows to the plasma facing materials that are not compatible with a commercial fusion reactor. TCV has demonstrated alternative plasma...

  15. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  16. Multi-fluid studies of plasma shocks relevant to inertial confinement fusion

    Science.gov (United States)

    Srinivasan, B.; Kagan, G.; Adams, C. S.

    2016-05-01

    Results from inertial confinement fusion (ICF) experiments performed at the Omega laser facility suggest the potential role of kinetic effects in plasmas during implosion. Recent theoretical and numerical work has indicated the importance of diffusion effects in the presence of multiple ion species as well as the importance of ion viscosity. This provides the motivation to adequately develop multi-fluid plasma models capable of capturing kinetic physics including concentration diffusion and ion species separation driven by the ion concentration gradient, the ion pressure gradient, the electron and ion temperature gradients, and the electric field. Benchmarks between the newly developed code and analytical results are presented for multi-fluid plasma shocks.

  17. Highly charged ions in magnetic fusion plasmas: research opportunities and diagnostic necessities

    Science.gov (United States)

    Beiersdorfer, P.

    2015-07-01

    Highly charged ions play a crucial role in magnetic fusion plasmas. These plasmas are excellent sources for producing highly charged ions and copious amounts of radiation for studying their atomic properties. These studies include calibration of density diagnostics, x-ray production by charge exchange, line identifications and accurate wavelength measurements, and benchmark data for ionization balance calculations. Studies of magnetic fusion plasmas also consume a large amount of atomic data, especially in order to develop new spectral diagnostics. Examples we give are the need for highly accurate wavelengths as references for measurements of bulk plasma motion, the need for accurate line excitation rates that encompass both electron-impact excitation and indirect line formation processes, for accurate position and resonance strength information of dielectronic recombination satellite lines that may broaden or shift diagnostic lines or that may provide electron temperature information, and the need for accurate ionization balance calculations. We show that the highly charged ions of several elements are of special current interest to magnetic fusion, notably highly charged ions of argon, iron, krypton, xenon, and foremost of tungsten. The electron temperatures thought to be achievable in the near future may produce W70+ ions and possibly ions with even higher charge states. This means that all but a few of the most highly charged ions are of potential interest as plasma diagnostics or are available for basic research.

  18. Isentropic focusing of supersonic plasma jets for magnetized target fusion

    International Nuclear Information System (INIS)

    It is shown that high energy flux densities can be reached by the isentropic Prandtl-Meyer compression flow of a supersonic plasma jet in a convergent nozzle. The energy flux density thereby increases in proportion to M2/(γ-1) where M is the Mach number of the jet and γ the specific heat ratio. With an axial magnetic field set up inside the nozzle by the thermomagnetic Nernst effect, the jet is magnetically insulated from the nozzle wall, reducing the bremsstrahlung radiation and conveniently magnetizing the target plasma. A sufficiently large number of spherically arranged nozzles can then be used for the ignition and confinement of a magnetized thermonuclear target

  19. Coupled–Channels Analyses For Heavy–Ion Fusion Reactions of 16O+92Zr,144,148Sm Systems

    Directory of Open Access Journals (Sweden)

    M. Zamrun

    2010-04-01

    Full Text Available We study in detail the fusion reaction of 16O with 92Zr and 144,148Sm at sub-barrier energies with coupled-channels framework using the error function potential for the nuclear potential. In particular, we investigate the effects of multiphonon excitations in target nuclei on experimental fusion cross section and barrier distributions for these reactions. We show that the present coupled-channels calculations well account for the experimental data of the fusion cross section as well as the fusion barrier distributions. It is shown that the coupled-channels calculations taking into account the coupling up to double quadrupole phonon excitations in 92Zr well reproduce the experimental fusion cross section as well as fusion barrier distribution for 16O+92Zr. However, for 16O+144Sm, coupling to single quadrupole and octupole phonon states in 144Sm can well explain the experimental data. And the coupling up to triple quadrupole phonon states and double octupole phonon excitations in 144Sm are needed in order to reproduce the experimental data. Our study indicates the error function potential is adequate for analyses of the heavy-ion fusion reactions.

  20. Plasma Physics and Controlled Nuclear Fusion Research. Vol. II. Proceedings of a Conference on Plasma Physics and Controlled Physics Research

    International Nuclear Information System (INIS)

    Research on controlled nuclear fusion was first disclosed at the Second United Nations Conference on the Peaceful Uses of Atomic Energy, held at Geneva in 1958. From the information given, it was evident that a better understanding of the behaviour of hot dense plasmas was needed before the goal of economic energy release from nuclear fusion could be reached. The fact that research since then has been most complex and costly has enhanced the desirability of international co-operation and exchange of information and experience. Having organized its First Conference on Plasma Physics and Controlled Nuclear Fusion Research at Salzburg in 1961, the International Atomic Energy Agency again provided the means for such cooperation in organizing its Second Conference on this subject on 6-10 September, 1965, at Culham, Abingdon, Berks, England. The meeting was arranged with the generous help of the United Kingdom Atomic Energy Authority at their Culham Laboratory, where the facilities and assistance of the staff were greatly appreciated. At the meeting, which was attended by 268 participants from 26 member states and three international organizations, significant results from many experiments, including those from the new and larger machines, became available. It has now become feasible to intercorrelate data obtained from a number of similar machines; this has led to a more complete understanding of plasma behaviour. No breakthrough was reported nor had been expected towards the economical release of the energy from fusion, but there was increased understanding of the problems of production, control and containment of high-density and high-temperature plasmas

  1. New plasma configurations in the TCV tokamak, TCV upgrades. Two steps towards the realisation of fusion

    International Nuclear Information System (INIS)

    In view of realising the full potential of fusion as an abundant energy source, some challenges must still be solved. They are identified and will be addressed by the implementation of the EU fusion roadmap. The TCV tokamak, with its high plasma shaping capability and the flexibility of its heating and current drive systems, is strongly contributing to this effort, as one of a small number of devices selected by the EU community for the 2014-2020 period. One of the primary challenges lies in the heat exhaust from tokamak plasmas. Indeed, the currently foreseen operational regime of ITER implies heat flows impinging onto the facing materials that are not compatible with a fully operating fusion reactor. TCV has developed alternative plasma configurations, termed 'snowflakes', that strongly reduce the heat flow towards the vessel walls, via an increase in the number of deposition surface areas, as shown in Fig. 1. Measurement of particle fluxes, together with IR camera imaging, show a clear reduction of the heat flow onto the walls. The TCV tokamak is going through major upgrades of its heating systems to expand its operational domain towards burning plasma regimes. The installation of a 1MW neutral beam injector will allow the achievement of high temperature plasmas with equal ion and electron temperatures. An additional 2MW of electron cyclotron resonance heating power will be installed to increase the plasma pressure near the range in which ITER will operate. This will also improve access to and control of high confinement regimes. Varying the power ratio between the two heating systems will furthermore lead to improved understanding of the different plasma turbulence regimes that develop in plasmas with different electron to ion temperature ratios. Acknowledgement: This work was partly supported by the Swiss National Science Foundation. (author)

  2. Atomic physics for fusion plasma spectroscopy; a soft x-ray study of molybdenum ions

    International Nuclear Information System (INIS)

    Understanding the radiative patterns of the ions of heavy atoms (Z approx-gt 18) is crucial to fusion experiments. The present thesis applies ab initio, relativistic calculations of atomic data to modeling the emission of molybdenum (Z = 42) ions in magnetically confined fusion plasmas. The models are compared to observations made in the Alcator C-Mod tokamak (Plasma Fusion Center, Massachusetts Institute of Technology), and the Frascati Tokamak Upgrade. Experimental confirmation of these models allows confidence in calculations of the total molybdenum concentration and quantitative estimates of the total power lost from the plasmas due to molybdenum line radiation. Charge states in the plasma core (Mo33+ to Mo29+) emit strong x-ray and XUV spectra which allow benchmarking of models for the spatial distribution of highly stripped molybdenum ions; the models only achieve agreement with observations when the rates of indirect ionization and recombination processes are included in the calculation of the charge state distribution of the central molybdenum ions. The total concentration of molybdenum in the core of the plasma is found, and the total power radiated from the plasma core is computed. Observations of line emission from more highly charged molybdenum ions (Mo36+ to Mo34+) are presented. open-quotes Bulkclose quotes molybdenum charge states (Mo25+ to Mo23+) emit complicated XUV spectra from a position in the plasma near C-Mod's half radius; spatial profiles of these ions' emission are analyzed. Models for the line-emission spectra of adjacent ions (Mo28+ to Mo26+) are offered, and the accuracy and limits of ab initio energy level calculations are discussed. open-quotes Edgeclose quotes charge states (Mo22+ to Mo15) extend to the last closed magnetic flux surface of the C-Mod plasma. The strongest features from these charge states are emitted in a narrow band from ∼70 Angstrom

  3. New atomic data for Kr XXXV useful in fusion plasma

    Institute of Scientific and Technical Information of China (English)

    Sunny Aggarwal; Jagjit Singh; Man Mohan

    2013-01-01

    Energy levels and emission line wavelengths of high-Z materials are useful for impurity diagnostics due to their potential application in the next generation fusion devices.For this purpose,we have calculated the fine structural energies of the 67 levels belonging to the ls2,ls21,ls31,ls41,ls51,and ls61 configurations of Kr XXXV using GRASP (general purpose relativistic atomic structure package) code.Additionally,we have reported the transition probabilities,oscillator strengths,line strengths,and transition wavelengths for some electric dipole (El) transitions among these levels.We predict new energy levels and radiative rates,which have not been reported experimentally or theoretically,forming the basis for future experimental work.

  4. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  5. Effect of impurities on kinetic transport processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Stefanie

    2010-12-10

    Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more

  6. Multigroup representation of fusion product orbits in a plasma column

    International Nuclear Information System (INIS)

    A method is derived for describing the time-depending behavior of α particles produced in a radially nonuniform slender plasma column as a distribution function among the possible orbits. A multigroup numerical approximation is introduced to analyze the development of the distribution function and its moments. Results are presented of calculations of the time-dependent α-particle energy spectrum and radial density, energy, and electron heating profiles in plasma columns with radii comparable to the α Larmor radius. This technique allows calculation of the α particle history at much more rapid rates than allowed by Monte Carlo technuques: The characteristic time scale is the α-electron slowing-down time rather than the cyclotron period

  7. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A.; Prentice, R. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C. [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  8. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic

  9. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10-6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with all

  10. The Effect of Nuclear Elastic Scattering on Temperature Equilibration Rate of Ions in Fusion Plasma

    Directory of Open Access Journals (Sweden)

    M. Mahdavi

    2014-01-01

    Full Text Available A plasma with two different particle types and at different temperatures has been considered, so that each type of ion with Maxwell-Boltzmann distribution function is in temperature equilibrium with itself. Using the extracted nuclear elastic scattering differential cross-section from experimental data, solving the Boltzmann equation, and also taking into account the mobility of the background particles, temperature equilibration rate between two different ions in a fusion plasma is calculated. The results show that, at higher temperature differences, effect of nuclear elastic scattering is more important in calculating the temperature equilibration rate. The obtained expressions have general form so that they are applicable to each type of particle for background (b and each type for projectile (p. In this paper, for example, an equimolar Deuterium-Hydrogen plasma with density n=5×1025 cm−3 is chosen in which the deuteron is the background particle with temperature (also electron temperature Tb=1 keV (usual conditions for a fusion plasma at the ignition instant and the proton is the projectile with temperature Tp>Tb. These calculations, particularly, are very important for ion fast ignition in inertial confinement fusion concept.

  11. Massachusetts Institute of Technology, Plasma Fusion Center: 1985-1986 report to the President

    Energy Technology Data Exchange (ETDEWEB)

    1986-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. Its research programs have produced significant results on four fronts: (1) the basic physics of high-temperature plasmas (plasmas theory, rf heating, free electron lasers, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices), (2) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, (3) development of an innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with encouraging results from the initial phase of operation of the TARA tandem mirror experiment, and (4) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements).

  12. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  13. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  14. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  15. Fusion plasma theory. Task I. Magnetic confinement fusion plasma theory. Annual progress report, January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    The research on this contract over the past year has concentrated on some key tandem mirror confinement and heating issues (barrier trapping current, rf heating, low mode number stability) and on developing a comprehensive neoclassical transport theory for nonaxisymmetric toroidal plasmas (e.g., stellarators). Progress in these and some other miscellaneous areas are summarized briefly in this progress report

  16. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  17. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    International Nuclear Information System (INIS)

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs

  18. A unified model of density limit in fusion plasmas

    CERN Document Server

    Zanca, P; Escande, D F; Pucella, G; Tudisco, O

    2016-01-01

    A limit for the edge density, ruled by radiation losses from light impurities, is established by a minimal cylindrical magneto-thermal equilibrium model. For ohmic tokamak and reversed field pinch the limit scales linearly with the plasma current, as the empirical Greenwald limit. The auxiliary heating adds a further dependence, scaling with the 0.4 power, in agreement with L-mode tokamak experiments. For a purely externally heated configuration the limit takes on a Sudo-like form, depending mainly on the input power, and is compatible with recent Stellarator scalings.

  19. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    Energy Technology Data Exchange (ETDEWEB)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula, E-mail: Urszula.Woznicka@ifj.edu.pl

    2015-10-11

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D–D or D–T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products. - Highlights: • Nuclear reactions at the target correspond to the fusion reaction in hot plasma. • Measuring vacuum chamber has been built and installed. • Spatial distribution of the particle mixed fields in chamber was calculated. • New experimental setup for tests of detectors dedicated to measure of fusion reaction products.

  20. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    Science.gov (United States)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  1. Developing a plasma focus research training system for the fusion energy age

    International Nuclear Information System (INIS)

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  2. Recent Progress on Atomic Data for Fusion Plasma in KAERI Nuclear Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Duckhee; Hwang, In Hyuk; Rhee, Yongjoo; Lee, Youngouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Atomic structure and collision cross sections are essential data for spectroscopic diagnostics of fusion plasma. We have carried out state-of-the-art calculations on cross sections for electron-impact ionization (EII) cross sections of various atoms and ions. Here we report our recent progress on those calculations and discuss future research plan focusing on the actual need for fusion plasma diagnostics. We have calculated EII cross sections of P-like ions including Fe{sup 11+}, and W ions based on a DWA. Present calculations agree with experiments better than previous other calculations. However, for lowly charged ions, our DWA calculations which uses approximated, non unitary scattering matrix have sizable discrepancies with experiments. Hence unitary corrections would be required to improve EII calculations for lowly charged ions. As well more sophisticated R matrix calculations would be required for EII of those ions in order to test DWA calculations mutually.

  3. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  4. Using plasma waves to create in tokamaks the necessary quasi-stationary conditions for controlled fusion

    International Nuclear Information System (INIS)

    It is studied, on the one hand, how using hybrid waves with frequency near from lower hybrid frequency in fusion plasma. Works about coupling waves in plasma (chap.I), their propagation and response of the plasma to the absorption of the waves (chap.II). This method is the most effective until today. Because of limits, it has been investigated, on the other hand, fast magnetosonic wave to control current density in the centre of the discharge in a reactor or a very hot plasma. Theoretical study (chap.III) and experimental results (chap.IV) are presented. Experiments are in progress or planned in following tokamaks: D3-D (USA), JET (Europe), TORE SUPRA (France), JT-60 (Japan). figs. refs. tabs

  5. Modelling of turbulent impurity transport in fusion edge plasmas using measured and calculated ionization cross sections

    CERN Document Server

    Kendl, Alexander

    2014-01-01

    Turbulent transport of trace impurities impurities in the edge and scrape-off-layer of tokamak fusion plasmas is modelled by three dimensional electromagnetic gyrofluid computations including evolution of plasma profile gradients. The source function of impurity ions is dynamically computed from pre-determined measured and calculated electron impact ionization cross section data. The simulations describe the generation and further passive turbulent E-cross-B advection of the impurities by intermittent fluctuations and coherent filamentary structures (blobs) across the scrape-off-layer.

  6. Report of the 1990 workshop on plasma-materials interactions for fusion research

    International Nuclear Information System (INIS)

    The 1990 Workshop of the Working Group in Research Committee on A and M Data, on plasma-materials interactions was held at the Headquarters of JAERI, Tokyo, on July 10-11, 1990. The aim of the Workshop was to obtain future prospects for the activities of the Working Group, by discussing current problems in plasma-materials interactions relevant to fusion research. This report contains all the 16 papers presented at hte Workshop, which are mainly concerned with problems in the first wall of large Tokamak devices, such as retention and release of hydrogen in carbon materials, sputtering and problems in material data system. (author)

  7. Invited and contributed papers presented at the joint Varenna-Lausanne international workshop on ''theory of fusion plasmas''

    International Nuclear Information System (INIS)

    The report contains 5 invited or contributed papers presented by members of the theory group du CRPP at the joint Varenna-Lausanne international workshop on ''theory of fusion plasmas''. figs., tabs., refs

  8. Silicon Drift Detector for Soft x-ray Spectrometer in Fusion Plasmas

    Institute of Scientific and Technical Information of China (English)

    LI Mei; JU Hong-jun

    2008-01-01

    Silicon drift detector(SDD) is used in the soft x-ray pulse height analyzer(PHA) to measure soft x-ray emissions in fusion plasmas. SDD has the virtues of high count rates and high energy resolution, and the good performances at work temperature of about -10 ℃ achieved by single stage peltier element. The performance and first experimental results from SDD system are presented.

  9. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    International Nuclear Information System (INIS)

    The same linear correlation between the distribution parameters (ΔT and Max ΔV) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D+ ions. CSF's show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs

  10. Prospects for P11B Fusion with the Dense Plasma Focus: New Results

    OpenAIRE

    Lerner, Eric J.

    2004-01-01

    Fusion with p11B has many advantages, including the almost complete lack of radioactivity and the possibility of direct conversion of charged particle energy to electricity, without expensive steam turbines and generators. But two major challenges must be overcome to achieve this goal: obtaining average ion energies well above 100keV and minimizing losses by bremsstrahlung x-rays. Recent experimental and theoretical work indicates that these challenges may be overcome with the dense plasma fo...

  11. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  12. Spectroscopic data for atomic tungsten transitions of interest in fusion plasma research

    OpenAIRE

    Quinet, Pascal; Palmeri, P; Biémont, Emile

    2011-01-01

    Abstract Transition probabilities for W I lines of potential interest for fusion plasma diagnostics are reported in the present paper. They have been obtained using the relativistic Hartree-Fock approach including core-polarization effects. The accuracy of the results has been assessed through comparison between two different physical models and through detailed comparison with available experimental lifetimes and transition probabilities. These results represent the first complete set of ...

  13. Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account

    OpenAIRE

    van Berkel, M; Zwart, H.J.; Hogeweij, G. M. D.; Vandersteen, G.; van den Brand, H.; M.R. de Baar; ASDEX Upgrade team

    2014-01-01

    In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements a...

  14. Fusion-reaction-yield scaling with PF plasma current density

    Energy Technology Data Exchange (ETDEWEB)

    Bortolotti, A.; Mezzetti, F.; Montanari, T. [Univ. of Ferrara (Italy); Nardi, V.; Powell, C.W. [Stevens Inst. of Tech., Hoboken, NJ (United States)

    1995-12-31

    The scaling of the neutron yield Y from D + D reactions and, specifically, of its fluctuations {Delta}Y from discharge to discharge was experimentally determined with four plasma focus machines, as function of the peak plasma-current density J. The powering energy levels were W = 6 kJ for one PF machine (PF{sub 1}) 20 kJ for two identical PF machines 35 kJ and 50 kJ for a fourth machine (PF{sub 4}). The comparative tests at 20 kJ and 35 kJ had the same peak electrode current I = 1 MA, the same charging voltage of the capacitor bank 25 kV, the same ratio inductance/capacitance (L/C), but with C(PF{sub 4}) = 2C(PF{sub 2}) and L(PF{sub 4}) {equivalent_to} [T(PF{sub 4})/2{pi}]{sup 2}/C(PF{sub 4}) = 2L(PF{sub 2}). T(PF{sub 4}) {approx_equal} 1.4T(PF{sub 2}), is the measured period of the complete PF electric circuit, including the propagating current sheet between coaxial electrodes. The bearing on Y, {Delta}Y of the breech overvoltage during the pinch collapse and of the variations of J is experimentally determined. The data indicate that MaxY(PF{sub 4}) {approx_equal} mean value Y{sub Av}(PF{sub 2}) of Y, Y{sub Av}(PF{sub 2}) {approx_equal} 3Y{sub Av}(PF{sub 3}). The neural network analysis connecting Y and the current sheet multiplicity in the same discharge, was carried out as in earlier experiments.

  15. Fusion-reaction-yield scaling with PF plasma current density

    International Nuclear Information System (INIS)

    The scaling of the neutron yield Y from D + D reactions and, specifically, of its fluctuations ΔY from discharge to discharge was experimentally determined with four plasma focus machines, as function of the peak plasma-current density J. The powering energy levels were W = 6 kJ for one PF machine (PF1) 20 kJ for two identical PF machines 35 kJ and 50 kJ for a fourth machine (PF4). The comparative tests at 20 kJ and 35 kJ had the same peak electrode current I = 1 MA, the same charging voltage of the capacitor bank 25 kV, the same ratio inductance/capacitance (L/C), but with C(PF4) = 2C(PF2) and L(PF4) ≡ [T(PF4)/2π]2/C(PF4) = 2L(PF2). T(PF4) ≅ 1.4T(PF2), is the measured period of the complete PF electric circuit, including the propagating current sheet between coaxial electrodes. The bearing on Y, ΔY of the breech overvoltage during the pinch collapse and of the variations of J is experimentally determined. The data indicate that MaxY(PF4) ≅ mean value YAv(PF2) of Y, YAv(PF2) ≅ 3YAv(PF3). The neural network analysis connecting Y and the current sheet multiplicity in the same discharge, was carried out as in earlier experiments

  16. Carbon coating on the wall of nuclear fusion devices and plasma-surface interactions

    International Nuclear Information System (INIS)

    The plasma-assisted carbon-film coating of the inner walls of nuclear fusion devices, which is a new technical trend, is reviewed in view of plasma-surface interactions. A great advantage of the easiness for both wide-area and repeated coatings is due to the so-called in situ coating of the walls compared with the precoating. The amorphous carbon films produced by this in situ plasma coating contain ordinarily a large number of H atoms (H/C = 0.4∼0.6), which lead to recycling of a large amount of hydrogen (release and implantation of H atoms) in nuclear fusion discharges. This demerit of the plasma method can be covered by reducing the H content in the films under suitable coating conditions, and also by conditioning the film surface with a helium glow discharge. A simple model for the interaction between a-C : H film and hydrogen plasma is proposed. Further, another low-Z material coating, that is in situ boron coating, is briefly discussed. (author)

  17. Energetic particle physics in fusion research in preparation for burning plasma experiments

    International Nuclear Information System (INIS)

    The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium–tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the ‘sea’ of Alfvén eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor). (review)

  18. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Zeff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s-1. Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  19. Fusion Plasma Modelling Using Atomic and Molecular Data. Summary report of a Joint ICTP-IAEA Workshop

    International Nuclear Information System (INIS)

    The Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data was held from 23-27 January 2012 at Abdus Salam International Centre for Theoretical Physics in Trieste, Italy. Ten lecturers presented tutorials and reviews on topics in fusion plasma modelling and atomic, molecular and plasma-material interaction processes. There were 20 participants, generally early-career researchers in the area of A+M+PMI processes and also plasma modellers. The participants presented their work in short talks and a poster session. The proceedings of the workshop are summarized here. (author)

  20. Fusion in the Era of Burning Plasma Studies: Workforce Planning for 2004 to 2014. Final report to FESA C

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-03-29

    This report has been prepared in response to Dr. R. Orbach’s request of the Fusion Energy Sciences Advisory Committee (FESAC) to “address the issue of workforce development in the U.S. fusion program.” The report addresses three key questions: what is the current status of the fusion science, technology, and engineering workforce; what is the workforce that will be needed and when it will be needed to ensure that the U.S. is an effective partner in ITER and to enable the U.S. to successfully carry out the fusion program; and, what can be done to ensure a qualified, diversified, and sufficiently large workforce and a pipeline to maintain that workforce? In addressing the charge, the Panel considers a workforce that allows for a vigorous national program of fusion energy research that includes participation in magnetic fusion (ITER) and inertial fusion (NIF) burning plasma experiments.

  1. Fusion plasma theory. Task I. Magnetic confinement fusion plasma theory. Final report, October 1, 1984-December 31, 1985

    International Nuclear Information System (INIS)

    The research performed under this contract over the current 15 month period has concentrated on some key Phaedrus tandem mirror plasma confinement and heating issues (ambipolar potential formation due to ICRF, second harmonic ECH, ponderomotive force effects, drift-pumping calculations, moment approach to transport), on development of tokamak neoclassical MHD theory (equations, instabilities, transport), and on some tokamak-specific topics (ballooning modes on a divertor separatrix, equilibrium and resistive evolution codes for Tokapole II). Progress in these and some other miscellaneous areas are briefly summarized in this final progress report for this contract, which is to evolve into a special research grant in the future

  2. Space and time resolving spectrograph for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    This paper discusses construction of an EUV (60-350 angstrom) space and time resolving, grazing incidence spectrograph (STRS). The simultaneous spectral coverage of the instrument ranges from 20 to 60 angstrom, depending on the wavelength region. The spectral resolution is about 1 angstrom. The spectral resolution, accomplished by using the pinhole camera effect and the inherent astigmatism of a concave grating in grazing incidence, is about 2 m, with a total field of view of 60 cm at a distance of 2 cm from the plasma. The detector consists of a 75 mm MCP image intensifier optically coupled to three CCD area array detectors. Time resolution of up to 2 ms is achieved with high speed read-out electronics. A PDP 11.73 minicomputer controls the spectrograph and collects and reduces 3.0 MB of data per shot. The complete design of the STRS and the results of initial tests of the detector system, spectrograph, and data handling software are presented

  3. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  4. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    Science.gov (United States)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.

    2013-09-01

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], 10.1088/0029-5515/51/3/033001, flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

  5. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    International Nuclear Information System (INIS)

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors

  6. Designing a tokamak fusion reactor—How does plasma physics fit in?

    Science.gov (United States)

    Freidberg, J. P.; Mangiarotti, F. J.; Minervini, J.

    2015-07-01

    This paper attempts to bridge the gap between tokamak reactor design and plasma physics. The analysis demonstrates that the overall design of a tokamak fusion reactor is determined almost entirely by the constraints imposed by nuclear physics and fusion engineering. Virtually, no plasma physics is required to determine the main design parameters of a reactor: a , R 0 , B 0 , T i , T e , p , n , τ E , I . The one exception is the value of the toroidal current I , which depends upon a combination of engineering and plasma physics. This exception, however, ultimately has a major impact on the feasibility of an attractive tokamak reactor. The analysis shows that the engineering/nuclear physics design makes demands on the plasma physics that must be satisfied in order to generate power. These demands are substituted into the well-known operational constraints arising in tokamak physics: the Troyon limit, Greenwald limit, kink stability limit, and bootstrap fraction limit. Unfortunately, a tokamak reactor designed on the basis of standard engineering and nuclear physics constraints does not scale to a reactor. Too much current is required to achieve the necessary confinement time for ignition. The combination of achievable bootstrap current plus current drive is not sufficient to generate the current demanded by the engineering design. Several possible solutions are discussed in detail involving advances in plasma physics or engineering. The main contribution of the present work is to demonstrate that the basic reactor design and its plasma physics consequences can be determined simply and analytically. The analysis thus provides a crisp, compact, logical framework that will hopefully lead to improved physical intuition for connecting plasma physic to tokamak reactor design.

  7. Modifications of the laser beam coherence inertial confinement fusion plasmas; Modifications des proprietes de coherence des faisceaux laser dans les plasmas de fusion par confinement inertiel

    Energy Technology Data Exchange (ETDEWEB)

    Grech, M

    2007-06-15

    Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)

  8. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Science.gov (United States)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  9. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    Indian Academy of Sciences (India)

    C Hidalgo; B Gonçalves; M A Pedrosa

    2003-12-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients.

  10. Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor

    International Nuclear Information System (INIS)

    Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 108–10 W cm−2 at 10 Hz, each 6 ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation. (letter)

  11. The interaction of the near-field plasma with antennas used in magnetic fusion research

    Science.gov (United States)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  12. Observation of Multiple Reconnections during Self-organization Process of High Temperature Fusion Plasma

    Science.gov (United States)

    Park, H. K.; Tobias, B.; Choi, M. J.; Yun, G. S.; Domier, C. W.; Luhmann, N. C., Jr.; Munsat, T.; Donné, A. J. H.; Spakman, G. W.; Textor Team

    2011-10-01

    Images of a high resolution 2-D Electron Cyclotron Emission Imaging (ECEI) diagnostic shows evidence of multiple magnetic reconnection processes during the internal disruption of a high temperature tokamak plasmas. The disruption induces magnetic self-organization of the toroidal plasma being accompanied by successive or simultaneous multiple layer reconnection. The degree of asymmetric deformation of the internal magnetic structure (m/n=1/1 mode) prior to temperature crash influences the outcome of the disruptive behavior. The observation is critical for the building block of first principle theoretical modeling of the sawtooth oscillation in current driven toroidal plasmas and the understandings can be applied to the impulsive disruptive behavior in flares of the solar, accretion disk and stellar coronae, Earth magnetospheric storms, and controlled fusion. Work supported by the NRF of Korea, the US DOE, the NWO of the Netherlands, and the EURATOM-FOM association.

  13. A fusion-fission reactor driven by plasma-liner impact

    International Nuclear Information System (INIS)

    It is shown that the impact of a quasi-spherical plasma liner on a spherical solid liner can produce a highly luminous source of soft X-rays. This radiation can be used for the ablation of an inner spherical liner, which can be thus accelerated to speeds above 107 cm/sec. Such a liner should be able to compress a core of fissionable material, surrounded by a D-T mantle to fission - criticality. The burst of the fission energy then ignites the D-T mantle which produces a larger burst of fusion energy. The energy liberated in such a microexplosion is estimated to be of the order of 1 GJ. An apparatus based on a symmetrical plasma-focus geometry should be able to produce the plasma liner. A reactor combining these concepts is described. (orig.)

  14. Study on the electron impact ionization processes in a fusion plasma

    International Nuclear Information System (INIS)

    By using the MCDF code calculating the relativistic theory of the atomic structure and transition possibilities, we calculate the ionization cross sections of the Mo neutral atom and one-plus ion. Based on this technology we calculate the electron impact ionization cross sections for the atoms that can exist within the fusion plasma, such as W, V, Li, Be, Al etc. For this research we invite and get technical consultation from Dr. Y. K. Kim from NIST, who is one of the original writers of the MCDF code, present the research results to the plasma related conferences such as ICPEAC 2003 and APiP 2004, and discuss with the some experts to decide the technology development directions. In addition, we exchange technical informations related to the electron impact ionization within a plasma, through exchanges of the researchers based on the close research collaborations with foreign institutes such as NIST, IAEA, JET and NIFS

  15. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    Science.gov (United States)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  16. Plasma physics and controlled nuclear fusion research 1994. V.2. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    This is the second volume of the proceedings of the 15th International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research held in Seville, Spain, from 26 September - 1 October 1994. Contained it volume 2 are the combined poster sessions on core plasma physics and divertor and edge physics (20 papers), the combined poster session on plasma heating and current drive and concept optimization (17 papers), the combined poster session on helical system physics, pinches and open systems (10 papers), as well as the oral papers on pinches and open systems (6 papers); the ITER project (19 papers); and on new devices, reactors and technology (24 papers). Refs, figs, tabs

  17. Commercial application of laser fusion

    International Nuclear Information System (INIS)

    The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described

  18. Optimization of tritium breeding and shielding analysis to plasma in ITER fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Indah Rosidah, M., E-mail: indah.maymunah@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id [Department of Nuclear Physics, Faculty of Mathematic and Natural Sciences, Institut Teknologi Bandung (Indonesia); Yazid, Putranto Ilham [Research and Development of Nuclear Association (Indonesia)

    2015-09-30

    The development of fusion energy is one of the important International energy strategies with the important milestone is ITER (International Thermonuclear Experimental Reactor) project, initiated by many countries, such as: America, Europe, and Japan who agreed to set up TOKAMAK type fusion reactor in France. In ideal fusion reactor the fuel is purely deuterium, but it need higher temperature of reactor. In ITER project the fuels are deuterium and tritium which need lower temperature of the reactor. In this study tritium for fusion reactor can be produced by using reaction of lithium with neutron in the blanket region. With the tritium breeding blanket which react between Li-6 in the blanket with neutron resulted from the plasma region. In this research the material used in each layer surrounding the plasma in the reactor is optimized. Moreover, achieving self-sufficiency condition in the reactor in order tritium has enough availability to be consumed for a long time. In order to optimize Tritium Breeding Ratio (TBR) value in the fusion reactor, there are several strategies considered here. The first requirement is making variation in Li-6 enrichment to be 60%, 70%, and 90%. But, the result of that condition can not reach TBR value better than with no enrichment. Because there is reduction of Li-7 percent when increasing Li-6 percent. The other way is converting neutron multiplier material with Pb. From this, we get TBR value better with the Be as neutron multiplier. Beside of TBR value, fusion reactor can analyze the distribution of neutron flux and dose rate of neutron to know the change of neutron concentration for each layer in reactor. From the simulation in this study, 97% neutron concentration can be absorbed by material in reactor, so it is good enough. In addition, it is required to analyze spectrum neutron energy in many layers in the fusion reactor such as in blanket, coolant, and divertor. Actually material in that layer can resist in high temperature

  19. Model-independent determination of the astrophysical S-factor in laser-induced fusion plasmas

    CERN Document Server

    Lattuada, D; Bonasera, A; Bang, W; Quevedo, H J; Warren, M; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2016-01-01

    In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions ...

  20. D-D nuclear fusion processes induced in polyethylene foams by TW Laser-generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi L.

    2015-01-01

    Full Text Available Deuterium-Deuterium fusion processes were generated by focusing the 3 TW PALS Laser on solid deuterated polyethylene targets placed in vacuum. Deuterium ion acceleration of the order of 4 MeV was obtained using laser irradiance Iλ2 ∼ 5 × 1016 W μm2/cm2 on the target. Thin and thick targets, at low and high density, were irradiated and plasma properties were monitored “on line” and “off line”. The ion emission from plasma was monitored with Thomson Parabola Spectrometer, track detectors and ion collectors. Fast semiconductor detectors based on SiC and fast plastic scintillators, both employed in time-of-flight configuration, have permitted to detect the characteristic 3.0 MeV protons and 2.45 MeV neutrons emission from the nuclear fusion reactions. From massive absorbent targets we have evaluated the neutron flux by varying from negligible values up to about 5 × 107 neutrons per laser shot in the case of foams targets, indicating a reaction rate of the order of 108 fusion events per laser shot using “advanced targets”.

  1. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  2. Analysing the role of fusion power in the future global energy system

    Science.gov (United States)

    Cabal, H.; Lechón, Y.; Ciorba, U.; Gracceva, F.; Eder, T.; Hamacher, T.; Lehtila, A.; Biberacher, M.; Grohnheit, P. E.; Ward, D.; Han, W.; Eherer, C.; Pina, A.

    2012-10-01

    This work presents the EFDA Times model (ETM), developed within the European Fusion Development Agreement (EFDA). ETM is an optimization global energy model which aims at providing the optimum energy system composition in terms of social wealth and sustainability including fusion as an alternative technology in the long term. Two framework scenarios are defined: a Base case scenario with no limits to CO2 emissions, and a 450ppm scenario with a limit of 450ppm in CO2-eq concentrations set by 2100. Previous results showed that in the Base case scenario, with no measures for CO2 emission reductions, fusion does not enter the energy system. However, when CO2 emission restrictions are imposed, the global energy system composition changes completely. In a 450ppm scenario, coal technologies disappear in a few decades, being mainly replaced by nuclear fission technologies which experience a great increase when constrained only by Uranium resources exhaustion. Fission technologies are then replaced by the fusion power plants that start in 2070, with a significant contribution to the global electricity production by 2100. To conclude the work, a sensitivity analysis will be presented on some parameters that may affect the possible role of fusion in the future global energy system. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  3. Analysing the role of fusion power in the future global energy system

    Directory of Open Access Journals (Sweden)

    Grohnheit P.E.

    2012-10-01

    Full Text Available This work presents the EFDA Times model (ETM, developed within the European Fusion Development Agreement (EFDA. ETM is an optimization global energy model which aims at providing the optimum energy system composition in terms of social wealth and sustainability including fusion as an alternative technology in the long term. Two framework scenarios are defined: a Base case scenario with no limits to CO2 emissions, and a 450ppm scenario with a limit of 450ppm in CO2-eq concentrations set by 2100. Previous results showed that in the Base case scenario, with no measures for CO2 emission reductions, fusion does not enter the energy system. However, when CO2 emission restrictions are imposed, the global energy system composition changes completely. In a 450ppm scenario, coal technologies disappear in a few decades, being mainly replaced by nuclear fission technologies which experience a great increase when constrained only by Uranium resources exhaustion. Fission technologies are then replaced by the fusion power plants that start in 2070, with a significant contribution to the global electricity production by 2100. To conclude the work, a sensitivity analysis will be presented on some parameters that may affect the possible role of fusion in the future global energy system.

  4. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  5. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  6. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    Science.gov (United States)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  7. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2∼2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30 degree ∼ 67.5 degree, and the spectral detection angle is in 55.4 degree ∼134 degree . The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional micro adjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  8. Time resolving grazing incidence spectrograph with spatial resolution for plasma fusion diagnostics

    International Nuclear Information System (INIS)

    In order to understand the confinement, impurity transport, and radiation loss mechanisms in a fusion plasma, it is important to know the spatial variation and time evolution of the plasma impurities which emit at characteristic EUV (extreme ultraviolet) wavelengths. For these reasons we are designing a grazing incidence spectrometer which can view 13 chords of a plasma simultaneously and also examine the time history of the species in a single shot. Existing instruments accomplish the spatial imaging by mechanically moving the spectrometer to view a different chord of the plasma per single shot and assume that the plasma is reproduceable from shot to shot. Moreover, the grazing incidence spectrometer will enable us to examine the spectra of the high Z ions in the 16 to 250 A region, a region that is becoming important for diagnostic purposes as tokamak plasmas reach higher temperatures. We are in the design and testing stage of a grazing incidence spectrograph with time and spatial resolution capabilities. The spectrometer is a grazing incidence ''Minuteman'' utilizing a 1200 l/mm holographic grating covering the region from 16 to 250 A. The detector system consists of an image intensifier and area array detectors. The detector system can be moved along the Rowland circle and achieves a simultaneous spectral coverage of 26 A when centered at 16 A and 80 A when centered at 250 A with 1 A resolution. The area array detectors can be read out in approximately 5 ms, thereby determining the time resolution of the instrument

  9. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cuneo, M. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrmann, M. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, D. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, S. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  10. Simulation of plasma-surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects

    Science.gov (United States)

    Garkusha, I. E.; Aksenov, N. N.; Byrka, O. V.; Makhlaj, V. A.; Herashchenko, S. S.; Malykhin, S. V.; Petrov, Yu V.; Staltsov, V. V.; Surovitskiy, S. V.; Wirtz, M.; Linke, J.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2016-09-01

    This paper is devoted to plasma-surface interaction issues at high heat-loads which are typical for fusion reactors. For the International Thermonuclear Experimental Reactor (ITER), which is now under construction, the knowledge of erosion processes and the behaviour of various constructional materials under extreme conditions is a very critical issue, which will determine a successful realization of the project. The most important plasma-surface interaction (PSI) effects in 3D geometry have been studied using a QSPA Kh-50 powerful quasi-stationary plasma accelerator. Mechanisms of the droplet and dust generation have been investigated in detail. It was found that the droplets emission from castellated surfaces has a threshold character and a cyclic nature. It begins only after a certain number of the irradiating plasma pulses when molten and shifted material is accumulated at the edges of the castellated structure. This new erosion mechanism, connected with the edge effects, results in an increase in the size of the emitted droplets (as compared with those emitted from a flat surface). This mechanism can even induce the ejection of sub-mm particles. A concept of a new-generation QSPA facility, the current status of this device maintenance, and prospects for further experiments are also presented.

  11. Properties of the ion-ion hybrid resonator in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [Univ. of California, Los Angeles, CA (United States)

    2015-10-06

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.

  12. Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation

    CERN Document Server

    Parker, Joseph Thomas

    2016-01-01

    Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision ope...

  13. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post processing mode. SAMI can scan over 16 preprogrammed frequencies in the range of 10–35 GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in a real fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, the first ever turbulence velocity maps have been obtained. In this article we present an overview of the diagnostic and discuss recent results.

  14. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  15. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  16. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Bortolotti, A.; Brzosko, J.S.; Chiara, P. De; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J. [Stevens Inst. of Tech., Hoboken, NJ (United States)]|[Ferrara Univ. (Italy)

    1992-12-31

    The same linear correlation between the distribution parameters ({Delta}T and Max {Delta}V) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D{sup +} ions. CSF`s show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs.

  17. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  18. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik;

    2011-01-01

    by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...

  19. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  20. EURATOM-CEA Association Contributions to the 16. European Conference on Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    The contributions to the 16th European Conference on controlled fusion and Plasma Physics are presented. The following subjects, concerning Tore Supra, are discussed: runaway electrons dynamics and confinement; spectroscopic studies of plasma surface interactions; ergodic divertor experiments; magnetic field structure and transport induced by the ergodic divertor; fast ions losses during neutral beam injection; current profile control by electron-cyclotron and lower-hybrid waves; and electromagnetic analysis of the lower hybrid system. The report also includes studies on: a possible explanation for the runaway energy limit (resonant interaction with the ripple field); thermal equilibrium of the edge plasma with an ergodic divertor; neutral confinement in pump limiter with a throat; microtearing turbulence and heat transport; toroidal coupling and frequency spectrum of tearing modes; collisionless fast ion dynamics in tokamaks; variational description of lower hybrid wave propagation and absorption in tokamaks; magnetodrift turbulence and disruptions; specific turbulence associated with sawtooth relaxations in TFR plasmas; detailed structure of the q profile around q = 1 in JET; turbulence propagation during pellet injection; tokamak reactor concept with 100% bootstrap current; optimization of a steady state tokamak driven by lower hybrid waves; and thermodesorption of graphite exposed to a deuterium plasma

  1. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    International Nuclear Information System (INIS)

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction

  2. Hydrogen Spectral Line Shape Formation in the SOL of Fusion Reactor Plasmas

    Directory of Open Access Journals (Sweden)

    Valery S. Lisitsa

    2014-05-01

    Full Text Available The problems related to the spectral line-shape formation in the scrape of layer (SOL in fusion reactor plasma for typical observation chords are considered. The SOL plasma is characterized by the relatively low electron density (1012–1013 cm−3 and high temperature (from 10 eV up to 1 keV. The main effects responsible for the line-shape formation in the SOL are Doppler and Zeeman effects. The main problem is a correct modeling of the neutral atom velocity distribution function (VDF. The VDF is determined by a number of atomic processes, namely: molecular dissociation, ionization and charge exchange of neutral atoms on plasma ions, electron excitation accompanied by the charge exchange from atomic excited states, and atom reflection from the wall. All the processes take place step by step during atom motion from the wall to the plasma core. In practice, the largest contribution to the neutral atom radiation emission comes from a thin layer near the wall with typical size 10–20 cm, which is small as compared with the minor radius of modern devices including international test experimental reactor ITER (radius 2 m. The important problem is a strongly non-uniform distribution of plasma parameters (electron and ion densities and temperatures. The distributions vary for different observation chords and ITER operation regimes. In the present report, most attention is paid to the problem of the VDF calculations. The most correct method for solving the problem is an application of the Monte Carlo method for atom motion near the wall. However, the method is sometimes too complicated to be combined with other numerical codes for plasma modeling for various regimes of fusion reactor operation. Thus, it is important to develop simpler methods for neutral atom VDF in space coordinates and velocities. The efficiency of such methods has to be tested via a comparison with the Monte Carlo codes for particular plasma conditions. Here a new simplified method

  3. A statistical approach for predicting thermal diffusivity profiles in fusion plasmas as a transport model

    International Nuclear Information System (INIS)

    A statistical approach is proposed to predict thermal diffusivity profiles as a transport “model” in fusion plasmas. It can provide regression expressions for the ion and electron heat diffusivities (χi and χe), separately, to construct their radial profiles. An approach that this letter is proposing outstrips the conventional scaling laws for the global confinement time (τE) since it also deals with profiles (temperature, density, heating depositions etc.). This approach has become possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this letter, TASK3D-a analysis database for high-ion-temperature (high-Ti) plasmas in the LHD (Large Helical Device) is used as an example to describe an approach. (author)

  4. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  5. Effect of Laser-Plasma Interactions on Inertial Confinement Fusion Hohlraum Dynamics

    CERN Document Server

    Strozzi, D J; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B

    2016-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums is investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI - specifically stimulated Raman scattering (SRS) and crossed-beam energy transfer (CBET) - mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus modifies the laser propagation. This model shows a reduction of CBET, and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  6. Verification of particle simulation of radio frequency waves in fusion plasmas

    International Nuclear Information System (INIS)

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions

  7. On the use of intense ion beams for generating magnetized target fusion plasma

    International Nuclear Information System (INIS)

    Magnetized Target Fusion (MTF) is a concept for creating a burning D-T plasma in a potentially inexpensive system. In essence, the concept involves ion heating on time scales short compared to ion transport times plus strong inhibition of thermal electron transport with a transverse magnetic field. The magnetic field is not intended to confine the ionic component. MTF is an intrinsically pulsed concept. A straightforward analysis of MTF indicates that D-T burning conditions can be achieved in compact plasma volumes with modest initial temperatures, through the use of pulsed power technology. In terms of size, density, temperature, and time scales, MTF occupies a position in phase space that is intermediate between steady MFE schemes and ICF. In terms of cost, it is one to two orders of magnitude less expensive than these. In this paper, the authors consider a possible method for creating the initial conditions adequate for the MTF concept through the use intense ion beam injection

  8. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    CERN Document Server

    Zhu, H; Dendy, R O

    2013-01-01

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M A Malkov and P H Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond,...

  9. Plasma Wall Interaction Phenomena on Tungsten Armour Materials for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Uytdenhouwen, I. [SCK.CEN - The Belgian Nuclear Research Centre, Institute for Nuclear Materials Science, Boeretang 200, 2400 Mol (Belgium); Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Massaut, V. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium); Linke, J. [Forschungszentrum Juelich GmbH, EURATOM-association, D-52425 Juelich (Germany); Van Oost, G. [Department of Applied Physics, Ghent University, Rozier 44, 9000 Ghent (Belgium)

    2008-07-01

    One of the most attractive future complements to present energy sources is nuclear fusion. A large progress was made throughout the last decade from both the physical as the technological area leading to the construction of the ITER machine. One of the key issues that recently received a large interest at international level is focused on the Plasma Wall Interaction (PWI). One of the promising Plasma Facing Materials (PFM) are Tungsten (W) and Tungsten alloys. However, despite the worldwide use and industrial availability of W, the database of physical and mechanical properties is very limited. Especially after fusion relevant neutron irradiation and PWI phenomena, most of the properties are still unknown. The plasma fuel consists out of deuterium (D) and tritium (T). Tritium is radio-active and therefore an issue from the safety point of view. During steady-state plasma operation of future fusion power plants, the PFM need to extract a power density of {approx}10-20 MW/m{sup 2}. On top of this heat, transient events will deposit an additional non-negligible amount of energy (Disruptions, Vertical Displacement Events, Edge Localized Modes) during short durations. These severe heat loads cause cracking and even melting of the surface resulting in a reduced lifetime and the creation of dust. A contribution to the understanding of cracking phenomena under the severe thermal loads is described as well as the properties degradation under neutron irradiation. Several W grades were irradiated in the BR2 reactor (SCK.CEN) and the thermal loads were simulated with the electron-beam facility JUDITH (FZJ). Since knowledge should be gained about the Tritium retention in the PFM for safety and licensing reasons, a unique test facility at SCK.CEN is being set-up. The plasmatron VISION-I will simulate steady state plasmas for Tritium retention studies. The formation of surface cracks and dust, the initial porosity, neutron induced traps, re-deposited material - change the Tritium

  10. The Current Status of the Magnetoplasma Compressor Device in Belgrade - Study of Plasma Facing Materials Important for Fusion Reactors

    Directory of Open Access Journals (Sweden)

    Nora Trklja

    2015-01-01

    Full Text Available The magnetoplasma compressor, a quasi stationary plasma accelerator, is a source of supersonic compression plasma flow. High plasma parameters of compression flow, large flow velocity and discharge duration enable their efficient usage for development of new plasma technologies, including material surface modification, creation of sub microstructures and nanostructures. In this paper spatial and temporal distribution of emissivity was studied using inverse Abel transform. This has been realized in LabVIEW environment. The plasma flow generated by quasi stationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. Surface phenomena are results of specific conditions during plasma flow interaction with target surface. As the next step in our research, spectral analysis of the plasma area around targets surface, after interaction between target and plasma, generated by magnetoplasma compressor, is planned. The first material which will be subjected to interaction with plasma will be a carbon fiber - material of big importance for divertor region in fusion devices.

  11. Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology. Report of a Coordinated Research Project 2007-2011

    International Nuclear Information System (INIS)

    Through its coordinated research activities, the IAEA promotes the development and application of nuclear technologies in Member States. The scientific and technical knowledge required for the construction and operation of large nuclear fusion research facilities, including ITER and the Laser Megajoule in France, and the Z machine and the National Ignition Facility in the United States of America, necessitates several accompanying research and development programmes in physics and technology. This is particularly true in the areas of materials science and fusion technology. Hence, the long standing IAEA effort to conduct coordinated research projects (CRPs) in these areas is aimed at: (i) the development of appropriate technical tools to investigate the issue of materials damage and degradation in a fusion plasma environment; and (ii) the emergence of a knowledge based understanding of the various processes underlying materials damage and degradation, thereby leading to the identification of suitable candidate materials fulfilling the stringent requirements of a fusion environment in any next step facility. Dense magnetized plasma (DMP) devices serve as a first test bench for testing of fusion relevant plasma facing materials, diagnostic development and calibration, technologies and scaling to conceptual principles of larger devices while sophisticated testing facilities such as the International Fusion Materials Irradiation Facility (IFMIF) are being designed. The CRP on Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology described herein was initiated in 2007 with the participation of 12 research institutions in 8 Member States and was concluded in 2011. It was designed with specific research objectives falling into two main categories: support to mainstream fusion research and development of DMP technology. This publication is a compilation of the individual reports submitted by the 12 CRP participants. These reports discuss

  12. Laser-Plasma Interaction in Presence of an Obliquely External Magnetic Field: Application to Laser Fusion without Radioactivity

    Science.gov (United States)

    Mobaraki, M.; Jafari, S.

    2016-08-01

    In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic Geld has been studied. Imposing an external magnetic Geld on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.

  13. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J.; Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  14. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1.

    Science.gov (United States)

    Huang, Ping; Altshuller, Yelena M; Hou, June Chunqiu; Pessin, Jeffrey E; Frohman, Michael A

    2005-06-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion. PMID:15772157

  15. Analysis of thin film liquid metal protection of fusion reactor plasma contact surfaces

    International Nuclear Information System (INIS)

    Presented in this work is a method of analyzing the heat transfer characteristics and flow parameters of a thin films of liquid metal flowing on a substrate in the presence of a strong magnetic field, and exposed to a large, one-sided heat flux. This method can then be applied to the problem of determining the effectiveness and flow parameter ranges of a thin film liquid metal used for the protection of plasma contact surfaces in fusion reactors. Previous work in the area of the heating of film liquid metal surfaces as applied to fusion has been confined to the assumption of a constant heat flux incident on the free surface. This treatment can help to give an idea of the magnitude of the removable heat flux as well as to establish a basis for a heat removal comparison of different liquid metals; but falls short when analysis of a real, spatially varying heat flux is required for determining the maximum film temperature and needed film velocity. For this reason, a new method involving the solution of the two-dimensional energy equation with an arbitrary, space-varying heat flux boundary condition at the free surface is developed. Application of this approach to several fusion relevant situations yields the temperature at any point in the film flow and can be used to determine the velocity needed to keep the maximum film temperature below whatever film temperature limit is imposed. Given the required velocity, it then becomes necessary to determine the behavior of the film at this speed. Previous efforts to do this have involved the development of one-dimensional models for the film height, derived from the basic set of magnetohydrodynamic equations and a variety of simplifications and assumptions. This work re-derives these models, while correcting small errors and using a modified set of assumptions that are more applicable to fusion situations

  16. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  17. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  18. Control of plasma layer in a fusion reactor correlated to DC motor control using PSO-ANFIS

    International Nuclear Information System (INIS)

    Plasma position and shape control is very crucial for the overall performance of the fusion reactor such as Tokamak. The quality of the discharge in the Saskatchewan TORus-Modified (STOR-M) tokamak is strongly related to the position of the plasma column within the discharge vessel. If the plasma column approaches too near the wall, then either minor or complete disruption occurs. Consequently it is necessary to be able to control dynamically the position of the plasma column throughout the entire discharge. Now a day's most fusion reactor employs the traditional PID controller for the confinement of plasma layer. Fuzzy logic is used for the control of Plasma layer. In this paper we have used the hybrid of PSO-ANFIS technique to control the speed of a DC motor. We have used two input parameters like speed, torque and output is firing angle. In our work first order Sugeno fuzzy model is taken with three rules and the parameters of Gaussian membership function is controlled by the PSO technique. PSO-ANFIS speed controller obtains better dynamic behavior and superior performance of the DC motor speed control. Similar approach can be correlated to the control of plasma layer. For the plasma control two inputs can be taken as plasma position ΔH and the plasma current and the single output, the control decision u(t). (author)

  19. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed

  20. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    Science.gov (United States)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  1. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H. [Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromso (Norway); Dendy, R. O. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

  2. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    International Nuclear Information System (INIS)

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author)

  3. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  4. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    Science.gov (United States)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  5. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    International Nuclear Information System (INIS)

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3 - 1600 Angstrom), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) copyright 1999 American Institute of Physics

  6. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    Science.gov (United States)

    May, M. J.; Finkenthal, M.; Soukhanovskii, V.; Stutman, D.; Moos, H. W.; Pacella, D.; Mazzitelli, G.; Fournier, K.; Goldstein, W.; Gregory, B.

    1999-01-01

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3-1600 Å), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.)

  7. Controlling the Expansion of Laser-Fusion Plasma to Minimize Impact Damage

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.

    1999-03-18

    I propose to analytically model the rapid, nonequilibrium expansion of laser-fusion plasma from an initial diameter of 1 mm to a final diameter of 10 m. The aim is to devise a counterforce that minimizes the impact damage on optics by laser-plasma debris. This flow model is the basis of an idea for a dynamic target that efficiently converts laser energy to x-rays while minimizing the total mass propelled as debris. Also, the flow model is the basis of an idea to magnetically deflect material away from the optic ports in the vacuum chamber wall. The model combines results for supersonic one-dimensional gas flow of cylindrical-hemispherical symmetry, with a transition from thermal to nonequilibrium (''frozen'') plasma flow, which is set differently along each characteristic line (the ''Bray criterion'' as a Riemann invariant). The model shows how density, pressure, velocity, ionization fraction, electron temperature, and electrical conductivity vary over space and time, given an impulsively-heated source mass. The model is analytical, and examples are calculated on a desktop computer. This ease-of-use makes it possible to iterate quickly when refining ideas, such as a dynamic metal-vapor target that propels minimal debris, and a magnetohydrodynamic generator as a brake on the flow speed directed at the optic ports. The work involved here is that of an individual refining his analysis.

  8. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    Science.gov (United States)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  9. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Inestrosa-Izurieta, María José [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Centro de Investigación y Aplicaciones en Física de Plasmas y Potencia Pulsada, P" 4, Santiago-Talca (Chile); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago (Chile); Gutiérrez, Gonzalo [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Vergara, Julio [Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago (Chile); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina); Bruzzone, Horacio [CONICET and Universidad de Mar del Plata, Mar del Plata (Argentina); Castillo, Fermín [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos (Mexico); and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  10. Proceedings of the US-Japan workshop and the satellite meeting of ITC-9 on physics of high beta plasma confinement in innovative fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Seiichi; Yoshimura, Satoru [eds.

    1999-04-01

    The US-Japan Workshop on Physics of High Beta Plasma Confinement in Innovative Fusion System was held jointly with the Satellite Meeting of ITC-9 at National Institute for Fusion Science (NIFS), Toki-city during December 14-15, 1998. This proceedings book includes the papers of the talks given at the workshop. These include: Theoretical analysis on the stability of field reversed configuration (FRC) plasmas; Theory and Modeling of high {beta} plasmas; Recent progressive experiments in high {beta} systems; Formation of high {beta} plasmas using merging phenomenon; Theory and Modeling of a FRC Fusion Reactor. The 15 papers are indexed individually. (J.P.N.)

  11. JSPS-CAS Core University Program seminar on summary of 10-year collaborations in plasma and nuclear fusion research area

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on “Summary of 10-year Collaborations in Plasma and Nuclear Fusion Research Area” was held from March 9 to March 11, 2011 in the Okinawa Prefectural Art Museum, Naha city, Okinawa, Japan. The collaboration program on plasma and nuclear fusion started from 2001 under the auspices of Japanese Society of Promotion of Science (JSPS) and Chinese Academy of Sciences (CAS). This year is the last year of the CUP. This seminar was organized in the framework of the CUP. In the seminar, 29 oral talks were presented, having 14 Chinese and 30 Japanese participants. These presentations covered key topics related to the collaboration categories: (1) improvement of core plasma properties, (2) basic research on fusion reactor technologies, and (3) theory and numerical simulation. This seminar aims at summarizing the results obtained through the collaborations for 10 years, and discussing future prospects of China-Japan collaboration in plasma and nuclear fusion research areas. (author)

  12. Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas

    International Nuclear Information System (INIS)

    A general theoretical framework for investigating the nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave–particle trapping period. In this limit, both theoretical and numerical simulation studies show that nonadiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfvén wave instabilities excited by nonperturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free-electron lasers are also briefly discussed. (paper)

  13. Design of a digital multiradian phase detector and its application in fusion plasma interferometry

    International Nuclear Information System (INIS)

    We discuss the circuit design of a digital multiradian phase detector that measures the phase difference between two 10 kHz square wave TTL signals and provides the result as a binary number. The phase resolution of the circuit is 1/64 period and its dynamic range is 256 periods. This circuit has been developed for fusion plasma interferometry with submillimeter waves on the ASDEX Upgrade tokamak. The results from interferometric density measurement are discussed and compared to those obtained with the previously used phase detectors, especially with respect to the occurrence of phase jumps. It is illustrated that the new phase measurement provides a powerful tool for automatic real-time validation of the measured density, which is important for feedback algorithms that are sensitive to spurious density signals.

  14. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    CERN Document Server

    Guszejnov, D; Pusztai, I; Refy, D; Zoletnik, S; Lampert, M; Nam, Y U; 10.1063/1.4764564

    2013-01-01

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is Beam Emission Spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the RENATE simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  15. Degenerate Bogdanov-Takens bifurcations in a one-dimensional transport model of a fusion plasma

    Science.gov (United States)

    de Blank, H. J.; Kuznetsov, Yu. A.; Pekkér, M. J.; Veldman, D. W. M.

    2016-09-01

    Experiments in tokamaks (nuclear fusion reactors) have shown two modes of operation: L-mode and H-mode. Transitions between these two modes have been observed in three types: sharp, smooth and oscillatory. The same modes of operation and transitions between them have been observed in simplified transport models of the fusion plasma in one spatial dimension. We study the dynamics in such a one-dimensional transport model by numerical continuation techniques. To this end the MATLAB package CL_MATCONTL was extended with the continuation of (codimension-2) Bogdanov-Takens bifurcations in three parameters using subspace reduction techniques. During the continuation of (codimension-2) Bogdanov-Takens bifurcations in 3 parameters, generically degenerate Bogdanov-Takens bifurcations of codimension-3 are detected. However, when these techniques are applied to the transport model, we detect a degenerate Bogdanov-Takens bifurcation of codimension 4. The nearby 1- and 2-parameter slices are in agreement with the presence of this codimension-4 degenerate Bogdanov-Takens bifurcation, and all three types of L-H transitions can be recognized in these slices. The same codimension-4 situation is observed under variation of the additional parameters in the model, and under some modifications of the model.

  16. IAEA technical meeting on atomic and plasma-material interaction data for fusion science technology. Summary report

    International Nuclear Information System (INIS)

    The proceedings and conclusions of the Technical Meeting on 'Atomic and Plasma- Material Interaction Data for Fusion Science Technology' held in Juelich, Germany on October 28-31 are summarized. During the course of the meetings working groups were formed to review the status of specific areas of atomic, molecular and material physics of relevance to fusion and to make recommendations on data needs in fusion from these areas. The reports of those working groups are summarized and the complete reports included as appendices. This meeting brought together over fifty leading scientists in fusion related data. Results of research in a number of topics were presented and very useful discussions were held. The meeting was extremely successful. (author)

  17. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  18. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE0,2) or a whispering-gallery mode (such as TE15,2), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  19. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2001 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada (fusao), do Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2002-07-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic.

  20. Fast ion motion in the plasma part of a stellarator-mirror fission–fusion hybrid

    Science.gov (United States)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission–fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1–2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1–1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field

  1. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    Science.gov (United States)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which

  2. Development of diffractive XUV-VUV light extractors for fusion plasma diagnostic

    Science.gov (United States)

    Stutman, D.; Caravelli, G.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Kaita, R.; Roquemore, L.

    2009-11-01

    The diagnostic and control of next generation MFE and ICF fusion experiments will require optical light extractors capable of withstanding intense plasma and radiation exposure. A solution applicable from the XUV to the infrared is to use free-standing diffractive optics such as transmission gratings or zone plates. Here we present results on XUV-VUV diffractive extractors for the diagnostic of boundary MFE plasmas. For the VUV range we developed Si transmission gratings having 1 μm period, 5 μm thickness, 40% open fraction, 1x2 mm active area, and coated with Ni, while for the XUV range we use SiN gratings having 0.2 μm period, 0.3 μm thickness, 1x1 mm area, and coated with Ta. The grating extractors are spectrally and spatially calibrated in the laboratory using a newly developed extended XUV-VUV source and will be employed for imaging spectrometry on the NSTX experiment. The operational characteristics of the extended source and first space resolved XUV-VUV spectra will be presented. Work supported by DoE Grant DE-FG02-99ER54523 at JHU and Contract DE-AC02-09CH11466 at PU.

  3. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    CERN Document Server

    Shevchenko, Vladimir F; Freethy, Simon J; Huang, Billy K

    2012-01-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post processing mode. SAMI can scan over 16 preprogrammed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a passive imaging of plasma emission and also an active imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structur...

  4. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/LTe on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/LTe the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/LTe, both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author)

  5. The snowflake divertor, physics of a new concept for power exhaust of fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Tilmann; Feng, Yuehe [Max-Planck-Institut fuer Plasmaphysik, Garching/Greifswald (Germany); Canal, Gustavo; Reimerdes, Holger [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2014-07-01

    Fusion reactors based on the tokamak design will have to deal with very high heat loads on the divertor plates. One of the approaches to solve this heat load problem is the so called 'snowflake divertor', a magnetic configuration with two nearby x-points and two additional divertor legs. In this contribution we report on 'EMC3-Eirene' simulations of the plasma- and neutral particle transport in the scrape-off layer of the swiss tokamak TCV of a series of snowflake equilibria with different values of σ, the distance between the x-points normalized to the minor radius of the plasma. The constant anomalous transport coefficients were chosen such that the power- and particle deposition profiles at the primary inner strike point match the Langmuir probe measurements for the σ=0.1 case. At one of the secondary strike points, however, a significantly larger power flux than that predicted by the simulation was measured by the probes, indicating the presence of an enhanced transport across the primary separatrix. We discuss the possible reason for this enhanced transport as well as its scaling with machine size. Another prediction from the simulation is that the density as well as the radiation maximum are moving from the recycling region in front of the plates upwards to the x-point.

  6. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  7. Time-resolving multispatial grazing incidence spectrograph for plasma fusion diagnostics

    International Nuclear Information System (INIS)

    A grazing incidence spectrograph which operates in the EUV (40 to 350 A) that has multispectral, temporal, and spatial resolving capabilities is being constructed for plasma fusion diagnostics. The spectrograph achieves a simultaneous spectral coverage of 20 and 60 A when centered on 40 and 350 A, respectively, with ∼ 1-A resolution. The detector consists of an image intensifier fiber optically coupled to 3 area array detectors (CCDS), which can be read out in 5 ms, thereby determining the time resolution of the instrument. The spatial resolution is accomplished by using the astigmatism inherent to a concave grating in grazing incidence, coupled with the pinhole camera effect produced by an entrance slit of limited height. The spectrograph can view ∼ 54 cm of plasma which is 2 m away from the entrance slit with 4- and 8-cm resolution at 350 and 40 A, respectively. The authors will present the results of a feasibility study, the spectrograph design, and the results of the data reduction and interpretation codes which are under development

  8. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    International Nuclear Information System (INIS)

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  9. Plasma expansion across a transverse magnetic field in a negative hydrogen ion source for fusion

    Science.gov (United States)

    Fantz, U.; Schiesko, L.; Wünderlich, D.

    2014-08-01

    High power negative hydrogen ion sources operating at 0.3 Pa are a key component of the neutral beam injection systems for the international fusion experiment ITER. To achieve the required large ion current at a tolerable number of co-extracted electrons the source is equipped with a magnetic filter field (up to 10 mT). The IPP prototype source (1/8 of the area of the ITER source) has been equipped with a flexible magnetic filter frame to perform filter field studies (position, polarity, strength). Axial profiles of the plasma parameters are measured with two Langmuir probes, positioned in the upper and the lower half of the expansion chamber. In addition to the expected decrease in electron temperature and density a vertical drift develops the direction depending on the polarity of the field. Without field no drift is observed. The drift is less pronounced in caesium seeded discharges and almost vanishes in deuterium, indicating an influence of the ion mass on the drift. A comparison with results from a half-size ITER source reveals that the plasma is much more uniform in the large source.

  10. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  11. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D. K.

    2011-07-21

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested

  12. Developing Structural, High-heat flux and Plasma Facing Materials for a near-term DEMO Fusion Power Plant: the EU Assessment

    CERN Document Server

    Stork, D; Boutard, J-L; Buckthorpe, D; Diegele, E; Dudarev, S L; English, C; Federici, G; Gilbert, M R; Gonzalez, S; Ibarra, A; Linsmeier, Ch; Puma, A Li; Marbach, G; Morris, P F; Packer, L W; Raj, B; Rieth, M; Tran, M Q; Ward, D J; Zinkle, S J

    2014-01-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials.

  13. Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

    2009-08-01

    The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

  14. On the Accuracy of X-Ray Spectra Modeling of Inertial Confinement Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S.H.; Fournier, K.B.; Hammel, B.A.; Lee, L.W.; MacGowan, B.J.; Back, C.A.

    2000-05-30

    We have performed x-ray spectroscopic experiments in homogeneous gas bag plasmas where we independently measure the temperature with Thomson scattering. We find that collisional radiative (kinetics) modeling of the intensities of the He-{beta} line and its dielectronic capture satellites is generally in agreement with the measured spectra. On the other hand, for the particular case of satellites arising from inner-shell electron collisional excitation, we find discrepancies of up to a factor of two between experiment and kinetics models. We have ruled out possible effects on the line emission due to plasma gradients, radiative transport, and suprathermal electron excitation leaving errors in the atomic physics modeling to be the most likely explanation. The determination that there are problems with the collisionally populated states is important for the interpretation of inertial confinement fusion capsule implosions where electron densities and temperature have been measured using the spectral line shape of the He-{beta} transition of Ar XVII. The analysis of the implosion data has required Stark broadening calculations coupled to a kinetics model to calculate the detailed line intensities and widths. Despite remaining discrepancies, the good agreement between the experimental dielectronic capture satellites and the HULLAC calculations suggests that HULLAC is a more appropriate code for the construction of the kinetics models of the He-{beta} complex from high density plasmas than previously used codes (e.g. MCDF). HULLAC results in higher temperatures for the implosion conditions of Ref.(5,6) in closer agreement with the 2-D radiation hydrodynamic modeling and other spectroscopic techniques. These results indicate that benchmarking kinetics codes with Thomson scattering is an important area in present ICF research.

  15. Edge Plasma Physics Issues for the Fusion Advanced Studies Torus (FAST) in Reactor Relevant Conditions

    International Nuclear Information System (INIS)

    The issue of First wall materials and compatibility with ITER /DEMO relevant plasmas is among the RD missions for possible new European plasma fusion devices that the FAST project will address. FAST can operate with ITER relevant values of P/R (up to 22 MW/m, against the ITER 24 MW/m, inclusive of the α particles power), thanks to its compactness; thus it can investigate the physics of large heat loads on divertor plates. The FAST divertor will be made of bulk W tiles, for basic operations, but also fully toroidal divertor targets made of liquid lithium (L-Li) are foreseen. To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self-consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. This code, already validated in the past on experimental data (namely JET, FTU, Textor), is able to describe self-consistently the core and edge plasma in a tokamak device by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. In the present work the results of such calculations will be illustrated, including heat loads on the divertor. The overall picture shows that, marginally in the intermediate and, necessarily in the high density H-mode scenarios (e>=2 and 5·1020 m-3 respectively), impurity seeding should be foreseen with W as target material: however, only a small amount of Ar (0.03% atomic concentration), not affecting the core purity, is sufficient to maintain the divertor peak loads below 18 MW/m2, that represents the safety limit for the W mono block technology, presently accepted for the ITER divertor tiles. Li always needs additional impurities for decreasing divertor heat loads, the Zeff value being ≤ than 1.8. At low plasma densities (but ≥ 1.3·1020 m-3), typical of steady state regimes, W by alone is effective in dissipating the input power by radiative losses, without excessive

  16. Edge plasma issues of the tokamak FAST (Fusion Advanced Studies Torus) in reactor relevant conditions

    International Nuclear Information System (INIS)

    Among the R and D missions for possible new European plasma fusion devices, the FAST project will address the issue of 'First wall materials and compatibility with ITER /DEMO relevant plasmas'. FAST can operate with ITER relevant values of P/R (up to 22 MW/m, against the ITER 24 MW/m, inclusive of the alpha particles power), thanks to its compactness; thus it can investigate the physics of large heat loads on divertor plates. The FAST divertor will be made of bulk W tiles, for basic operations, but also fully toroidal divertor targets made of liquid lithium (L-Li) are foreseen. Viability tests of such a solution for DEMO divertor will be carried out as final step of an extended program started on FTU tokamak by using a liquid lithium limITER. To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self-consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. This code, already validated in the past on experimental data (namely JET, FTU, Textor), is able to describe self-consistently the core and edge plasma in a tokamak device by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. In the present work the results of such calculations will be illustrated, including heat loads on the divertor. The overall picture shows that at the low plasma densities typical of steady state regimes W is effective in dissipating input power by radiative losses, while Li needs additional impurities (Ar, Ne). In the intermediate and, mainly, in the high density H-mode scenarios impurity seeding is needed with either Li or W as target material, but a small (0.08% atomic concentration) amount of Ar, not affecting the core purity, is sufficient to maintain the divertor peak loads below 18 MW/m2 that represents the safety limit for the W monoblock technology, presently accepted for the ITER divertor tiles. The

  17. First research coordination meeting on atomic collision data for diagnostics of magnetic fusion plasmas, Vienna, 21-25 June 1982

    International Nuclear Information System (INIS)

    Proceedings of the first meeting of the participants in the IAEA Coordinated Research Programme on atomic collision data for diagnostics of magnetically confined fusion plasmas, convened by the IAEA Nuclear Data Section on 21 - 25 June 1982, at IAEA Headquarters in Vienna. The meeting participants reviewed the status of electron excitation, electron ionization and charge transfer data for selected fusion relevant elements, made specific recommendations on the use of these existing data, and identified those data which needed to be measured or calculated. (author)

  18. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  19. Ion Acceleration and D-D Nuclear Fusion in Laser-Generated Plasma from Advanced Deuterated Polyethylene

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2014-10-01

    Full Text Available Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.

  20. Optimisation des conditions d'élaboration du silicium photovoltaïque par fusion de zone sous plasma

    OpenAIRE

    Amouroux, J; Morvan, D.; Sauvestre, C.; Revel, G. de; Fedoroff, M.; Rouchaud, J.C.

    1980-01-01

    La technique de fusion de zone sous plasma est un procédé de purification qui permet d'obtenir un silicium photovoltaïque à partir d'un silicium métallurgique. La méthode consiste à placer un barreau de silicium sous un plasma d'argon-hydrogène, de provoquer ainsi la fusion d'une zone que l'on déplace afin de drainer les impuretés en surface et en queue de barreau. Un décapage de la surface à l'acide (HF-HNO3) permet d'éliminer les impuretés entre chaque passage. En fin de traitement la conce...

  1. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion, 1980-1993. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1993. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (I) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  2. Nuclear measurements, techniques and instrumentation industrial applications plasma physics and nuclear fusion. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear Measurements, Techniques and Instrumentation, with Industrial Applications (of Nuclear Physics and Engineering), and with Plasma Physics and Nuclear Fusion, issued during the period 1980-1994. Most publications are in English. Proceedings of conferences, symposia, and panels of experts may contain some papers in other languages (French, Russian, or Spanish), but all papers have abstracts in English. Price quotes are in Austrian Schillings, do not include local taxes, and are subject to change without notice. Contents cover the three main categories of (i) Nuclear Measurements, Techniques and Instrumentation (Physics, Chemistry, Dosimetry Techniques, Nuclear Analytical Techniques, Research Reactors and Particle Accelerator Applications, Nuclear Data); (ii) Industrial Applications (Radiation Processing, Radiometry, Tracers); and (iii) Plasma Physics and Nuclear Fusion

  3. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters

    Science.gov (United States)

    Lazic, V.; Colao, F.; Fantoni, R.; Spizzichino, V.; Jovićević, S.

    2007-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) was applied on sediments directly under water. The aim of the research was to develop a method for measuring the sediment elemental composition, including minor elements, which could be implemented in-situ. The plasma was generated by a double-pulse, Q-Switched Nd:YAG laser operated at 1064 nm. For signal detection, both ICCD and non-gated, compact detectors were used. The major difficulties in underwater sediment analyses are related to the natural and laser induced surface roughness, and to the sample softness. The latter is responsible for the formation of particle clouds above the surface, which scatter both the laser and plasma radiation, and often results in breakdown formation above the analyzed surface. In such cases, a broad sonoluminescence emission from water, formed during the gas bubble collapse was sometimes registered. Under optimized experimental conditions, even by using a non-gated detector and single shot acquisition, it was possible to detect several minor sediment constituents, such as titanium, barium, manganese and others. A crude estimation of the Limit of Detection (LODs) for these elements was performed by underwater measurements on certified soils/sediments. Due to strong shot-to-shot fluctuations in the plasma temperature, well correlated calibration curves, aimed for quantitative analyses, could only be obtained after applying an appropriate data processing procedure. The latter selects automatically only the spectra characterized by similar plasma parameters, which are related to their continuum spectral distribution. Application of such a procedure improves the measurement accuracy also in other surroundings and on samples different from the ones analyzed here.

  4. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  5. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  6. Research and development of a plasma jet mass accelerator as a driver for impact fusion. Final report

    International Nuclear Information System (INIS)

    A Ten Module Accelerator has been designed, fabricated and tested at projectile velocities up to 5 km/sec. It has been shown that a projectile with mass less than a half gram can be accelerated by a succession of momentum kicks from plasma jets. The significance of this acceleration mechanism is that it can be used, in principle, to accelerate projectiles to several hundred kilometers per second as a driver for inertial fusion or other energy-related applications. A theoretical base has been developed to understand the physics of plasma jet generation and the coupling of the jet momentum to the projectile

  7. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    Science.gov (United States)

    Cazzaniga, C.; Sundén, E. Andersson; Binda, F.; Croci, G.; Ericsson, G.; Giacomelli, L.; Gorini, G.; Griesmayer, E.; Grosso, G.; Kaveney, G.; Nocente, M.; Cippo, E. Perelli; Rebai, M.; Syme, B.; Tardocchi, M.

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  8. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  9. Invited and contributed papers presented by the theory group at the joint Varenna-Lausanne international workshop `theory of fusion plasmas`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    In this report eight invited and contributed papers of the theory group are included which were presented at joint Varenna-Lausanne international workshop on `theory of fusion plasmas`. (author) figs., tabs., refs.

  10. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    Science.gov (United States)

    Cazzaniga, C.; Nocente, M.; Rebai, M.; Tardocchi, M.; Calvani, P.; Croci, G.; Giacomelli, L.; Girolami, M.; Griesmayer, E.; Grosso, G.; Pillon, M.; Trucchi, D. M.; Gorini, G.

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the 12C(n, α)9Be reaction occurring between neutrons and 12C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  11. Prospects for P11B Fusion with the Dense Plasma Focus: New Resulta

    CERN Document Server

    Lerner, E J

    2004-01-01

    Fusion with p11B has many advantages, including the almost complete lack of radioactivity and the possibility of direct conversion of charged particle energy to electricity, without expensive steam turbines and generators. But two major challenges must be overcome to achieve this goal: obtaining average ion energies well above 100keV and minimizing losses by bremsstrahlung x-rays. Recent experimental and theoretical work indicates that these challenges may be overcome with the dense plasma focus. DPF experiments at Texas A&M University have demonstrated ion and electron average energies above 100keV in several-micron-sized hot-spots or plasmoids. These had density-confinement-time-energy products as high as 5.0 x1015 keVsec/cm3. In these experiments we clearly distinguished between x-rays coming from the hot-spots and the harder radiation coming from electron beam collisions with the anode. In addition, new theoretical work shows that extremely high magnetic fields, which appear achievable in DPF plasmoid...

  12. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  13. 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory; Relatorio de atividades de 2003 da linha de pesquisa e desenvolvimento em fusao termonuclear controlada - fusao. Laboratorio Associado de Plasma (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto

    2004-07-01

    This document represents the 2003 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory - Brazil, approaching the areas of toroidal systems for magnetic confinement, plasma heating, current generation and high temperature plasma diagnostic.

  14. The role of the boundary plasma in defining the viability of a magnetic fusion reactor: A review

    Science.gov (United States)

    Whyte, Dennis

    2012-10-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We review the boundary and plasma-material interaction (PMI) research required to address this deficit as well as related theoretical/scaling methods for extending present results to future devices. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. The scaling methodology suggests intriguing ways forward to prescribe and understand the boundary issues of an eventual reactor in intermediate size devices. Finally, proposed technology and science innovations towards solving the extreme PMI/boundary challenges of magnetic fusion energy will be reviewed.

  15. A new ICRF scenario for bulk ion heating in D-T plasmas: How to utilize intrinsic impurities in fusion devices in our favour

    CERN Document Server

    Kazakov, Y O; Van Eester, D; Bilato, R; Dumont, R; Lerche, E; Mantsinen, M; Messiaen, A

    2015-01-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radiofrequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  16. Data Evaluation and the Establishment of a Standard Library of Atomic, Molecular and Plasma-Material Interaction Data for Fusion. Summary Report of an IAEA Consultants' Meeting

    International Nuclear Information System (INIS)

    Seven experts in the field of atomic, molecular and plasma-material interaction (A+M+PMI) data and data evaluation for fusion plasma physics met with IAEA A+M Data Unit staff at IAEA Headquarters to provide advice towards the establishment of an evaluated and recommended library of A+M+PMI data for fusion. The proceedings and conclusions of the meeting are summarized here. (author)

  17. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    OpenAIRE

    Knoll, G.; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A. J.

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus- infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry. 24:3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apical and basolateral plasma membrane domains after fusion was assessed by autoradiography of liposomal [3H]dipalmitoylphosphatidylcholine after rapid freezing or chemical fixation and further processi...

  18. Insulin-stimulated Plasma Membrane Fusion of Glut4 Glucose Transporter-containing Vesicles Is Regulated by Phospholipase D1D⃞

    OpenAIRE

    Huang, Ping; Altshuller, Yelena M.; Hou, June Chunqiu; Jeffrey E Pessin; Frohman, Michael A.

    2005-01-01

    Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insu...

  19. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H⁻ ion source.

    Science.gov (United States)

    Lawrie, S R; Faircloth, D C; Letchford, A P; Whitehead, M O; Wood, T

    2016-02-01

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H(-) beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10(21) m(-3), whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon. PMID:26932004

  20. Neutron degradation of UV enhanced optical fibers for fusion installations in plasma diagnostics

    International Nuclear Information System (INIS)

    The design of ITER and the future operation of DEMO will require high-temperature and high-neutron flux resistant materials to be used in plasma diagnostics subject to ITER requirements. A solution for remote plasma diagnostics implies the operation of various optical instruments placed apart from the critical temperature-neutron zones with the optical signal transmitted over optical channels for a reduction of radiation effects on the equipment and a higher resistance to electromagnetic disturbances. Generally, data are available on the radiation effects on optical fibers used in communication applications or for transmission in the visible range. A special problem arises when optical signals have to be transmitted in the UV region (200 nm to 450 nm), where attenuation over the distance is quite high (in the range of several meters) and the UV radiation by itself produces an increase of the attenuation after several hours of exposure. Until now, practically no data on the radiation effects on optical fibers for fusion plasma diagnostics operating in UV were published. In the frame of the EU funded Fusion Programme, we focused on the evaluation of radiation induced changes in the optical transmission for different commercially available optical fibers for their possible use in optical light guides. Pure silica optical fibers with an UV enhanced response with various cladding/jacket materials and core diameter of 200 μm and 400 μm were evaluated as they are subject to neutron irradiation. The optical fiber core was of a high hydroxyl content type and the coating was either Polyimide or aluminium. Optical fibers with low (150 deg C) and high (350 deg C) temperature jacket materials were investigated. The optical fiber samples were irradiated at fast neutron facility of the IFIN-HH (Horia Hulubei National Institute for Physics and Nuclear Engineering) U-120 Cyclotron. The neutron flux at 0 angle (i.e. in the beam direction) was found to be equivalent to 2.13 x 108 n

  1. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    Science.gov (United States)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional

  2. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made

  3. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  4. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  5. Interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme

    Science.gov (United States)

    Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.

    2016-06-01

    In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.

  6. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    International Nuclear Information System (INIS)

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics

  7. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains.

    Science.gov (United States)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxPhi domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1(NL4.3) compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  8. Gaussian process tomography for the analysis of line-integrated measurements in fusion plasmas

    International Nuclear Information System (INIS)

    In nuclear fusion research, a variety of diagnostics have been devised for the measurements of different physical quantities, such as electromagnetic radiation in different wavelength intervals. The radiation, including the soft X-ray spectral range, Hα emission as well as others, can be recorded by specifically designed detectors with different sampling frequencies. Commonly, only the line-integrated observations are possible due to the fact that the detectors have to view the plasma from a position outside of the plasma. Therefore, tomography algorithms have been developed to infer the local information of the targeted physical variable from a number of line-integrated data. This thesis presents a Bayesian Gaussian Process Tomographic (GPT) method applied to both soft X-ray and bolometer systems. For the ill-posed inversion problem of reconstructing a 2D emissivity distribution from a number of noisy line-integrated data, Bayesian probability theory can provide a posterior probability distribution about many possible solutions centered at a single most probable solution. The combination of Gaussian Process (GP) prior and multivariate normal (MVN) likelihood enables the posterior probability to be a MVN distribution which provides both the solution and its associated uncertainty. The GP prior enforces the regularization on smoothness by adjusting the length-scale defined in a covariance function. Particularly, a non-stationary GP has been developed to improve the accuracy of reconstruction by using locally adaptive length-scales to take into account the varying smoothness at different positions. The parameters embedded in the model assumption can be optimized through maximizing a joint probability of them based on a Bayesian Occam's razor formalism. In contrast with other tomographic techniques, this method is analytic and non-iterative, thus it can be fast enough for real-time applications under an approximate optimization state. The uncertainty of the

  9. Gaussian process tomography for the analysis of line-integrated measurements in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong

    2014-10-23

    In nuclear fusion research, a variety of diagnostics have been devised for the measurements of different physical quantities, such as electromagnetic radiation in different wavelength intervals. The radiation, including the soft X-ray spectral range, H{sub α} emission as well as others, can be recorded by specifically designed detectors with different sampling frequencies. Commonly, only the line-integrated observations are possible due to the fact that the detectors have to view the plasma from a position outside of the plasma. Therefore, tomography algorithms have been developed to infer the local information of the targeted physical variable from a number of line-integrated data. This thesis presents a Bayesian Gaussian Process Tomographic (GPT) method applied to both soft X-ray and bolometer systems. For the ill-posed inversion problem of reconstructing a 2D emissivity distribution from a number of noisy line-integrated data, Bayesian probability theory can provide a posterior probability distribution about many possible solutions centered at a single most probable solution. The combination of Gaussian Process (GP) prior and multivariate normal (MVN) likelihood enables the posterior probability to be a MVN distribution which provides both the solution and its associated uncertainty. The GP prior enforces the regularization on smoothness by adjusting the length-scale defined in a covariance function. Particularly, a non-stationary GP has been developed to improve the accuracy of reconstruction by using locally adaptive length-scales to take into account the varying smoothness at different positions. The parameters embedded in the model assumption can be optimized through maximizing a joint probability of them based on a Bayesian Occam's razor formalism. In contrast with other tomographic techniques, this method is analytic and non-iterative, thus it can be fast enough for real-time applications under an approximate optimization state. The uncertainty of

  10. ASDEX contributions to the 15th European conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    This report is a collection of 23 IPP Garching contributions concerning confinement studies, plasma heating, impurity studies, plasma stability, and plasma diagnostics. 5 of these contributions have been separately indexed into the data base. (GG)

  11. Refraction-Enhanced X-ray Radiography for Inertial Confinement Fusion and Laser-Produced Plasma Applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, J A; Landen, O L; Kozioziemski, B J; Izumi, N; Dewald, E L; Salmonson, J D; Hammel, B A

    2008-08-26

    We explore various laser-produced plasma and inertial-confinement fusion (ICF) applications of phase-contrast x-ray radiography, and we show how the main features of these enhancements can be considered from a geometrical optics perspective as refraction enhancements. This perspective simplifies the analysis, and often permits simple analytical formulae to be derived that predict the enhancements. We explore a raytrace approach to various material interface applications, and we explore a more general example of refractive bending of x-rays by an implosion plasma. We find that refraction-enhanced x-ray radiography of implosions may provide a means to quantify density differences across shock fronts as well as density variations caused by local heating due to high-Z dopants. We also point out that refractive bending by implosions plasmas can blur fine radiograph features, and can also provide misleading contrast information in area-backlit pinhole imaging experiments unless its effects are taken into consideration.

  12. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  13. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  14. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  15. Plasma induced material defects and threshold values for thermal loads in high temperature resistant alloys and in refractory metals for first wall application in fusion reactors

    International Nuclear Information System (INIS)

    Materials for the application in the first wall of fusion reactors of the tokamak type are subjected to pulsed heat fluxes which range from some 0.5 MW m-2 to 10 MW m-2 during normal plasma operation, and which can exceed 1000 MW m-2 during total plasma disruptions. The structural defects and material fatigue caused by this types of plasma wall interaction are investigated and the results are plotted in threshold loading curves. Additionally, the results are, as far as possible, compared with quantitative, theoretical calculations. These procedures allow a semiquantitative evaluation of the applicability of the mentioned metals in the first wall of fusion reactors. (orig.)

  16. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  17. Analyses on Cultural Differences and Fusion Between Chinese and Ameri-cans in The Joy Luck Club

    Institute of Scientific and Technical Information of China (English)

    申剑丽

    2015-01-01

    This paper chiefly discusses the cultural conflicts and reconciliations between characters in The Joy Luck Club from an inter-cultural perspective and comes to a conclusion that the fusion of different cultures is a tendency in the world.

  18. Annual progress report on fusion plasma theory task I: magnetic confinement fusion plasma theory for the period January 1, 1984-September 30, 1984

    International Nuclear Information System (INIS)

    The research performed under this contract over the past nine months has concentrated on some key tandem mirror plasma confinement and heating issues (heating at the second electron cyclotron harmonic, pumping of electrons by ICRF in Phaedrus, pondermotive force effects on MHD stability, moments approach to tandem mirror transport), and on some aspects of tokamak plasma confinement (long mean free path resistive MHD, Tokapole II equilibria with imbedded coils and internal separatrices, ballooning modes on a divertor separatrix). Progress in these and some other miscellaneous areas are briefly summarized in this progress report

  19. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    Science.gov (United States)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our

  20. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    International Nuclear Information System (INIS)

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas

  1. Development of miniaturized specimens for the study of neutron irradiation/plasma exposure synergistic effects on candidate fusion reactor materials

    International Nuclear Information System (INIS)

    The aim of this work is to choose a miniaturized specimen version relevant for testing candidate fusion reactor materials including mechanical testing after combined neutron irradiation/plasma exposure in a fission reactor. The material examined was reactor pressure vessel type steel in irradiated and aged (unirradiated) conditions. Comparative standard impact, three point bend and small punch tests were conducted. It is established that there is a possibility of miniaturization of irradiated steel experimental specimens by means of proper specimens type choice with mass reducing from ∼40 (Charpy) to 0.4 g (small plates). (orig.)

  2. Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nazikian, R. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Berk, H. L. [Univ. of Texas, Austin, TX (United States); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States); Fonck, R. J. [Univ. of Wisconsin, Madison, WI (United States); Gorelenkov, N. N. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Holcomb, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kramer, G. J. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Jayakumar, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); La Haye, R. J. [General Atomics, San Diego, CA (United States); McKee, G. R. [Univ. of Wisconsin, Madison, WI (United States); Makowski, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peebles, W. A. [Univ. of California, Los Angeles, CA (United States); Rhodes, T. L. [Univ. of California, Los Angeles, CA (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Strait, E. J. [General Atomics, San Diego, CA (United States); VanZeeland, M. A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States); Zeng, L. [Univ. of California, Los Angeles, CA (United States)

    2006-03-01

    Evidence is provided for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments verify wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are like the scale length of electrostatic drift wave turbulence. Theoretical analysis verifies a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.

  3. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Southwestern Institution of Physics, Chengdu 610041 (China); Bao, Jian [Fusion Simulation Center, Peking University, Beijing 100871 (China); Han, Tao; Wang, Jiaqi [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Zhihong, E-mail: zhihongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-02-15

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to D{sub e}{sup 2}, where D{sub e} is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to D{sub e} in the parameter regime of fusion plasmas.

  4. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  5. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  6. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  7. Theoretical and experimental study of cyclotronic waves in a fusion plasma; Etude theorique et experimentale des ondes cyclotroniques electroniques dans un plasma de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Vezard, D.

    1994-12-20

    This thesis presents a study concerning cyclotronic waves in a plasma. It starts with an illustration of the elementary interaction between electromagnetic waves and matter.It shows that electrons from tokamak absorbs waves at cyclotronic frequency. Cyclotronic waves are studied by solving the dispersion relation in plasma; it concerns polarisation, absorption, dispersion, extinction. Then, classical theories are reminded in order to speak about decoupled electrons and their interactions. Absorption and emission properties of cyclotronic waves by electrons from a queue are described. After that, cyclotronic waves propagation is studied taking into account resonance. The last part of this thesis is dedicated to the electronic distribution function that is made by a wave spectra at a inferior hybrid frequency. (TEC). 129 refs., 75 figs.

  8. Plasma Physics and Controlled Nuclear Fusion Research. Proceedings of the Third International Conference on Plasma Physics and Controlled Nuclear Fusion Research. Vol. I

    International Nuclear Information System (INIS)

    Proceedings of the Third Conference on this matter convened by the IAEA and held at Novosibirsk, 1-7 August 1968. The meeting was attended by more than 400 participants from 24 countries. Contents: (Vol. I) Summary of the Conference (4 papers); Shock waves (8 papers); Toroidal confinement I (Tokamak, Zeta, etc.) (11 papers); Toroidal confinement II (Multipoles, etc.) (9 papers) ; Toroidal confinement III (Stellarators) (9 papers) ; Drift waves and non-linear phenomena (15 papers); Toroidal confinement IV (Theory), Laser-produced plasmas, Astron (9 papers). (Vol. II) Plasma focus, Confinement by neutral gas. Instabilities and waves (6 papers); Open-ended systems I (Mirrors) (11 papers) ; HF heating, confinement and stabilization (13 papers); Open-ended systemsII (Theta pinch)(12 papers); Turbulent heating, Beam-plasma interaction (10 papers). Each paper is in its original language (80 English, 37 Russian and 10 French) and is preceded by an abstract in English with one in the original language if this is not English. The discussions are in English. (author)

  9. Plasma Physics and Controlled Nuclear Fusion Research. Proceedings of the Third International Conference on Plasma Physics and Controlled Nuclear Fusion Research. Vol. II

    International Nuclear Information System (INIS)

    Proceedings of the Third Conference on this matter convened by the IAEA and held at Novosibirsk, 1-7 August 1968. The meeting was attended by more than 400 participants from 24 countries. Contents: (Vol. I) Summary of the Conference (4 papers); Shock waves (8 papers); Toroidal confinement I (Tokamak, Zeta, etc.) (11 papers); Toroidal confinement II (Multipoles, etc.) (9 papers); Toroidal confinement III (Stellarators) (9 papers); Drift waves and non-linear phenomena (15 papers); Toroidal confinement IV (Theory) , Laser-produced plasmas, Astron (9 papers). (Vol. II) Plasma focus, Confinement by neutral gas. Instabilities and waves (16 papers); Open-ended systems I (Mirrors) (11 papers); HF heating, confinement and stabilization (13 papers); Open-ended systems II (Theta pinch) (12 papers); Turbulent heating, Beam-plasma interaction (10 papers). Each paper is in its original language (80 English, 37 Russian and 10 French) and is preceded by an abstract in English with one in the original language if this is not English. The discussions are in English. (author)

  10. Time-frequency analysis of non-stationary fusion plasma signals using an improved Hilbert-Huang transform

    Science.gov (United States)

    Liu, Yangqing; Tan, Yi; Xie, Huiqiao; Wang, Wenhao; Gao, Zhe

    2014-07-01

    An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas.

  11. Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    Science.gov (United States)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1983-11-01

    We report a set of neutron spectrum measurements made at the Alcator-C tokamak under Ohmic-heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular, the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 and 1050 eV have been obtained. The width for the 780-eV case is 64+ 9-11 keV and that of the 1050-eV case, 81+10-14 keV (full width at half maximum), corresponding to ion temperatures of 740 and 1190 eV, respectively.

  12. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    Science.gov (United States)

    Ghoos, K.; Dekeyser, W.; Samaey, G.; Börner, P.; Baelmans, M.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.

  13. Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    F. Ed Cecil

    2011-06-30

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  14. A thin foil Faraday collector as a lost alpha detector for high yield d-t tokamak fusion plasmas

    International Nuclear Information System (INIS)

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  15. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  16. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  17. Interpretation of perturbed temperature based on X-ray emissivity in fusion plasma experiments

    Science.gov (United States)

    Janicki, C.; Cote, A.; Dichaud, D.

    1995-05-01

    The relationship between the dynamical response to perturbations of the soft X-ray emissivity (δE), the electron temperature (δTe), the electron density (δne) and the impurity concentration (δni) for a Maxwellian plasma is analysed in detail. In particular, the so-called 'impurity function' F(Zeff) is also strongly dependent on Te via the direct radiative recombination (DRR) contribution to the X-ray emission, which significantly affects the relation between the perturbed quantities as derived from the popular expression E propto F(Zeff)ne2Tealpha even if the impurity content (or Zeff) remains constant. In order to overcome this difficulty, a simple analytical approximation is derived for F(Zeff,Te) that can be used as a formula to relate the perturbed quantities δE, δTe, δne and δF with ease and accuracy. This simple approximation is illustrated by studying saw-toothing discharges on the Tokamak de Varennes (TdeV) with Te, ne and E measured by the Thomson scattering, the FIR interferometer and the X-ray camera diagnostics, and its accuracy is tested against the predictions of a full X-ray modelling code

  18. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grote, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  19. β2 Adrenergic Receptor Fluorescent Protein Fusions Traffic to the Plasma Membrane and Retain Functionality

    Science.gov (United States)

    Bubnell, Jaclyn; Pfister, Patrick; Sapar, Maria L.; Rogers, Matthew E.; Feinstein, Paul

    2013-01-01

    Green fluorescent protein (GFP) has proven useful for the study of protein interactions and dynamics for the last twenty years. A variety of new fluorescent proteins have been developed that expand the use of available excitation spectra. We have undertaken an analysis of seven of the most useful fluorescent proteins (XFPs), Cerulean (and mCerulean3), Teal, GFP, Venus, mCherry and TagRFP657, as fusions to the archetypal G-protein coupled receptor, the β2 adrenergic receptor (β2AR). We have characterized these β2AR::XFP fusions in respect to membrane trafficking and G-protein activation. We noticed that in the mouse neural cell line, OP 6, that membrane bound β2AR::XFP fusions robustly localized in the filopodia identical to gap::XFP fusions. All β2AR::XFP fusions show responses indistinguishable from each other and the non-fused form after isoprenaline exposure. Our results provide a platform by which G-protein coupled receptors can be dissected for their functionality. PMID:24086401

  20. Local transport barrier formation and relaxation in reverse-shear plasmas on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The roles of turbulence stabilization by sheared ExB flow and Shafranov shift gradients are examined for Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] enhanced reverse-shear (ERS) plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of ExB and Shafranov shift effects was performed by varying the ExB shear through changes in the toroidal velocity with nearly steady-state pressure profiles. Transport and fluctuation levels increase only when ExB shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balance injection. copyright 1997 American Institute of Physics

  1. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion

    Science.gov (United States)

    Montgomery, David S.

    2016-05-01

    Our understanding of laser-plasma instability (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments—ns pulses with ˜kJ energy incident on hundred-micron-scale target plasmas with ˜keV electron temperatures—to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ˜4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to their control. These efforts have led to a change in paradigm for LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. A tutorial is provided that reviews the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed.

  2. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of pa impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  3. New linear plasma devices in the trilateral euregio cluster for an integrated approach to plasma surface interactions in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unterberg, B., E-mail: b.unterberg@fz-juelich.de [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Jaspers, R. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Koch, R. [Laboratoire de Physique des Plasmas/Laboratorium voor Plasmafysica, ERM/KMS, EURATOM-Association, B-1000 Brussels (Belgium); Massaut, V. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Rapp, J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Reiter, D.; Kraus, S.; Kreter, A.; Philipps, V.; Reimer, H.; Samm, U.; Scheibl, L.; Schweer, B. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Schuurmans, J.; Uytdenhouwen, I. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Al, R.; Berg, M.A. van den; Brons, S.; Eck, H.J.N. van; Goedheer, W.J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2011-10-15

    New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device with super-conducting magnetic field coils which will reach ITER-like divertor conditions at high magnetic field, ii) the newly proposed linear plasma device JULE-PSI (FZJ), which will allow to expose toxic and neutron activated target samples to ITER-like fluences and ion energies including in vacuo analysis of neutron activated samples, and iii) the plasmatron VISION I, a compact plasma device which will be operated inside the tritium lab at SCK-CEN Mol, capable to investigate tritium plasmas and moderately activated wall materials. This contribution shows the capabilities of the new devices and their forerunner experiments (Pilot-PSI at FOM and PSI-2 Juelich at FZJ) in view of the main objectives of the new TEC program on plasma surface interactions.

  4. Laser-plasma interactions in the context of inertial fusion research

    International Nuclear Information System (INIS)

    The ignition scale facilities for the inertial confinement fusion now under construction in France and in the United States are based on a low adiabat compression of a spherically symmetric target and a central point ignition. An isochoric heating of a compressed core, known as the fast ignition, offers a possibility to reduce the ignition energy several times and significantly increase the gain. Fast ignition projects for the inertial fusion energy based on a PW-power driver are under discussion now in Europe, United States and Japan. We present the main features of the European project HiPER, aiming at the demonstration of the laser driven fusion. The key issues for the laser and target specifications are addressed in terms of the basic theory, numerical simulations and experiments on currently available large-scale laser facilities

  5. Ablation of a Deuterium Pellet in a Fusion Plasma Viewed as a Stopping Power Problem

    DEFF Research Database (Denmark)

    Chang, C. T.

    1983-01-01

    sublimation energy of hydrogen isotopes, shortly after the direct impact of the electrons, a dense cloud forms around the pellet. This cloud of ablated material then serves as a stopping medium for the incoming electrons, thus prolongs the pellet life-time. As a result, the deep penetration of the pellet into......At present, the most exploited technology to refuel a future fusion reactor is the high speed injection of macroscopic size pellet of solid hydrogen isotopes. The basic idea is that the ablation of a pellet in a fusion reactor is mainly caused by thermal electrons (~ 10 keV) /1/. Due to the low...

  6. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  7. Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Chapman, T.; Berger, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Brantov, A.; Bychenkov, V. Yu. [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 Russia and Center for Fundamental and Applied Research, VNIIA, ROSATOM, 127055 Moscow (Russian Federation); Winjum, B. J. [Department of Electrical Engineering, UCLA, Los Angeles, California 90095 (United States); Brunner, S. [Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Tableman, A.; Tzoufras, M. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States); Glenzer, S. [LCLS, Stanford, California 94025 (United States)

    2016-01-15

    In ignition scale hot plasmas, temperature gradients and thermal transport modify electron distributions in a velocity range resonant with Langmuir waves typical of those produced by stimulated Raman scattering. We examine the resultant changes to the Landau damping experienced by these Langmuir waves and the levels of thermal plasma fluctuations. The form factor and Thomson scattering cross-section in such plasmas display unique characteristics of the background conditions. A theoretical model and high-order Vlasov-Fokker-Planck simulations are used in our analysis. An experiment to measure changes in thermal plasma fluctuation levels due to a thermal gradient is proposed.

  8. Numerical simulation by a random particle method of Deuterium-Tritium fusion reactions in a plasma*

    Directory of Open Access Journals (Sweden)

    Charles Fréderique

    2013-01-01

    Full Text Available We propose and we justify a Monte-Carlo algorithm which solves a spatially homogeneous kinetic equation of Boltzmann type that models the fusion reaction between a deuterium ion and a tritium ion, and giving an α particle and a neutron. The proposed algorithm is validated with the use of explicit solutions of the kinetic model obtained by replacing the fusion cross-section by a Maxwellian cross section. On propose et on justifie un algorithme de type Monte-Carlo permettant de résoudre un modèle cinétique homogène en espace de type Boltzmann modélisant la réaction de fusion entre un ion deutérium et un ion tritium, et donnant une particule α et un neutron. L’algorithme proposé est par ailleurs validé via des solutions explicites du modèle cinétique obtenues en remplaçant la section efficace de fusion par une section efficace maxwellienne.

  9. Introduction to the physics of plasma wall interactions in controlled fusion

    International Nuclear Information System (INIS)

    This paper begins by addressing the major physics questions of confinement, beta ratio, heating and current drive, and impurity and particle control necessary to the realization of controlled fusion, and then reviews the current tokamak data base and the operating projections for the current tokamak projects. The paper concludes by classifying the lectures presented at the conference according to subject

  10. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  11. Analysis and evaluation of the hydrogen risk in a thermonuclear fusion reactor; Analyse et evaluation du risque hydrogene dans un reacteur de fusion thermonucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Chaudron, V. [Societe Helion, 13 - Aix en Provence (France); Arnould, F. [Technicatome DI SEPS, 13 - Aix en Provence (France); Latge, C. [CEA Cadarache, Dept. d' Etudes des Dechets DED, 13 - Saint Paul lez Durance (France); Laurent, A. [Ecole Nationale Superieure des Industries Chimiques, ENSIC, Lab. des Sciences du Genie Chimique, CNRS INPL, 54 - Villers les Nancy (France)

    2001-07-01

    After a recall of the principle of controlled thermonuclear fusion, the ITER reactor project is briefly described. The integrity of the reactor must be preserved in the case of a potential explosion of the hydrogen generated inside the reactor, in order to avoid any dispersion radioactive, chemical or toxic materials in the environment. The fundamental principles of safety developed to fulfill these objectives, in particular the defense-in-depth concept, are presented. The main potential source of hydrogen production is the oxidation of beryllium, which is used as protection material in the first wall of the torus, and the accidental presence of water, as reported in several scenarios. The confinement strategy is then described with the qualification of the role of the different barriers. Finally, the hydrogen explosion risk is analyzed and evaluated with respect to the sources, to the reference envelope scenarios and to the location of hydrogen inside the ITER reactor. It appears, at the engineering stage, that the vacuum toric vessel, the discharge reservoir and the exchanger compartments are the most worrying parts. (J.S.)

  12. Use of plasma waves to create in Tokamaks quasi-stationary conditions required for controlled fusion

    International Nuclear Information System (INIS)

    In this thesis are studied the coupling of hybrid waves to the plasma, multijunction antennas, hybrid wave stochastic propagation, fast wave current drive and lower-hybrid current drive experiments in Tore Supra and Jet. The possibility of decoupling current density profile and temperature give one more degree of freedom for the control of plasma in a configuration which is not very flexible

  13. Finite-difference time-domain simulation of fusion plasmas at radiofrequency time scales

    International Nuclear Information System (INIS)

    Simulation of dense plasmas in the radiofrequency range are typically performed in the frequency domain, i.e., by solving Laplace-transformed Maxwell's equations. This technique is well-suited for the study of linear heating and quasilinear evolution, but does not generalize well to the study of nonlinear phenomena. Conversely, time-domain simulation in this range is difficult because the time scale is long compared to the electron plasma wave period, and in addition, the various cutoff and resonance behaviors within the plasma insure that any explicit finite-difference scheme would be numerically unstable. To resolve this dilemma, explicit finite-difference Maxwell terms are maintained, but a carefully time-centered locally implicit method is introduced to treat the plasma current, such that all linear plasma dispersion behavior is faithfully reproduced at the available temporal and spatial resolution, despite the fact that the simulation time step may exceed the electron gyro and electron plasma time scales by orders of magnitude. Demonstrations are presented of the method for several classical benchmarks, including mode conversion to ion cyclotron wave, cyclotron resonance, propagation into a plasma-wave cutoff, and tunneling through low-density edge plasma

  14. ASDEX papers at the 13th European conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    This report provides 29 ASDEX papers concerning pellet refuelling, confinement, high-beta plasma and MHD-equilibrium, heating by ICR, lower hybrid and current-drive, impurity studies and plasma diagnostics. All of these papers have been indexed separately. (GG)

  15. Two Decades of Progress in Understanding and Control of Laser Plasma Instabilities in Indirect Drive Inertial Fusion

    Science.gov (United States)

    Montgomery, David S.

    2015-11-01

    Our understanding of laser-plasma interaction (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments--ns pulses with ~kJ energy incident on hundred-micron-scale target plasmas with ~keV electron temperatures--to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ~4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to the their control. The need to interpret and understand these detailed LPI experimental results has inspired an evolution of theoretical models, from 1D fluids with linear plasma wave responses to individual beams via a three-wave interaction, to today's fully nonlinear, 2D and 3D fluid and kinetic simulations of systems whose LPI dynamics are dominated by wave-wave and wave-particle nonlinearity. These efforts have led to a change in paradigm for LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. This talk will review the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  16. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer

    International Nuclear Information System (INIS)

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  17. In depth fusion flame spreading with a deuterium-tritium plane fuel density profile for plasma block ignition

    Institute of Scientific and Technical Information of China (English)

    B.Malekynia; S.S.Razavipour

    2012-01-01

    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x =0 qualitatively.A high threshold energy flux density,i.e.,E* =4.3 x 1012 J/m2,has been reached.Recently,fast ignition by employing clean petawatt-picosecond laser pulses was performed.The anomalous phenomena were observed to be based on suppression of prepulses.The accelerated plasma block was used to ignite deuterium-tritium fuel at solid-state density.The detailed analysis of the thermonuclear wave propagation was investigated.Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition.In this paper,the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks,thermonuclear reaction,heat transfer,electron-ion equilibration,stopping power of alpha particles,bremsstrahlung,expansion,density dependence,and fluid dynamics.New ignition conditions may be obtained by using temperature equations,including thc dcnsity profile that is obtained by the continuity equation and expansion velocity.The density is only a function of x and independent of time.The ignition energy flux density,E*t,for the x ≠ 0 layers is 1.95 × 1012 J/m2.Thus threshold ignition energy in comparison with that at x =0 layers would be reduced to less than 50 percent.

  18. Expansion of a plasma across a transverse magnetic field in a negative hydrogen ion source for fusion

    Science.gov (United States)

    Fantz, Ursel; Schiesko, Loic; Wünderlich, Dirk

    2012-10-01

    Negative ion sources are a key component of the neutral beam injection systems for the international fusion experiment ITER. To achieve the required ion current of 40 A at a tolerable amount of co-extracted electrons (electron to ion ratio below one) the source is separated into a plasma generation region and an expansion chamber equipped with a magnetic filter field (up to 10 mT). The field is needed for: (1) cooling the electrons down and thus minimize the H^- destruction by collisions, (2) to reduce the co-extracted electron current, and (3) to enhance the extraction probability for the surface produced negative ions. The area of the ITER source will be approximately 1m width and 2 m height, the IPP prototype source is a 1/8-size source. The recently installed flexible magnetic filter frame allows for systematic filter field studies (strength, position, polarity). Two Langmuir probes have been used to measure the plasma parameters simultaneously in axial direction. The profiles in the upper and lower part of the expansion chamber show beside the expected electron temperature and density decrease a drop in the plasma potential and a drift depending on the polarity, which vanishes when removing the filter field. The data interpretation is supported by modeling activities.

  19. Astrophysics and Fusion Plasmas: application of the SparSpec algorithm to the data analysis and design of the ITER high-frequency Mirnov coil diagnostic system

    OpenAIRE

    Testa, Duccio; Carfantan, Herve; Chavan, Rene; Fasoli, Ambrogio; Lister, Jo; Moret, Jean-Marc; Panis, Theodoros; Sanchez, Francisco; Toussaint, Matthieu; Klein, Alexander; Snipes, Jo; Encheva, Anna; Vayakis, George; Walker, Christopher; Arshad, Shakeib

    2008-01-01

    Analysis of magnetic fluctuations is important for understanding the magneto-hydrodynamic (MHD) properties of fusion plasmas. These properties affect nearly all aspects of behaviour of magnetic confinement, and thus are of interest in topics ranging from global plasma stability, control, and disruption avoidance, to more subtle areas such as MHD spectroscopy. Mode number analysis is generally accomplished by interpreting signals from a finite number of Mirnov coils, which typically are uneven...

  20. Seismic analysis of the Mirror Fusion Test Facility: soil structure interaction analyses of the Axicell vacuum vessel. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.

    1986-03-01

    This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating response for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.

  1. Spatial distribution of the plasma parameters in the RF negative ion source prototype for fusion

    Science.gov (United States)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2015-04-01

    A numerical model, based on the fluid plasma theory, has been used for description of the spatial distribution of the plasma parameters (electron density and temperature, plasma potential as well as densities of the three types of positive hydrogen ions) in the IPP prototype RF negative hydrogen ion source. The model covers the driver and the expansion plasma region of the source with their actual size and accounts for the presence of the magnetic filter field with its actual value and location as well as for the bias potential applied to the plasma grid. The obtained results show that without a magnetic filter the two 2D geometries considered, respectively, with an axial symmetry and a planar one, represent accurately the complex 3D structure of the source. The 2D model with a planar symmetry (where the E×B and diamagnetic drifts could be involved in the description) has been used for analysis of the influence, via the charged-particle and electron-energy fluxes, of the magnetic filter and of the bias potential on the spatial structure of the plasma parameters in the source. Benchmarking of results from the code to experimental data shows that the model reproduces the general trend in the axial behavior of the plasma parameters in the source.

  2. Core Plasma Characteristics of a Spherical Tokamak D-3He Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    Shi Bingren

    2005-01-01

    The magnetic fusion reactor using the advanced D-3He fuels has the advantage of much less-neutron productions so that the consequent damages to the first wall are less serious. If the establishment of this kind of reactor becomes realistic, the exploration of 3He on the moon will be largely motivated. Based on recent progresses in the spherical torus (ST) research, we have physically designed a D-3He fusion reactor using the extrapolated results from the ST experiments and also the present-day tokamak scaling. It is found that the reactor size significantly depends on the wall reflection coefficient of the synchrotron radiation and of the impurity contaminations.The secondary reaction between D-D that promptly leads to the D-T reaction producing 14 MeV neutrons is also estimated. Comparison of this D-3He ST reactor with the D-T reactor is made.

  3. A new design of a semiconductor bolometer on rigid substrate for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    A new, fast, and very sensitive semiconductor bolometer has been designed and developed for the measurement of radiative energy losses in fusion devices in which the hard radiation level is not too high. Special care was taken in the design of the bolometer to simplify both the construction technology and the installation in fusion devices. The major novelty of this bolometer is the use of a low thermal conductivity rigid substrate, instead of the typical thin foil stretched on a rigid frame. In spite of large detector-substrate contact area, the cooling time constant reaches values as high as 150 ms. The rigid substrate allows the detector to be very robust and reliable; moreover, the monolithic integration of array structures is straightforward. The detector has been fabricated with a thin-film multilayer technology achieving very low thermal capacitance (x thin film with a high thermal coefficient of the electrical resistance (-4.5%/K) as sensing thermistor

  4. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  5. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    International Nuclear Information System (INIS)

    Laser-driven Inertial Confinement Fusion (ICF) relies on the use of high-energy laser beams to compress and ignite a thermonuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources-combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-term program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters. (authors)

  6. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Science.gov (United States)

    Labaune, Christine

    2016-10-01

    Laser-driven Inertial Confinement Fusion (ICF) relies on the use of high-energy laser beams to compress and ignite a the1monuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources-combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-te1m program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  7. Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture

    Directory of Open Access Journals (Sweden)

    Labaune Christine

    2013-11-01

    Full Text Available Laser-driven Inertial Confinement Fusion (ICF relies on the use of high-energy laser beams to compress and ignite a thermonuclear fuel with the ultimate goal of producing energy. Fusion is the holy grail of energy sources–combining abundant fuel with no greenhouse gas emissions, minimal waste products and a scale that can meet mankind's long-term energy demands. The quality and the efficiency of the coupling of the laser beams with the target are an essential step towards the success of laser fusion. A long-term program on laser-plasma interaction physics has been pursued to understand the propagation and the coupling of laser pulses in plasmas for a wide range of parameters.

  8. Feasibility study of a hybrid subcritical fission system driven by Plasma-Focus fusion neutrons

    International Nuclear Information System (INIS)

    Highlights: • A model of a subcritical cascade driven by a Plasma Focus device is presented. • Optimum parameters to achieve given levels of neutron amplification are produced. • Monte Carlo calculations for spherical shells of enriched Uranium were performed. • Break-even conditions can be achieved with Plasma Focus of tens of kJ. - Abstract: A feasibility analysis of a hybrid fusion–fission system consisting of a two-stage spherical subcritical cascade driven by a Plasma Focus device is presented. The analysis is based on the one-group neutron diffusion equation, which was appropriately cast to assess the neutronic amplification of a spherical configuration. A design chart was produced to estimate the optimum dimensions of the fissile shells required to achieve different levels of neutron amplification. It is found that cascades driven by Plasma Focus of tens of kJ are feasible. The results were corroborated by means of Monte Carlo calculations

  9. Performance of magnetically injected plasma opening switches for the Particle Beam Fusion Accelerator 2 (PBFA 2)

    International Nuclear Information System (INIS)

    Plasma opening switch experiments using a magnetically injected plasma have been in progress since October 1988. Plasma densities of 1 x 1012 to 2 x 1013 e/cm3 have been injected from the anode side into the 8 cm gap of the 20 ohm magnetically insulated transmission line of PBFA II using a slowly rising Br,z magnetic field. This field confines the azimuthally-uniform plasma to produce switches up to 30 cm in length. Four MIP geometries have been investigated to find a higher electrical impedance when the switch opens. These studies have shown that a separation of 10 to 20 cm from the load is important to keep the POS from affecting the load performance. With such a separation, 20 to 30 TW of power at 7 to 11 MV has been delivered to electron and ion diode loads. Data on switch performance with various loads and factors that improve performance are discussed. 4 refs., 6 figs

  10. Report on the workshop on atomic and plasma physics requirements for heavy ion fusion, Argonne National Lab., December 13-14, 1979

    International Nuclear Information System (INIS)

    Atomic, molecular, and plasma physics areas that are relevant to inertial confinement fusion by energetic heavy ions are identified. Discussions are confined to problems related to the design of heavy ion accelerators, accumulation of ions in storage rings, and the beam transport in a reactor vessel

  11. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    NARCIS (Netherlands)

    Knoll, G.; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A.J.

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus-infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry, 24: 3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apica

  12. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  13. Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas

    Indian Academy of Sciences (India)

    N K Gupta; B K Godwal

    2002-07-01

    Effects of non-local thermodynamic equilibrium (non-LTE) condition on emission and hydrodynamics of typical inertial confinement fusion (ICF) plasmas are studied. The average degree of ionization at high temperatures is seen to be much lower compared to the values obtained from Thomas–Fermi scaling or Saha equation for high- element like gold. LTE and non-LTE predictions for emitted radiation from laser-driven gold foil are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. The effects of one group and multigroup, LTE and non-LTE approximations of radiation transport on hydrodynamic parameters are studied for laser-driven aluminium and gold foils. It is further seen that non-LTE and multigroup effects play an important role in predicting conversion efficiency of laser light to X-rays

  14. Calculations of total fusion power and spatial distribution of emissivity for a D-T thermal plasma

    International Nuclear Information System (INIS)

    The feasibility of a neutron emissivity profile monitor for NET (Next European Torus) is investigated by means of a Monte Carlo code that simulates the neutron emission of a burring plasma within the NET configuration and assuming an ideal neutron diagnostic tool (a set of five horizontal collimators). The numerical values are treated as experimental data which are analyzed and inverted with several procedures in order to obtain the emissivity profile and to evaluate the total fusion power. The results show that the multicollimator design assumed in this preliminary work is inadequate to achieve the required accuracy and to fit the theoretical profiles. Suggestions are given to improve the conceptual design of the profile monitor for NET

  15. A fully non-linear multi-species Fokker-Planck-Landau collision operator for simulation of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2016-06-01

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker-Planck-Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker-Planck-Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.

  16. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    van Eck, H. J. N.; Kleyn, A. W.; Lof, A.; van der Meiden, H. J.; van Rooij, G. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 1020 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 1024 m−2

  17. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    H.J.N. van Eck; A.W. Kleijn; A. Lof; H.J. van der Meiden; G.J. van Rooij; J. Scholten; P.A. Zeijlmans van Emmichoven

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 10 20 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 10 24 m−

  18. Performance of magnetically-injected-plasma opening switches on the particle beam fusion accelerator 2

    International Nuclear Information System (INIS)

    Plasma opening switch (POS) experiments have been performed on the PBFA II ion beam accelerator to develop a switch which will provide voltage and power gain to an applied-B lithium ion diode. These experiments have successfully coupled power to electron and ion beam diodes using a Magnetically-Injected-Plasma (MIP) POS. Carbon plasma with electron densities of 1 x 1012 to 2 x 1013 /cm3 have been injected from the anode into the 8 cm gap of the 20-ohm Magnetically-Insulated-Transmission Line (MITL) of PBFA II along a Br,z magnetic field. The MIP switch uses the inertia of the plasma to keep the switch closed and the magnetic pressure of Bθ from the conduction current to open the switch. The configuration of the injecting magnetic field and the plasma source has a significant effect on the efficiency of coupling power to high impedance loads. Plasma near the center of the injecting magnetic field limits the opening impedance of the switch and subsequently the power delivered to the load. The axial location of the switch with respect to the load has also been identified as a critical parameter in increasing the coupling efficiency. A length of 10 to 20 cm of MITL between the POS and the load has increased the power delivered to the load. Data on switch performance with high impedance loads and factors which improved performance are discussed

  19. ORNL TNS Program: plasma engineering considerations and innovations for a medium field tokamak fusion reactor

    International Nuclear Information System (INIS)

    Recent plasma engineering studies have ascertained a viable concept for The Next Step (TNS) reactor based on medium toroidal fields between 4 T and 7 T at the plasma center, plasma anti β values up to 10%, and averaged densities between 0.6 x 1014 cm-3 and 2.5 x 1014 cm-3. Plasma engineering innovations that can substantially reduce the size, cost, and complexity of the TNS reactor have been explored and are summarized. It is shown that the previously anticipated requirement of high pellet velocities can be substantially reduced; the toroidal field (TF) ripple requirements may be relaxed to reduce the number of TF coils and improve machine access; hybrid equilibrium field (EF) coils have been shown to require building only small interior coils and to reduce the power supply required by the exterior coils; proper approaches of microwave plasma preheating may reduce the peak loop voltage for start-up by an order of magnitude. The medium-field TNS reactor concepts and the plasma engineering innovations discussed should be applicable to other designs of tokamak reactors; some of the suggested innovations will be tested in upcoming experiments

  20. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  1. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  2. Proton imaging of hohlraum plasma stagnation in inertial-confinement-fusion experiments

    International Nuclear Information System (INIS)

    Proton radiography of the spatial structure and temporal evolution of plasma blowing off from a hohlraum wall reveals how the fill gas compresses the wall blow-off, inhibits plasma jet formation and impedes plasma stagnation in the hohlraum interior. The roles of spontaneously generated electric and magnetic fields in hohlraum dynamics and capsule implosions are demonstrated. The heat flux is shown to rapidly convect the magnetic field due to the Nernst effect, which is shown to be ∼10 times faster than convection by the plasma fluid from expanded wall blow-off (vN ∼ 10v). This leads to inhibition of heat transfer from the gas region in the laser beam paths to the surrounding cold gas, resulting in a local plasma temperature increase. The experiments show that interpenetration of the two materials (gas and wall) occurs due to the classical Rayleigh–Taylor instability as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blow-off. This experiment provides physics insight into the effects of fill gas on x-ray-driven implosions, and would impact the ongoing ignition experiments at the National Ignition Facility. (paper)

  3. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  4. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    International Nuclear Information System (INIS)

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity

  5. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    Science.gov (United States)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  6. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  7. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  8. Scientific report. Plasma-wall interaction studies related to fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Temmerman, G. De

    2006-07-01

    This scientific report summarises research done on erosion and deposition mechanisms affecting the optical reflectivity of potential materials for use in the mirrors used in fusion reactors. Work done in Juelich, Germany, at the Federal Institute of Technology in Lausanne, Switzerland, the JET laboratory in England and in Basle is discussed. Various tests made with the mirrors are described. Results obtained are presented in graphical and tabular form and commented on. The influence of various material choices on erosion and deposition mechanisms is discussed.

  9. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); John Adams Institute for Accelerator Science, Department of Physics, University of Oxford (United Kingdom); Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom)

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  10. Plasma physics and controlled nuclear fusion research 1994. V. 1. Proceedings of the fifteenth international conference

    International Nuclear Information System (INIS)

    This volume contains (i) the traditional Artsimovich Memorial Lecture; (ii) nine presentations giving an overview of toroidal confinement systems (TFTR, JT-60U, JET, DIII-D, TORE SUPRA, Alcator C-Mod, JFT-2M and T-10 tokamaks and the Wendelstein 7-AS stellarator), (iii) twenty-three presentations on core plasma physics (mostly on charged-particle transport and improved confinement regimes), (iv) eight presentations on plasma heating and current drive, (v) twelve presentations on divertors and edge physics, (vi) thirteen on concept optimization (shaping of magnetic field configuration, control of plasma profiles and of disruptions, a.o.), and (vii) six on helical systems (stellarators, including torsatron/heliotron). Refs, figs and tabs

  11. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  12. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  13. Tungsten Data for Current and Future Uses in Fusion and Plasma Science

    Directory of Open Access Journals (Sweden)

    Peter Beiersdorfer

    2015-06-01

    Full Text Available We give a brief overview of our recent experimental and theoretical work involving highly charged tungsten ions in high-temperature magnetically confined plasmas. Our work includes X-ray and extreme ultraviolet spectroscopy, state-of-the-art structure calculations, the generation of dielectronic recombination rate coefficients, collisional-radiative spectral modeling and assessments of the atomic data need for X-ray diagnostics monitoring of the parameters of the core plasma of future tokamaks, such as ITER. We give examples of our recent results in these areas.

  14. Degradation and defects in plasma facing components for future fusion devices

    OpenAIRE

    Kapustina, Anna

    2004-01-01

    The main function of the first wall and the divertor are to remove the power generated by the plasma and to shield from neutrons. The plasma facing components (PFCs) are optimised the high heat flux energy removal. PFCs are composed of a thick armour joined to an actively cooled heat sink to provide the necessary transfer of the incident power to the cooling system. During normal operation these components have to dissipate a heat flux up to 5 MW/m² in the divertor and 0.5 MW/m² on the first ...

  15. Improved method of plasma 8-Isoprostane measurement and association analyses with habitual drinking and smoking

    Institute of Scientific and Technical Information of China (English)

    Soichi Kitano; Hisashi Hisatomi; Nozomu Hibi; Katsumi Kawano; Shoji Harada

    2006-01-01

    AIM: To develop a simple and accurate method for quantifying 8-isoprostane in plasma by employing a combination of two-step solid-phase extraction of samples and a commercially available ELISA kit, and by this method to examine the effects of drinking and smoking habits against the levels of plasma 8-isoprostane in healthy Japanese volunteers.METHODS: Plasma 8-isoprostane was extracted with ODS gel suspension followed by NH2 Sep-Pak column.The 8-isoprostane fractions were assayed using a commercially available ELISA kit. We measured plasma 8-isoprostane levels in 157 healthy Japanese volunteers divided into three groups (64 non-habitual drinkers, 56moderate drinkers and 37 habitual drinkers) according to their alcohol consumption per week. Genotypes of aldehyde dehydrogenase 2 (ALDH2) were also determined to investigate the plasma 8-isoprostane levels with reference to drinking habits. In addition, the plasma 8-isoprostane levels of 96 non-smokers and 61 smokers from the same subjects were compared.RESULTS: Our method fulfilled all the requirements for use in routine clinical assays with respect to sensitivity,intra- and inter-assay reproducibility, accuracy and dynamic assay range. Significant increases of plasma 8-isoprostane levels were observed in female habitual drinkers when compared with those of non-habitual drinkers (t = 5.494, P < 0.0001) as well as moderate drinkers (t = 3.542, P < 0.005), and 8-isoprostane levels were also significantly different between ALDH2*2/1 and ALDH2*1/1 in the female habitual drinkers (t = 6.930, P < 0.0001), suggesting that excessive drinking of alcohol may increase oxidization stress, especially in females.On the contrary, no significant difference of the plasma 8-isoprostane levels.was observed between non-smokers and smokers.CONCLUSION: Our present method was proved to be a simple and accurate tool for measuring plasma 8-isoprostane. However, the clinical utility of plasma 8-isoprostane for drinking and smoking habits

  16. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Stutman, D.; Finkenthal, M.; Kaye, S. M.; Kumar, D.; LeBlanc, B. P.; Paul, S.; Sabbagh, S. A.

    2012-10-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ˜ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements.

  17. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    International Nuclear Information System (INIS)

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ∼ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements. (paper)

  18. Simulation of plasma–surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects

    Science.gov (United States)

    Garkusha, I. E.; Aksenov, N. N.; Byrka, O. V.; Makhlaj, V. A.; Herashchenko, S. S.; Malykhin, S. V.; Petrov, Yu V.; Staltsov, V. V.; Surovitskiy, S. V.; Wirtz, M.; Linke, J.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2016-09-01

    This paper is devoted to plasma–surface interaction issues at high heat-loads which are typical for fusion reactors. For the International Thermonuclear Experimental Reactor (ITER), which is now under construction, the knowledge of erosion processes and the behaviour of various constructional materials under extreme conditions is a very critical issue, which will determine a successful realization of the project. The most important plasma–surface interaction (PSI) effects in 3D geometry have been studied using a QSPA Kh-50 powerful quasi-stationary plasma accelerator. Mechanisms of the droplet and dust generation have been investigated in detail. It was found that the droplets emission from castellated surfaces has a threshold character and a cyclic nature. It begins only after a certain number of the irradiating plasma pulses when molten and shifted material is accumulated at the edges of the castellated structure. This new erosion mechanism, connected with the edge effects, results in an increase in the size of the emitted droplets (as compared with those emitted from a flat surface). This mechanism can even induce the ejection of sub-mm particles. A concept of a new-generation QSPA facility, the current status of this device maintenance, and prospects for further experiments are also presented.

  19. Fundamental processes of fuel removal by cyclotron frequency range plasmas and integral scenario for fusion application studied with carbon co-deposits

    Energy Technology Data Exchange (ETDEWEB)

    Möller, S., E-mail: s.moeller@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Wauters, T. [Laboratory for Plasma Physics, ERM/KMS, TEC Partner, 1000 Brussels (Belgium); Kreter, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Petersson, P.; Carrasco, A.G. [Fusion Plasma Physics, KTH Royal Institute of Technology, Teknikringen 31, 10044 Stockholm (Sweden)

    2015-08-15

    Plasma impact removal using radio frequency heated plasmas is a candidate method to control the co-deposit related tritium inventory in fusion devices. Plasma parameters evolve according to the balance of input power to losses (transport, radiation, collisions). Material is sputtered by the ion fluxes with impact energies defined by the plasma sheath. H{sub 2}, D{sub 2} and {sup 18}O{sub 2} plasmas are produced in the carbon limiter tokamak TEXTOR. Pre-characterised a-C:D layers are exposed to study local removal rates. The D{sub 2} plasma exhibits the highest surface release rate of 5.7 ± 0.9 ∗ 10{sup 19} D/m{sup 2}s. Compared to this the rate of the O{sub 2} plasma is 3-fold smaller due to its 11-fold lower ion flux density. Re-deposition of removed carbon is observed, indicating that pumping and ionisation are limiting the removal in TEXTOR. Presented models can explain the observations and allow tailoring removal discharges. An integral application scenario using ICWC and thermo-chemical removal is presented, allowing to remove 700 g T from a-C:DT co-deposits in 20 h with fusion compatible wall conditions using technical specifications similar to ITER.

  20. Transport in complex magnetic geometries: 3D modelling of ergodic edge plasmas in fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Runov, A. E-mail: runov@ipp.mpg.de; Kasilov, S.; Reiter, D.; McTaggart, N.; Bonnin, X.; Schneider, R

    2003-03-01

    Both stellarators and tokamaks can have quite complex magnetic topologies in the plasma edge. Special complexity is introduced by ergodic effects producing stochastic domains. Conventional numerical methods from fluid dynamics are not applicable in this case. In the present paper, we discuss two alternative possibilities. Our multiple coordinate system approach (MCSA) [Phys. Plasmas 8 (2001) 916] originally developed for the TEXTOR DED allows modelling of plasma transport in general magnetic field structures. The main idea of the concept is: magnetic field lines can exhibit truly stochastic behavior only for large distances (compared to the Kolmogorov length), while for smaller distances, the field remains regular. Thus, one can divide the computational domain into a finite set of sub-domains, introduce local magnetic coordinate systems in each and use an 'interpolated cell mapping' technique to switch between the neighboring coordinate systems. A 3D plasma fluid code (E3D, based upon MCSA) is applied to realistic geometries. We also introduce here some new details of the algorithm (stellarator option). The results obtained both for intrinsic (stellarator) and external (tokamak with ergodic divertor) perturbations of the magnetic field are discussed. Another approach, also using local coordinate systems, but based on more conventional finite difference methods, is also under development. Here, we present the outline of the algorithm and discuss its potential as compared to the Lagrangian Monte-Carlo approach.